方阵问题-(1)

合集下载

方阵问题

方阵问题

方阵问题同学们要参加运动会入场式,要实行队列操练,解放军排着整齐的方队接受检阅等,无论是训练或接受检阅,都要按一定的规则排成一定的队形,于是就产生了这个类的数学问题,今天我们将共同研究和分析这类问题。

士兵排队,横着排叫行,竖着排叫列,若行数与列数都相等,正好排成一个正方形,这就是一个方队,这种方队也叫做方阵(亦叫乘方问题)。

方阵的基本特点:(1)方阵不论哪一层,每边上的人(或物)数量都相同,每向里一层,每边上的人数就少2。

(2)每边人(或物)数和四周人(或物)的关系;四周人(或物)数=[每边人(或物)数-1]×4每边人(或物)数=四周人(或物)数÷4+1(3)中实方阵的总人数(或物)=每边人(或物)数×每边人(或物)数(4)空心方阵的总人(或物)数=(最外层每边人(或物)数-空心方阵的层数)×空心方阵的层数×4例1.三年级一班参加运动会入场式,排成一个方阵,最外层一周的人数为20人,问方阵最外层每边的人数是多少?这个方阵共有多少人?分析:根据四周人数与每边人数的关系可知:每边人数=四周人数÷4+1,能够求出这个方阵最外层每边的人数,那么这个方阵队列的总人数就能够求了。

解:(1)方阵最外层每边的人数:20÷4+1=5+1=6(人)(2)整个方阵共有学生人数:6×6=36(人)答:方阵最外层每边的人数是6人,这个方阵共有36人。

例2.明明用围棋子摆成一个三层空心方阵,如果最外层每边有围棋子15个,明明摆这个方阵最里层一周共有多少棋子?摆这个三层空心方阵共用了多少个棋子?分析:(1)方阵每向里面一层,每边的个数就减少2个,知道最外面一层,每边放15个,能够求出最里层每边的个数,就能够求出最里层一周放棋子的总数。

(2)根据最外层每边放棋子的个数减去这个空心方阵的层数,再乘以层数,再乘以4,计算出这个空心方阵共用棋子多少个。

解:(1)最里层一周棋子的个数是:(15-2-2-1)×4=40(个)(2)这个空心方阵共用的棋子数是:(15-3)×3×4=144(个)答:这个方阵最里层一周有40个棋子;摆这个空心方阵共用144个棋子。

奥赛天天练方阵1

奥赛天天练方阵1

《奥赛天天练》第27讲《方阵问题》。

方阵其实是一种队形,一个团队排队,横着排叫行,竖着排叫列,若行数与列数都相等,正好排成一个正方形,这种队形就叫做方阵。

将一些物体按照这样的方式排列起来,也叫做方阵。

方阵一般分为两类:实心方阵和空心方阵。

其基本特点是:不论哪一层,每边上的人(或物)数量都相同;每向里一层,每条边上的人(或物)就少2,每一层的人(或物)的总数就少4。

方阵问题中常见的数量关系有(以队形为例):一、每层总人数=[每边人数-1]×4或:每层总人数=每边人数×4-4二、每边人数=每层总人数÷4+1三、实心方阵的总人数=每边人数×每边人数四、空心方阵的总人数=(最外层每边人数-空心方阵的层数)×空心方阵的层数×4或:空心方阵的总人数=最外层每边人数×最外层每边人数-(最里层每边人数-2)×(最里层每边人数-2)可以通过点子图帮助孩子理解方阵的特点及方阵问题中的四个数量关系。

其中第一、四两个数量关系是难点,可以利用下面的图形帮助孩子理解第一、四两个数量关系,在此基础上理解第二个数量关系:第一个空心方阵的总点数:(11-3)×3×4=56(点);第二个实心方阵外层点数:(9-1)×4=32(点)。

《奥赛天天练》第27讲,巩固训练,习题1【题目】:有16个学生站在正方形场地的四周,四个角上都站1人,如果每边站的人数都相等,问每边站几个学生?【题目】:国庆节前夕,在街中心一塑像的周围,用204盆鲜花围成一个每边三成的方阵。

求外面一层每边有鲜花多少盆?【题目】:同学们排练团体操,排成一个方阵,中间的实心方阵是女同学,外面三层是男同学,最外圈两层又是女同学。

已知方阵中男同学是108人,问女同学是多少人?【题目】:一队战士排成三层空心方阵多出9人,如果在空心部分在增加一层,又差7人,问这队战士共有多少人?小学三年级奥数题——方阵练习1.有一队士兵,排成了一个方阵,最外层一周共有240人,问这个方阵共有多少人?2.某校少先队员可以排成一个四层空心方阵如果最外层每边有20个学生,问这个空心方阵最里边一周有多少个学生?这个四层空心方阵共有多少个学生?3.六一儿童节前夕,在校园雕塑的周围,用204盆鲜花围成了一个每边三层的方阵求最外面一层每边有鲜花多少盆?4.三年级(1)班的学生参加体操表演,排成队形正好是由每7个人为一边的6个三角形组成的一个正六边形,求正六边形一周共有多少名学生?三(1)班参加体操表演的共有多少人?5.现有松树和柏树以隔株相间的种法,种成9行9列的方阵,问这个方阵最外层有松树和柏树各多少棵?方阵中共有松树柏树各多少棵?《奥赛天天练》第27讲《方阵问题》。

三年级知识点:方阵问题

三年级知识点:方阵问题

三年级知识点:方阵问题方阵问题同学们要参加运动会入场式,要进行队列操练,解放军排着整齐的方队接受检阅等,无论是训练或接受检阅,都要按一定的规则排成一定的队形,于是就产生了这一类的数学问题,今天我们将共同研究和分析这类问题。

士兵排队,横着排叫行,竖着排叫列,若行数与列数都相等,正好排成一个正方形,这就是一个方队,这种方队也叫做方阵(亦叫乘方问题)。

方阵的基本特点:(1)方阵不论哪一层,每边上的人(或物)数量都相同,每向里一层,每边上的人数就少2。

(2)每边人(或物)数和四周人(或物)的关系;四周人(或物)数=[每边人(或物)数-1]×4每边人(或物)数=四周人(或物)数÷4+1(3)中实方阵的总人数(或物)=每边人(或物)数×每边人(或物)数(4)空心方阵的总人(或物)数=(最外层每边人(或物)数-空心方阵的层数)×空心方阵的层数×4春天绿叶分割线例1.三年级一班参加运动会入场式,排成一个方阵,最外层一周的人数为20人,问方阵最外层每边的人数是多少?这个方阵共有多少人?分析:根据四周人数与每边人数的关系可知:每边人数=四周人数÷4+1,可以求出这个方阵最外层每边的人数,那么这个方阵队列的总人数就可以求了。

