气缸的结构及基本原理
气缸的原理
气缸的原理
气缸是一种常见的气动执行元件,它通过气压的作用来产生线性运动。
气缸的
原理主要包括气缸结构、气缸工作原理和气缸应用等方面。
首先,我们来看一下气缸的结构。
气缸通常由气缸筒、活塞、活塞杆、密封件、进气口和排气口等部分组成。
其中,气缸筒是气缸的主体部分,用来容纳活塞和气缸内的工作介质。
活塞则是气缸内部的运动部件,它能够在气缸筒内产生往复运动。
而活塞杆则是连接活塞和外部负载的部分,它能够传递活塞的运动力。
密封件则起到密封气缸内部工作介质的作用,进气口和排气口则用来控制气缸内部气体的流动。
其次,我们来了解一下气缸的工作原理。
气缸的工作原理主要是利用气体的压
力来产生力和运动。
当气体通过进气口进入气缸内部时,气缸内部会产生压力,使活塞向外运动。
当气体通过排气口排出时,气缸内部的压力会减小,活塞则会向内运动。
通过这种方式,气缸能够产生往复运动,从而驱动外部负载进行工作。
最后,我们来看一下气缸的应用。
气缸广泛应用于各种自动化设备和机械领域,如汽车制造、工业生产线、航空航天等。
在汽车制造中,气缸常用于控制发动机气门的开闭,从而实现发动机的工作。
在工业生产线中,气缸则常用于控制各种执行机构,如夹紧装置、输送带等。
在航空航天领域,气缸也被广泛应用于飞机和宇航器的控制系统中,如起落架、舵机等。
综上所述,气缸是一种利用气压来产生力和运动的装置,它的原理主要包括结构、工作原理和应用等方面。
通过对气缸的原理进行深入了解,我们能够更好地应用气缸于各种工程领域,实现自动化控制和机械运动。
气缸的工作原理
气缸的工作原理
气缸的工作原理是利用气体压力的变化来产生机械运动或者输出功。
气缸通常由筒体、活塞、活塞杆和气缸盖组成,其中筒体内部分为上下两个相对的腔室。
活塞紧密地安装在筒体内,活塞杆与活塞相连贯通整个气缸。
当压缩空气通过气缸进入下腔室时,它会推动活塞向上运动。
同时,上腔室的气体通过排气阀或排气孔排出。
通过改变进气和排气的位置,可以控制气体在气缸内部的流动方向和速度。
当气压作用在活塞上方时,由于活塞的面积较小,压力会产生一个向下的力,反过来推动活塞向下移动。
而当气压作用在活塞下方时,由于活塞的面积较大,压力会产生一个向上的力,推动活塞向上移动。
可以利用气缸的上下运动来驱动其他机械部件,如传动杆、连杆等。
这样,气缸可以产生直线运动,实现工作物体的推拉、举升、旋转等。
通过控制气体的进出和活塞的运动状态,可以实现气缸的工作效果的控制和调节。
磁性无杆气缸的结构和工作原理
磁性无杆气缸的结构和工作原理
1.结构:
(1)气缸筒体:气缸筒体是磁性无杆气缸的主体部分,由高强度铝
合金材料制成,具有良好的耐腐蚀性和刚性,同时也是气缸内部气体的容器。
(2)活塞:活塞是磁性无杆气缸的运动部件,通常采用高强度的磁
性不锈钢材料制成,具有良好的耐磨性和导磁性能。
(3)磁性导向器:磁性导向器位于气缸筒体的两端,由高磁导率的
材料制成,可以将磁力从气缸筒体传递到活塞上,使活塞受到磁力的作用
而运动。
(4)密封部件:密封部件主要用于气缸的密封,防止高压气体泄漏,通常采用高耐磨性的橡胶材料制成,能够有效地密封气缸。
