钢板桩围堰设计与计算

合集下载

钢板桩围堰设计计算书

钢板桩围堰设计计算书

钢板桩围堰设计计算书钢板桩围堰设计计算书1 ⼯程概况本⽅案陆地承台基坑开挖深度在3.0-5.0⽶之间,基坑开挖⽀护结构受⼒计算选择基坑最深、地质条件最差的最不利⼯况条件下进⾏受⼒计算。

本线路沿线地层以冲积、洪积、海积及海陆交互相沉积的粘性⼟、粉⼟、各类砂、软⼟为主,局部夹淤泥。

⼟层分层计算⼟压⼒,粘性⼟和粉⼟采⽤总应⼒法,即⽔⼟合算,强度指标采⽤快剪试验指标;对中、粗砂、碎⽯⼟,则应采⽤⽔⼟分算。

承台开挖⾼程范围内主要为⼈⼯填⼟、黏⼟、粉⼟,局部夹有淤泥质黏⼟,各⼟层已知条件:(1)⼈⼯填⼟:内摩擦⾓7? =?,粘聚⼒8kPa c =;(2)粘⼟:内摩擦⾓14?=?,粘聚⼒25kPa c =;(3)粉⼟:内摩擦⾓22?=?,粘聚⼒12kPa c =;(4)砂⼟:内摩擦⾓32?=?,粘聚⼒0kPa c =。

⼟的天然重度γ取319kN/m 。

⾮承压地下⽔位在地⾯下0.2~5.5处(承压⽔位不明)。

2 钢板桩围堰⽀撑结构受⼒计算2.1钢板桩围堰钢板桩围堰基坑开挖最⼤深度为5.0⽶,此类基坑承台最⼤⾼度为4.0⽶,设⼀道内⽀撑位于基坑底⾯以上3⽶,计算钢板桩围堰受⼒情况。

结合现场现有材料,拟采⽤WRU12a 钢板桩,其技术指标为:单根钢板桩宽B=600mm,⾼H=360mm,厚t=9mm,每⽶截⾯积A=147.3cm2,单根钢板桩每⽶的重量69.5kg,每延⽶墙⾝每⽶的重量115.8kg,每延⽶墙⾝钢板桩惯性矩Ix=22213cm4,每延⽶的截⾯模量(抵抗矩)Wx=1234cm3,取钢板桩的允许拉应⼒σ=140Mpa,允许剪应⼒τ=80 Mpa。

钢板桩长12m。

由于钢板桩刚度较⼩,需加强内⽀撑。

拟设置⼀道⽔平钢⽀撑,在距承台底⾯3.0m处设置,不设竖向⽀撑。

⽔平钢⽀撑采⽤I40b型⼯字钢,沿钢板桩内壁设置长⽅形围檩,并在四⾓设置加强斜撑。

考虑施⼯堆载,假设基坑顶部(地⾯)作⽤有⽆限均布荷载q1=10kN/m2;在桩顶平台距离钢板桩桩顶2.0m处的坑外作⽤有宽度为0.6m的局部荷载(汽车荷载及其它荷载总和)q2=80kN/m2。

深基坑支护钢板桩计算

深基坑支护钢板桩计算

结构计算系列之三钢板桩支护结构计算公司范围内承台开挖使用钢板桩支护的越来越多。

随着钢板桩支护在公司范围内的大规模广泛的应用,而如何合理的设计和运用钢板桩支护成为我们迫切要掌握的技术。

下面以一陆上深基坑钢板桩支护设计为例,详细叙述钢板桩支护结构设计检算的计算过程:1、钢板桩围堰的结构验算1.1基本数据(1)钢板桩截面特性钢板桩性能参数表(2)土层性质淤泥质黏土内摩擦角取9°,粘聚力c=14KPa,根据地质资料和实际施工现场土体的含水率,统一按水、土合力考虑,土层的平均容重取为γ=16.1KN/ m³,地下水位取+3.0m。

(3)基本参数计算主动土压力系数: K a=tan2(45°-φ/2)=0.73被动土压力系数: K p =tan2(45°+φ/2)=1.371.2钢板桩入土深度计算1.2.1 钢板桩土压力计算主动土压力最大压强 e a=γK a(H+t-h1)=16.1×0.73×11=129.283 KPa被动土压力最大压强 e p=γK p t=16.1×1.37×7=154.399 KPa 主动土压力 E a=(H+t-h1)e a /2=γK a(H+t-h1)2/2=16.1×0.73×112/2=719.89 KN/m被动土压力 E p=te p /2=γK p t2/2=16.1×1.37×72/2=540.4 KN/m1.2.2 入土深度计算为使板桩保持稳定,则在A点的力矩应等于零,即∑M A=0,亦即:M a=E a H a - E p H p=E a·[2(H+t-1)/3+1] -E p·(2t/3+H)=0 求得所需的最小入土深度t=(3E p H-2HE a-E a)/2(E a-E p)=0.52 m,满足要求。

根据∑F x=0,即可求得作用在A点的支撑力Ra:Ra – Ea + Ep = 0 得: Ra = Ea – Ep = 179.49 KN/m 1.3 钢板桩截面计算1.3.1求出入土深度t2处剪力为零的点g由,主动土压力 E a'=γK a(H+t2-1)2/2被动土压力 E p'=t1e p /2=γK p t22/2可由该点主动土压力等于被动土压力与支撑力之和,得E a'=E p'+ Ra则K a(H+t2-1)2=K p t22 + Ra得:t2=[5.84-(5.842-4×10.62×0.64)1/2]/2×0.64=2.5m1.3.2 求出最大弯距由于g点位置剪力为零,则每米宽钢板桩最大弯距等于g点以下主动土压力、被动土压力绕g点的力矩差值。

【精品】深水桩基水中墩钢板桩围堰计算书

【精品】深水桩基水中墩钢板桩围堰计算书

水中墩钢板桩围堰计算书一、计算原则及部分假定1、6#、7#墩分别进行计算,按分层非匀质土计算土压力。

2、各层土均按图纸提供的快剪强度指标和实际层厚采用郎金土压力理论计算土压力,对粘土计入粘聚力的影响,考虑到真粘聚力一般较小,计算取值约为图纸建议值的1/3~2/3。