解:(1)方阵最外层每边的人数:20÷4+1=5+1=6(人)(2)整个方阵共有学生人数:6×6=36(人)答:方阵最外层每边的人数是6人,这个方阵共有36人。

儿童节气球可爱gif 动图分割线贴纸例2.明明用围棋子摆成一个三层空心方阵,如果最外层每边有围棋子15个,明明摆这个方阵最里层一周共有多少棋子?摆这个三层空心方阵共用了多少个棋子?分析:(1)方阵每向里面一层,每边的个数就减少2个,知道最外面一层,每边放15个,可以求出最里层每边的个数,就可以求出最里层一周放棋子的总数。

(2)根据最外层每边放棋子的个数减去这个空心方阵的层数,再乘以层数,再乘以4,计算出这个空心方阵共用棋子多少个。

第2讲方阵问题(1)

第2讲方阵问题(1)
(3)偶数层:总个数=(最外层个数+最内层个数)×层数+2
总数:44+36+28=108(枚)。
方法二:因为每相邻两层差8,所以这三层的个数为等差数列:
最外层为:12×4-4=44(枚);
中间层为:44-8=36(枚);
三层总数为:36×3=108(枚)。
答:这个方阵共有108枚棋子。
练习4
同学们在军训时排成了一个三层空心方阵,最外面一层每边有19人,请问这个
答:这个方阵最外层每边有13盆花。
练习5
解放军进行队列表演,组成一个外层有48人,内层有16人的多层中空方阵,这
个方阵有几层?一共有多少人?
秘籍3:空心方阵加一层
例6
小明用棋子摆了一个五层中空方阵,一共用了200枚棋子,如果想在最外面
再加一层,问:需要增加多少枚棋子?
【解析】因为中间层x层数=空心方阵的总数,所以中间层为:200÷5=40(枚),再加的一层
【解析】因为方阵的行数和列数相同,而且13×13=169,所以方阵的每行、每列都有13人。
方阵最外层的人数:13×4-4=48(人)或(13-1)x4=48(人)。
这个方阵最外层有48人。
练习2
解放军战士排成一个每边30人的实心方阵,请问:这个方阵一共有多少名战士,方阵最外一层共有多少名战士?
例3
某校四年级学生把玻璃球排成一个方阵,最外一层的玻璃球数为60个,问
(1)每层数=每边数x4-4
=(每边数-1)×4
(2)每相邻两层,一条边上的个数相差2个;
(3)每相邻两层的个数相差8个,(注意:奇数层实心方阵最里层和相邻层除外。因为奇数
层方阵的最里层是1,1的相邻层是8)
2.空心方阵的总数

三年级奥数方阵问题.doc

三年级奥数方阵问题.doc

方阵问题-' 方阵问题(1)明确空心方阵和实心方阵的概念及区别.(2)每边的个数=总数:4 + 1”;(3)每向里一层每边棋子数减少2;(4)掌握计算层数、每层个数、总个数的方法,及每层个数的变化规律。