(5)磁极:磁极是磁性无杆气缸的关键部件,位于气缸筒体的外侧,主要用于产生磁场并传递磁力到磁性导向器上。
2.工作原理:
(1)在气缸的初始状态下,活塞位于气缸筒体的中间位置,磁性导
向器上没有磁力作用。
(2)当控制电流通入磁极时,磁极产生磁场,磁场通过磁性导向器
传递到活塞上,活塞受到磁力的作用向磁力较强的方向运动。
(3)当控制电流停止时,磁场消失,活塞停止运动并保持在当前位置。
由于磁力不会消耗能量,所以磁性无杆气缸具有能耗小的特点。
(4)通过控制磁极的磁场的强弱和极性,可以控制活塞的运动方向和速度。
当磁极的磁场强度增加或极性改变时,活塞的运动方向也会相应发生改变。
气缸工作原理介绍_图文
气缸的工作原理
图10 普通型冲击气缸的工作原理 1— 蓄气缸;2—中盖;3—排气孔;4—喷气口;5—活塞
气缸的工作原理
• 第四阶段:弹跳段。在冲击段之后,从能量观点来说,蓄气缸腔内压力
能转化成活塞动能,而活塞的部分动能又转化成有杆腔的压力能,结果造成有 杆腔压力比蓄气-无杆腔压力还高,即形成“气垫”,使活塞产生反向运动,结果 又会使蓄气-无杆腔压力增加,且又大于有杆腔压力。如此便出现活塞在缸体内 来回往复运动—即弹跳。直至活塞两侧压力差克服不了活塞阻力不能再发生弹 跳为止。待有杆腔气体由A排空后,活塞便下行至终点。
杆腔压力下降,直到下列力平衡方程成立时,活塞才开始移动。
气缸的工作原理
式中 d——中盖喷气口直径(m); p30——活塞开始移动瞬时蓄气缸腔内压力(绝对压力)(Pa); p20——活塞开始移动瞬时有杆腔内压力(绝对压力)(Pa); G——运动部件(活塞、活塞杆及锤头号模具等)所受的重力(N); D——活塞直径(m); d1——活塞杆直径(m); Fƒ0——活塞开始移动瞬时的密封摩擦力(N)。
图5并联型气-液阻尼缸 1—液压缸;2—气缸
气缸的工作原理
• 按调速特性可分为:
1)慢进慢退式; 2)慢进快退式; 3)快进慢进快退式。 其调速特性及应用见表1。 就气-液阻尼缸的结构而言,尚可分为多种形式:节流阀、单向阀单独设置或 装于缸盖上;单向阀装在活塞上(如挡板式单向阀);缸壁上开孔、开沟槽、 缸内滑柱式、机械浮动联结式、行程阀控制快速趋近式等。活塞上有挡板式单 向阀的气-液阻尼缸见图6。活塞上带有挡板式单向阀,活塞向右运动时,挡板离 开活塞,单向阀打开,液压缸右腔的油通过活塞上的孔(即挡板单向阀孔)流 至左腔,实现快退,用活塞上孔的多少和大小来控制快退时的速度。活塞向左 运动时,挡板挡住活塞上的孔,单向阀关闭,液压缸左腔的油经节流阀流至右 腔(经缸外管路)。调节节流阀的开度即可调节活塞慢进的速度。其结构较为
气缸的工作原理
气缸的工作原理引言概述:气缸作为内燃机的核心部件之一,扮演着将燃油和空气混合物压缩、燃烧、排出废气的重要角色。
本文将详细介绍气缸的工作原理,包括气缸的基本结构、工作过程以及常见问题。
一、气缸的基本结构1.1 气缸壁:气缸壁是气缸的内壁,通常由铸铁或者铝合金制成。
它具有良好的热传导性能和机械强度,能够承受高温高压的工作环境。
1.2 活塞:活塞是气缸内部来回运动的零件,通常由铝合金制成。
它通过连杆与曲轴相连,将燃烧产生的能量转化为机械能。
1.3 活塞环:活塞环位于活塞上,主要用于密封气缸,防止燃气泄漏。
