人教版锐角三角函数ppt课件
合集下载
人教版数学锐角三角函数ppt精品课件1
28.1锐角三角函数
一、新课引入
如图:在Rt △ABC中,∠C=90°,
B
角:∠A+ ∠B =90°
勾股定理
┌
A
C 边:AC2 + BC2 = AB2
在直角三角形中,边与角之间有什么关 系呢?
一、新课引入
直角三角形ABC可以简记为Rt△ABC;
直角∠C所对的边AB称为斜边,用c表示;
直角边BC称为 ∠A的对边,用a表示; 直角边AC称为 ∠A的邻边,用b表示.
(3)sinA=0.6m (×)
练一练
10m A
(4)tanB=0.8 (×)
2)如图,sinA= B C(× )
AB
B 6m
C
四、强化训练
练一练
2.在Rt△ABC中,锐角A的对边和斜边
同时扩大 100倍,则sinA的值( C )
1
A.扩大100倍
B.缩小
100
C.不变
D.不能确定
3.在Rt△ABC中,∠C=90o,若AB=5, AC=4,则sinA=__53____
6m ( )
的对边与邻边的比叫做锐角∠A的余切,记
(2)COSB=
()
B' B
直角边BC称为 ∠A的对边,用a表示;
锐角A的对边与邻边的比叫做锐 直角边BC称为 ∠A的对边,用a表示;
50m
知 问题 :为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡35面m的绿地进行喷灌.现测得
2.sinA、 cosA、tanA 、 cotA是一个比值 (数值),没有单位.
3.sinA、 cosA、 tanA 、 cotA的大小只 与∠A的大小有关,而与直角三角形的边长无 关.
一、新课引入
如图:在Rt △ABC中,∠C=90°,
B
角:∠A+ ∠B =90°
勾股定理
┌
A
C 边:AC2 + BC2 = AB2
在直角三角形中,边与角之间有什么关 系呢?
一、新课引入
直角三角形ABC可以简记为Rt△ABC;
直角∠C所对的边AB称为斜边,用c表示;
直角边BC称为 ∠A的对边,用a表示; 直角边AC称为 ∠A的邻边,用b表示.
(3)sinA=0.6m (×)
练一练
10m A
(4)tanB=0.8 (×)
2)如图,sinA= B C(× )
AB
B 6m
C
四、强化训练
练一练
2.在Rt△ABC中,锐角A的对边和斜边
同时扩大 100倍,则sinA的值( C )
1
A.扩大100倍
B.缩小
100
C.不变
D.不能确定
3.在Rt△ABC中,∠C=90o,若AB=5, AC=4,则sinA=__53____
6m ( )
的对边与邻边的比叫做锐角∠A的余切,记
(2)COSB=
()
B' B
直角边BC称为 ∠A的对边,用a表示;
锐角A的对边与邻边的比叫做锐 直角边BC称为 ∠A的对边,用a表示;
50m
知 问题 :为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡35面m的绿地进行喷灌.现测得
2.sinA、 cosA、tanA 、 cotA是一个比值 (数值),没有单位.
3.sinA、 cosA、 tanA 、 cotA的大小只 与∠A的大小有关,而与直角三角形的边长无 关.
28.1 锐角三角函数 课件 2024-2025学年数学九年级下册人教版
2 A=___4___.
感悟新知
知1-练
例 3 如图28.1-3,在等腰三角形ABC 中,AB=AC,如果 2AB=3BC,求∠B 的三个三角函数值.
解题秘方:紧扣“锐角三角函数的定 义的前提是在直角三角形中”这一特 征,用“构造直角三角形法”求解.
感悟新知
解:过点A作AD⊥BC于点D,如图28.1-3,
学习目标
第二十八章 锐角三角函数
28.1 锐角三角函数
感悟新知
知识点 1 锐角三角函数
1. 正弦、余弦、正切
名称
定义
符号语言
在Rt△ABC中,∠C=
90°,∠A的对边与斜 在Rt△ABC
正弦
边的比叫做∠A 的正 中,∠C=
弦 ,记 作 sin A,即 sin A=∠A斜的边对边
90°,sin =ac
A.
4 3
B.
3 4
C.
3 5
D.
4 5
解题秘方:引入参数,用这个参数表示出三角形的
三边长,再用定义求解.
感悟新知
知1-练
解:由sin A=BACB=45,可设BC=4k(k>0),则AB=5k. 根据勾股定理,得AC=3k, ∴ tan B=ABCC=34kk=34. 答案:B
感悟新知
知1-练
技巧点拨:在直角三角形中,给出某一个锐角的三角 函数值,求另一个锐角的三角函数值时,可以用设辅助 元,即引入“参数”的方法来解决,注意在最后计算时要 约去辅助元.
感悟新知
知1-练
2-1. [期中·盐城射阳县]如图,在Rt△ABC中,∠C=90 °,
sin
A=13,则cos
22 A=___3___,tan
《锐角三角函数》PPT教学课件(第1课时)
BC AC
= 12 =
AC
34,所以AC=9.故填9.
随堂训练
AB 6.如图,在Rt△ABC中,∠C=90°,BC
17 15
,则tan
15 A=_8__.
由正切定义可知tan A=BACC , 因为 AB 17 , 可设BC=15a,AB=17a,从而可
BC 15
用勾股定理表示出第三边AC=8a,再用正切的定义求解得 tan A= BC 15 .
由勾股定理可得 AB= BC2 AC2 122 162 =20.
∴AB的长为20.
课堂小结
1.正切的定义: 如图,在Rt△ABC中,如果锐角A确定,那么∠A的对边与邻
边的比便随之确定,这个比叫做 ∠A的正切,记作tan A, 即tan A= A的对边
A的邻边
2.tanA的值越大,梯子(坡)越陡
图①
图②
新课导入
问题引入
如图所示,轮船在A处时,灯塔B位于它 的北偏东35°的方向上.轮船向东航行5 km 到达C处时,轮船位于灯塔的正南方,此时轮 船距灯塔多少千米?(结果保留两位小数)
该实际问题中的已知和所求为图中的哪些角和线段?