一' 方阵问题【例1】在一次运动会开幕式上,有一大一小两个方阵合并变换成一个10行10列的方阵,求原来两个方阵各有多少人?【考点】方阵问题【难度】2星【题型】解答【解析】根据时间多少和学生具体情况可考虑教给学生平方数的概念,并记住一些简单的平方数.10行10列的方阵由100人组成,原来的小方阵每行或每列人数都不会超过10人,大方阵人数应该在50—100之间,可取64或81,运用枚举法,可求出满足条件的是:大方阵有64人,小方阵有36 人. 【答案】大方阵有64人,小方阵有36人【巩固】小华观看团体操表演,他看到表演队伍中的一个方阵变换成一个正三角形实心队列,他估计队伍中人数大概在30至50人之间,你能告诉他到底有多少人吗?【考点】方阵问题【难度】3星【题型】解答【解析】方阵总人数的特点:它是两个相同自然数的积,而三角形队列总人数的特点是:总数是从1开始若干个连续自然数的和,我们只要在3070的范围内找出同时满足这两个条件的数就可以得出总人数.由于队伍可以排成方阵,在30至50人的范围内人数可能是6x6=36人或7x7=49人,又因为36 = 1 + 2 + 3 + 4 + ...+8, 49 = 1 + 2 + 3 + 4 + ...+9 + 4,所以总人数是36人.【答案】36人【例2】学生进行队列表演,排成了一个正方形队列,如果去掉一行一列,要去掉11A,问这个方阵共有多少人?【考点】方阵问题【难度】2星【题型】解答【解析】由上题思路,带领学生进行逆向思维.学生排成一正方形队列表演,去掉一行一列,去掉了11人, 那我们就要思考每行去掉了几个同学,因为是正方形队列,所以每行每列人数一样多,但在数的时候,站在角落的同学被数了两个,那么现在求每行的人数时就要在11里面多加一个.现在每行的人数是:(11 + 1) + 2 = 6 (人),共6x6 = 36 (人).【答案】36人【巩固】学生进行队列表演,排成了一个正方形队列,如果去掉一行一列,要去掉13人,问这个方阵共有多少人?【考点】方阵问题【难度】2星【题型】解答【解析】每行:(13 + 1—2 = 7 (人),总人数:7x7 = 49 (人).【答案】49人【例3】二年级舞蹈队为全校做健美操表演,组成一个正方形队列,后来由于表演的需要,又增加一行一列,增加的人数正好是17人,那么原来准备参加健美操表演的有多少人?【考点】方阵问题【难度】2星【题型】解答【解析】可先让学生自己画图实践,从3乘3的方阵变成4乘4的如何进行,掌握画法后再来思考这题. 因增加的是一行一列,而行、列人数仍应相等,但为什么增加的却是17人,因有1人是既在他所在的行,又在他所在的列.若把它减掉,剩下人数恰是原两行或两列的人数,则原来一行或一列的人数可求.参加健美操表演的人数可求.列式:(17 — 1) + 2 = 16 + 2 = 8 (人),8X8=64(A).【答案】64人【巩固】某部队战士排成方阵行军,另一支队伍共17人加入他们的方阵,正好使横竖各增加一排,现共有多少战士?【考点】方阵问题【难度】2星【题型】解答【解析】后来的战士加入方阵时,是在原方阵外侧横竖方向各增加一排,那么有一个战士要站在这两排的交界处,计算横排竖排的人数时,对他进行了重复计算,也就是说现在每一排实际人数是(17+1)+2=9(人),因此可以求出总人数:9x9=81 (人).【答案】81人【例4】育新小学召开秋季运动会,准备在正方形的操场周围插上彩旗.如果4个角上都要插上一面彩旗,要使每边有7面彩旗,那么一共要准备多少面彩旗才行?【解析】心急的学生会很配合的说28,此时可提示他们想想,彩旗不够,能不能少点?根据题目的要求画出【考点】方阵【难度】2【题型】解示意图:我们把这些彩旗按照图中所示的方式分成相等的4部分,可以看出每一部分都有7-1=6面旗.(7 — l)x4 = 24(面),一共准备24面彩旗.【答案】24面【巩固】某校五年级学生排成一个方阵,最外一层的人数为60人.问方阵外层每边有多少人?这个方阵共有五年级学生多少人?【考点】方阵问题【难度】3星【题型】解答【解析】根据四周人数和每边人数的关系可以知:每边人数=四周人数44 + 1,可以求出方阵最外层每边人数,那么整个方阵队列的总人数就可以求了.所以方阵最外层每边人数:60+4 + 1 = 16(人),整个方阵共有学生人数:16x16 = 256 (A).【答案】方阵最外层每边人数16人,整个方阵共有学生人数256人.【例5】新学期开始,手持鲜花的少先队员在一辆彩车四周围成了每边两层的方阵,最外面一层每边13 人,彩车周围的少先队员有多少人?【考点】方阵问题【难度】3星【题型】解答【解析】先让学生自己思考,待大家都有结果后,让学生思考一个问题:相邻两层差几个人.外层13x4-4=4$人,内外相差8人(教师可举例说明),内层48-8 = 40人,共88人.【答案】88人列【考点】方阵【难度】3【题型】填【巩固】节日来临,同学们用盆花在操场上摆了一个空心花坛,最外层的一层每边摆了 12盆花,一共3层,一共用去多少盆花?【考点】方阵问题 【难度】3星 【题型】解答【解析】让学生利用上题思考结果加以解决.(法1)不论是空心方阵还是实心方阵,每向里一层,每边的花盆就少2个,每层的花盆就少8个,因此可以依次求出每层花盆的个数.最外层有花盆:Q2-l )x4 = 44(盆),第二层有:44-8 = 36(盆),第三层有:36-8=28(盆),共有:44+ 36+ 28=108(盆).(法2)将三层花盆分成四块,形成四个相等的长方形.它们的长是(12-3)个,宽是3个, (12-3*3=2,个,即每个长方形中包括27个花盆,再将结果乘以4就得到总数是108个,于是 我们可以总结为:空心方阵中点的总个数=(最外层每边的个数-层数)x 层数x 4 .(法3)也可以将这种情况看作从一个大的实心方阵中取出一个小的实心方阵.【答案】108盆【例6】 在一次团体操表演中,有一个空心方阵最外层有64人,最内层有32人,参加团体操表演的共多 少人?【考点】方阵问题 【难度】4星 【题型】解答【解析】根据最外层和最内层人数,可以分别求出内外层每边的人数,一个空心方阵,可以看做从一个最 外层有64人的实心方阵中,减去了一个小方阵.外层每边人数:64+4 + 1 = 17 (人).内层每边 人数:32+4 + 1 = 9 (人),空心方阵人数:17x17-(9 —2)x (9-2) = 240 (人).【答案】240人【巩固】希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按图1中实线所示,从第 1行第1列开始,按照编号从小到大的顺序排成一个方阵。

方阵问题PPT---(推荐)

方阵问题PPT---(推荐)

8人
a
18
方 阵 问 题(2)
a
19
思考:在方阵中每隔一圈相差几个?为什么?
a
20
a
21
体育课上,老师让全班同学摆成了一个三层的空心方 阵,最外层每边有10个人,问全部共有多少学生?
a
22
a
23
同学们再见!
a
24
a
1
a
2
a
3
a
4
a
5
a
6
a
7
a
8
a
9
a
10
a
11
a
12
方 阵 问 题(1)
方阵:学生排队,士兵列队,横着排叫
做行,竖着排叫做列.如果行数与列数都 相等,则正好排成一个正方形,这种图
形就叫方队,也叫做方阵(亦叫乘方问 题)。
a
13
一个方阵的最外层每边站了5人。 这个方阵一共有多少人?
4×4 = 16(人)
5×4- 4 = 16(人)
3×4 + 4=16(a 人)
5×2 + 3×2=16(人) 16
一个方阵最外层每边站8人。最外层一共站多少人?
(8-1)×4 = 28
a
17
如果在最外层再加一层需要加多少人?
方法一:9+8=17人
方法二:9×2-1=17

8人
方法三:9×9-8×8=17人
55Leabharlann 5×5=25(人)a
14
一个方阵的最外层每边站了5人。
这个方阵的最外层一共站了多少人?
5
学习要求:
①在学具纸上圈一圈,要
求能让人一眼就看出你是

方阵问题公式(附例题)

方阵问题公式(附例题)

方阵问题公式(附例题)方阵问题公式(附例题)学生排队,士兵列队,横着排叫做行,竖着排叫做列。

如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。

核心公式:方阵问题公式(1)实心方阵:(外层每边人数)2=总人数。

(2)空心方阵:(最外层每边人数)2-(最外层每边人数-2×层数)2=中空方阵的人数。

或者是(最外层每边人数-层数)×层数×4=中空方阵的人数。

总人数÷4÷层数+层数=外层每边人数。

例如,有一个3层的中空方阵,最外层有10人,问全阵有多少人?一、实心方阵1.方阵总人数=最外层每边人数的平方(方阵问题的核心)-每边数×每边数2人数=(阵最外层总人数+4)+13.外一层每边人数比内一层每边人数多24.去掉一行、一列的总人数=去掉的每边人数×2-15、每层数-(每边-1)×4二、空心方阵1外人数=总人数+4+层数+层数2数最=(最外层每边数-层数)×层数×4=(最外层数+最内层数)×层数+23内层数=外层数-84、每层数=(每边数-1)×45、实心方阵的总人数是一个完全平方数,空心方阵的总人数是4的倍数。

