兔子数列

合集下载

兔子繁衍问题(斐波那契数列)

兔子繁衍问题(斐波那契数列)
假如兔子都不死请问第1个月出生的一对兔子至少需要繁衍到第几个月时兔子总数才可以达到n对
兔子繁衍问题(斐波那契数列)
一对兔子,从出生后第3个月起每个月都生一对兔子。小兔子长到第3个月后每个月又生一对兔子。假如兔子都不死,请问第1个月出生的一 对兔子,至少需要繁衍到第几个月时兔子总数才可以达到N对?
输入格式: 输入在一行中给出一个不超过10000的正整数N。
int N,month=1,i,number=1;
scanf("%d",&N);
int count [2];
while (number < N) {
i = month%2;
if (month &unt [i]=number;
continue;
// 也可在下面使用else语句,月份大于二时。
}
number = count[0] + count[1];
count[0] = count [1];
count[1] = number;
month ++; } printf("%d\n",month); return 0; }
输出格式: 在一行中输出兔子总数达到N最少需要的月数。 ————————————————
/* 列表说明关系
month 1 2 3 4 5 6 7 number 1 1 2 3 5 8 13
规律:第n个月的兔子数是n-2月+n-1月的兔子的和
*/
#include <stdio.h>
int main (){

三年级奥数找规律

三年级奥数找规律

斐波那契的兔子(数列)知识图谱斐波那契的兔子知识精讲一.数列1.定义:按一定顺序排列的一列数叫做数列.注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,……,第n项(末项).二.常见的数列1.兔子数列(斐波那契数列):从第3项开始,每一项都等于前两项之和的数列.2.等差数列:从第二项起,每一项与它的前一项的差等于同一个数的数列.3.等比数列:从第二项起,每一项除以它的前一项的商等于同一个数的数列.三点剖析本讲主要培养学生的综合创新能力,其次还会注重培养学生的运算能力、观察推理能力和实践应用能力.本讲内容是在整数基本计算与找规律的基础上,进一步了解一列数中数与数之间的关系和规律.后续课程还会学习一些简单数列的计算.课堂引入例题1、 最近,唐小果在家附近的小公园里,总能看见好多小兔子,唐小果就想了解一下兔子繁殖.在上网浏览时遇到了这样一个问题:假设每生产一对兔子必须是一雌兔一雄兔,并且所有的兔子都能进行相互交配,所生下来的兔子都能保证成活.那么有一对兔子,每一个月可以生下一对小兔子,而且假定小兔子在出生的第二个月就可以再生小兔子,那么过三个月后,有多少对兔子?过半年后?9个月呢?带着这个问题,小果就去找她的小伙伴了……聪明的你,知道半年后有多少兔子吗?例题2、 写出课堂引入中每个月的兔子数量组成的这列数,观察有什么特点?兔子数列等例题1、 斐波那契数列(Fibonacci sequence ),又称黄金分割数列、因数学家列昂那多·斐波那契(Leonardoda Fibonacci )以兔子繁殖为例子而引入,故又称为“兔子数列”.一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对兔子.如果所有兔子都不死,那么一年以后可以繁殖多少对兔子?我们不妨拿新出生的一对小兔子分析一下:第一个月小兔子没有繁殖能力,所以还是一对;两个月后,生下一对小兔子的对数共有两对;三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对.……以此类推我们利用表格找一找规律:这个是可以用枚举数出来的吧~第一个月,会新出生一对小兔子,所以总共有2对兔子.第二个月,原来的兔子会再生产一对小兔子,而第一个月出生的小兔子还不能生产,所以总共有3对小兔子.那第三个月,原来的兔子会再生产一对小兔子,第一个月出生的小兔子也可以再生产一对小兔子,但第二个月出生的小兔子,还不能生产,所以总共有5对兔子. 这不就是“斐波那契的兔子问题”吗?经过月数 0 1 2 3 4 5 6 7 … 幼崽对数 1 0 1 1 2 3 5 8 … 成兔对数 0 1 1 2 3 5 813… 总体对数11235813 21…幼崽对数=前一个月成年兔子对数;成年兔子对数=前一个月成年兔子对数+前一个月幼崽对数;总体对数=本月成年兔子对数+本月幼崽对数;我们不难发现幼崽对数、成兔对数、总体对数都构成一个数列.(1)一年后,幼崽对数、成兔对数、总体对数各是多少个?15个月之后呢?(2)相邻两个月之间兔子对数的差是多少呢?(3)兔子对数有什么规律吗?试着自己总结一下.例题2、一定数目的点或圆在等距离的排列下可以形成一个等边三角形,这样的数被称为三角形数.古希腊著名科学家毕达哥拉斯把数1,3,6,10,15,21……这些数量的(石子),都可以排成三角形,像这样的数称为三角形数.……仔细观察哦~13610(1)第8个图形中有多少个石子?第15个呢?(2)相邻两个图形的石子数有什么关系吗?这列数有什么规律吗?例题3、中国古代数学家在数学的许多重要领域中处于遥遥领先的地位.中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页.杨辉,字谦光,北宋时期杭州人.在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图.杨辉三角是一个由数字排列成的三角形数表,一般形式如下:11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 1…………(1)第10行有几个数?分别是多少?(2)杨辉三角有什么特点?相邻两行有什么关系吗?随练1、斐波那契数列在自然科学的其他分支,有许多应用.