3、土压采用水、土压力分算法,第7层和第9层土采用水土压力合算法,以上均不考虑渗流效应。

4、墙前被动土压力考虑到摩擦力予以提高,修正系数取 1.2~1.6(根据摩阻角φ值不同取值不同),粘聚力计算部分√Kp不予修正。

5、板桩及支撑强度采用等值梁法计算,按分层开挖支撑力不变法结合连续梁法计算强度和入土深度,6、入土深度最终取1.2倍计算值。

7、计算水位取+2.7m。

8、7#墩第8层与第9层土均为硬塑粘土,合并为9΄层计算。

二、计算参数的确定1、水、土压力参数:(参见图1)亚粘土,软塑,γ=19.1kN/m3,φ=14.3,c=10kPa4亚粘土(粉沙),软塑(松散),γ=19kN/m3,φ=18Ka=0.528,Kp=3.036亚粘土,软塑,γ=19.1kN/m3,φ=6.2,c=10kPa Ka=0.805,Kp=1.49179亚粘土,硬塑,γ=20.1kN/m3,φ=16.2,c=20kPa Ka=0.564,Kp=2.4825亚砂土,软塑,γ=18.7kN/m3,φ=27.2,c=5kPa Ka=0.373,Kp=4.294679-18.5m -4m -5m-9.7m-13m-2.3m-4.9m-9.4m-11.3m -18.5m6#墩7#墩最高通航水位+3m桩顶+3.5m最高水位+3m基底-9.1m承台顶-6.48m图1 水中墩钢板桩围堰地质剖面图亚粘土(粉沙),软塑(松散),γ=19kN/m3,φ=18Ka=0.528,Kp=3.03亚粘土,软塑,γ=19.1kN/m3,φ=6.2,c=10kPaKa=0.805,Kp=1.491亚粘土,硬塑,γ=20kN/m3,φ=15,c=20kPa Ka=0.589,Kp=2.377图2 水中墩钢板桩围堰实际压力线图513167主动土压力线 单位:kPa6#墩计算水位+2.7m238-18.5m13317491057-13m-9.7m271242297基底-9.1m -3.2m-0.8m+2.2mB A -5m6-4m 河床577C 674941857#墩计算水位+2.7m6100163122-18.5m基底-9.1m16190229'-9.5m-11.5m7451325077河床5-5.0m12-2.3m桩顶+3.5mD-5.6m+2.2mAB-0.8m-3.2mCD-5.6m2、钢板桩:选用德国拉森IV 型钢板桩,桩长22m ,重量75㎏/m ,截面模量W=2270cm 3,允许应力[σ]=180Mpa 。

钢板桩围堰计算

钢板桩围堰计算

钢板桩围堰计算钢板桩围堰计算本承台位于水下,长31.3米,宽8.6米,高3.5米,采用钢板桩围堰施工。

围堰为矩形单壁钢板桩围堰,采用钢管桩作为定位桩,用型钢连接作为纵横向支撑。

钢板桩采用拉森Ⅲ型钢板桩,围堰为33.3m×10.6m的单承台围堰方案。

1、计算取值1)现有水位为+4.5m,计算时按照常水位以上一米取值,即水位取+5.5米;淤泥厚度为h2=2.0m,水深为6.0m,水头高度h1=5.5m。

h3为钢板桩入土深度。

2)淤泥力学参数根据含水量情况取值,内摩擦角θ=50,粘聚力c=0kpa,容重r2=16.5kN/m3.3)淤泥质亚粘土力学参数根据含水量及孔隙比情况取值,内摩擦角θ=20,粘聚力c=20kpa,容重r2=18.5kN/m3.4)围堰分五层支撑,标高分别为+0.25m、+1.05m、+1.85m、+2.65m、+3.45m。

开挖底标高为±。

5)钢板桩采用拉森Ⅲ型钢板桩,截面尺寸为宽0.462m,高1.36m,每米长钢板桩参数力学性能为壁厚0.04m,截面积0.123m2,重量14.5kg/m,截面模量为320cm3/m。

6)型钢采用A3钢材,允许应力[δ]=140Mpa;钢板桩允许应力[δ]=200Mpa。

7)设计流水速率V=2.61m/s。

水流冲击力p=0.8Aγv2/2gh,其中A为阻水面积,γ为水容重,取10KN/m3,v为水流速度,g为重力加速度,取9.8m/s,h为水深,单位为米。

p=29.47kN/m。

2、静水压力计算现有水位标高为+4.5m,型钢支撑中心标高分别为+4.25m、+3.45m、+2.65m、+1.85m、+1.05m,承台底标高为0.河水静水压力为10×5.5=55kN/m2,取一米进行计算,±0m处的总压力P=1.25(P净水+P动水)=1.25×(29.47+55)=105.59kN/m,安全系数为1.25.3、按简支连续梁计算内力和弯矩,受力形式及弯矩如下图所示:弯矩图示:15.4KNm。

钢板桩设计计算及施工方案

钢板桩设计计算及施工方案
2、打桩设备 拟采用 Z550 型液压振动沉桩机,作为沉设钢板桩的主要动力。投入钢板桩
打拔桩机 1 台用于施工。打拔桩机为挖掘机加液压高频振动锤改装而成,激振
力 220kN。 四、钢板桩设计方案 现对承台钢板桩围堰设计进行计算如下: 1、为保证设计安全,取土的重度选为:20KN/m3,内摩擦角选为Φ=25°。 2、单支撑钢板桩计算
支撑层数和间距的布置是钢板桩施工中的重要问题,根据现场的支撑材料 和开挖深度,我们采取在钢板桩内侧加一层围檩并设置支撑,按单支撑进行钢 板桩计算。围堰采用 WUR13 型冷弯钢板桩,W=1346cm3,[f]=350Mpa。 3、土的重度为:20KN/m3,内摩擦角Ф=25° 4、距板桩外 1.5m 均布荷载按 20KN/ m2 计。基坑开挖深度 5.5m.
钢板桩平面布置、板桩类型选择,支撑布置形式,板桩入土深度、基底稳 定性设计计算如下: (1)作用于板桩上的土压力强度及压力分布图
Ka=tgа(45°-φ/2)= tgа(45°-25/2)=0.49 Kp= tgа(45°+Ф/2)= tgа(45°+25/2)=2.05 板桩外侧均布荷载换算填土高度 h1,
2、钢板桩施工的顺序 施工流程: 根据施工图及高程,放设沉桩定位线→实施表层回填矿渣土剥离→
根据定位线控设沉桩导向槽→整修加固施工机械行走道路及施工平台→沉设钢板桩 →将钢板桩送至指定标高→焊接围檩支撑→挖土→施工承台、墩身及顶帽→填土→ 拔除钢板桩。 3、钢板桩的检验、吊装、堆放
⑴钢板桩的检验 钢板桩运到工地后,需进行整理。清除锁口内杂物(如电焊瘤渣、废填充物等), 对缺陷部位加以整修。 ①锁口检查的方法:用一块长约 2m 的同类型、同规格的钢板桩作标准,将所有 同型号的钢板桩做锁口通过检查。检查采用卷扬机拉动标准钢板桩平车,从桩头至 桩尾作锁口通过检查。对于检查出的锁口扭曲及“死弯”进行校正。 ②为确保每片钢板桩的两侧锁口平行。同时,尽可能使钢板桩的宽度都在同一 宽度规格内。需要进行宽度检查,方法是:对于每片钢板桩分为上中下三部分用钢 尺测量其宽度,使每片桩的宽度在同一尺寸内,每片相邻数差值以小于 1 为宜。对 于肉眼看到的局部变形可进行加密测量。对于超出偏差的钢板桩应尽量不用。 ③钢板桩的其它检查,对于桩身残缺、残迹、不整洁、锈皮、卷曲等都要做全 面检查,并采取相应措施,以确保正常使用。 ④锁口润滑及防渗措施,对于检查合格的钢板桩,为保证钢板桩在施工过程中 能顺利插拔,并增加钢板桩在使用时防渗性能。每片钢板桩锁口都须均匀涂以混合 油,其体积配合比为黄油:干膨润土:干锯沫=5:5:3。 ⑵钢板桩吊运