方阵问题方阵的基本特点:1、方阵不论哪一层.每边上的人(或物)数量都相同,每向里一层每边上的人数就少 2,每层总数少82、实心方阵:总数=每边数×每边数每边数=每层数+4+1每边数=(每横排与每竖排之和-1)+2每层数=(每边数-1)×43、空心方阵:总数=大实心方阵数-小实心方阵数总数=(最外层每边数-层数)×层数×4总数=(最外层数+最内层数)×层数+2最外层每边数-总数+4+层数+层数解决方阵问题的基本思路:1、避免重复方阵问题基本公式基本公式:(1)N排N列的实心方阵人数为N2人;(2)M排N列的实心长方阵人数为MXN人:(3)N排N列的方阵,最外层有 4N-4人:(4)在方阵或者长方阵中,相邻两圈人数,外圈比内圈多8人;(5)空心正M 边形阵,若每边有N个人,则共有MN-M个人;(6)方阵中:方阵人数=(最外层人数÷4+1)2方阵问题两大常见思维方法:(1)重叠点思维:若有边与边的重叠情况,把各边点数相加时重叠点计算了两次,因此需要再减去重叠点个数,才是最终的全部数目: (2法思维:如果需要计算“某种形状”的“某种外层”的数目,用整体数目减去内部的数目是一种常用的思维方法。

【课后延时】小学数学专项《应用题》经典方阵问题基本知识-1星题(含解析)全国通用版

【课后延时】小学数学专项《应用题》经典方阵问题基本知识-1星题(含解析)全国通用版

应用题-经典应用题-方阵问题基本知识-1星题课程目标知识提要方阵问题基本知识•概述在日常生活中,我们常把人或物排成正方形的形状,在数学上我们把研究这样的问题称为方阵问题。

在摆放的方阵中如果是实心的,我们叫它实心方阵,也叫中实方阵;如果这个方阵是空心的,我们叫它空心方阵,也叫中空方阵。

•实心方阵的特点总人(或物)数=每边人(或物)数×每边人(或物)数•空心方阵的特点总人(或物)数=(最外层每边人(或物)数−层数)×层数×4奇数层:总人数=中间层总数×层数偶数层:总人数=(外层+内层)×层数÷2若最外层每边有a人,内部虚方阵每边有b人,则空心方阵共有(a2−b2)人。

