飞机隐身技术

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

飞机隐身技术

隐身飞机自诞生以来,就一直受到各国的广泛关注,各个国家也开始启动了自己的隐身飞机的研发项目,其中包括,德国的“萤火虫”隐身飞机计划,俄罗斯的S-37等,以及其中最引人注目的当属美国开发的第一,第二,第三代隐身飞机。第一代以F-117和夭折的A-12为代表,F- 117A首次用于实战是在1989年12月了美国对巴拿马的军事行动,遂行轰炸任务,取得巨大成功。这让隐身飞机被各国所重视。

飞机隐身技术包括雷达隐身技术、红外隐身技术、电子隐身技术、可见光隐身技术、声波隐身技术、电磁隐身技术等,由于现代防空体系中最为重要、使用最广、发展最快的探测器是雷达,因此,雷达隐身技术成为最主要的隐身技术。雷达隐身技术的核心就是降低目标的雷达散射截面积(RCS)。目前可采取的RCS减缩手段主要包括外形隐身技术、材料隐身技术及对消技术和等离子体隐身技术。

1 外形隐身技术

外形隐身技术就是在一定的约束条件下设计军用目标各部件和整机的外形,使它的RCS 最小,主要理论依据来自目标各部件的电磁散射机理[4],目前采用的主要措施有:①采用翼身融合体,全埋式座舱和半埋式发动机,使机翼与机身、座舱与机身平滑过渡,融为一体;

②机翼采用飞翼、带圆钝前缘的V型大三角翼、低置三角翼、平底翼融合体以及活动翼结构等;③努力减少飞机表面能造成散射的突起物、取消一切外挂武器和吊舱,将外挂设备全部置于机内;④借助机身遮挡强的散射源,将发动机进气口设在机身背部,进气道采用锯齿形;

⑤座舱盖镀上金属镀膜,使雷达波不能透射入座舱内部;⑥采用倾斜双垂尾或V型尾翼;⑦采用尖形鼻锥;⑧改进天线罩,采用可收放天线等等。

2 材料隐身技术

材料隐身技术就是采用能吸收或透过雷达波的涂料或复合材料,使雷达波有来无回、多来少回。目前主要使用的是雷达吸波材料,此类材料可将雷达波能量转化为其他形式运动的能量,并通过该运动的耗散作用转化为热能。美国的B- 2A、F- 117A和F- 22等隐身飞机均在金属蒙皮、机翼前后缘、垂尾和进气道等强回波部位大量使用吸波材料来减小RCS。

雷达吸波材料多种多样,其中包括非共振磁性雷达吸波材料和共振雷达吸波材料。由非共振磁性雷达吸波材料制造的涂料含铁酸盐粒子可将轰炸机表面“吸收”的雷达波作为热量散发掉,这种材料可降低雷达的“可见度”,并可在一个宽广的雷达波频率范围内使用。共振雷达吸波材料则只在一个很窄的频率范围内有效,不过只要雷达波频率在该材料的设计范围内,它的效率就非常高。经计算,这种材料的厚度与雷达波的波长一致时,就能像被“调谐”了一样可吸收特定频率范围的信号。

隐身材料除以上两种还包括手性材料;纳米隐身材料;导电高聚物材料;多晶铁纤维吸收剂;智能型隐身材料。

而在复合材料中,通常有一相为连续相,称为基体;另一相为分散相,称为增强材料。纳米功能复合材料是指由2种或2种以上的物理或化学性质不同的物质组合而成的一种多相固体材料,其中至少有一种在一维方向是处于纳米级的微粒、晶粒、薄膜或纤维。这种纳米级的微粒、晶粒、薄膜或纤维必须具有与普通大尺寸物质所不同的奇特性质,而由这些物质组成的复合材料通常称之为纳米复合材料。这种复合材料由于具有某些奇特功能,因此又称之为纳米功能复合材料。纳米吸波复合材料是指能吸收投射到它表面的电磁波能量,并通过材料的介质损耗使电磁波能量转变成热能或其他形式能量的一类纳米功能复合材料。其特性是纳米复合材料的界面组元所占比例大,颗粒表面原子比例高,不饱和键和悬挂键增多。大量悬挂键的存在使界面极化,吸收频带展宽。高的比表面积造成多重散射。纳米材料的量子尺寸效应使电子的能级分裂,而分裂的能级间距正处于微波的能量范围,为纳米材料创造了