例如:树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝.所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”.这个规律,就是生物学上著名的“鲁德维格定律”.观察下图,第一年、第二年、第三年、第四年……第八年各有多少分枝?这些数之间有什么规律?等差等比数列例题1、根据历史传说记载,国际象棋起源于古印度,至今见诸于文献最早的记录是在萨珊王朝时期用波斯文写的.据说,有位印度教宗师见国王自负虚浮,决定给他一个教训.他向国王推荐了一种在当时尚无人知晓的游戏.国王当时整天被一群溜须拍马的大臣们包围,百无聊赖,很需要通过游戏方式来排遣郁闷的心情.国王对这种新奇的游戏很快就产生了浓厚的兴趣,高兴之余,他便问那位宗师,作为对他忠心的奖赏,他需要得到什么赏赐.宗师开口说道:请您在棋盘上的第一个格子上放1粒麦子,第二个格子上放2粒,第三个格子上放4粒,第四个格子上放8粒……(1)第8个格子上放了几粒麦子?第10个格子呢?(2)前5个格子一共放了多少粒麦子?前8个格子呢?(3)这组数列中,相邻两个数有什么规律吗?例题2、数列在生活中也有很多的应用,被用于解决实际问题.如:(1)一百零八塔是中国现存的大型古塔群之一,位于银川市南60公里的青铜峡水库西岸崖壁下,塔群坐西面东,依山临水,塔基下曾出土西夏文题记的帛书和佛祯,可能建于西夏时期是喇嘛式实心塔群.佛塔依山势自上而下,按1、3、3、5、5、7、9、11、13、15、17、19的奇数排列成十二行,总计一百零八座,形成总体平面呈三角形的巨大塔群,因塔数而得名.那么,按照这样的规律,第15行有多少个佛塔?第20行呢?(2)在校技能节比赛中,值周班的同学负责收集同学们喝完水的矿泉水瓶.学校8点开场比赛,每一个小时清点一次收集到的矿泉水瓶,9点钟共收到了120个,10点钟收到了240个,11点钟收到了480个,按这个规律,到下午1点钟,共收到了多少个矿泉水瓶?(3)学校礼堂共有25排座位,后一排比前一排多两个座位,最后一排有70个座位,问第20排有多少个座位?第10排呢?第1排呢?数列在生活中的应用真不少呢!例题3、二分裂一般指生殖方式,无丝分裂、有丝分裂、减数分裂是真核有性生殖的细胞的分裂方式,原核生物如细菌以无性或者遗传重组二种方式繁殖,最主要的方式是以二分裂这种无性繁殖的方式:一个细菌细胞壁横向分裂,形成两个子代细胞.(1)开始有一个细菌,假设一个细菌分裂成两个子代细胞需要30秒,3分钟后有多少个细胞?(2)一个生物瓶中装有1个细菌,假设一个细菌分裂成两个子代细胞需要10秒,半小时后,整个瓶中都是细菌,那么什么时候生物瓶中有半瓶的细菌细胞?仔细观察题目,看清要求哦~随练1、下图是用火柴棒拼出的一列图形,依次类推,则第十个图形中的火柴棒的根数有________根,第n个图形中的火柴棒的根数有________根.随练2、如图一个堆放钢管的V形架的最下面一层放一根钢管,往上每一层都比它下面一层多放一个,最上面一层放30根钢管,求这个V形架上共放着多少根钢管?易错纠改例题1、将一条长方形的纸条对折一次可以得到1条折痕,保持折痕平行时对折两次可以得到3条折痕,对折三次可以得到7条折痕,对折四次可以得到15条折痕,对折十次可以得到多少条折痕?我拿张纸来试一试不就知道了吗?我还是找找它们之间的规律吧?1、3、7、15……下一个是不是29呢?聪明的你知道是多少吗?拓展1、分析并口述题目的做题思路及方法.找规律填数:0,3,8,15,24,(),48,63.2、一根绳子弯成如图形状,当用剪刀沿一条虚线剪断时,绳子被剪成5段;沿两条虚线剪断时,绳子被剪成9段;沿三条虚线剪断时,绳子被剪成13段;以此方法,沿10条虚线剪断时,绳子被剪成多少段?(1)(2)(3)3、下面是由大小相同的小正方体木块叠放而成的图形,第一个图中有1个木块,第二个图中有6个木块,第三个图中有15个木块,第四个图中有28个木块,按照这样的规律摆放下去,则第七个图中小木块的个数是多少?4、下面是按规律排成的一列数,从左向右数第九个数是多少?3,5,9,17,33,65,……5、观察下面的数列,找出其中的规律,并根据规律,在括号中填上合适的数.(1)2,5,8,11,(),17,20.(2)19,17,15,13,(),9,7.(3)1,3,9,27,(),243.(4)64,32,16,8,(),2.(5)1,1,2,3,5,8,()21,34.(6)1,3,4,7,11,18,(),47.(7)1,3,6,10,(),21,28,36,().(8)1,2,6,24,120,(),5040.6、小明上楼梯,每次走一个台阶或两个台阶现在他要上一段楼梯,有12个台阶,有多少种方法呢?(可以先看台阶有1、2、3、4个……会有多少种方法)7、一条直线上一个点可以构成0条线段,两个点可以构成1条线段,三个点可以构成3条线段,四个点可以构成6条线段,以此类推15个不同的点可以构成多少条线段?。

高三数学 教案 斐波那契数列通项公式推导过程

高三数学  教案  斐波那契数列通项公式推导过程

斐波那契数列斐波那契数列,又称黄金分割数列、因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递推的方法定义:F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=3,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。

定义斐波那契数列指的是这样一个数列1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368........自然中的斐波那契数列这个数列从第3项开始,每一项都等于前两项之和。