•变化规律相邻两边之间相差2;相邻两层之间相差8;每层人(或物)数=每边人(或物)数×4−4 =[每边人(或物)数−1 ] ×4精选例题方阵问题基本知识1. 运动会上,五年级学生排成一个方队(横竖行人数相等),已知最外层为60人,这个方队共有人.【答案】256【分析】最外层每边有60÷4+1=16(人),共有16×16=256(人).2. 一个实心方阵,最外一层每边18人,(1)那么整个方阵一共人;(2)最外面一层有人;(3)从外向内数,第2层每边有人,一共有人;(4)如果考虑最外面三层,那么这三层共有人.【答案】324;68;16,60;180【分析】(1)182=324;(2)17×4=68或18×4−4=68;(3)18−2=16;15×4=60或68−8=60;(4)60×3=180.3. 一个长方形队列,如果增加一横行和一竖行,就要增加13人.这个长方形队列原来最少有人.【答案】11【分析】增加一横行和一竖行,就要增加13人,那么原方阵的长与宽的和为13−1=12,所以人数最少时,12=1+11,有1×11=11(人).4. 小朋友们排成方阵做广播体操,小明恰好站在方阵的正中心,此时无论是从前往后或者从后往前数他都排在第5个,无论是从左往右或者从右往左数时他都排在第6个,则这个方阵中一共有位小朋友.【答案】99【分析】小明前后各有5−1=4(人),那么每列就有4+1+4=9(人);小明左右有6−1=5(人),那么每行就有5+1+5=11(人),这个方阵共有9×11=99(位)小朋友.5. 三年级广播体操比赛采用了方阵的形式,每个方阵有5行,每行8人,3个这样的方阵有多少人?【答案】120人【分析】5×8×3=120(人),答:3个这样的方阵有120人.6. 某班所有学生恰好可以排成一个每边为8人的三角阵,请问:这个班共有多少人?【答案】36人.【分析】每边为8人的三角阵共有:1+2+3+⋯+8=36人.7. 176个棋子摆成一个四层空心方阵,最内层每边有多少棋子?【答案】9个【分析】最内层与最外层总数和为176÷4×2=88(个),则则最内层有(88−3×8)÷2=32(个),则每边有32÷4+1=9(个).8. 用红、绿两种颜色的小正方形瓷砖400块铺成一块正方形墙面,这个墙面最外圈铺的是红色瓷砖,由外到内的第二圈是绿色瓷砖,第三圈是红色瓷砖,第四圈又是绿色瓷砖……这样依次铺下去.请问这个墙面上哪种颜色的瓷砖更多?两种瓷砖相差多少块?【答案】红色;40块.【分析】共有400块瓷砖,所以整个方阵是一个20×20的方阵,共有10层,从外向里依次为红、绿两种颜色相间排列,最里一层为绿色;从外向里,每层红色瓷砖都比它里面相邻的那层绿色瓷砖多8块,所以红色比绿色多5×8=40块.9. 有225枚棋子,摆成一个15×15的正方形,甲、乙两人从最外一层起,轮流取走每一层的全部棋子,直到取完为止,甲比乙多取了多少没枚棋子?【答案】31【分析】甲取走的是56,40,24,8,乙取走的是48,32,16,1,甲比乙多取31枚.10. 某学校三年级同学180人,排成一个三层空心方阵,这个方阵最外层每边多少人?【答案】18【分析】中间层总数为180÷3=60(人),则每边有60÷4+1=16(人),所以最外层每边有16+2=18(人).11. 同学们参加了广播操比赛,排成每行9人,每列9人的实心方阵,问方阵中共有多少学生?【答案】81【分析】可以根据“实心方阵总人数=每边人数×每边人数”得到9行9列的实心方阵人数为:9×9=81(人)12. 一批同学站成一个10×10的方阵,请问:最外一层共有多少人?从外向里的第3层有多少人?【答案】36人;20人.【分析】最外层每边10人,共有10×4−4=36人.从外向里的第3层有:36−8×2= 20人.13. 三年级学生排成一个实心方阵进行体操表演,最外一层的人数为32人,问这个方阵最外层每边有多少人?这个方阵共有三年级学生多少人?【答案】每边9人,共81人.【分析】每边有32÷4+1=9(人)共92=81(人)14. 一个实心体操方阵,最外层有32人.这个体操方阵有多少人?【答案】81【分析】最外层每边人数:(32+4)÷4=36÷4=9(人);9×9=81(人);答:这个体操方阵有81人.15. 节日来临,同学们用盆花在操场上摆了一个空心方阵花坛,最外面的一层每边摆了12盆花,一共3层,一共用去多少盆花?【答案】108【分析】方法一:最外层共有12×4−4=44(盆)第二层共有44−8=36(盆)第三层共有36−8=28(盆)所以共有44+36+28=108(盆)方法二:第二层每边有12−2=10(盆)第二层共有10×4−4=36(盆)所以共有36×3=108(盆)16. 一个实心方阵,最外面一层共有56人,那么这个方阵一共有多少人?【答案】225.【分析】最外层每边有:56÷4+1=15人,所以共有15×15=225人.17. 一个13×13的方阵中,最外一层一共有多少人?从里向外的第3层有多少人?【答案】48人;16人.【分析】最外层共有:13×4−4=48人;最里边一层只有1人,里边第二层有8人.所以从里向外第3层有16人.18. 士兵排成一个实心方阵,最外一层一周的人数为80人,问方阵外层每边有多少人?这个方阵共有多少士兵?【答案】21;441人【分析】80÷4+1=21(人);21×21=441(人)答:方阵外层每边有21人,这个方阵共有441士兵.19. 小明用一些棋子摆成了一个两层的空心方阵,后来他又用28枚棋子摆成了另外一个单层的空心方阵,摆完后他发现两个方阵正好可以拼在一起,组成一个新的三层空心方阵,那么他原来用了多少枚棋子?【答案】32或80【分析】如果单层空心方阵放在双层空心方阵的里面,那么原有棋子(28+8)+(28+8+8)=80枚;如果单层空心方阵放在双层空心方阵的外面,那么原有棋子(28−8)+(28−8−8)=32枚;所以原来用了80枚棋子或32枚棋子.20. 若干学生排成一个实心方阵,最外一层每边有10人,共有多少层?1∼3层一共有多少人?【答案】5;36【分析】10÷2=5(层),2×3=6(人),6×6=36(人),所以共有5层,1∼3层一共有36人.21. 某学校三年级同学180人,排成个三层空心方阵,这个方阵最外层每边多少人?【答案】18【分析】中间层总数为180÷3=60(人)则每边有60÷4+1=16(人)所以最外层每边有16+2=18(人)22. 用64枚棋子摆成一个两层中空方阵,如果想在外面再增加一层,问需要增加多少枚棋子?【答案】44【分析】方阵相邻两层棋子数差为8,又知两层棋子数和为64,由和差问题,外层有(64+8)÷2=36(枚)如果再增加一层,需要增加36+8=44(枚)23. 一个实心体操方阵,最外层有72人.这个体操方阵有多少人?【答案】361【分析】最外层每边人数:(72+4)÷4=76÷4=19(人);19×19=361(人);答:这个体操方阵有361人.24. 若干学生排成一个实心方阵,倒数第二层每边比第二层多10人,共有多少层?【答案】8【分析】(10÷2)+1+2=8(层),所以共有8层.25. 一个实心方阵,最外面一层共有36人,如果要让这个方阵增加一行一列,需要增加多少人?【答案】21人.【分析】最外层36人,每边36÷4+1=10人,增加一行一列需要11×11−10×10=21人.26. 有一个6层的空心方阵,最外层每边25人,问要多少学生才能排出这个空心方阵?【答案】456人【分析】(25−6)×6×4=19×24=456(个),答:要456个学生才能排出这个空心方阵.27. 一个实心方阵,最外面一层共有44人,请问:(1)这个方阵共有多少人?(2)如果让这个方阵减少一行一列,一共需要减少多少人?【答案】(1)144;(2)23.【分析】(1)“最外一层共有44人”,说明最外层每边有:44÷4+1=12人,所以,这个方阵是一个12×12的方阵,共有12×12=144人.(2)减少一行一列,也就是变成一个11×11的方阵,需要减少144−11×11=23人.28. 如图所示,小刚在用棋子摆好的实心方阵上又填了17枚棋子,使它的横竖各增加一排,成了大一点的实心方阵,求原来的实心方阵有多少枚棋子?【答案】64【分析】填上17枚棋子,正好可以增加一排一列,此时每条边有(17−1)÷2+1=9(枚)那么原来的方阵每条边有91−1=8(枚)原来实心方阵的总棋子数:8×8=64(枚)29. 共有200人排成一个5层空心方阵,这个方针最外面一层每边多少人?如果要在最外面增加一行一列,那么需要增加多少人?【答案】15;31.【分析】中间层共有:200÷5=40人,所以最外层共有:40+8×2=56人,每边有56÷4+1=15人;增加一行一列需要:16×16−15×15=31人.30. 共有240人排成一个5层空心方阵,这个方阵最里面一层每边多少人?如果要在内部加一层,变成6层空心方阵,还需要增加多少人?【答案】32;24.【分析】5层中间一层共有:240÷5=48人,所以最内一层共有:48−8×2=32人,每边32÷4+1=9人,内部增加一层需要32−8=24人.31. 学而思运动会上,五年级的女生们准备出一个团体操的节目.现在的人数刚好排成一个方阵(每一行人数和每一列人数相等).后来又加入了23个女生,恰好还可以组成一个方阵.那么你能算出加入23人之前,方阵共有多少人吗?【答案】121人【分析】依题意,前后两次的学生总人数都是完全平方数.不妨设前者人数是B2,后者人数是A2.那么根据平方差式,A2−B2=(A+B)(A−B)=23.因为(A+B)和(A−B)是同奇偶的,所以23也应该拆成2个同奇偶性的数的乘积.因此(A+B)(A−B)=23×1⇒{A+B=23A−B=1⇒{A=12B=11则加入23人之前,方阵有11×11=121人.32. 若干名同学站成一个15×15的方阵,请问:最外层一共有多少人?这个方阵一共有多少层?从里向外的第七层有多少人?【答案】56;8;48.【分析】最外层每边15人,但角落上的4个人每人都同时位于两条边上,所以最外层共有:15×4−4=56人;每人往里一层,每边人数会减少2个,最里层的每边应该有:15−2×7=1人,共有7+1=8层;从里向外第7层每边有:1+2×(7−1)=13人,所以这一层共有:13×4−4=48人.。