(事实上,求轮船距灯塔的距离,就是在Rt△ABC中,已知 ∠C=90°,∠BAC=55°,AC=5 km,求BC长度的问题)
C,C'.
BC AC
与BACC
具有怎样的关系?
在两个直角三角形中,当一对锐角相等
时,这两个直角三角形相似,从而两条对应直
角边的比相等,即当∠A(小于90°)确定时,以 ∠A为锐角的Rt△ABC的两条直角边的比 BC
AC
是确定的.
知识讲解
1.正切的定义
如图所示,在Rt△ABC中,∠C=90°,我们把∠A的对边与邻边的比叫
人教版《锐角三角函数》PPT精品课件
8 ()
100倍,sinA的值( )
B
B 问题1:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出
水口的高度为35m,那么需要准备多长的水管?
当∠A=45°时,我们有sinA=sin45°= ;
问题1:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出
1 1、理解掌握正弦概念;
问题1:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出 水口的高度为35m,那么需要准备多长的水管?
A.扩大100倍 B.缩小 问题1:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出 100 水口的高度为35m,那么需要准备多长的水管?
问题1:为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出
B 水口的高度为35m,那么需要准备多长的水管?
100m 问题2:直角三角形中,当锐角度数确定时,如果改变直角三角形的大小,其对边与斜边比还会发生变化吗?
确定?
B
B
200m
100m B
B
70m 35m
50m
100m
A
30° CC
C
C
问题3:那么,直角三角形中,当锐角 度数变化时,其对边与斜边的比也随之 变化吗?
人教版《锐角三角函数》优秀课件初中数学ppt
(C) 0<cosA< 3 2
(D) 3<cosA<1 2
3.特殊角300,450,600角的三角函数值.
锐角a 三角 函数
sin a
cos a
tan a
30° 45° 60°
1
2
3
2
2
2
3
2
1
2
2
2
3
3
1
3
练一练
求下列各式的值: (1) sin230°+ cos230°-tan45°.
(2)3tan 30 tan 45 2sin 60;
求sin∠ABC的值。
构建直角三角形求三角函数值
求sin∠ABC的值。
解:过点A作AD⊥BC于D.
等腰三角形常作底边上的高线。
归纳:已知值,求角 求cosB 及tanB 的值.
(C) 0<cosA<
(D) <cosA<1
求锐角三角函数值的四种常用方法
方法
1
直接用锐角三角函数的定义求 三角函数值
1.如图所示,在 Rt△ABC 中,∠C=90°,BC=3,AC=4,
那么 cosA 的值等于 ( D )
A. 3 4
B. 4 3
C. 3 5
D. 4 5
方法 2 巧设参数求三角函数值
2.在Rt△ABC中,∠C=90°,且sinB=
12 13
,
5
则tanA= 12 .
方法
3 利用等角转化法求三角函数值
3.如图,已知在Rt△ABC中,∠ACB=90°,CD是 斜边AB的中线,过点A作AE⊥CD,AE分别与CD, CB相交于点H,E且AH=2CH,求sin B的值.
17
E
人教版《锐角三角函数》PPT完美课件初中数学2ppt
sin
A
A的对边 斜边
a c
正弦
锐角三角函数
sinA,sin30°,sinα,sin∠1,sin∠BAC
小试牛刀
如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,求sinA.
B
5
3
A
┌
4
C
sinA
小试牛刀
含30°角的直角三角形中,30°角所对的边等于斜边的一半。
角而言,它的对边与斜边的比不变的规律.
难点:直角三角形中,探究正弦定义的过程,对于同一个锐
sin60° 含30°角的直角三角形中,30°角所对的边等于斜边的一半。
在Rt△ABC中,∠C=90°,我们把锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA .
sin45°
复习小结
正弦的定义
在Rt△ABC中,∠C=90°,我们把锐角∠A的对边与斜边的比 叫做∠A的正弦,记作sinA .
30°
A 如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,求sinA.
C 含30°角的直角三角形中,30°角所对的直角边等于斜边的一半。
C1 C2
含30°角的直角三角形中,30°角所对的边等于斜边的一半。
角而言,它的对边与斜边的比不变的规律.
在直角三角形中,一个锐角的对边与斜边的比,叫做这个锐角的正弦。
相似
AA相似
∠A的对边/斜边
B3
B2 B1 B
5 3
A
C C1 C2 C3
相似
∠A≈37° AA相似
∠A的对边/斜边
B
A
┌C
∠A的对边/斜边
在直角三角形中,一个锐角的对边与斜边的比,叫做这个锐角的正弦。
人教版《锐角三角函数》PPT完美课件
正12弦.是一在直直角角三三角角形形的中两定边义长的分,别反为映6和了8直,角求三该角三形角边形与中角较的小关锐系角. 的正弦值. 正由弦勾是 股在定直理角得三AB角2形=A中C定2+义B的C2,=反2B映C了2.直角三角形边与角的关系.
第例2如8,章当锐∠A角=三3角0°函时数,我们有
行喷灌. 现测得斜坡的坡角(∠A )为 30°,为使出水口的高度 由人勾教股 版定· 数理学得· A九B年2=级A(C2下+)BC2=2BC2.
例现1测得如斜图坡,的在坡R角t△(∠AABC)为中3,0∠°,C=为9使0°出,水求口si的nA高和度为sin3B5的m值,. 需要准备多长的水管?
为 35 m,需要准备多长的水管? 所正以弦是在直角三角形中定义的,反映了直角三角形边与角的关系.
A例.如s,in当A∠=A3=sin30A°′时,B我.们sin有A=sin A′ 现能测根得 据斜正坡弦的概坡念角正确(∠进A 行)为计3算0°。,为使出水口的高度为 35 m,需要准备多长的水管?