双排拉森钢板桩围堰计算书

双排拉森钢板桩围堰计算书

双排拉森钢板桩围堰计算书嘿,大家好!今天咱们聊聊一个在建筑工程里很重要但又常常被忽视的话题——双排拉森钢板桩围堰的计算。

你可能会觉得,这听上去有点枯燥,是不是?但别急,咱们一步步来,看看这背后的故事会不会让你大开眼界。

1. 拉森钢板桩是什么?首先,咱们得弄明白拉森钢板桩究竟是啥。

简单来说,拉森钢板桩就像是工程中的“护城河”,用来防止周围土壤和水分流失,就像给地面穿上了一层钢铁的“外衣”。

它们通常是用钢板做的,板子之间有交错的齿,这样就能更好地“咬合”在一起。

就好比你把几片饼干挨在一起,中间还要夹个小夹层,这样才不会容易散开。

双排的意思就是在两排钢板桩之间加个隔断,增强防护效果,这样做的好处是更稳固,抗压性更强。

2. 为什么要做围堰?2.1 围堰的作用围堰在工程中的作用可是大大的。

你要知道,围堰的主要目的是为了阻挡地下水和土壤的侵蚀,让施工区域保持干燥。

想象一下,你在家厨房的台面上放一盆水,不一会儿水就会流得到处都是,那可麻烦了!围堰就像是给你的台面装了一个水槽,把水牢牢地挡在外面。

2.2 施工过程中的挑战施工时,围堰的作用更是无可替代。

有时候,施工区域下方的地下水位非常高,如果不设围堰,工地就会变成一片“水塘”,工程进度自然会受到影响。

所以,围堰的设计必须考虑到水位变化、土壤性质等多个因素,才能确保施工顺利进行。

3. 如何计算双排拉森钢板桩围堰的需要?3.1 计算基础要计算双排拉森钢板桩围堰,咱们得先搞清楚几个基本的参数。

比如说土壤的特性、地下水位、施工深度等等。

就像做一道数学题,先要弄清楚题意,再一步步解题。

计算公式里包含的因素非常多,需要综合考虑土壤的承载力、桩的承载力、以及水压等。

3.2 具体步骤首先,咱们得确定桩的间距和深度。

这个就像是安排座位一样,得根据“客人的”数量(也就是土壤和水的压力)来安排得当。

然后,计算桩的长度,这个长短要根据实际情况来决定,确保它能深深地“扎根”在地里,不被轻易移动。

钢围堰计算书--新

钢围堰计算书--新

钢板桩围堰计算书一、 概况15#墩位于张家港河岸,施工期间水位较高。

为了确保施工安全,将采用钢板桩围堰方法施工承台。

如附图所示,由项目提供的资料知: 开挖基坑处土为粘性土,内摩擦角10度,粘聚力为43Mpa ,湿容重为19KN/m 3 。

原地面标高+1.70m ,承台顶标高-1.70m ,承台埋深+3.50m ,承台高+3.20m 。

二、计算荷载1、活载活载按履—50考虑,承台施工时只考虑一台履带吊作业,将车辆荷载换算为土柱高度。

ho=LBNQ γ N---车辆数,N=1Q---车辆总荷载,Q=50t=500KNL---车辆履带着地长度,L=4.5mB---车辆轮宽,B=2.5+0.7=3.2mγ---土容重,γ=19KN/ m则ho=2.35.4195001⨯⨯⨯=1.83m 因此每平方米土柱的荷载为:1.83×1.0×1.0×19=34KN2、固定荷载当υ=100时,由《土质学与土力学》P159页表7-3中查得朗金土压力系数m2=0.704,1/m2=1.420,m=0.839,1/m=1.192=34×0.704-2×0.839×43= -48.218KPac点:p a2=[q+γ(h+t)]m2-2cm=[34+19(6.9+4.8)] ×0704-2×43×0.839=108.28 KPa拉力区高度ho的确定,令p a=0解得ho=2c/γm –q/γ=3.6m求主动土压力合力E AE A=1/2 p a2 (6.9+4.8-3.6)=1/2×108.3×8.1=438.6KN/m求形心C1C1=(6.9+4.8-3.6)/3=2.7m求钢板桩前的被动土压力KEp K Ep =21×21(γt 21m +2c m1)t =41(19×4.8×1.420+2×1.192×43)×4.8 =278.4 KN/m求形心C2C 2=4.8/3=1.6m取1延米长钢板桩计算对C 点取距,求T T[(h-d)+t]+ KEp ×C 2= E A C 1 T=76.2 KN/m钢管桩支撑验算:按υ426mm 钢管桩支撑设计,A=41π(42.62-40.62)=130.69cm 2 I=641π(42.64-40.64)=28287.25 cm 4E=2.1*105Mpa按两端铰接的压杆计算,自由长度为L=12.88/2=6.44米。

16m长钢板桩围堰结构计算

16m长钢板桩围堰结构计算

钢板桩围堰结构计算1、设计参数(1)主跨墩处河道内主要为砾砂土,其土体力学性能如下: 土体容重: r=18KN/m3 土体内摩擦角: φ=36° (2)钢板桩力学性能:钢板桩采用IV 型拉森桩,重量75kg/m ,每1米宽截面模量W=2037cm3,允许应力为[σ]=210Mpa 。

(3)承台尺寸:8.4m ×12.3m ×3.5m ,围堰尺寸:10.8m ×15.5m 。

(4)计划采用拉森Ⅳ钢板桩,技术参数:(5)根据地质情况(见图1) 20m 范围加权平均:5.16205.1420410=+γ=⨯⨯5.1420205.14=φ=⨯ 05.1320185.14==⨯C主动土压力系数:Ka =tg2(45-φ/2)=0.60 被动土压力系数:Kp =tg2(45+φ/2)=1.668 2、计算内容(1)内支撑层数及间距按照等弯矩布置确定各层支撑的间距,根据拉森Ⅳ型钢板桩承受的最大弯矩确定板桩顶悬臂端的最大允许跨度:[]3a w f 6h K γ==m 98.2cm 2981060.05.161020372156335==⨯⨯⨯⨯⨯γ:取加权平均16.5, h1=0.88h =2.62m h2=0.77h =2.29m h3=0.65h =1.94m根据具体情况,确定采用的立面布置形式如下图所示:(2)计算板桩墙上土压力零点离开挖面的距离y ,在y 处板桩墙的被动土压力等于板桩后的主动土压力:γKKpy =γKa (H +y )y =81.36.0686.12.19.86.0p =-⨯⨯=-Ka KK KaH式中K-主动土压力修正系数,取1.2 (3)钢板桩零点以下入土深度x 的确定: 由力矩分配法计算的如下: P0=47.7KN P1=8.2KN/m P2=63.3KN/m P3=129KN/m P4=80.1KN/m最大弯矩在8.9m 处,Mmax=98.3KN.M采用等值梁法计算原理,土压力零点处的支撑反力与该点以下钢板桩土压力对桩底的力矩平衡,假设土压力零点以下钢板桩零点以下钢板桩埋深为x ,建平衡方程。