五年级下册数学奥数课件-1方阵问题 人教版 PPT精品课件

五年级下册数学奥数课件-1方阵问题 人教版 PPT精品课件

例3:朋朋用棋子摆了一个实心方阵,如果再加上7枚棋子, 就可以使原来的方阵增加一行一列,成为一个大一点的方阵。 原来的方阵由多少枚棋子组成?
原来方阵最外层每边棋子数量: (7-1)÷2=3(枚)
方阵棋子总数: 3×3=9(枚)
答:原来的方阵由9枚棋子组成。
即学即练
一个正方形花坛,原来摆了一些花,组成一个实心方阵,后 来运走了11盆花,使原来的方阵减少一行一列成了一个小一点的 实心方阵。原来摆了多少盆花?
总人数=(最外层每边人数-空心方阵 层数)×空心方阵层数×4
即学即练
团体操表演时,少先队员们排成四层的中空方阵,最外层每 边的人数是10人,参加团体操表演的少先队员共有多少人?
(10-4)×4×4=96(人)
答:参加团体操表演的少先队员共有96人。
例5:四年级同学排成一个三层的空心方阵,最里面一层每 边排5人,则这个方阵一共有多少人?
答:这个方阵一共有72人。
即学即练
团体操表演时,少先队员们排成四层的中空方阵,最里面一 层每边的人数是5人,参加团体操表演的少先队员共有多少人?
最外层每边人数:5+2+2+2=11(人) 总人数:(11-4)×4×4=112(人)
答:参加团体操表演的少先队员共有112人。
今天你学到了什么?
实心方阵:
答:方阵外层每边有21人,共有五年级学生441人。
例3:朋朋用棋子摆了一个实心方阵,如果再加上7枚棋子, 就可以使原来的方阵增加一行一列,成为一个大一点的方阵。 原来的方阵由多少枚棋子组成?
可以先用一个“正方形”代替 ,画出增加一行一列的变化图 来,看能不能发现什么。
原来的方阵有多大不知道 ,怎么办呢?
原来每边:(11+1)÷2=6(盆)

方阵问题的公式(一)

方阵问题的公式(一)

方阵问题的公式(一)方阵问题的公式1. 方阵的阶数方阵的阶数表示方阵的行数(或列数),记作n。

例如,一个3阶方阵表示有3行3列的方阵。

2. 方阵的转置方阵的转置是指将方阵的行与列互换得到的新方阵。

设A为一个n阶方阵,A T表示A的转置。

例如,对于一个3阶方阵:A=[a b c d e f gℎi]则其转置为:A T=[a d gb eℎc f i]3. 方阵的逆矩阵设A为一个n阶方阵,若存在一个n阶方阵B,满足AB=BA=I n,其中I n为n阶单位矩阵,则称A为可逆方阵,B为A的逆矩阵,记作A−1。

A=[210 014−103]则其逆矩阵为:A−1=[32−120 2−14 1212−12]4. 方阵的特征值和特征向量设A为一个n阶方阵,若存在一个非零向量v和一个标量λ,使得Av=λv,则称λ为A的特征值,v为对应于特征值λ的特征向量。

例如,对于一个3阶方阵:A=[310 121 013]其特征值为λ=4,2,2,对应的特征向量为v1=[1−1 1],v2=[−11],v3=[111 ]。

5. 方阵的行列式方阵的行列式是一个标量,记作|A|或det(A),表示一个方阵的某种性质。

A=[213 0−14−120]其行列式为|A|=det(A)=13。

6. 方阵问题的解法方阵问题涉及了方阵的转置、逆矩阵、特征值和特征向量,以及行列式等相关公式。

解决方阵问题可以使用线性代数的方法,通过求解逆矩阵、特征值和特征向量,以及计算行列式等,来得到方阵的相关信息。

总结以上列举的公式,我们可以应用于具体的实际问题,并通过计算和求解得到结果。

方 阵(一)

方   阵(一)

方阵(一)姓名【学法指导】正方形队列在日常生活中经常看到,如盛大的庆典活动时,各种大型团体操的表演,又如陆、海、空三军仪仗队都是方阵。

方阵还可以由棋子、树木、红旗等实物排成。

方阵分为空心方阵和实心方阵,解决这类问题要注意以下三点:1、根据题意确定是空心方阵还是实心方阵问题,然后选用适当的方法解答。

2、对于较复杂的问题可画图帮助理解题意,分析思考找出解题方法。

3、分清每层总数和每边数之间的数量关系,牢记相邻两边的个数相差2.【例1】有一个正方形池塘,四个角都栽一棵树,如果每边在6 棵,四边一共栽多少棵?····················试一试1、在大楼的正方形平顶四周等距离的装上彩灯,四个角都装上一盏,每一边装有8盏,一共有多少盏灯?【例2】一个正方形草地四周等距离的种菊花,一共80棵,四个角各种一棵,每一边种几棵树?试一试2、在正方形围墙四周等距离的装96盏灯,四个角上都装一盏,这样每边有多少盏?【例3】四(1)班学生进行队列训练,排成如图所示的正方形,已知最外层每边有6 人,求这个班一共有多少人?································试一试3、小朋友做游戏排成两层空心方阵,外层每边有8人,求做游戏的小朋友的人数。

【例4】用围棋排成三层空心方阵,最里层共有12颗,求这个方阵共有棋子多少颗?试一试4、一个班的同学组成一个三层空心方阵,最里层有8人,求这个班共有多少人?练一练1、在正方形鱼池四周等距离种上树,四个顶点都种一棵,这样每边都有22 棵,四周共种树多少棵?练一练2、52 个小朋友手拉手围成一个正方形,四个角上都站一个人,则正方形的每一边上站几个人?练一练3、小林用彩旗排成一个两层空心方阵,最里层每边有5面彩旗,求这个空心方阵共有彩旗多少面?练一练4、一个正方形的树林,内外一共有三层,中间层有32 棵树,这个树林共有树多少棵?练一练5、在正方形的围墙四周插上红旗,四个角上都有一面,这样每边都有18面,一共插了多少面红旗?练一练6、有28粒玻璃球,要求围成一个正方形,且每个角上都要有一粒,则每一边上有多少粒?练一练7、一个两层的空心方阵,最里层每边有16人,这个方阵总共有多少人?。