由勾股定理得 AB2=AC2+BC2=2BC2.
在直角三角形中,当锐角 A 的度数一定时, 在 Rt△ABC 中,∠C =90°,AC =5,BC =4,则 sinA =
.
理解并掌握锐角正弦的定义,知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定 (即正弦值不变)。
从上述情境中,你可以发现一个什么数学问题呢?能否结合数学图形把它描述出来?
现测得斜坡的坡角(∠A )为 30°,为使出水口的高度为 35 m,需要准备多长的水管?
A.sin A=3sin A′ B.sin A=sin A′
正弦是在直角三角形中定义的,反映了直角三角形边与角的关系.
第例2如8,章当锐∠A角=三3角0°函时数,我们有
行喷灌. 现测得斜坡的坡角(∠A )为 30°,为使出水口的高度 由人勾教股 版定· 数理学得· A九B年2=级A(C2下+)BC2=2BC2.
例现1测得如斜图坡,的在坡R角t△(∠AABC)为中3,0∠°,C=为9使0°出,水求口si的nA高和度为sin3B5的m值,. 需要准备多长的水管?
为 35 m,需要准备多长的水管? 所正以弦是在直角三角形中定义的,反映了直角三角形边与角的关系.
A例.如s,in当A∠=A3=sin30A°′时,B我.们sin有A=sin A′ 现能测根得 据斜正坡弦的概坡念角正确(∠进A 行)为计3算0°。,为使出水口的高度为 35 m,需要准备多长的水管?
由勾股定理得 AB2=AC2+BC2=2BC2.
在直角三角形中,当锐角 A 的度数一定时, 在 Rt△ABC 中,∠C =90°,AC =5,BC =4,则 sinA =
.
理解并掌握锐角正弦的定义,知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定 (即正弦值不变)。
从上述情境中,你可以发现一个什么数学问题呢?能否结合数学图形把它描述出来?
现测得斜坡的坡角(∠A )为 30°,为使出水口的高度为 35 m,需要准备多长的水管?
A.sin A=3sin A′ B.sin A=sin A′
正弦是在直角三角形中定义的,反映了直角三角形边与角的关系.
《锐角三角函数》课件
锐角三角函数图像与性质
正弦函数图像及性质
周期性
振幅
相位
图像特点
正弦函数具有周期性,周期为2π。
正弦函数的相位表示函数在水平方向上的移动,通过调整相位可以得到不同位置的正弦波。
正弦函数的振幅为1,表示函数在垂直方向上的波动范围。
正弦函数的图像是一条连续的、平滑的曲线,呈现周期性的波动。
余弦函数图像及性质
202X
单击此处添加副标题内容
《锐角三角函数》ppt课件
汇报日期
汇报人姓名
目录
锐角三角函数基本概念
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数图像与性质
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数运算规则
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数在实际问题中应用
乘法运算规则
两个锐角三角函数的除法运算,通常转化为同角三角函数的除法运算,再利用同角三角函数的基本关系式进行化简。
除法运算规则
按照先乘除后加减的运算顺序进行乘除混合运算,注意运算过程中的化简和约分。
乘除混合运算规则
复合运算规则
复合函数的定义域
复合函数的值域
复合函数的单调性
复合函数的周期性
01
02
03
钝角三角函数定义
探讨了钝角三角函数的性质,如取值范围、增减性等,以及与锐角三角函数的异同点。
钝角三角函数的性质
介绍了在直角情况下,一些特殊角的三角函数值,如0°、30°、45°、60°、90°等,以及如何利用这些特殊值进行计算和证明。
直角情况下的特殊值
感谢观看
THANKS
渐近线与间断点
02
正弦函数图像及性质
周期性
振幅
相位
图像特点
正弦函数具有周期性,周期为2π。
正弦函数的相位表示函数在水平方向上的移动,通过调整相位可以得到不同位置的正弦波。
正弦函数的振幅为1,表示函数在垂直方向上的波动范围。
正弦函数的图像是一条连续的、平滑的曲线,呈现周期性的波动。
余弦函数图像及性质
202X
单击此处添加副标题内容
《锐角三角函数》ppt课件
汇报日期
汇报人姓名
目录
锐角三角函数基本概念
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数图像与性质
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数运算规则
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数在实际问题中应用
乘法运算规则
两个锐角三角函数的除法运算,通常转化为同角三角函数的除法运算,再利用同角三角函数的基本关系式进行化简。
除法运算规则
按照先乘除后加减的运算顺序进行乘除混合运算,注意运算过程中的化简和约分。
乘除混合运算规则
复合运算规则
复合函数的定义域
复合函数的值域
复合函数的单调性
复合函数的周期性
01
02
03
钝角三角函数定义
探讨了钝角三角函数的性质,如取值范围、增减性等,以及与锐角三角函数的异同点。
钝角三角函数的性质
介绍了在直角情况下,一些特殊角的三角函数值,如0°、30°、45°、60°、90°等,以及如何利用这些特殊值进行计算和证明。
直角情况下的特殊值
感谢观看
THANKS
渐近线与间断点
02
26.2 锐角三角函数的计算课件(共16张PPT)
例1 用计算器求三角函数值:(精确到0.000 1).(1)sin 10°; (2) cos 50°18' .
例题示范
解:(1) ∴ sin 10°≈ 0.173 6.(2) ∴ cos 50°18' ≈ 0. 638 8.
例2 用计算器求下列各锐角的度数:(结果精确到1")(1)已知cosα=0.523 7,求锐角α.
第二十六章 解直角三角形
26.2 锐角三角函数的计算
学习目标
学习重难点
重点
难点
1.会用计算器求锐角的三角函数值.2.会用计算器根据一个锐角三角函数的值求对应的锐角.
会用计算器求锐角的三角函数值.
正确使用计算器求锐角的三角函数值.
回顾复习
根据前面学习的特殊角的三角函数值,完成下面的表格.