钢板围堰计算书

钢板围堰计算书

目录1设计资料 (1)2钢板桩入土深度计算 (9)2.1内力计算 (9)2.2入土深度计算 (10)3钢板桩稳定性检算 (11)3.1管涌检算 (11)3.2基坑底部隆起验算 (12)跨宁启特大桥跨高水河连续梁主墩承台钢板桩围堰施工计算书1设计资料(1)钢板桩顶高程H1:8.5m ,汛期施工水位:8.0m 。

(2)河床标高H 0:1.63m ;基坑底标高H3:-7.958m ;开挖深度H :15.46m 。

(3)封底混凝土采用C30混凝土,封底厚度为1m 。

(3)坑内、外土的天然容重加权平均值1r 、2r 均为:18.8KN/m 3;内摩擦角加权平均值 20=ϕ;粘聚力C :33KPa22330 5.0218.80.49a c h K γ⨯===⨯。

(4)钢板桩采用国产拉森钢板桩,选用鞍IV 型(新)(见《施工计算手册》中国建筑工业出版社P290页)钢板桩参数 A=98.70cm 2,W=2043cm 3,[]δ=200Mpa ,桩长21m 。

水压:210 6.3763.7/w w p h kN m γ=⨯=⨯= 河床位置处:21263.72330.4917.5/w a p p c K kN m =-=-⨯=基坑底部:22117.518.8(1.637.638)191.74/a p p hK kN m γ=+=+⨯+=(5)围囹采用2I56工字钢,支撑采用Ф630螺旋钢管。

2计算资料水压:210 6.3763.7/w w p h kN m γ=⨯=⨯=22330 5.0218.80.49a c h K γ⨯===⨯ 河床位置处:21263.72330.4917.5/w a p p c K kN m =-=-⨯=基坑底部:22117.518.8(1.637.638)191.74/a p p hK kN m γ=+=+⨯+=在建立计算模型的时候,采用板单元,根据等刚度的原则将以上的钢板桩截面换算为等效的矩形板截面。

拉森钢板桩围堰计算汇总

拉森钢板桩围堰计算汇总

大桥20#、21#墩钢围堰检算1.1结构概况20#、21#墩基础施工采用钢板桩围堰法。

钢板桩采用拉森Ⅵ型钢板桩,材质为SY295,20#墩钢板桩单根长度为18m,围堰平面尺寸为28.8×13.2m,共设置两道内支撑,围堰顶高程为+30.09m,围堰底高程为+12.09m,封底混凝土厚2.2m;21#墩钢板桩单根长度为18m,围堰平面尺寸为28.8×13.2m,共设置三道内支撑,围堰顶高程为+30.09m,围堰底高程为+8.09m,封底混凝土厚2.5m。

由于21#墩承台比20#承台埋深深度大,围堰受力较21#墩更不利,本计算取21#墩围堰进行计算;21#墩钢板桩围堰立面布置如图6.1。

图6.1 21#墩钢板桩围堰立面布置图1.2 基本参数1.2.1钢板柱截面特性表6.1 钢板桩截面参数特性值表1.2.2地质资料根据地质勘察报告,20#、21#墩地质资料及土层参数分别如表6.2、表6.3。

表6.2 20#墩土层参数表表6.3 21#墩土层参数表1.3 计算方法由于钢板柱围堰的入土深度较大,土体对入土部分的围堰起到了嵌固作用,此时围堰上端收到内撑的支撑作用,下端受到土体的嵌固支承作用。

但是,由于内撑对钢板桩围堰是弹性支撑,并不是完全刚性,因此,在计算中,先假设内撑对钢板桩为刚性支撑,计算出钢板桩作用于圈梁的反力,将该反力作用在内撑上计算出钢板桩与内撑连接处的最大位移,最后对钢板桩施加强制支座位移,得出钢板桩的内力和应力。

等值梁法计算钢板桩围堰,为简化计算,常用土压力等于零点的位置来代替正负弯矩转折点的位置。

计算土压力强度时,应考虑板桩墙与土的摩擦作用,将板桩墙前和墙后的被动土压力分别乘以修正系数(为安全起见,对主动土压力则不予折减),钢板桩被动土压力修正系数如表6.4。

本文计算作出如下假设:1.假设计算时取1m宽单位宽度钢板桩。

2.因土处于饱和水状态,为简化计算且偏安全考虑,不考虑土的粘聚力(c=0)。

钢板桩围堰设计计算

钢板桩围堰设计计算

钢板桩围堰设计计算一、土层地质情况根据设计图纸提供的参数,设计洪水位为+5.40M ,12#墩河床高程为-2.00M, 土层地质为淤泥质粉质粘土,土性质为:γ为16.5KN/M 3 ,φ取9.50 ,C 取12.3KPa 。