方阵问题(一)_

方阵问题(一)_

方阵问题(一)(2016-10-09 10:44:08)
分类:课程资源
第一讲方阵问题(一)
学生排队,士兵列队,横着排叫做行,竖着排叫做列.如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。

方阵的基本特点是:
① 方阵不论在哪一层,每边上的人(或物)数量都相同.每向里一层,每边上的人数就少2。

② 每边人(或物)数和四周人(或物)数的关系:
四周人(或物)数=[每边人(或物)数-1]×4;
每边人(或物)数=四周人(或物)数÷4+1。

③ 中实方阵总人(或物)数=每边人(或物)数×每边人(或物)数。

例1:有一条公路长900米,在公路的一侧从头到尾每隔10米栽一根电线杆,可栽多少根电线杆?
分析:要以两棵电线杆之间的距离作为分段标准.公路全长可分成若干段.由于公路的两端都要求栽杆,所以电线杆的根数比分成的段数多1。

解:以10米为一段,公路全长可以分成
900÷10=90(段)共需电线杆根数:90 1=91(根)。

行测方阵问题详细总结1-推荐下载

行测方阵问题详细总结1-推荐下载
【例 3】(广西 2008-11)参加阅兵式的官兵排成一个方阵,最外层的人数是 80 人,问这个方阵共有官兵 多少人?() A. 441 B. 400 C. 361 D. 386 [答案]A [解析]根据公式:方阵人数=(最外层人数÷4+1)^2=(80÷4+1)^2=441(人)。
【例 4】(国家 2005 一类-44、国家 2005 二类-44)小红把平时节省下来的全部五分硬币先围成一个正三 角形,正好用完,后来又改围成一个正方形,也正好用完。如果正方形的每条边比三角形的每条边少用 5 枚硬币,则小红所有五分硬币的总价值是多少?() A. 1 元 B. 2 元 C. 3 元 D. 4 元 [答案]C [解一]设正方形每边 x 枚硬币,三角形每边 y 枚硬币,一共有 N 枚硬币,根据公式可得方程组: N=4x-4 N=3y-3N=60 y-x=5,因为每枚硬币 5 分,所以总价值 3 元。 [注释] 这里围成的三角形和正方形都指的是空心的。
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

方阵问题

方阵问题

方阵问题第一讲方阵问题知识点拨一、方阵的基本特点:(1)方阵不论哪一层,每边上的人(或物)数量都相同,每向里一层,每边上的人数就少2。

(2)每边人(或物)数和四周人(或物)的关系;四周人(或物)数=[每边人(或物)数-1]×4每边人(或物)数=四周人(或物)数÷4+1(3)中实方阵的总人数(或物)=每边人(或物)数×每边人(或物)数(4)空心方阵的总人(或物)数=(最外层每边人(或物)数-空心方阵的层数)×空心方阵的层数×4例题精讲例1、计算:⑴ 36196419⨯+⨯ ⑵ 361964144⨯+⨯百炼成钢1、178×101-17884×36+64×84例2、11353715⨯-⨯百炼成钢2、99666667818⨯+⨯⨯++⨯3520703578⨯-⨯.例3:343535353434百炼成钢3:33201020102010330033⨯-⨯=⨯-⨯=200720082008200820072007例4:8822557344443355⨯+⨯-⨯-⨯=百炼成钢4:⨯+⨯+⨯+⨯= 3334343535363637_______⨯+⨯+⨯= 67200254335467⨯+⨯+⨯例5、534671548254百炼成钢5:⨯ -⨯ 333332332333332333333332⨯-⨯200920082007200720082009⨯+⨯+⨯例6:237539879207601339876832百炼成钢6:⨯+⨯-⨯124×38+65482594115932359×124+76×110-76×7例7:99999777783333366666⨯+⨯百炼成钢7:⨯+⨯999999999222223333333334×36+6666×3×32÷+÷+÷+÷例8:315325335345⨯÷+⨯÷7652132776532727百炼成钢8:⨯+÷-⨯+÷91791175174517⨯+÷-⨯+÷1719931910174019解题我最牛:1)467+999×999+532 1)(25×99+25)×16 3)62×4+44×5+5×184)888888×19+666666×8 5)535×353+535×432+785×4656)1995×19961996-1996×199519957)⨯-+⨯80199539901995228)200620052006200520062005⨯-⨯ 9)347×12+347×35+347×52+34710)777777×12+222222×8 11 )21÷9+22÷9+23÷9+24÷912)287÷12-18÷12-29÷12 13)6000÷25÷4014)720÷(36÷5)15)467×500÷25016)2090÷24+310÷24 17)372÷162×54智巧故事:数学教授在一所大学的操场上,政治学教授、哲学教授和语言学教授围着一根旗杆。

2018年同学们站成一个实心方队,最外层每边站9人,这个实心方阵共需要多少名同学才能站成-范文模板 (4页)

2018年同学们站成一个实心方队,最外层每边站9人,这个实心方阵共需要多少名同学才能站成-范文模板 (4页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==同学们站成一个实心方队,最外层每边站9人,这个实心方阵共需要多少名同学才能站成篇一:高中生参加体操表演,先排成每边16人的实心方阵,后来又变成一个四层的空一、整体解读试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。

试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。

1.回归教材,注重基础试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。

2.适当设置题目难度与区分度选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。

3.布局合理,考查全面,着重数学方法和数学(来自:WwW. : 同学们站成一个实心方队,最外层每边站9人,这个实心方阵共需要多少名同学才能站成 )思想的考察在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。

包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。

这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。

篇二:方阵1实心方阵例一、同学们排成一实心方阵,最外层每边有10人,最外层有多少人?这个方阵一共有多少人?例二、同学们排成一实心方阵队列,最外层共有28人,最外层每边有多少人?这个方阵共有多少人?例三、用棋子摆成一个每边六枚棋子的实心方阵,如果去掉一行一列,要去掉多少枚棋子。

第二讲---方阵问题(一)

第二讲---方阵问题(一)

第二讲方阵问题(一)姓名在我们的日常生活中常遇到一些有关正方形的问题,如:运动会上大型团体操表演队的正方形队列,解放军的方形仪仗队,正方形棋盘上摆棋子等有趣的数学问题,我们称为方阵问题。