问题引入
我们已经知道30°,45°,60°的三角函数值,那么,怎样计算任意锐角的函数值呢?反过来,已知一个锐角的三角函数值,怎样求出这个锐角呢?如何求它的三角函数值呢?
新知引入
思考 如何用计算器求锐角的三角函数值呢?
计算器上只要有sin,cos,tan键,就可以用来求锐角的三角函数值.
不同计算器的按键方法各有不同,现在介绍一种计算器,先按ON/C键,再按MODE键,使显示器屏幕出现“DEG”,然后再按有关三角函数的键.
拓展练习
1.用计算器求sin 16°,cos 42°,tan 85°,sin 72°38′25″的值.
按键顺序
显示结果
sin 16°
0.275 637 355
cos 42°
0.743 144 825
tan 85°
11. 430 052 3
sin72°38′25″
例题示范
解:(1) ∴ sin 10°≈ 0.173 6.(2) ∴ cos 50°18' ≈ 0. 638 8.
例2 用计算器求下列各锐角的度数:(结果精确到1")(1)已知cosα=0.523 7,求锐角α.
第二十六章 解直角三角形
26.2 锐角三角函数的计算
学习目标
学习重难点
重点
难点
1.会用计算器求锐角的三角函数值.2.会用计算器根据一个锐角三角函数的值求对应的锐角.
会用计算器求锐角的三角函数值.
正确使用计算器求锐角的三角函数值.
回顾复习
根据前面学习的特殊角的三角函数值,完成下面的表格.
问题引入
我们已经知道30°,45°,60°的三角函数值,那么,怎样计算任意锐角的函数值呢?反过来,已知一个锐角的三角函数值,怎样求出这个锐角呢?如何求它的三角函数值呢?
新知引入
思考 如何用计算器求锐角的三角函数值呢?
计算器上只要有sin,cos,tan键,就可以用来求锐角的三角函数值.
不同计算器的按键方法各有不同,现在介绍一种计算器,先按ON/C键,再按MODE键,使显示器屏幕出现“DEG”,然后再按有关三角函数的键.
拓展练习
1.用计算器求sin 16°,cos 42°,tan 85°,sin 72°38′25″的值.
按键顺序
显示结果
sin 16°
0.275 637 355
cos 42°
0.743 144 825
tan 85°
11. 430 052 3
sin72°38′25″
锐角三角函数ppt课件
A
cos A AD 3 AD 3 2 3 3
AC 2
2
D
B
tan B CD 3 BD 2
BD
3 2 2 3
AB AD BD 3 2 5
9
练习
1. 求下列各式的值:
(1)1-2 sin30°cos30°
(2)3tan30°-tan45°+2sin60°
(3)
1
cos 60 sin 60
60°
3 2
1 2
3
5
例1求下列各式的值:
(1)cos260°+sin260°
(2)
cos 45 sin 45
tan
45
(3)tan450.sin450-4sin300.cos450+cos2300
解: (1) cos260°+sin260°
1 2
2
2
3 2
=1
(2)
cos 45 sin 45
2 2
1
60°
3 2
1 2
3
对于sinα与tanα,角度越大,函数值也越大;(带正) 对于cosα,角度越大,函数值越小。
14
B
求∠A、∠B的度数.
7
解: 由勾股定理
A
C
21
2
2
AB AC2 BC2 21 7 28 2 7
sin A BC 7 1 AB 2 7 2
∴ A=30°
∠B = 90°- ∠ A = 90°-30°= 60°
12
1?
sin 230 +tan 245 +sin 260 cos 245 +tan30 cos30
米.然后他很快就算出旗杆的高度了。
人教版数学《锐角三角函数》(完整版)课件
人教版数学《锐角三角函数》教学实 用课件 (PPT优 秀课件 ) 人教版数学《锐角三角函数》教学实 用课件 (PPT优 秀课件 )
人教版数学《锐角三角函数》教学实 用课件 (PPT优 秀课件 ) 人教版数学《锐角三角函数》教学实 用课件 (PPT优 秀课件 )
人教版数学《锐角三角函数》教学实 用课件 (PPT优 秀课件 ) 人教版数学《锐角三角函数》教学实 用课件 (PPT优 秀课件 )
人教版数学《锐角三角函数》教学实 用课件 (PPT优 秀课件 ) 人教版数学《锐角三角函数》教学实 用课件 (PPT优 秀课件 )
人教版数学《锐角三角函数》教学实 用课件 (PPT优 秀课件 ) 人教版数学《锐角三角函数》教学实 用课件 (PPT优 秀课件 )
人教版数学《锐角三角函数》教学实 用课件 (PPT优 秀课件 ) 人教版数学《锐角三角函数》教学实 用课件 (PPT优 秀课件 )
人教版数学《锐角三角函数》教学实 用课件 (PPT优 秀课件 ) 人教版数学《锐角三角函数》教学实 用课件 (PPT优 秀课件 )
人教版数学《锐角三角函数》教学实 用课件 (PPT优 秀课件 ) 人教版数学《锐角三角函数》教学实 用课件 (PPT优 秀课件 )
人教版数学《锐角三角函数》教学实 用课件 (PPT优 秀课件 ) 人教版数学《锐角三角函数》教学实 用课件 (PPT优 秀课件 )
人教版数学《锐角三角函数》教学实 用课件 (PPT优 秀课件 )
人教版数学《锐角三角函数》教学实 用课件 (PPT优 秀课件 )
九年级数学下册(RJ)
人教版数学《锐角三角函数》教学实 用课件 (PPT优 秀课件 ) 人教版数学《锐角三角函数》教学实 用课件 (PPT优 秀课件 )
人教版数学《锐角三角函数》教学实 用课件 (PPT优 秀课件 ) 人教版数学《锐角三角函数》教学实 用课件 (PPT优 秀课件 )
人教版数学锐角三角函数PPT(精选)
=
a b
一、新课引入
了解“方位角”航海术语,并能根据题意
1 画出示意图;
2 利用解直角三角形的方法解决航海问 题中的应用.