斐波那契数列的定义者,是意大利数学家列昂纳多·斐波那契,生于公元1170年,卒于1250年,籍贯是比萨。

他被人称作“比萨的列昂纳多”。

1202年,他撰写了《算盘全书》(Liber Abacci)一书。

他是第一个研究了印度和阿拉伯数学理论的欧洲人。

他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点于阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。

他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。

通项公式递推公式斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式::F(n)=F(n-1)+F(n-2)显然这是一个线性递推数列。

通项公式(如上,又称为“比内公式”,是用无理数表示有理数的一个范例。

) 注:此时通项公式推导方法一:利用特征方程(线性代数解法)线性递推数列的特征方程为:x²=x+1解得,.则∵∴解得方法二:待定系数法构造等比数列1(初等代数解法)设常数r,s .使得则r+s=1,-rs=1n≥3时,有……联立以上n-2个式子,得:∵,上式可化简得:那么……(这是一个以为首项、以为末项、为公比的等比数列的各项的和)。

斐波那切数列奇数项的算法

斐波那切数列奇数项的算法

斐波那切数列奇数项的算法
斐波那切数列,又称黄金分割数列,是一个著名的数学研究理论,也是指的一类数列组合。

斐波那切数列以兔子繁殖问题开始,描
述斐波那契序列是最早出现在古希腊诗人普鲁斯特·奥古斯特·斐
波那契创作的散文中,它最早只有4行,每一行诗歌都讲述了一
只兔子生出一对小兔子的故事,由此形成一个数列。

现在,斐波
那切数列不仅用于表达兔子繁殖,还可以用于解决许多科学、数
学和技术问题。

斐波那契数列中的奇数项占主要地位,它们有统一的规律,算法
描述如下:
第一步:用一个变量FibonacciNumber来装第n个斐波那切数
列的数字,让FibonacciNumber = 0;
第二步:在循环中,要求FibonacciNumber加1,直到
FibonacciNumber等于n,然后开始计算斐波那契数列;
第三步:若FibonacciNumber为偶数,就跳过这个FibonacciNumber,继续循环;;
第四步:若FibonacciNumber为奇数,就判断它的索引值的位置是否在第n项,如果在第n项,就输出此奇数,并结束循环。

以上就是计算斐波那契数列奇数项的算法
它有很多应用场景,都能得到广泛的应用。

比如递归算法,加密算法,数学运算问题等。

斐波那切数列在计算领域中非常重要,它是按一定规律构成序列数字的数列,同时,在很多计算问题中都有它的应用,一定程度上极大地提高了计算的效率。

18.12.09-C语言练习:兔子繁衍问题Fibonacci数列

18.12.09-C语言练习:兔子繁衍问题Fibonacci数列

18.12.09-C语⾔练习:兔⼦繁衍问题Fibonacci数列题⽬:问题解析:这是典型的/Fibonacci 数列问题。

具体这⾥不赘述。

问题中不论是初始的第1对兔⼦还是以后出⽣的⼩兔⼦都是从第3个⽉龄起每个⽉各⽣⼀对兔⼦。

设n1,n2,n3分别是每个⽉1个⽉⽉龄,2个⽉⽉龄,⼤于等于3个⽉⽉龄的兔⼦数量。

则下个⽉这三个类型⽉龄兔⼦数量分别是 n3, n1,n3+n2。

即:下个⽉1个⽉⽉龄兔⼦数量是上个⽉⼤于等于3个⽉⽉龄兔⼦的数量,2个⽉⽉龄兔⼦数量是上个⽉1个⽉⽉龄兔⼦数量,⼤于等于3个⽉⽉龄兔⼦数量是上个⽉⼤于等于3个⽉⽉龄兔⼦数量加上上个⽉2个⽉⽉龄兔⼦数量。

程序:1 #include <stdio.h>2int main(void) {3/*n1, n2, n3 分别是有1个⽉⽉龄,2个⽉⽉龄,3个⽉⽉龄的兔⼦数量*/4int n1 = 1, n2 = 0, n3 = 0;5/*total 是兔⼦总数量*/6int total = 0;7/* i 是⽉份, num是输⼊变量, t是中间变量 */8int i=1, num, t;9 printf("请输⼊数量:");10 scanf("%d", &num);11while(1){12 total = n1 + n2 + n3;13if(total >= num) break;14/*求下个⽉兔⼦数量*/15 i += 1;16/*下⾯四⾏语句注意顺序不能混乱*/17 t = n1;18 n1 = n3 + n2;19 n3 += n2;20 n2 = t;21 }22 printf("所需⽉数:%d\n", i);23return0;24 }程序执⾏结果:问题表述中可能不严谨的地⽅:1. 第⼀对兔“第3个⽉起”,新⽣兔⼦“第3个⽉后”。

不够严谨,因为⽉是⼀个时间段,应统⼀理解为“三个⽉后”。

求解兔子数列(课堂PPT)

求解兔子数列(课堂PPT)