普通由铸铁或者钢制成,具有较高的耐磨性和密封性能。
二、气缸的工作过程2.1 进气冲程:在进气冲程中,活塞向下运动,气缸内形成负压,进气门打开,混合气体通过进气道进入气缸。
同时,排气门关闭,防止废气倒流。
2.2 压缩冲程:在压缩冲程中,活塞向上运动,将进入气缸的混合气体压缩,使其温度和压力升高。
进气门和排气门都关闭,确保气缸内的混合气体不会泄漏。
2.3 燃烧冲程:在燃烧冲程中,活塞接近顶点时,点火系统点燃混合气体,产生爆炸燃烧。
燃烧产生的高温高压气体推动活塞向下运动,同时推动连杆带动曲轴旋转,将燃烧能量转化为机械能。
2.4 排气冲程:在排气冲程中,活塞再次向上运动,将燃烧产生的废气排出气缸。
此时,排气门打开,进气门关闭,确保废气能够顺利排出。
2.5 循环重复:以上四个冲程循环进行,实现连续的燃烧和动力输出。
三、气缸的常见问题3.1 气缸漏气:气缸漏气是指气缸壁和活塞环之间的密封失效,导致燃气泄漏。
这可能会降低发动机的效率和动力输出,需要及时修复或者更换密封件。
3.2 气缸磨损:长期使用后,气缸壁和活塞表面会浮现磨损现象,导致气缸内的密封性能下降。
这可能会导致燃烧不彻底和动力减弱,需要进行磨损修复或者更换活塞环。
3.3 气缸过热:气缸过热可能是由于冷却系统故障、机油不足或者点火系统问题引起的。
过热会导致气缸变形、活塞卡涩等严重后果,需要及时检修和维护。
气缸的结构及基本原理(汇编)
气缸的结构及基本原理一、气缸-气缸种类气压传动中将压缩气体的压力能转换为机械能的气动执行元件。
气缸有作往复直线运动的和作往复摆动的两类(见图)。
作往复直线运动的气缸又可分为单作用、双作用、膜片式和冲击气缸 4种。
①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。
②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。
③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。
它的密封性能好,但行程短。
④冲击气缸:这是一种新型元件。
它把压缩气体的压力能转换为活塞高速(10~20米/秒)运动的动能,借以作功。
冲击气缸增加了带有喷口和泄流口的中盖。
中盖和活塞把气缸分成储气腔、头腔和尾腔三室。
它广泛用于下料、冲孔、破碎和成型等多种作业。
作往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴作摆动运动,摆动角小于 280°。
此外,还有回转气缸、气液阻尼缸和步进气缸等。
二、气缸的作用:将压缩空气的压力能转换为机械能,驱动机构作直线往复运动、摆动和旋转运动。
三、气缸的分类:直线运动往复运动的气缸、摆动运动的摆动气缸、气爪等。
四、气缸的结构:气缸是由缸筒、端盖、活塞、活塞杆和密封件组成。
五、SMC气缸原理图1)缸筒缸筒的内径大小代表了气缸输出力的大小。
活塞要在缸筒内做平稳的往复滑动,缸筒内表面的表面粗糙度应达到Ra0.8um。
对钢管缸筒,内表面还应镀硬铬,以减小摩擦阻力和磨损,并能防止锈蚀。
缸筒材质除使用高碳钢管外,还是用高强度铝合金和黄铜。