二、新课讲解
画出方向图(表示东南西北四个方向的)并依 次画出表示东南方向、西北方向、北偏东65度 、南偏东34度方向的射线.
北 西 北
西
东
东
南
南
二、新课讲解
例 如图,一艘海轮位于灯塔P的北偏
六、结束语
我们能够期待,随着教育与娱乐 的发展,将有更多的人欣赏音乐与绘 画。但是,能够真正欣赏数学的人数 是很少的。
——贝尔斯
•
1.阅读说明文,首先要整体感知文章 的内容 ,把握 说明对 象,能 区分说 明对象 分为具 体事物 和抽象 事理两 类;其 次是分 析文章 内容, 把握说 明对象 的特征 。事物 性说明 文的特 征多为 外部特 征,事 理性说 明文的 特征多 为内在 特征。
知 识
东65度方向,距离灯塔80海里的A处, 它沿正南方向航行一段时间后,到达位 于灯塔P的南偏东34度方向上的B处.这
点 时,海轮所在的B处距离灯塔P有多远?
一 (结果保留小数点后一位)
二、新课讲解
知 识
解:如图, 在
中,
PC=_P_A• _________ 80cos250≈
72.505
点
在
中,
•
6.另外,木质材料受温度、湿度的影 响比较 大,榫 卯同质 同构的 链接方 式使得 连接的 两端共 同收缩 或舒张 ,整体 结构更 加牢固 。而铁 钉等金 属构件 与木质 材料在 同样的 热力感 应下, 因膨胀 系数的 不同, 从而在 连接处 引起松 动,影 响整体 的使用 寿命。
26.1 锐角三角函数 - 第1课时课件(共19张PPT)
提示:过点A作AD垂直于BC于点D.求锐角三角函数时,勾股定理的运用是很重要的.
3.如图,正方形ABCD的边长为4,点M在BC上,M,N两点关于对角线AC对称, 若DM=1,求tan∠ADN的值.
解:由正方形的性质可知,∠ADN=∠DNC,BC=DC=4,∵ M、N两点关于对角线AC对称, ∴ DM=1BN=DM=1.tan∠AND=tan∠DNC= .
知识点 正切的概念
新知探究
思考
在两个直角三角形中,当一对锐角相等时,这两个直角三角形相似,从而两条对应直角边的比相等,即当∠A(小于90°)确定时,以∠A为锐角的Rt△ABC的两条直角边的比 是确定的.
发现
正切
如图,在Rt△ABC中,∠C=90°,∠A的对边与邻边的比叫做∠A的正切,记作:tanA ,即
在Rt△ABC中,∠C=90°.(1)如图(1),∠A=30°,求tanA,tanB的值.(2)如图(2),∠A=45°,求tanA的值.
例1
例题示范
随堂演练
1.在△ABC中,已知AC=5,BC=4,AB=3.那么下列各式正确的是( )A.tanA= B.tanA=CtanC= DtanC=
课堂小结
正切
定义
对边与邻边的比
表示方法
有关计算
与锐角的大小有关,与三角形边的长短无关
同学们再见!
授课老师:
时间:2024年9月15日
A
2.在Rt△ABC中,锐角A的对边和邻边同时扩大100倍,tanA的值( ) A.扩大100倍 B.缩小 C.不变 D.不能确定
C
3. 如图, P是平面直角坐标系上的一点,且点P的坐标为(3,4),则tan α = .
第 二十六章 解直角三角形
3.如图,正方形ABCD的边长为4,点M在BC上,M,N两点关于对角线AC对称, 若DM=1,求tan∠ADN的值.
解:由正方形的性质可知,∠ADN=∠DNC,BC=DC=4,∵ M、N两点关于对角线AC对称, ∴ DM=1BN=DM=1.tan∠AND=tan∠DNC= .
知识点 正切的概念
新知探究
思考
在两个直角三角形中,当一对锐角相等时,这两个直角三角形相似,从而两条对应直角边的比相等,即当∠A(小于90°)确定时,以∠A为锐角的Rt△ABC的两条直角边的比 是确定的.
发现
正切
如图,在Rt△ABC中,∠C=90°,∠A的对边与邻边的比叫做∠A的正切,记作:tanA ,即
在Rt△ABC中,∠C=90°.(1)如图(1),∠A=30°,求tanA,tanB的值.(2)如图(2),∠A=45°,求tanA的值.
例1
例题示范
随堂演练
1.在△ABC中,已知AC=5,BC=4,AB=3.那么下列各式正确的是( )A.tanA= B.tanA=CtanC= DtanC=
课堂小结
正切
定义
对边与邻边的比
表示方法
有关计算
与锐角的大小有关,与三角形边的长短无关
同学们再见!
授课老师:
时间:2024年9月15日
A
2.在Rt△ABC中,锐角A的对边和邻边同时扩大100倍,tanA的值( ) A.扩大100倍 B.缩小 C.不变 D.不能确定
C
3. 如图, P是平面直角坐标系上的一点,且点P的坐标为(3,4),则tan α = .
第 二十六章 解直角三角形
《锐角三角函数》PPT优秀课件
斜边c
B ∠A的对边a
sin A= ∠A的对边
斜边
A ∠A的邻边b C
∠A的邻边
cos A=
斜边
tan A= ∠A的对边 ∠A的邻边
锐角A的正弦、余弦、和正切统称∠A的锐角三角函数.
已知直角三角形两边求锐角三角函数的值
如图,在 Rt△ABC 中,∠C=90°,AB=10,BC=6,求sinA,cosA,
即tan A= a . b
B
斜边c
∠A的对边a
A
┌ ∠A的邻边b C
再见
在Rt△ABC中,∠C=90°锐角正弦的定义
斜边 A
B
∠A的对边
┌
C
如图,在Rt△ABC中,∠C=90° 我们把锐角A的邻边与对边的比叫做∠A的正切,记作tanA,即
B
斜边 ∠A的对边
┌ A ∠A的邻边 C
例1 如图,在 Rt△ABC 中,∠C =90°,AB=10,BC=6,求
sin A, cos A,tan A的值.
tanA的值. 解:由勾股定理,得
B 10
6
A
C
因此 sin A BC = 6 = 3, AB 10 5
cos A AC 8 4 , tan A BC = 6 = 3 .