(2)编写程序代码,将划线处填写完整 Function f(n As Integer) As Integer If n = 1 Then n=1 Else f=f(n-1)+f(n-2) End If End Function
12
授课人:杨鹏
高中信息技技术必修2:算法与程序设计
3
授课人:杨鹏
问题提出
高中信息技术必修2:算法与程序设计
兔子数列,是意大利数学家列昂纳多·斐波那契 (Leonardo Fibonacci)提出的,他以兔子繁殖为 例子而引入,故斐波那契数列又称为“兔子数列”。
一般而言,兔子在出生两个月后,就有繁殖能
力,一对兔子每个月能生出一对小兔子来。并且如 果所有兔都不死,那么一年以后可以繁殖多少对兔 子?
第29课 求解兔子数列
授课人:1 杨鹏
高中信息技术必修2:算法与程序设计
1.兔子数列。如果兔子在出生两 个月后,就有繁殖能力,一 对兔子每个月能生出一对小 兔子来。并且如果所有兔都 不死,那么一年以后可以繁 殖多少对兔子?
2.小猴吃桃。有一天小猴子摘若 干个桃子,当即吃了一半还觉 得不过瘾,又多吃了一个。第 二天接着吃剩下桃子中的一 半,仍觉得不过瘾又多吃了 一个,以后小猴子都是吃尚 存桃子一半多一个。到第10 天早上小猴子再去吃桃子的 时候,看到只剩下一个桃子。 问小猴子第一天共摘下了多 少个桃子?
7
授课人:杨鹏
高中信息技术必修2:算法与程序设计
(2)算法分析 Function 有多少对兔子(第几月) 如果是第一月或第二月,那么就有一对兔子。 否则,(本月)兔子数=(本月-1)月的兔子 数+(本月-2)月的兔子数 End Function
8

斐波那契数列

斐波那契数列

斐波那契数列的探究如果一对兔子每月能生1对小兔子(一雄一雌),而每1对小兔子在它出生后的第三个月里,又能生1对小兔子.假定在不发生死亡的情况下,由1对出生的小兔子开始,50个月后会有多少对兔子?每月底兔子对数是:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ……, 50个月后是12586269025 对.这就是著名的斐波那契数列.斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ……●观察斐波那契数列项数之间有什么关系?从第三项开始每一项等于其前两项的和,即若用F n 表示第n 项,则有F n =F n -1+F n-2(n ≥3).通过递推关系式121(1,2)(3)n n n n F F F n --=⎧=⎨+≥⎩,可算出任意项,不过,当n 很大时,推算是很费事的.必须找到更为科学的计算方法.能否找到通项公式,并给予证明? 1730年法国数学家棣莫弗给出其通项表达式n a =n )251(+-n )251(-],19世纪初另一位法国数学家比内首先证明这一表达式,现在称之为——比内公式.1.下面研究一下该通项公式的来历已知:数列{a n }满足a 1=a 2=1, a 3=2,且a n+2 = a n+1+ a n (n≥3),求a n 证明:(利用等比数列性质求解)构造常数A 、B ,使之211()n n n n a Aa B a Aa +++-=-整理得:21()n n n a A B a ABa ++=+-与21n n n a a a ++=+比较得⎩⎨⎧=-=+11AB B A 解之得:A=251±、 B=251μ 不妨取A=251+、 B=251-得:211111()222n n n n a a a a +++++-=-∴1n n a +⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭是以21a -=251-为公比的等比数列。

斐波那契数列的几条性质及其证明

斐波那契数列的几条性质及其证明

斐波那契数列的几条性质及其证明斐波那契数列也叫兔子数列,它的前几项是1、1、2、3、5、8、13、21、34、55……,递推公式是:n a =1-n a +2-n a ,其中1a =2a =1。

1、斐波那契数列前n 项的和等于第n +2项的值减去1。

即:1a +2a +…+1-n a +n a =2+n a -1证明:左边=2a +1a +2a +…+1-n a +n a -2a=(2a +1a )+2a +…+1-n a +n a -2a根据递推公式n a =1-n a +2-n a 得:上式 =(3a +2a )+…+1-n a +n a -2a 以此类推最后得:左边=1+n a +n a -2a =2+n a -2a =2+n a -1。

等式得证。

2、斐波那契数列前n 项的平方和等于第n 项和第n +1项的值乘积。

即:21a +22a +……+2n a =n a 1+n a证明:根据递推公式n a =1-n a +2-n a 得,左边=21a +2a (3a -1a )+3a (4a -2a )+……+n a (1+n a -1-n a )=21a +2a 3a - 1a 2a +3a 4a -2a 3a +……+n a 1+n a -1-n a n a因为21a =1a 2a ,所以合并同类项后得,左边=n a 1+n a 。

等式得证。

3、斐波那契数列前n 项相邻两项乘积之和,当n 是奇数时等于第n +1项的值的平方,当n 是偶数时等于第n 项和第n +2项的值之积。

即:1a 2a +2a 3a +……+n a 1+n a 当n 是奇数时等于21+n a ,当n 是偶数时等于n a 2+n a 。

证明:(1)、当n 是奇数时,1a 2a +2a 3a +……+n a 1+n a =21+n a左边=1a 2a +2a (4a -2a )+3a 4a +4a (6a -4a )+……+1-n a (1+n a -1-n a )+n a 1+n a =1a 2a +2a 4a -2a 2a +3a 4a +4a 6a -4a 4a +……+1-n a 1+n a -1-n a 1-n a +n a 1+n a 因为1a 2a =2a 2a ,所以上式=2a 4a +3a 4a +4a 6a -4a 4a +……+1-n a 1+n a -1-n a 1-n a +n a 1+n a =(2a +3a )4a -4a 4a +(4a +5a )6a -6a 6a +……-1-n a 1-n a +(1-n a +n a )1+n a根据递推公式n a =1-n a +2-n a 得:上式 =4a 4a -4a 4a +6a 6a -6a 6a +……+1-n a 1-n a -1-n a 1-n a +1+n a 1+n a=21+n a等式得证。

斐波那契数列(公兔子掳母兔子问题)

斐波那契数列(公兔子掳母兔子问题)