二、支撑布置围堰中共设三道支撑,第一点支撑标高为+3.19M ,第二支撑标高为+1.19M ,第三道支撑标高为-2.41M, 采用H40型钢进行支撑。

以φ400的钢管进行斜支撑。

支撑图纸如下图:H2=5.625H1=7.4R3R2R1支撑布置图(单位:M )三、体系简化验算:主动土压力系数:Ka=tg 2(450-9.50/2) =0.717 土压力: 取γ浮=9N/M 3Ea=1/2Ka γH 22 =1/2×0.717×9×5.6252 =102.088KN/M水压力:纯水 w 水=1/2ρg(H 1+H 2)2=1/2×10×(7.4+5.625)2=848.253KN/M 总压力 :Ea+E 水=102.088+848.253=950.341KN/M压力计算图单位:压力计算图(单位:M )四、应力计算R 1=1/2×10×(5.4-3.19)2=24.42KN/MR 2=1/2×10×(5.4+0.61)2-24.42=156.18-24.42=131.76KN/MR 3=1/2×10×(5.4+5.018)2-156.18+1/2×0.717×(5.018-2)2×9=415.882KN/M R 4=1/2×10×(5.4+7.625)2-542.674+1/2×0.717×9(7.625-2)2-29.388=378.284KN/M 五、钢板桩验算采用拉森Ⅳ型,宽40cm ,截面系数Wx=2270cm 3 R 1=24.42×0.4=9.768KN R 2=131.76×0.4=52.704KN R 3=415.882×0.4=166.353KN R 4=378.284×0.4=151.314KNN=1/2qH=1/2×0.4×9.8×H ×H=1/2×3.92×H ×H 即 q=3.92×H M E =0M D =-1/2×10×(5.4-3.19)2×1/3×2.21×0.4=-7.196KN.M M C =9.768×2-1/6×10×4.213 ×0.4=-30.21KN.MM B =9.768×5.6+52.704×3.6-1/6×10×7.813 ×0.4-1/6×0.717×9(2.41-2)3×0.4=-73.18M A =9.768×10.815+52.704×8.815+166.353×5.215-1/6×10×0.4×13.0253-1/6×0.717×0.4×9(7.625-2)3=-111.942KN.MM DC 中点=9.768×1-1/6×10×3.213 ×0.4=12.283KN.MM CB 中点=9.768×3.8+52.704×1.8-1/6×10×6.013 ×0.4=54.9KN.MM BA 中点=9.768×8.208+52.704×6.208+166.353×2.608-1/6×10×10.4183 ×0.4-1/6×0.717 ×9×3.0183 ×0.4 =75.574KN.M根据计算结果绘制弯矩图如下:单位:KNMMax=111.942KN.M查表得钢板桩[σ]=180MPa 截面模量w=2270cm3σ=111942/2270=49.3MPa<[σ]=180MPa 满足要求!六、基坑底的安全验算按围堰施工至封底混凝土人顶标高-7.625根据公式'γ>Kj 取安全系数K=1.5土的浮容重'γ=16.5-10=8.0KN/M3最大渗流力j=iγwi=h/(h+2t) =(5.4+7.625)/(5.4+7.625+2t)=13.025/(13.025+2t)t 为钢板桩底部到开挖面的距离所以j = iγw =10×13.025/(13.025+2t)'γ≥K j≥1.5×130.25/(13.025+2t)t≥5.7Mt实施过程中取值为6.5M,大于5.7M,满足要求!根据上面计算设计的钢板桩围堰基坑底满足安全方面要求。

9m钢板桩计算

9m钢板桩计算

9m钢板桩围堰设计计算书一、概况1、宁芜线青弋江特大桥13#-17#墩、21#-22#墩、46#墩、55#-57#墩、60#墩-64#墩设计采用8根φ100cm钻孔桩,南京台、65#台设计采用12根φ100cm钻孔桩,43#墩采用设计11根φ100cm钻孔桩,成桩后用钢板桩围堰施工承台。

2.设计参数(1)地下水位取+5.708m。

(2)承台顶标高+7.208m、承台底标高+5.208m、承台尺寸为10.08x4.8x2.0m。

(3)钢板桩围堰内部平面尺寸为12.06x0.68m2,围堰顶标高+8.71m、底标高-0.29m。

(4)承台周围地质为粉质粘土,比重γ土=18.6KN/m3、内摩擦角Ψ=16.49º、粘聚力c=13.61KPa,因为粉质粘土的液性指数为0.61介于0和1之间,所以水位以下的该土层按不利状态考虑受到水的浮力作用。

其下为粉砂比重γ土=18.7KN/m3,粉砂的内摩擦角Ψ=28~36º,但是含水饱和的细砂很容易失去稳定,因此考虑内摩擦角Ψ取24º。

(5)距板桩围堰外1.5m均布荷载按30KN/m2考虑,围堰内基坑浇注15cm厚砼垫层,35cm 厚碎石垫层。

(6)拟采用拉森IV型钢板桩 W=2037cm3、[σ]=180MPa、L=9m。

岩土工程参数建议值二、钢板桩设计方案1、计算板桩入土深度:作用在钢板桩上的土压力强度及压力分布粉质粘土:由内摩擦角Ψ=17.75º得,m=tg(45-Ψ/2)=0.730,m2=0.533。

各点的主动土压力如下:P a=(γz+q)m2-2cm=30×0.533-2×15.16×0.730=-6.14KN/m2P b=(γz+q)m2-2cm=(18.6×0.5+30)×0.533-2×15.16×0.730=-1.19KN/m2 P c=(γz+q)m2-2cm=(18.6×2+30)×0.533-2×15.16×0.730=13.68KN/m2P d=(γz+q)m2-2cm=(18.6×2+8.6×1.5+30)×0.533-2×15.16×0.730=20.56KN/m2P e=(γz+q)m2-2cm=(18.6×2+8.6×5.0+30)×0.533-2×Array 15.16×0.730=36.60KN/m2水压力(基坑开挖后):P水=γ水×h水=10×1.5=15KN/m2由上图中f点的土压力Ff=0可得:γKKp×y=γKa(H+y)Kp——被动土压力系数K——被动土压力系数修正值由《简明施工计算手册》知k=1.70γ——土的重度8.6× 1.7×2.371× 1.5+8.7× 1.7×2.371×(y-1.5)=(18.6×2+8.6×5+8.7×(y-1.5)+30) ×0.422+15解得y=1.80m把af梁段看成钢板桩一等值简支梁根据∑Mb=0得1/2×65×1.5×(2/3×1.5+1)+58×1.5×(1/2×1.5+1.5+1)+1/2×(65-58)×1.5×(1/3×1.5+1.5+1)+1/2×53.09×1.06×(1/3×1.06+1.5+1.5+1)-Rg ×(2+1.5+1.5+1)=0g 点的反力Rg=86.4KNX 可根据Rg 和板桩前被动土压力对板桩底端的力矩相等,即∑Mf=0求得 Rg =x 2γ(kk p -K a )/6X=)(ka kkp Rg -γ/6=()422.0371.27.17.8/4.866-⨯⨯⨯=4.07m 得钢板桩最小入土深度t 0=x+y=1.5+4.07=5.57m ,安全系数取1.1得 钢板桩实际入土深度t=1.1 t 0=1.1×5.57=6.2m 。

拉森钢板桩围堰支护计算说明

拉森钢板桩围堰支护计算说明

拉森钢板桩支护计算单一、检算依据:1、《建筑施工手册》2、广雅大桥12#、16#墩地质图及广雅大桥钢板桩围堰施工方案二、已知条件:承台尺寸为5.5(横桥向)×5.5m(纵桥向)×2.4 m,开挖尺寸9.5m×9.5m,筑岛顶标高:495m;0.5m11)在6.9γ平均=(φ平均=(基坑底面以下,支护结构设定弯矩零点位置距基坑底面的距离h:γ(H+h)Ka =γKhKph=0.892mK——为被动土压力的修正系数,取1.6。