AB 10 5
AC 8 4
利用勾股定理求三角函数值方法
已知直角三角形中的两条边求锐角三角函数值的一般思路 是:当所涉及的边是已知时,直接利用定义求锐角三角函数值; 当所涉及的边是未知时,可考虑运用勾股定理的知识求得边的 长度,然后根据定义求锐角三角函数值.
课堂练习
1. 如图,旗杆高AB=8m,某一时刻,旗杆影子长BC=16m,则
1
人教版数学《锐角三角函数》_实用课件
1 3
1 3
2
1 3
1 3
3
【获奖课件ppt】人教版数学《锐角三 角函数 》_实 用课件2 -课件 分析下 载
【获奖课件ppt】人教版数学《锐角三 角函数 》_实 用课件2 -课件 分析下 载
巩固提高
2.在Rt△ABC中,∠C=90°.如果各边长都扩大到 原来的2倍,那么∠A的正弦值、余弦值、正切值 有变化吗?说明理由.
没有变化
【获奖课件ppt】人教版数学《锐角三 角函数 》_实 用课件2 -课件 分析下 载
【获奖课件ppt】人教版数学《锐角三 角函数 》_实 用课件2 -课件 分析下 载
巩固提高
补充练习:如图,在Rt△ABC中,∠ACB=90°,CD 是AB边上的高.
CD BC
① s i n A s_ i_ n_ ∠_ B_ C_ _ D _ _ _ A_ C_ _ _ A_ B_ __ c_ os_ ∠_ _ B_ C_ D_ _ _ _ A_ B_ _ _ _ _ A_ C_ _ ;
AD AC
③ t a n A C D _ ta_ n_ B_ _ _ C_ D_ _ _ B_ C_ _ .
【获奖课件ppt】人教版数学《锐角三 角函数 》_实 用课件2 -课件 分析下 载
【获奖课件ppt】人教版数学《锐角三 角函数 》_实 用课件2 -课件 分析下 载
总结提升
1.在直角三角形中,当锐角A的大小确定时,无论 这个直角三角形大小如何,∠A的邻边与斜边的比、 ∠A的对边与邻边的比都是_一__个__固__定__值__.
第28章 锐角三角函数
28.1 锐角三角函数
第2课时 余弦和正切
情境引入
观察不同大小的三角尺,当角是30°,45°, 60°时,它们的对边与斜边、邻边与斜边、对边与 邻边的比有什么规律?谈谈你的看法.
28章锐角三角函数全章ppt课件
问题(1)当梯子与地面所成的角a为75°时,梯子顶端与地面的 距离是使用这个梯子所能攀到的最大高度.
问题(1)可以归结为:在Rt △ABC中,已知∠A=75°,斜
边AB=6,求∠A的对边BC的长.
B
由 sin A BC 得 AB
BC AB sin A 6sin 75
由计算器求得 sin75°≈0.97
α
A
C
所以 BC≈6×0.97≈5.8
因此使用这个梯子能够安全攀到墙面的最大高度约是5.8m
对于问题(2),当梯子底端距离墙面2.4m时,求梯子与地面所成的 角a的问题,可以归结为:在Rt△ABC中,已知AC=2.4,斜边AB=6, 求锐角a的度数
由于
B
cos a AC 2.4 0.4
AB 6
tan A BC 8k 8 AC 15k 15
例题示范
例3: 如图,在Rt△ABC中,∠C=90° B
1.求证:sinA=cosB,sinB=cosA
2.求证:tan A sin A ;tan A 1
cos A
tan B
3.求证:sin2 A cos2 A 1
A
C
sin2 A sin A sin A
如图,Rt△ABC中,直角边AC、BC小于斜边AB,
sin A BC <1
AB
sin B AC AB
<1
A
C
所以0<sinA <1, 0<sinB <1, 如果∠A < ∠B,则BC<AC , 那么0< sinA <sinB <1
探究
精讲
如图,在Rt△ABC中,∠C= 90°,当锐角A确定时,∠A 的对边与斜边的比就随之确 定,此时,其他边之间的比 是否也确定了呢?为什么?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对边ac coAsA斜 的边 邻边 bc tanA A A的 的邻 对边 边 ba
对于锐角A的每一 个确定的值,sinA有 唯一确定的值与它对 应,所以sinA是A的函 数。
同样地, cosA, tanA也是A的函数。
锐角A的正弦、余弦、 正切都叫做∠A的锐角三 角函数.
斜 边A Bc
C
2、当锐角A确定时,∠A的对边与斜边的比就随之 确定。此时,其他边之间的比是否也随之确定?为 什么?
.
15
新知探索: 1、你能将“其他边之比”用比例的 B 式子表示出来吗?这样的比有多少?
c
a
b
a
A
b
C
cb
2、当锐角A确定时,∠A的邻边与斜边的比, ∠A 的对边与邻边的比也随之确定吗?为什么?交流并 说出理由。
.
2
在Rt△ABC中,∠C=90°,∠A=30°, BC=35m,求AB的长.
B
根据“在直角三角形中,
30°角所对的直角边等于斜
边的一半”,即
A
C
A斜 的边 对边 A BB C12.
可得 AB=2BC=70m,即需要准备70m长的水 管。
.
3
在上面的问题中,如果使出水口的高度为 50m,那么需要准备多长的水管?
方法一:从特殊到一般,仿照正弦的研究过程;
方法二:根据相似三角形的性质来说明。
.