斐波那契数列(公兔⼦掳母兔⼦问题)
从前有座⼭,叫三⼥⼭,⼭上也不知从哪来了只公兔⼦,在⼭上⽣活⼀个⽉后,这只兔⼦觉得⾃⼰的⽣活着实⽆聊,于是去⼭下掳了⼀只母兔⼦回来⽣活,母兔⼦⼀开始对他并不感冒,但⽇久⽣情,俩兔产⽣了感情,⼀个⽉后⽣了只⼩公兔⼦,再⼀个⽉后,这个⼩公兔⼦觉得⽗母太相爱,不管⾃⼰,于是学着⽼爹也去⼭下掳了只⼩母兔⼦回来,在⼩兔⼦掳来⼩母兔⼦的同时,⼩公兔⼦的⽗母⼜⽣下了⼀只⼆号⼩公兔⼦,再⼀个⽉后,⼩公兔⼦与掳来的⼩母兔⼦也⽣下了⼩⼩公兔⼦,⼆号⼩公兔⼦也带回来了只⼆号⼩母兔⼦,同时⽗母⼜⽣了⼀只⼩公兔⼦... ...周⽽复始,⼭上的兔⼦从第⼀个⽉到最后,分别是1,2,3,5,8,13,21,34... ...
但是由于,⼭上兔⼦太多,作为祖先的公兔⼦由于太过劳累只活了n个⽉便死亡了,在祖先兔⼦死之前的⼀个⽉,⼭上有多少只兔⼦?
#include <iostream>
using namespace std;
int f[1001];
int main()
{
int n;
cin >> n;
//第⼀个⽉只有那只公兔⼦
f[1]=1;
//第⼆个⽉公兔⼦掳来了母兔⼦⼀共俩兔⼦
f[2]=2;
//从第三个⽉开始,到祖先兔⼦死前⼀个⽉
for(int i=3;i<=n-1;i++)
{
//从第三个⽉开始,⼭上兔⼦的总和为前⼀个⽉跟前前⼀个⽉兔⼦数量之和(斐波那契数列)
f[i] = f[i-1]+f[i-2];
}
cout << f[n-1];
return 0;
}
提醒:千万不要像兔⼦祖先那样过度劳累
原创题⽬,转载请私信。

斐波那契数列

斐波那契数列

斐波那契数列一、简介斐波那契数列(Fibonacci),又称黄金分割数列,由数学家斐波那契最早以“兔子繁殖问题”引入,推动了数学的发展。

故斐波那契数列又称“兔子数列”。

斐波那契数列指这样的数列:1,1,2,3,5,8,13,……,前两个数的和等于后面一个数字。

这样我们可以得到一个递推式,记斐波那契数列的第i项为F i,则F i=F i-1+F i-2.兔子繁殖问题指设有一对新生的兔子,从第三个月开始他们每个月都生一对兔子,新生的兔子从第三个月开始又每个月生一对兔子。

按此规律,并假定兔子没有死亡,10个月后共有多少个兔子?这道题目通过找规律发现答案就是斐波那契数列,第n个月兔子的数量是斐波那契数列的第n项。

二、性质如果要了解斐波那契数列的性质,必然要先知道它的通项公式才能更简单的推导出一些定理。

那么下面我们就通过初等代数的待定系数法计算出通项公式。

令常数p,q满足F n-pF n-1=q(F n-1-pF n-2)。

则可得:F n-pF n-1=q(F n-1-pF n-2)=q2(F n-2-pF n-3)=…=q n-2(F2-pF1)又∵F n-pF n-1=q(F n-1-pF n-2)∴F n-pF n-1=qF n-1-pqF n-2F n-1+F n-2-pF n-1-qF n-1+pqF n-2=0(1-p-q)F n-1+(1+pq)F n-2=0∴p+q=1,pq=-1是其中的一种方程组∴F n-pF n-1= q n-2(F2-pF1)=q n-2(1-p)=q n-1F n=q n-1+pF n-1=q n-1+p(q n-2+p(q n-3+…))=q n-1+pq n-2+p2q n-3+…+p n-1不难看出,上式是一个以p/q为公比的等比数列。

将它用求和公式求和可以得到:F n=q n−1[(pq)n−1]pq−1=p n−q np−q而上面出现了方程组p+q=1,pq=-1,可以得到p(1-p)=-1,p2-p-1=0,这样就得到了一个标准的一元二次方程,配方得p2-p+0.25=1.25,(p-0.5)2=1.25,p=±√1.25+0.5。

斐波那契数列(fibonacci sequence),从1,1开始,后面每一项等于前面两项之和。输出

斐波那契数列(fibonacci sequence),从1,1开始,后面每一项等于前面两项之和。输出

斐波那契数列(fibonacci sequence)斐波那契数列是一个非常有趣和有用的数学概念,它在自然界、艺术、计算机科学等领域都有广泛的应用。

本文将介绍斐波那契数列的定义、性质、算法和应用,希望能给你带来一些启发和乐趣。

定义斐波那契数列是由意大利数学家莱昂纳多·斐波那契(Leonardo Fibonacci)在1202年的著作《计算之书》中提出的,他以兔子繁殖为例子,发现了一个数列,即每个月的兔子对数等于前两个月的兔子对数之和。

这个数列就被称为斐波那契数列,或者兔子数列,又或者黄金分割数列。

斐波那契数列的前几项如下:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...可以看出,这个数列从第三项开始,每一项都等于前两项之和。