2)、计算支点力0.5米处:P。

=33.546KN基坑底钢板桩受力5.5米处:143.015KN如图:剪力图弯矩图最小嵌入深度t :t=1.2t 。

t 。

=h K -KK P 6aP 0+⨯(γ=4.93m t=1.2t 。

=5.91m已知外界荷载:q =Ka*30=14.76KN/m22。

1)M max 2),3)支点力=50KN*m如图所示工况三维钢板桩受力最不利时:钢板桩满足要求,可继续下一道工序。

4)、工况四:浇注封底砼完成,达到设计强度后,支点转移到封底砼处。

支点力T1=25.5 KN ,T2=95.4KN ,基坑底部钢板桩T3=150.3KN ,钢板桩最大弯矩M max =15.5KN*m剪力图弯矩图3、围檩工钢检算:第二层围檩所受均布力集度最大,所以按第二层检算:且力为T=114.67 KN/m2,按三跨超静定梁计算求得最大弯矩M max =572.22KN*m (跨中)二层工字钢与围檩受力则用双拼I36a 的工字钢满足要求。

斜撑处杆件受压轴力F ,Fmax=504.54KN 47.23102151054.504A 23n =⨯⨯=- cm2, 取。

某桥钢板桩围堰受力计算书

某桥钢板桩围堰受力计算书

某桥钢板桩围堰受力计算书一.已知条件1.根据实际情况施工水位取百年一遇最高水位+1.31m 。

2.钢板桩顶标高为+2.31m ,承台设计底标高为-5.64m 。

3.承台尺寸:13.7m ×8.1m ×3.3m ,围堰尺寸:15.2m ×10.4m 。

根据具体情况,确定采用的立面布置形式见附图2.围囹及内支撑计算根据现场情况,内支撑采用I40b ,布置形式:第一层为两片I40b ,兼作导向框架;第二层为两片I40b ;第三层为三片I40b ,横撑及八字撑布置同边梁。

工况1:抽水至第二层内支撑下50cm 时,第一层内支撑受力处于最不利状态,受力情况分析如下:(1)计算反弯点位置,即利用钢板桩上土压力等于零的点作为反弯点位置,计算其离基坑底面的距离y ,在y 处钢板桩主动土压力强度等于被动土压力强度:y K P y KK a b p γγ+=式中 b P -基坑地面处钢板桩墙后的主动土压力强度值;K -主动土压力修正系数,土的内摩擦角为250时,K 取1.7;γ-土体容重;h -基坑开挖深度;w h -基坑外侧水位深度。

kN P b 3010)31.169.1(=⨯+=()()m K KK P y a p b 4.0406.0464.27.12030=-⨯⨯=-=γ (2)由力矩分配法计算的受力图如下:受力分析图 弯矩包络图支点反力图F 1=100.85kN , M max =309.16kN ·m工况2:围堰内抽水至第三层内支撑下50cm 时,第二层支撑受力处于最不利状态,受力分析如下:(1)计算反弯点位置:kN P b 52)31.189.3(10=+⨯=()()m K KK P y a p b 69.0406.0464.27.12052=-⨯⨯=-=γ (2)由力矩分配法计算的受力图如下:受力分析图弯矩包络图支点反力图F 1=-82.89kN ,F 2=301.27kN , M max =214.58kN ·m工况3:围堰内抽水至承台底下50cm 时,第三层支撑受力处于最不利状态,受力分析如下:(1)计算反弯点位置:kN P b 1.90)31.17.7(10=+⨯=()()m K KK P y a p b 19.1406.0464.27.1201.90=-⨯⨯=-=γ (2)由力矩分配法计算的受力图如下:受力分析图弯矩包络图支点反力图P 0 = 137.67kN ,F 1=22.79kN ,F 2=-60.3kN ,F 3=359.34kN ,M max =198.56kN ·m(3)钢板桩零点以下入土深度x 的确定:采用等值梁法计算原理,土压力零点处的支撑反力与该点以下钢板桩土压力对桩底的力矩平衡,假设土压力零点以下钢板桩埋深为x ,建平衡方程:306)a p (x K KK x P -γ=⨯m K KK P x 3.3)064.0464.27.1(2067.1376)a p (60=⨯⨯⨯==--γ (4)钢板桩入土深度t 0=x +y =3.3+1.19=4.49m则t =1.2×4.49=5.39m ,实际入土深度4.99m ,采用18m 钢板桩入土深度7.99m 。

钢板桩围堰计算书(2层围檩@15m钢板桩)精选全文

钢板桩围堰计算书(2层围檩@15m钢板桩)精选全文

可编辑修改精选全文完整版钢板桩围堰计算书目录第一章设计条件 (1)1.1工程概况 (1)1.2设计概况 (1)1.3主要计算依据 (2)1.4荷载计算 (3)1.5土体参数 (3)1.6 材料特性 (4)第二章基坑支护结构受力计算 (4)2.1 计算工况 (4)2.2 钢板桩计算 (5)2.2.1工况一 (5)2.2.1工况二 (6)2.3 围檩及支撑 (8)第三章基坑稳定性验算 (11)3.1钢板桩入土深度验算 (11)3.2基坑稳定性计算 (11)3.3基坑承载力计算 (13)第一章设计条件1.1工程概况主线大承台位于陆地上,根据基坑开挖深度,拟定3种类型钢板桩围堰。

对于边墩承台拟定一种类型钢板桩围堰。

对于大承台,开挖6.5m及以上选用15m长钢板桩围堰,2层支撑;开挖6m-6.5m选用12m长钢板桩围堰,2层支撑,开挖6m以下,选用12m长钢板桩,1层支撑。

对于小承台,选用12m长钢板桩,一层支撑。

该计算书验算大承台第一种类型ZX179#(开挖7.45m)承台围堰受力情况。

ZX179#承台水文资料及设计参数计算,统计如下:(1)钢板桩顶标高: +9.0m(2)钢板桩底标高: -6m(3)承台顶标高: +4.8m(4)承台底标高: +1.6m(5)承台高度: 3.2m(6)地面标高: +8.95m(7)地下水位: +5.16m1.2设计概况承台尺寸18.7×10.6×3.2m,钢板桩围堰内轮廓尺寸为20.8×12.5m,高15m。

采用拉森—400×170型钢板桩,承台为一次性浇筑,按照开挖深度设置两道围檩及支撑。

围檁采用2I56,斜撑均采用2I32,内支撑均采用φ426×10钢管。

施工工艺:插打钢板桩并合拢,开挖至桩顶以下1m,安装第一道围檩及支撑;继续开挖并降水至第二层围檁标高,安装第二层围檁及支撑;开挖至基坑底;浇筑10cmC20混凝土垫层;进行承台施工。

钢板桩受力计算

钢板桩受力计算

钢板桩围堰的设计与施工薛保民摘要本文结合237省道淮安段淮河入海水道、苏北灌溉总渠大桥钢板桩围堰设计与施工的工程实践,初步探讨了钢板桩围堰在桥梁深水基础中的应用。