16
如图,在Rt△ABC中,∠C=90°,
★我们把锐角A的邻边与斜边的比叫做∠A的
余弦(cosine),记作cosA, 即
coAsA斜 的边 邻边 bc
斜边c
B 对边a
A 邻边b C
★我们把锐角A的对边与邻边的比叫做∠A的
c 斜边
B
a 对边
A
bC
例如,当∠A=30°时,我们有
sinAsin30 1 2
当∠A=45°时,我们有
sinAsin45 2 2
.
在图中 ∠A的对边记作a ∠B的对边记作b ∠C的对边记作c
9
注意
▪ sinA是一个完整的符号,它表示∠A的正弦, 记号里习惯省去角的符号“∠”;
▪ sinA没有单位,它表示一个比值,即直角 三角形中∠A的对边与斜边的比;
正切(tangent),记作tanA, 即
tanA A A的 的邻 对边 边 ba
.
17
注意
▪ cosA,tanA是一个完整的符号,它表示 ∠A的余弦、正切,记号里习惯省去角的符 号“∠”;
▪ cosA,tanA没有单位,它表示一个比值, 即直角三角形中∠A的邻边与斜边的比、对 边与邻边的比;
▪ cosA不表示“cos”乘以“A”, tanA不表 示“tan”乘以“A”
B' B
50m 30m
A
C C'
结论:在一个直角三角形中,如果一个锐角等于30°,
那么不管三角形的大小如何,这个角的对边与斜边的比
值都等于 1 。
2
.
4
如图,任意画一个Rt△ABC, A
使∠C=90°,∠A=45°,计
算∠A的对边与斜边的比 BC ,
你能得出什么结论? AB
C
B
即在直角三角形中,当一个锐角等于45° 时,不管这个直角三角形的大小如何,这个角
▪ sinA不表示“sin”乘以“A”。
.
10
例题示范
例1 如图,在Rt△ABC中,∠C=90°,求 sinA和sinB的值.
B
B 试着完成图(2)
3
13
5
A
4
C
(1)
C
A
(2)
解:如图1)(,在 RtABC中,
AB AC2 BC2 42 32 5.
因此sinA BC3, sinB AC4.
AB 5 . AB 5
第28章 锐角三角函数
情
问题1 为了绿化荒山,某地打算从位于山脚下的机井 房沿着山坡铺设水管,在山坡上修建一座扬水站,对
境 坡面的绿地进行喷灌.现测得斜坡与水平面所成角的
探
度数是30°,为使出水口的高度为35m,那么需要准 备多长的水管?
究
B
C A
思考:你能将实际问题归结为数学问题吗?
这个问题可以归结为,在Rt△ABC中,∠C=90°, ∠A=30°,BC=35m,求AB的长.
.
19
例1 如图,在Rt△ABC中,∠C=90°,
BC=6,sin A 3 ,求cosA和tanB的值. B
5
6
解: sin A BC , AB
A
C
AB BC 6 5 10 . sin A 3
又 AC AB 2 BC 2 10 2 6 2 8,
cos A AC 4 ,tan B AC 4 .
则sin∠A=___.
b3
.
12
5、如图,在△ABC中, AB=CB=5,sinA= 4 ,
求△ABC 的面积。
5
B
5
5
A
C
.
13
28.1锐角三角函数(2)
——余弦 正切
.
14
复习与探究:
在 RtABC中, C90
B 1.锐角正弦的定义
c
A
b
a ∠A的正弦: s i n AA的 对 B边 C a
.
6
探究
任意画Rt△ABC和Rt△A‘B’C‘,使得∠C=∠C’=
90°,∠A=∠A‘= ,那么 BC 与 B ' C ' 有什么关
AB
A'B '
系.你能解释一下吗?
B'
B
A
C A'
C'
由于∠C=∠C’=90°, ∠A=∠A’=
所以Rt△ABC∽Rt△A’B’C’
BC AB, B'C' A'B'
的对边与斜边的比都等于 2 。
2
.
5
综上可知,在一个Rt△ABC中,∠C=90°,
当∠A=30°时,∠A的对边与斜边的比都等于 1 , 2
是一个固定值;
当∠A=45°时,∠A的对边与斜边的比都等于 2 ,
2
也是一个固定值.
一般地,当∠A 取其他一定度数的锐角时,它的
对边与斜边的比是否也是一个固定值?
11
B
练习
3
1、如图,求sinA和sinB的值.
A
5
C
2、在平面直角平面坐标系中,已知点A(3,0) 和B(0,-4),则sin∠OAB等于__54 __.
3、在Rt△ABC中,∠C=90°,AD是BC边 上的中线,AC=2,BC=4,则sin∠DAC=___2 2.
4、在Rt△ABC中, ∠C=90°, a 3 ,
即BC B'C'. A. B A'B'
7
探究
这就是说,在直角三角形中,当锐角A的度数 一定时,不管三角形的大小如何,∠A的对边与 斜边的比都是一个固定值.
.
8
正弦
如图,在Rt△ABC中,∠C=90°,我们把锐角A的
对边与斜边的比叫做∠A的正弦(sine),记作sinA,
即
sinAA斜 的边 对边ac
AB 5
BC 3
.
20
例2 如图,在Rt△ABC中,∠C=90°,BC=2,
AB=3,求∠A,∠B的正弦、余弦、正切值. B
对于锐角A的每一 个确定的值,sinA有 唯一确定的值与它对 应,所以sinA是A的函 数。
同样地, cosA, tanA也是A的函数。
锐角A的正弦、余弦、 正切都叫做∠A的锐角三 角函数.
斜 边A Bc
C
2、当锐角A确定时,∠A的对边与斜边的比就随之 确定。此时,其他边之间的比是否也随之确定?为 什么?
.
15
新知探索: 1、你能将“其他边之比”用比例的 B 式子表示出来吗?这样的比有多少?
c
a
b
a
A
b
C
cb
2、当锐角A确定时,∠A的邻边与斜边的比, ∠A 的对边与邻边的比也随之确定吗?为什么?交流并 说出理由。
.