用数学符号表示,就是:F(0) = 0F(1) = 1F(n) = F(n-1) + F(n-2) (n >= 2)其中,F(n)表示第n项的值。

性质斐波那契数列有许多有趣和重要的性质,下面列举一些常见的:奇偶性:斐波那契数列中,从第三项开始,每三项中有两个奇数和一个偶数。

也就是说,F(n)是奇数当且仅当n是3的倍数或者比3的倍数大1。

相邻项之比:斐波那契数列中,相邻两项之比会逐渐接近一个常数值,这个常数值就是黄金分割比φ≈1.618。

也就是说,当n趋向于无穷大时,F(n+1)/F(n)趋向于φ。

前n项之和:斐波那契数列中,前n项之和等于第n+2项减去1。

也就是说,F(0)+F(1)+...+F(n) = F(n+2)-1。

奇偶项之和:斐波那契数列中,所有奇数项之和等于最后一个奇数项的下一项减去1;所有偶数项之和等于最后一个偶数项的下一项减去2。

也就是说,如果F(m)是最后一个奇数项,则F(1)+F(3)+...+F(m) = F(m+1)-1;如果F(m)是最后一个偶数项,则F(0)+F(2)+...+F(m) = F(m+1)-2。

兔子数列,数学

兔子数列,数学

兔子数列即斐波那契数列,“斐波那契数列”的发明者,是意大利数学家列昂纳多·斐波那契(Leo nardo Fibonacci,生于公元1170年,卒于1240年。

籍贯大概是比萨)。

他被人称作“比萨的列昂纳多”。

斐波那契数列指的是这样一个数列:0,1,1,2,3,5,8,13,21……这个数列从第三项开始,每一项都等于前两项之和。

它的通项公式为:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。

【该数列有很多奇妙的属性】比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.61803398 87……还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1。

如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到。

如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值。

斐波那契数列的第n项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数。

【斐波那契数列别名】斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。

斐波那契数列一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。

如果所有兔都不死,那么一年以后可以繁殖多少对兔子?我们不妨拿新出生的一对小兔子分析一下:第一个月小兔子没有繁殖能力,所以还是一对;两个月后,生下一对小兔民数共有两对;三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对;------依次类推可以列出下表:经过月数:0 1 2 3 4 5 6 7 8 9 10 11 12兔子对数:1 1 2 3 5 8 13 21 34 55 89 144 233表中数字0,1,1,2,3,5,8---构成了一个数列。

初一数学布谷数

初一数学布谷数

初一数学布谷数布谷数是一种特殊的数列,它的规律十分有趣。

在布谷数列中,每个数都是前两个数的和。

例如,数列的前几个数字依次为1、1、2、3、5、8、13、21……这个数列中的每个数字都是前两个数字之和。

布谷数列最早是由意大利数学家列奥纳多·斐波那契(Leonardo Fibonacci)在13世纪发现的。

他发现这个数列可以用来描述理想化的兔子繁殖问题。

假设一对兔子每个月能繁殖一对小兔子,并且新生的小兔子在出生后第二个月就能开始繁殖。

那么,第一个月有一对兔子,第二个月会出现第二对兔子,第三个月会出现第三对兔子,以此类推。

这个问题可以用布谷数列来描述,第n个月的兔子对数就是布谷数列的第n个数字。

布谷数列不仅在生物繁殖问题中有应用,还在数学领域中有广泛的应用。

它在自然界中也有出现,如植物叶子的排列方式、花瓣的数目等都与布谷数列有关。

布谷数列还有一些有趣的性质和特点。

首先,它的增长速度非常快。

随着n的增大,布谷数列的每个数字都会越来越大。

其次,布谷数列中的相邻两个数的比值会越来越接近黄金分割比例(约等于1.618)。

这个比例在古代被认为是最美的比例,因此布谷数列也被称为黄金分割数列。

此外,布谷数列还有一些与二项式展开等数学问题相关的特性。

在计算布谷数列时,我们可以使用递归方法或迭代方法。

递归方法是一种将问题分解为更小规模子问题的方法,通过不断调用自身来求解。

迭代方法则是通过循环计算得到结果。

对于较大的n,迭代方法通常更高效。

除了布谷数列,数学中还有许多有趣的数列和数学问题值得我们探索和研究。

例如,等差数列和等比数列都是常见的数列类型,它们都有自己的特点和规律。

在解决实际问题时,我们可以通过找到数列的规律,进而推导出通用的解决方法。

数学是一门充满魅力的学科,通过学习数学,我们可以培养逻辑思维和问题解决能力。

布谷数列作为数学中的一个有趣的问题,不仅能够激发我们对数学的兴趣,还能让我们从中感受到数学的美妙和深邃。

兔子数列

兔子数列

趣味数学:兔子繁殖与斐波纳奇数列(适合四、五、六年级)公元13世纪,在意大利有一位天才的数学家名字叫斐波纳奇,他在一本《算盘之书》的著作里记载了这样一道数学题:有一对兔子,每一个月可以生下一对小兔子,而且假定小兔子在出生的第二个月便有生育能力,那么过一年后,问一共能有多少对兔子?假设每产一对必须是一雌兔一雄兔,并且所有的兔子都能进行相互交配,所生下来的兔子都能保证成活率。

究竟有多少对呢?我们不妨计算一下,一对兔子,在一个月后生出了一对,总数是两对。

而在这两对当中,只有第一对兔子有生育能力,因而两个月后一共有三对兔子,三个月后第一第二对兔子都有生育能力,因此又新出生两对兔子,总共有五对兔子,这样依此类推,经过一年(十二个月)后,兔子总数为233对。

即兔子的对数依次为:1,2,3,5,8,13,21,34,55,89,144,233,研究一下这个数列,我们会惊奇地发现它有许多有趣的性质:从第三项起,每一项的数都是紧挨着它前面的两项的数字之和。