方阵可以分为实心方阵(图①)和空心方阵(图②、③)。

①②③方阵问题的基本特点是:方阵中,内一层总比外一层的一边少个物体;内一层物体的总个数一定比外一层物体总个数少。

解答方阵问题的关键是:判断此方阵是实心方阵还是空心方阵。

1、方阵问题每边数与每层数之间的数量关系为:每层数=(每边数-1)×4 、每边数=每层数÷4+1 .2、实心方阵的数量关系为:总数=外层每边数×外层每边数=(外层每边数)23、空心方阵的数量关系为:总数=(外层每边数-层数)×层数×4或总数=实心方阵总数-中间空心方阵总数最内层每边数=外层每边数-2×(层数-1)最外层每边数=总数÷4÷层数+层数【例1】一个实心方阵,最外一层每边12人。

(1)那么整个方阵一共有。

(2)最外面一层共有。

(3)从外向内数,第二层每边有人,一共有人。

(4)如果考虑最外面三层,那么这三层共有人。

(5)如果将方阵外面增加一层,那么一共增加人。

随堂练习1用64枚棋子摆成一个实心方阵。

(1)每边有枚棋子。

(2)最外层有枚棋子。

(3)从外向内数,第二层每边有枚棋子,第二层共有枚棋子。

【例2】有一块空地在进行种树绿化,打算把树种成实心方阵的样子,方阵最外面一周有60棵树,问这个方阵最外层每边有多少棵树?这块空地一共需要多少棵树?随堂练习2三年级学生排成一个实心方阵,最外一层的人数为36人,问:方阵最外层每边有多少人?这个方阵共有三年级学生多少人【例3】小刚在用棋子摆好的实心方阵上又添了17枚棋子,它的横竖各增加了一排,成了大一点的实心方阵。

求原来实心方阵有多少枚棋子?随堂练习3 军训的学生进行队列表演,排成了一个5行5列的正方形队形,如果去掉一行一列,要去掉多少人?【例4】有一个正方形的稻田,四个角上都放1个稻草人,如果每边放5个,四边一共放多少个稻草人? 解析:可以按每边5个计算,四个角各多1次;可以按每边4个计算,恰好分4组;可以按每边3个计算,四个角各少算1次。

行测方阵问题详细总结

行测方阵问题详细总结

行测方阵问题详细总结在行测考试中,方阵问题是一个较为常见的题型。

它看似复杂,但只要我们掌握了其中的规律和解题方法,就能轻松应对。

接下来,让我们深入探讨一下方阵问题。

首先,我们要明确什么是方阵。

方阵是一种行数和列数相等的矩阵排列形式。

比如一个 5 行 5 列的正方形排列,就是一个 5 阶方阵。

方阵问题主要有以下几个重要的知识点:一、方阵的基本要素1、边长:方阵每行或每列的元素个数。

2、层数:方阵相邻两层之间的差值。

3、总数:方阵中元素的总和。

二、方阵的特点1、相邻两层的边长相差 2。

2、相邻两层的总数相差 8(这是一个非常重要的规律,在解题中经常用到)。

三、方阵问题的常见类型及解法1、实心方阵(1)总数=边长×边长例如,一个 5 阶实心方阵,总数就是 5×5 = 25 个元素。

(2)最外层人数= 4×边长 4以 5 阶方阵为例,最外层人数为 4×5 4 = 16 人。

2、空心方阵(1)总数=大实心方阵小实心方阵假设一个大的 5 阶空心方阵,内部的小实心方阵是 3 阶,那么总数就是 5×5 3×3 = 16 个元素。

(2)最外层人数= 4×(边长层数)比如一个 5 阶空心方阵,层数为 2,最外层人数就是 4×(5 2)=12 人。

3、方阵的增减(1)增加一行一列增加一行一列时,增加的人数=边长+ 1例如,原本是 4 阶方阵,增加一行一列,增加的人数就是 4 + 1 =5 人。

(2)减少一行一列减少一行一列时,减少的人数=边长 1假设是 5 阶方阵,减少一行一列,减少的人数就是 5 1 = 4 人。

四、例题解析为了更好地理解方阵问题,我们来看几个具体的例子。

例 1:用棋子摆成一个实心方阵,最外层共 36 枚棋子,这个方阵共有多少枚棋子?首先,我们知道最外层人数= 4×边长 4,那么边长=(最外层人数+ 4)÷ 4 =(36 + 4)÷ 4 = 10。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

每层总数 12 20 32 48
方阵
……
每边数
7
10
n
每层总数 20
80
(n-1)×4
如果我们知道每层总数,怎样求 出每边数?
48名学生在操场上做游戏,大家围成一个正 方形,每边人数相等。四个顶点都有人,每边各 有几名学生?
48÷4+1=13
最外层总数÷4+1=每边个数
假如要在五边形的水池边上摆上花盆,使 每一边都有5盆花,最少需要几盆?若六边 形、七边形、八边形呢?有什么规律?
广场上摆放了一个正方形的花坛,外面三层都 是菊花,最外层每边摆了10盆,这个花坛共有多少 盆菊花?
义务教育课程标准实验教材小学数学(四下)
方阵问题
女兵方队
在排队时,横着排叫行,竖着排叫 列,当行数和列数相等,正好排成一个 正方形,这样的方队我们就叫做方阵。 方阵有中实方阵和中空方阵。
返回
一个正方形的空心队列,要求每边 站5个人,一周最少需要几个人?
方法一:4×5-4=16(人) ★ 方法二:(5-1)×4=16(人)
(3)从外往里数第二圈共有多少人? 116-8=108(人)
(4)如果在这个方阵外面再站上一圈,需要再 来多少人?
116+8=124(人)
A BCD
48名同学在操场上做游戏。大家围成一个正 方形,每边人数相等。四个顶点都有人,每边各有 多少名学生?
一个正五边形饰品,每边都镶有5颗钻石,这 个饰品一个用了多少颗钻石?
五边形
六边形
七边形
八边形
最外层每边( )个,最外层一共( )个,列式: 中间层每边( )个,中间层一共( )个,列式: 最里层每边( )个,最里层一共( )个,列式: 你有什么发现吗
一个海军方队最外层每边站了30人。
(ห้องสมุดไป่ตู้)这个方阵一共有多少人? 30×30=900(人)
(2)最外面一圈共有多少人? 30×4-4=116(人)
方法三:5×2+3×2=16(人) 方法四:3×4+4=16(人) 方法五:5×5-3×3=16(人)
思考比较一下:在这些方法中,你最 喜欢哪种方法呢?为什么?
方阵 5×5 6×6 7×7 8×8 …… n×n
每边数 5 6 7 8
n
每层总数 16 20 24 28
(n-1)×4
方阵 每边数
…… n×n
相关文档
最新文档