2
在Rt△ABC中,∠C=90°,∠A=30°, BC=35m,求AB的长.
B
根据“在直角三角形中,
30°角所对的直角边等于斜
边的一半”,即
A
C
A斜 的边 对边 A BB C12.
可得 AB=2BC=70m,即需要准备70m长的水 管。
.
3
在上面的问题中,如果使出水口的高度为 50m,那么需要准备多长的水管?
方法一:从特殊到一般,仿照正弦的研究过程;
方法二:根据相似三角形的性质来说明。
.
16
如图,在Rt△ABC中,∠C=90°,
★我们把锐角A的邻边与斜边的比叫做∠A的
余弦(cosine),记作cosA, 即
coAsA斜 的边 邻边 bc
斜边c
B 对边a
A 邻边b C
★我们把锐角A的对边与邻边的比叫做∠A的
c 斜边
B
a 对边
A
bC
例如,当∠A=30°时,我们有
sinAsin30 1 2
当∠A=45°时,我们有
sinAsin45 2 2
.
在图中 ∠A的对边记作a ∠B的对边记作b ∠C的对边记作c
9
注意
▪ sinA是一个完整的符号,它表示∠A的正弦, 记号里习惯省去角的符号“∠”;
▪ sinA没有单位,它表示一个比值,即直角 三角形中∠A的对边与斜边的比;
正切(tangent),记作tanA, 即
tanA A A的 的邻 对边 边 ba
.
17
注意
▪ cosA,tanA是一个完整的符号,它表示 ∠A的余弦、正切,记号里习惯省去角的符 号“∠”;
▪ cosA,tanA没有单位,它表示一个比值, 即直角三角形中∠A的邻边与斜边的比、对 边与邻边的比;
▪ cosA不表示“cos”乘以“A”, tanA不表 示“tan”乘以“A”
B' B
50m 30m
A
C C'
结论:在一个直角三角形中,如果一个锐角等于30°,
那么不管三角形的大小如何,这个角的对边与斜边的比
值都等于 1 。
2
.
4
如图,任意画一个Rt△ABC, A
使∠C=90°,∠A=45°,计
算∠A的对边与斜边的比 BC ,
你能得出什么结论? AB
C
B
即在直角三角形中,当一个锐角等于45° 时,不管这个直角三角形的大小如何,这个角
▪ sinA不表示“sin”乘以“A”。
.
10
例题示范
例1 如图,在Rt△ABC中,∠C=90°,求 sinA和sinB的值.
B
B 试着完成图(2)
3
13
5
A
4
C
(1)
C
A
(2)
解:如图1)(,在 RtABC中,
AB AC2 BC2 42 32 5.
因此sinA BC3, sinB AC4.
AB 5 . AB 5
第28章 锐角三角函数
情
问题1 为了绿化荒山,某地打算从位于山脚下的机井 房沿着山坡铺设水管,在山坡上修建一座扬水站,对
境 坡面的绿地进行喷灌.现测得斜坡与水平面所成角的
探
度数是30°,为使出水口的高度为35m,那么需要准 备多长的水管?
究
B
C A
思考:你能将实际问题归结为数学问题吗?
这个问题可以归结为,在Rt△ABC中,∠C=90°, ∠A=30°,BC=35m,求AB的长.
.
19
例1 如图,在Rt△ABC中,∠C=90°,
BC=6,sin A 3 ,求cosA和tanB的值. B
5
6
解: sin A BC , AB
A
C
AB BC 6 5 10 . sin A 3
又 AC AB 2 BC 2 10 2 6 2 8,
cos A AC 4 ,tan B AC 4 .
则sin∠A=___.
b3
.
12
5、如图,在△ABC中, AB=CB=5,sinA= 4 ,
求△ABC 的面积。
5
B
5
5
A
C
.
13
28.1锐角三角函数(2)
——余弦 正切
.
14
复习与探究:
在 RtABC中, C90
B 1.锐角正弦的定义
c
A
b
a ∠A的正弦: s i n AA的 对 B边 C a
.
6
探究
任意画Rt△ABC和Rt△A‘B’C‘,使得∠C=∠C’=
90°,∠A=∠A‘= ,那么 BC 与 B ' C ' 有什么关
AB
A'B '
系.你能解释一下吗?
B'
B
A
C A'
C'
由于∠C=∠C’=90°, ∠A=∠A’=
所以Rt△ABC∽Rt△A’B’C’
BC AB, B'C' A'B'
的对边与斜边的比都等于 2 。
2
.
5
综上可知,在一个Rt△ABC中,∠C=90°,
当∠A=30°时,∠A的对边与斜边的比都等于 1 , 2
是一个固定值;
当∠A=45°时,∠A的对边与斜边的比都等于 2 ,
2
也是一个固定值.
一般地,当∠A 取其他一定度数的锐角时,它的
对边与斜边的比是否也是一个固定值?
11
B
练习
3
1、如图,求sinA和sinB的值.
A
5
C
2、在平面直角平面坐标系中,已知点A(3,0) 和B(0,-4),则sin∠OAB等于__54 __.
3、在Rt△ABC中,∠C=90°,AD是BC边 上的中线,AC=2,BC=4,则sin∠DAC=___2 2.
4、在Rt△ABC中, ∠C=90°, a 3 ,
即BC B'C'. A. B A'B'
7
探究
这就是说,在直角三角形中,当锐角A的度数 一定时,不管三角形的大小如何,∠A的对边与 斜边的比都是一个固定值.
.
8
正弦
如图,在Rt△ABC中,∠C=90°,我们把锐角A的
对边与斜边的比叫做∠A的正弦(sine),记作sinA,
即
sinAA斜 的边 对边ac
AB 5
BC 3
.
20
例2 如图,在Rt△ABC中,∠C=90°,BC=2,
AB=3,求∠A,∠B的正弦、余弦、正切值. B