即3=2+1;5=2+3;8=3+5;……233=89+144,这个数列的发现对人类数学及自然科学的发展具有重大的意义,人们为了纪念大数学家斐波纳奇,因而把此数列命名为斐波纳奇数列。

斐波纳奇数列在生活中有着广泛的运用。

试举一例:一个人上楼梯,可以一步上一级台阶,也可以一步上两级台阶。

现在假设某层楼梯有10级台阶。

那么从这层楼的下面走到上面,共有多少种不同的走法?解:根据题意列出各级楼梯的走法如下:括号里面的数字表示每次上楼梯走的级数,1个算式或数表示一种走法)第一级:1种(1)第二级:2种(1+1,2)第三级:3种(1+1+1,2+1,1+2)第四级:5种(1+1+1+1,1+1+2,1+2+1,2+1+1,2+2)第五级:8种(1+1+1+1+1,1+1+1+2,1+1+2+1,1+2+1+1,2+1+1+1,1+2+2,2+1+2,2+2+1)第六级:……其规律为:从第三项起,每一项的数都是紧挨着它前面的两项的数字之和。

高中数学攻克斐波那契数列秘籍

高中数学攻克斐波那契数列秘籍

【高中数学解题秘籍系列】————一篇文章攻克斐波那契数列斐波那契,公元 13 世纪意大利数学家,他在自己的著作《算盘书》中记载着这样一个“兔子繁殖”问题:假定有一对大兔子,每一个月可生下一对小兔子,并且生下的这一对小兔子两个月后就具有繁殖能力。

假如一年内没有发生死亡,那么,从一对小兔子开始,一年后共有多少对兔子? 斐波那契在研究时,发现有这样一个数列的数学模型:1,1,2,3,5,8,13,21,34,......,其中从 第三个数起,每一个数都等于它前面两个数的和,亦即数列n a 满足:121,1a a ==且()213n n n a a a n --+=≥.这个数列就是著名的“斐波那契数列”,而这个数列中的每一项称为“斐波那契数”.事实上,斐波那契数列{}n a 的通项公式为11515225n nn a ⎡⎤⎛⎫⎛⎫+-⎢⎥=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,其神奇之处在于通项公式中含有无理数,但每一项又都不是无理数.斐波那契数列的意义不仅在于求解通项公式,许多问题甚至题目中丝毫不出现递推关系,但题目求解却蕴含斐波那契数列的思想,这些问题甚至包含了看似普通的代数甚至组合的问题,本文就以斐波那契数列为背景的试题做一展示,欢迎大家交流一、以斐波那契数列的概念为背景的命题例1. 如图是一个树形图的生长过程,依据图中所示的生长规律,第 15 行的实心圆点的个 数等于________.【解析】从第二行开始,各行的实心圆点的个数依次 为1,1, 2, 3, 5,8,, 显然符合斐波那契数列的定义,第 15 行的实心圆点个数为第 14 个斐波那契数377, 其中从第三个数起样的一列数所组成的数列称为22015a ++是斐波那契数项.【解析】斐波那契数列总有a ⋯,(20152016a a =22015a +=220152015a ++22015a ++ 是斐波那契数列中的第2na a +=他在自己的著作 , 其中从第三个数起, 每一个数都等于它前面两个数的和. 那么 12015a a + 4252015,,,a a a -==20152016a a +=.2015a + 是斐波那契数列中的第 2016 斐波那契数列的奇数项之和: 21n a -+=例5. 同学们都有这样的解题经验:在某些数列的求和中, 可把其中一项分裂成两项之差,使得某些项可以相互抵消,从而实现化简求和. “斐波那契数列”是数学史上一个著名的数列,这个数列中的每一项称为“斐波那契数”.在斐波那契数列中121,1,a a ==21(3)n n n a a a n --+=≥. 若2016a a =, 那么数列{}n a 的前2014项的和为________.【解析】由 11231342453201420152013,,,,,a a a a a a a a a a a a a a ==-=-=-=-可得:123201420142015220161 1.a a a a a a a a a ++++=+-=-=-故数列 {}n a 的前 2014 项的和为 1a -. 【性质3】斐波那契数列的前 n 项之和 12321n n n S a a a a a +=++++=-, 即211.ni n i a a +==-∑【性质4】连续二顶斐波那契数后两项乘积与前两项乘积的差, 是中间项的平方, 即211(2)n n n n n a a a a a n +--=≥.【归纳】斐波那契数列的简单性质的证明总是运用其特征式12n n n a a a +++=的变形21n n n a a a ++=-或12n n n a a a ++=-进行裂项, 从而达到相消求和的目的.例6.(2021·T8联考)数列{}:1,1,2,3,5,8,13,21,34,n a ,称为斐波那契数列(Fibonacci sequence ),该数列是由十三世纪意大利数学家莱昂纳多斐波那契(Leonardo Fibonacci)以兔子繁殖为例子而引入,故又称为"兔子数列" 在数学上,斐波那契数列可表述为121,a a == 12(3n n n a a a n --=+≥,*n ∈N ),设该数列的前n 项和为n S ,记 2023a m = ,则2021S =__________. (用m 表示) 【答案】1m - 【解析】法一:由12n n n a a a --=+, 得21n n n a a a ++=+, 即()*21n n n a a a n ++=-∈N .()()()()202132435420232022a a a a a a a a a +=-+-+-++-=2021202020202019a a a a +++ 3n a +=,,()f n =33(1)n n n a a ++-=47,2x -≤≤。