关键词钢板桩围堰设计施工前言钢板桩围堰施工是桥梁建设应用广泛且成熟的施工工艺,主要适用于内陆河道或水库围堰法施工水下承台。

237省道淮安段淮河入海水道、苏北灌溉总渠大桥主墩承台就采用钢板桩围堰的施工方法,本文就钢板桩围堰的设计与施工作简要的介绍。

1、工程概况237省道淮安段淮河入海水道、苏北灌溉总渠大桥位于淮河入海道淮安枢纽下游7KM处,南北走向,桥墩轴线与水流方向基本一致,起讫点桩号为:K38+491.20~K39+811.400,桥梁全长1320m,全桥结构布置形式为:4×30+4×30+5×40+5×40+(56.5+3×90+56.5)+3×30+4×25+4×25,18#-23#墩为本桥的第五联,上部结构为挂篮悬浇箱梁,群桩基础,左右幅独立承台,其中18#墩位于入海水道北偏泓中,19#墩位于南北偏泓之间的河堤上,靠近南偏泓,20#墩位于灌溉总渠中堤左侧坡脚下,21#~22#位于灌溉总渠内,23#墩位于328省道南侧路肩上。

18#、23#墩为边跨墩,承台尺寸8.4m×7m×2.5m,19#、20#、21#、22#墩为主跨墩承台尺寸为10.7m×10.7m×3.2m,18#墩承台底标高为-3.3m,19#墩承台底标高-4.0m,20#墩承台底标高-2.7m,21#墩承台底标高-0.3m,22#墩承台底标高-1.7m,23#墩承台底标高9.75m。

2、钢板桩围堰尺寸及数量2.1、钢板桩围堰尺寸考虑左右幅承台距离比较近,左右两个承台采用一个钢板桩围堰施工,同时考虑承台施工时施工空间需要,围堰与承台之间预留1.5m操作空间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

船台及驳岸施工围堰设计与计算1、工程概况浙江舟山市六横岛位于舟山群岛的南部海域,在虾峙门国际航道的西南侧,是舟山市的第三大岛,为舟山市重点扶持的三大岛之一,占地约106。

8 平方公里。

厂址区域四周由穿山半岛和舟山群岛所环抱,形成一个近封闭水域。

本工程位于厂内八号、九号码头之间。

工程范围:1. 船台二座:船台长250m,宽45m,水下段长60m,滑道坡度1:20,滑道底标高-3 。

00m,顶标高12。

40m;2. 陆域独立吊车道: 600T 龙门起重机轨道一组:2x437m; 150T门机轨道三组:6x303m;3. 直立驳岸约230m。

为了确保船台及驳岸的干地施工,须在外海侧顺堤设围堰,从而确保工程进度。

本工程工作量大,施工时间相对较紧,施工工期:2008 年1 月1 日~6 月30 日,共6 个月。

2、自然条件2.1 水文资料设计水位:设计高水位:2.14m设计低水位:-2.60m下水水位:1.50m2.2 地质资料场地内地质构造活动较稳定,未见新构造运动及活动断裂,不存在液化土层,故属基本稳定区。

根据工程地质勘察报告,场地地层自上而下分为:① 1 层杂色填土,为新近人工回填而成;① 2 层淤泥、② 1 层灰色淤泥质粉质粘土、④层粘土为软弱场地土;③1 层暗绿~灰黄色粉质粘土、⑤ 1 浅黄~灰绿色粉质粘土及⑤ 2 层粉质粘土夹砂砾、碎石为中硬场地土,⑥层强风化晶屑凝灰岩、⑦层中等风化晶屑凝灰岩为坚硬场地土。

由于拟建场地20.0m 深度范围内无饱和砂性土及粉土存在,本场地为不液化场地。

场地内分布有较厚的软弱土。

该区域由于拟建场地周围无污染源存在,对钢结构具中等腐蚀性。

本次设计钢板桩插入② 1 层灰色淤泥质粉质粘土土层中,淤泥质粉质粘土的物力力学性质指标为:含水率42.6%,比重 2.74,重度3,固快粘聚力13.34kPa、内摩察角12.5。

17.4kN/m其余参数详见地质勘探报告。

3、围堰方案比选围堰是用于围护水工建筑施工场地的临时挡水建筑物。

围堰具有不同于一般建筑物的施工和运行特点。

其合理的结构应是断面简单、构筑和拆除方便,满足稳定、防冲蚀、防渗漏的要求。

既不可以永久建筑物对待,又不可掉以轻心、马虎从事。

根据场地现有情况,本次设计比选两种围堰方案。

方案A:土石坝围堰:利用当地现有材料作为主要筑填材料;方案B:钢板桩围堰:采用拉森钢板桩作为围堰外壁,然后填充粘土。

方案A(土石坝围堰)为传统的土石围堰,可采用当地土石材料。

传统的土石围堰通常存在如下问题: (1)围堰一般要求快速施工,但实际施工中往往土方量大、土堆不高、沉滑严重。

而在软弱地基上必须控制加荷速率,待地基承载力提高了,才能往上加荷,因此施工速度较慢。

(2)土石围堰直接在水下施工,水下抛投的堰坡受水下自然休止角的控制,而且水下清基困难,通常直接坐落在覆盖层上,质量往往难以保证。

(3) 围堰在工程完成后往往需要拆除。

由于大多在水下,时常因拆除不彻底,留有根底影响码头前沿水深。

(4) 由于受水下自然休止角的控制,堆不高,造成坡度很缓、占地面积大、方量多,增加填筑与拆除的工作量。

(5) 在水深流速和风浪大的围堰中,冲蚀严重、边坡不稳定。

特别是在软土地基上的围堰,加之潮涨潮落的水位变化,造成沉移、滑坡倒塌,经常需要修补填筑。

方案B(钢板桩围堰)采用拉森钢板桩作为围堰的外壁,在离开驳岸线适当距离后即可施打两排拉森钢板桩,最外侧钢板桩滩地高程也只有-2。

0m。

该方案具有施工速度快、建筑拆除也快、稳定性好、防冲蚀、防渗性好的特点。

综合比较,推荐方案B,即钢板桩围堰方案。

对于施工工期比较紧张的船台工程,该方案具有明显的时间优势。

4、钢板桩围堰设计4.1平面布置钢板桩围堰平行于驳岸线布置,考虑基坑内施工场地要求,围堰内侧钢板桩距离拟建驳岸线5m,南北两端垂直转向并延伸至现有驳岸线。

形成防汛封闭。

围堰中心线长约362m,其中顺岸围堰长245m,南侧围堰长36m,北侧围堰长81m。

4.2结构设计围堰采用拉森钢板桩围堰。

围堰内外侧均采用Ⅳ型拉森钢板桩,桩长15m,桩顶标高 2.8m,桩底标高-12.2m,桩顶设围檩,两排桩间采用钢拉杆连接,拉杆间距3m。

桩距5m。

围堰钢板桩间填粘性土,-0.5m高程以下及外侧钢板桩内侧抛填袋装土,以增强围堰的抗渗能力。

钢板桩围堰完成后,在顶上加筑0.5m高袋装土围堰,外海侧设浆砌块石小挡墙,墙底及内侧设防渗土工膜。

堰顶高程 3.3m。

这样可以增长钢板桩的入土深度,提高围堰的整体稳定性、抗滑性和防渗能力,使围堰设计更加经济合理。

围堰外侧抛填块石至-0.5m高程,抛石平台宽2m,坡比1:2。

围堰内侧抛填袋装土至-0.5m高程,顶宽1m,坡比1:1。

具体结构详见下图。

图1 围堰结构图5、钢板桩围堰计算5.1 堰顶高程计算按《堤防工程设计规范》(GB50286—98)第6.3.1 条,堰顶高程应按设计洪水位或设计高潮位加堤顶超高确定, 堤顶超高按下式确定。