新的吸波通道。纳米材料中的原子、电子在微波场的辐射下,运动加剧,增加了电磁能转化为热能的效率,从而提高了对电磁波的吸收性能。现代飞机的隐身技术,除了采用热红外线和自身电磁隐身方法外,主要手段是使用新型的吸波材料。纳米吸波复合材料正被作为新一代隐身材料加以研制,纳米吸波复合材料按其材料成型工艺和承载能力可分为结构型和涂敷型2种。

(1)结构型纳米吸波复合材料

结构型纳米吸波复合材料是将吸收剂分散在由特种纤维(如石英纤维、玻璃纤维等)增强的结构复合材料中所形成的结构复合材料,它具有承载和吸收雷达波的双重功能。图1所示是一种用于飞机机翼前缘的吸波复合结构。它的蒙皮由玻璃纤维增强塑料制成,厚

0.76mm,其气动外形由未填充吸收剂的刚性泡沫材料来保证;刚性泡沫体的内侧涂敷填充了铝粉的涂层,可以使部分入射的电磁波散射到其他方向,而不回到雷达接收站;泡沫材料中填充有吸收剂,并且呈一定的梯度以便更好地衰减入射电磁波;整个结构主要由翼梁支撑。图2所示的飞行器机翼前缘为宽频吸波结构。该结构吸波材料为3层结构,其内外蒙皮很薄(0.5~1.5mm),内蒙皮由电阻织物构成的增强塑料制造,在结构受力的内蒙皮通常采用镀金属的玻璃布制成,在内外蒙皮之间填充轻质吸波材料,在制造过程中加入吸波成分,夹层中填料浓度可改变,以便获得良好匹配。

(2)涂敷型纳米吸波复合材料

通常是吸收剂与粘结剂混合后涂敷于目标表面形成吸波复合涂层。将这种涂层涂敷于目标表面即可制成涂敷型纳米吸波复合材料,目前研究较多的多层涂敷型吸波材料是由电损耗和磁损耗材料复合而成的2层和3层吸波涂层。为应对不同雷达的不同工作方式,现在的隐身飞机已经开始有选择地用纳米吸波材料,即将纳米粉体均匀分散到飞机表面涂料当中,以增强吸收雷达电磁波的效率。一些发达国家正在进行主动抵消技术的研究,即利用吸波材料先吸收大部分雷达波剩下少量的反射波再利用主翼梁动抵消技术将其全部抵消,这样雷达就会完全失去作用。美国已研制出一系列薄层状铁氧体吸波复合材料,并成功应用于F-117A 隐身战斗机的机身、机翼和V形垂尾外表面,获得很好的隐身效果,在1991年的海湾战争中,F-117A出动1000多架次无一受损,最大限度地达到使隐身飞机杀伤敌方人员并保护自身安全的目的。

近年来,随着先进红外/紫外探测器、毫米波段雷达等新型先进探测器的相继问世,对原有的飞机隐身技术提出了新的、更严峻的挑战。一种类型的材料已很难满足飞机隐身技术所提出的“薄、轻、宽、强”的综合要求,而是需要将多种吸波材料进行多种形式的复合来获得最佳的隐身效果。纳米微粒如铁磁性物质Mn-Zn、Ni-Zn铁氧体与铁电性的BaTiO3复合,能够极大地提高吸波性能;采用有机—无机纳米材料复合技术,能很方便地调节复合材料的电磁参数以达到阻抗匹配的要求,并最大限度地实现减重。因此,纳米吸波复合材料必将成为今后吸波复合材料研究与发展中的一个重要领域。

3 对消技术

对消技术是通过目标产生与雷达反射波同频率、同振幅但相位相反的电磁波,与反射波发生相消干涉,从而消除散射信号。对消技术分为无源对消技术和有源对消技术。无源对消技术是采用特殊外形或材料等无源隐身技术手段产生干涉波的对消技术;有源对消技术是利用在目标上装备有源对消电子设备,以产生适合对消的电磁波,通过相消干涉减弱或消除反射波。

4 等离子体隐身技术

等离子体隐身技术的原理是当对方雷达发射的电磁波遇到等离子体的带电粒子后,便相互发生作用,电磁波的部分能量传递给带电粒子,其自身能量逐渐衰减,其余电磁波受一系

相关文档
最新文档