斐波那契数列

斐波那契数列

斐波那契数列姓名:林秋照学号:092312113比萨的列奥纳多,又称斐波那契(Leonardo Pisano ,Fibonacci, Leonardo Bigollo,1175年-1250年),意大利数学家,是西方第一个研究斐波那契数的人,并将现代书写数和乘数的位值表示法系统引入欧洲,1202年,莱昂纳多斐波那契向世人介绍了斐波那契数列,是为了解决“兔子繁殖问题”提出的。

斐波那契在《算盘书》中提出了一个有趣的兔子问题:一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。

如果所有兔都不死,那么一年以后可以繁殖多少对兔子?我们不妨拿新出生的一对小兔子分析一下:第一个月小兔子没有繁殖能力,所以还是一对;两个月后,生下一对小兔总数共有两对;三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对;……依次类推可以列出下表:表中数字1,1,2,3,5,8---构成了一个序列。

这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。

这个数列是意大利中世纪数学家斐波那契在《算盘书》中提出的,这个级数的通项公式,除了具有an+2=an+an+1的性质外,还可以证明通项公式为:an=1/√5 [(1/2+√5/2)^ n-(1/2-√5/2)^n](n=1,2,3.....)(√5表示根号5)这个通项公式中虽然所有的an都是正整数,可是它们却是由一些无理数表示出来的。

即在较高的序列,两个连续的“斐波纳契数”的序列相互分割将接近黄金比例(1.618:1或1:0.618)。

例如:233/144,987/610、、、、斐波那契数列还有两个有趣的性质⒈斐波那契数列中任一项的平方数都等于兔子问题跟它相邻的前后两项的乘积加1或减1;⒉任取相邻的四个斐波那契数,中间两数之积(内积)与两边两数之积(外积)相差1.同样我们还可以有t阶斐波那契数列,通过递推数列a(n+t)=a(n+t-1)+a(n+t-2)+...+a(n),其中a⑴=a⑵=1,以及对于3-t<=n<=0,有a(n)=0.给出了t阶斐波那契数列的通项公式:[r^(n-1)(r-1)/((t+1)r-2t)],其中r是方程x^{t+1}-2x^t+1=0的唯一一个大于1的正数根(可以看出r非常接近2)斐波那契数列(意大利语:Successione di Fibonacci),又称黄金分割数列、费波那西数列、费波拿契数、费氏数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=Fn-1+Fn-2(n>=2,n∈N*),用文字来说,就是斐波那契数列由0 和1 开始,之后的斐波那契数列系数就由之前的两数相加。

第一章 兔子数列和极端分析(讲义)

第一章 兔子数列和极端分析(讲义)

第一章兔子数列和极端分析(讲义)➢知识点睛1.斐波那契数列指的是这样一个数列:0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368 ……2.特别指出:第0项是0,第1项是第一个1。

3.这个数列从第3项开始,每一项都等于前两项之和。

➢精讲精练【板块一】斐波那契初级经典例题1(1)一楼梯共8级,小嘉每步只能跨上一级或两级,要登上第8级,共有多少种不同走法?(2)蜜蜂通过蜂巢房间,规定只能由小号房间进入大号房间。

问小蜜蜂由1号房间到达8号房间有多少种方法?练一练小嘉要打十拳,每次可选择双手打或者单手打(双手打算两拳,不区分左右手),那么小嘉有多少种打法?经典例题2每对小兔子在出生后一个月就长成大兔子,而每对大兔子每个月能生出一对小兔子。

如果一个人在一月份买了一对小兔子,那么十二月份的时候他共有多少对兔子?*经典例题3一楼梯共8级,小嘉每步只能跨上一级、两级或三级,要登上第8级,共有多少种不同走法?*练一练小时要打十下,每次可选择双手双脚任意出击(不区分手脚,不考虑站姿,最多可双手双脚同时出击算四下),那么小时有多少种打法?【板块二】极端分析经典例题4一个各位数字互不相同的六位数能被41整除,这个数最大是多少?最小是多少?练一练一个六位数能被17整除,这个数最大是多少?最小是多少?经典例题5一个各位数字互不相同的六位数能被5、6整除,这个数最大是多少?练一练一个各位数字互不相同的五位数能被2、5、7整除,这个数最大是多少?*【板块三】斐波那契综合应用经典例题6(1)用3个形如“”的方格覆盖23⨯的方格(“”);有多少种不同的摆法?(2)用4个形如“”的方格覆盖24⨯的方格(“”);有多少种不同的摆法?(3)用10个形如“”的方格覆盖2×10的方格(“”);有多少种不同的摆法?经典例题7对一个自然数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到为1操作停止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

兔子数列的应用
例1、农夫养兔
有一个农夫把一对(雌雄各一)的小兔子放在自家的院子里饲养,他想知道半年后能生出多少对兔子,假定这对刚出生的小兔子经一个月长成大兔子,而大兔子每月可生雌雄各一的一对小兔子,而新生的一对小兔子又经过一个月可以长成大兔子,以后也是每月产雌雄各一的一对小兔子……。

问:半年后(也就是到第7个月开始)能生出多少对兔子?
例2、走楼梯
楼梯有10级台阶,上楼可以一步上一个台阶,也可以一步上两个台阶,共有多少种不同的走法?
挑战1:蜜蜂路线
有一只经过训练的蜜蜂只能爬向右侧从编号小的爬向编号大的相邻的蜂房,不能反向爬行。

试求出蜜蜂从蜂房1爬到蜂房6的可能路线数。

挑战2:蚂蚁吃苹果
一只小蚂蚁从左下角的小方格出发去拿苹果,它每次只能走1格或2格。

如果这只小蚂蚁沿最短路线走,那么走到苹果处共有( )种不同的走法。

(注意:走的路线相同但步骤不同是不同的走法)。

相关文档
最新文档