小型气缸有使用不锈钢管的。
带磁性开关的气缸或在耐腐蚀环境中使用的气缸,缸筒应使用不锈钢、铝合金或黄铜等材质。
SMC CM2气缸活塞上采用组合密封圈实现双向密封,活塞与活塞杆用压铆链接,不用螺母。
2)端盖端盖上设有进排气通口,有的还在端盖内设有缓冲机构。
杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。
气缸结构原理
气缸结构原理
气缸是内燃机中的一个重要部件,其作用是将燃料和空气混合物压缩并点火,产生能量驱动发动机运转。
气缸结构原理是指气缸的构造和工作原理,下面将详细介绍。
一、气缸的构造
气缸通常由铸铁或铝合金制成,具有圆柱形状。
在气缸内部分别设置了进气门、排气门、活塞和曲轴等零件。
进气门:进气门位于气缸顶部,负责让空气和燃料混合物进入到气缸内。
排气门:排气门位于底部,负责将废弃的燃料和废弃物排出。
活塞:活塞位于进口处,由铝合金或钢材制成。
当发动机运转时,活塞会在汽油爆炸时向下移动,并在汽油爆炸后向上移动。
曲轴:曲轴是发动机的心脏,也是发动机输出功率的关键部件。
它通过连杆与活塞相连,在活塞上下运动时将线性运动转换为旋转运动,并输出到车轮上。
二、气缸的工作原理
气缸的工作原理可以分为四个阶段:进气、压缩、爆炸和排气。
1. 进气阶段:在活塞下行时,进气门打开,使空气和燃料混合物进入到气缸内。
这个过程称为“吸入”。
2. 压缩阶段:当活塞向上移动时,进气门关闭,空气和燃料混合物被压缩到汽油发生点火所需的高压状态。
这个过程称为“压缩”。
3. 爆炸阶段:当混合物被压缩到一定程度时,点火器会引起爆炸。
这个过程称为“爆炸”。
4. 排气阶段:在爆炸后,废弃的燃料和废弃物通过排气门排出。
这个过程称为“排放”。
综上所述,以上就是气缸结构原理的详细介绍。
通过了解其构造和工作原理,我们可以更好地理解发动机的运转机制,并对其故障进行更加准确地诊断和修复。
气缸的工作原理_图文
气孔
好的气缸:
用手紧紧堵住气孔,然后用手拉活塞轴,拉的时候有很大的反向力,放的时候活塞 会自动弹回原位;拉出推杆再堵住气孔,用手压推杆时也有很大的反向力,放的时 候活塞会自动弹回原位。
坏的气缸:
拉的时候无阻力或力很小,放的时候活塞无动作或动作无力缓慢,拉出的时候有反 向力但连续拉的时候慢慢减小;压的时候没有压力或压力很小,有压力但越压力越 小。
缸体 密封圈
活塞杆
磁环
活塞
密封圈
Page: 3
气缸的基本组成部分及工作原理
典型气缸的结构和工作原理
以气动系统中最常使用的单活塞杆双作用气缸为例来说明,气缸典型结构如下图1所示。它由缸筒、活塞、活塞杆、前 端盖、后端盖及密封件等组成。双作用气缸内部被活塞分成两个腔。有活塞杆腔称为有杆腔,无活塞杆腔称为无杆腔。
Page: 19
气缸常见故障的判断及基本维修技巧
气动执行元件维修的注意事项
气缸在动作过程中,不能将身体任何部分置于其行程 范围内,以免受伤. 在维修设备上的气缸时,必须先切除气源,保证缸体 内气体放空,直至设备处于静止状态方可作业. 在维修气缸结束后,应先检查身体任何部分未置于其 行程范围内,方可接通气源试运行.接通气源时,应先 缓慢冲入部分气体,使气缸冲气至原始位置,再插入接 头.