Y=R+e+A式中:Y──堤顶超高(m);R ──设计波浪爬高(m);e ──设计风壅水面高(m), 对于海堤, 当设计高潮位中包括风壅水面高度时, 不另计;A ──安全加高(m)。

本工程围堰设计标准为非汛期10 年一遇高潮位加8 级风下限,经计算,围堰顶高程确定为 3.3m。

5.2 外力计算钢板桩主要受土压力(包括主动土压力和被动土压力)、水压力和波浪力作用,还有围顶荷载(填土和施工荷载)。

其中主动土压力:qaA=3.25kPa,q aB=7.53kPa,q aD 上=18.47kPa, qaD下=8.78kPa,q aE=42.97kPa;被动土压力:q pD上=36.96kPa, q pD下=22.23kPa, q pE=166.58kPa;水压力:q w=31.4 kPa;浪压力:q ac=7.07kPa,q oc=21.98kPa,q bc=12.80kPa,q dc=12.68kPa;q=13.0 kPa。

计算简图如下:图 2 计算简图5.3 钢板桩入土深度计算钢板桩的外力参照图2,确定由主动土压力、被动土压力、水压力和浪压力对锚杆安装点的力矩M Ea、M Ep、M Ew 和M Ec ,钢板桩入土深度需满足下面经验公式。

FM Ea MME pEwM Ec1.2经计算,M Ea= 3160.84kN·m/m、M Ep= 10890.38kN·m/m、M Ew= 3408.82kN·m/m和M Ec = 158.46 kN·m/m,F= 1.61 >1.2 。

5.4 堰体宽度计算5.4.1 抗剪稳定抗剪稳定采用下列Terzaghi 公式进行计算:K 剪2B E a3Mt an0.7式中:M 为外力对基面的力矩,Ea 为围堰中心线上的压力,B=5.0m,内摩察角=20°。

经计算,Ea=106.86 kN,M=175.42 kN·m,K剪=0.74>0.7 。

5.4.2 抗倾稳定0.5B G B T抗倾稳定公式: 1.4K 倾M式中:M=175.42 kN·m,G为堰体每延米重,G=304.00 kN,T 为每延米钢板桩与基土的摩阻力,T=300.00 kN,K倾=12.88>1.4 。

5.4.3 抗滑稳定G f 2S抗滑稳定公式:K 1.4滑E W ES式中:G=304.00 kN,f =tg12.5 °=0.22,S为每钢板桩的抗剪力,2S=Aτ,A 为每延米钢板桩的断面积,A=46.5 cm,τ为桩的极限抗剪强度,τ=20,E W=106.86 kN,E S=0,K滑=18.04>1.4 。

5.4.4 堤基承载力计算根据土的抗剪强度指标,按下列公式确定堤基土承载力特征值:1f dh N r r rb Nq q r d Nc c Cd2f d fddh经计算,堤基土承载力设计值f=109.70 kPa,σmax=89.80 kPa,地基承d载力稳定。

5.4.5 地基土管涌计算地基土的管涌计算应满足下列公式:Ks l l12hB3.5式中:l1 =10m,l2 =10m,B=5m,h =3.14m。

经计算,Ks =7.96>3.5 。

5.5 锚杆和钢板桩内力计算5.5.1 锚杆内力计算锚杆的内力采用比较符合实际情况的变位法计算。

即假定钢板桩内、外侧板桩由于外力作用产生变位,在拉杆处的内向变位相等。

计算公式如下:3.5Z ( 3 2 2 3P1 P ) (10H 10H C 5HC C ) /(80HC)2HP1 (2P a P ) /水P2 (2P a P ) /H水式中:P a 为泥面以上主动土压力之和,P水为泥面以上水压力和浪压力之和,C 为泥面以上水深,H 为泥面以上桩长。

经计算,锚杆拉力为22.22 kN,根据设计资料,锚杆的直径为φ22,f =310N/mm2,根据公式N f y A,可求出f y A =117.84kN。

若取安全系数为y1.5 ,并考虑到锚杆的间距为 3.0m,可求出锚杆轴向拉力设计值N =99.98 kN。

经验算,锚杆的拉力满足强度要求。

5.5.2 钢板桩内力计算钢板桩内力计算可先确定钢板桩剪力为零的位置,然后计算该店的弯矩,即钢板桩的最大弯矩。

经计算,钢板桩最大弯矩为34.75kN·m/m。

根据钢板桩的结构型式,查得钢板桩的W=850cm3, [ σ] =200MPa。

按照下列公式验算:M maxW经验算,钢板桩的内力=40.88MPa,满足强度要求。

5.6 围堰整体稳定计算采用瑞典圆弧法对围堰进行稳定计算,稳定安全系数采用《建筑基坑支护规程》公式。

n(Wi cos taniic lii)i 1KnWisin ii 1经计算,K 1.42 ,围堰整体稳定符合规范要求。

6、钢板桩围堰施工6.1 施工准备:A、插打钢板桩前的准备工作a 钢板桩经过装卸、运输、会出现撞伤、弯扭及锁口变形,钢板桩在拼组前必须进行检查,剔除锁口破裂、扭曲、变形的钢板桩;剔除钢板桩表面因焊接钢板、钢筋留下的残渣瘤。

b、在钢板桩锁口内涂抹黄油以减少插打时锁口间的摩擦和减少钢板桩围堰的渗漏。

c 插打钢板桩的导向设备按照施工方法,一般先打定位桩,在定位桩上安置导梁,组成框架式的围笼作为插桩时的导向设备,因此在施打前必须制作导向架。

B 检查振动锤振动锤是打拔钢板桩的关键设备,在打拔前一定要进行专门检查,确保线路畅通,功能正常。

振动锤的端电压要达到380-420 V,而夹板牙齿不能有太多磨损。

6.2 插打钢板桩6.2.1 插打第一片钢板桩为了确保插打位置准确,第一片钢板桩是插打的关键。

插打在导向架上设置一个限位框架,大小比钢板桩每边放大1cm,插打时钢板桩背紧靠导向架,边插打边将浮吊钩缓慢下放。

相关文档
最新文档