带阀组合气缸
1-管接头 2-气缸 3-气管 4-电磁换向阀 5-换向阀底板 6-单向节流阀组合件 7-密封圈。
图6
Page: 11
气缸的基本组成部分及工作原理
磁性开关气缸的结构和工作原理
磁性开关气缸是指在气缸的活塞上安装有磁环,在缸筒上直接安装磁性开关,磁性开关用来检测气缸行 程的位置,控制气缸往复运动。因此,就不需要在缸筒上安装行程阀或行程开关来检测气缸活塞位置,也不需要 在活塞杆上设置挡块。
气缸的结构原理和作用
气缸得结构及基本原理一、气缸气缸种类气压传动中将压缩气体得压力能转换为机械能得气动执行元件。
气缸有作往复直线运动得与作往复摆动得两类。
作往复直线运动得气缸又可分为单作用、双作用、膜片式与冲击气缸4种。
①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。
②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。
③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。
它得密封性能好,但行程短。
④冲击气缸:这就是一种新型元件。
它把压缩气体得压力能转换为活塞高速(10~20米/秒)运动得动能,借以作功。
冲击气缸增加了带有喷口与泄流口得中盖。
中盖与活塞把气缸分成储气腔、头腔与尾腔三室。
它广泛用于下料、冲孔、破碎与成型等多种作业。
作往复摆动得气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴作摆动运动,摆动角小于280°。
此外,还有回转气缸、气液阻尼缸与步进气缸等。
二、气缸得作用:将压缩空气得压力能转换为机械能,驱动机构作直线往复运动、摆动与旋转运动。
三、气缸得分类:直线运动往复运动得气缸、摆动运动得摆动气缸、气爪等。
四、气缸得结构:气缸就是由缸筒、端盖、活塞、活塞杆与密封件组成,其内部结构如图所示:五、SMC气缸原理图(1)缸筒缸筒得内径大小代表了气缸输出力得大小。
活塞要在缸筒内做平稳得往复滑动,缸筒内表面得表面粗糙度应达到Ra0、8um。
对钢管缸筒,内表面还应镀硬铬,以减小摩擦阻力与磨损,并能防止锈蚀。
缸筒材质除使用高碳钢管外,还就是用高强度铝合金与黄铜。
小型气缸有使用不锈钢管得。
带磁性开关得气缸或在耐腐蚀环境中使用得气缸,缸筒应使用不锈钢、铝合金或黄铜等材质。
SMC CM2气缸活塞上采用组合密封圈实现双向密封,活塞与活塞杆用压铆链接,不用螺母。
(2)端盖端盖上设有进排气通口,有得还在端盖内设有缓冲机构。
杆侧端盖上设有密封圈与防尘圈,以防止从活塞杆处向外漏气与防止外部灰尘混入缸内。
气缸的结构及基本工作原理
气缸引导活塞在其中进行直线往复运动的圆筒形金属机件。
工质在发动机气缸中通过膨胀将热能转化为机械能;气体在压缩机气缸中接受活塞压缩而提高压力。
涡轮机、旋转活塞式发动机等的壳体通常也称“气缸”。
气缸的应用领域:印刷(张力控制)、半导体(点焊机、芯片研磨)、自动化控制、机器人等等。
英文名:cylinder气缸-气缸种类气压传动中将压缩气体的压力能转换为机械能的气动执行元件。
气缸有作往复直线运动的和作往复摆动的两类(见图)。
作往复直线运动的气缸又可分为单作用、双作用、膜片式和冲击气缸4种。
①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。
②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。
③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。
它的密封性能好,但行程短。
④冲击气缸:这是一种新型元件。
它把压缩气体的压力能转换为活塞高速(10~20米/秒)运动的动能,借以作功。
冲击气缸增加了带有喷口和泄流口的中盖。
中盖和活塞把气缸分成储气腔、头腔和尾腔三室。
它广泛用于下料、冲孔、破碎和成型等多种作业。
作往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴作摆动运动,摆动角小于280°。
此外,还有回转气缸、气液阻尼缸和步进气缸等。
气缸的作用:将压缩空气的压力能转换为机械能,驱动机构作直线往复运动、摆动和旋转运动。
气缸的分类:直线运动往复运动的气缸、摆动运动的摆动气缸、气爪等。
气缸的结构:气缸是由缸筒、端盖、活塞、活塞杆和密封件组成,其内部结构如图所示:SMC气缸原理图1)缸筒缸筒的内径大小代表了气缸输出力的大小。
活塞要在缸筒内做平稳的往复滑动,缸筒内表面的表面粗糙度应达到Ra0.8um。
对钢管缸筒,内表面还应镀硬铬,以减小摩擦阻力和磨损,并能防止锈蚀。
缸筒材质除使用高碳钢管外,还是用高强度铝合金和黄铜。
小型气缸有使用不锈钢管的。
气缸使用说明书
气缸使用说明书一、概述气缸是一种常用的机械执行元件,用于转换压缩空气的能量为机械能。
本说明书将介绍气缸的基本结构、使用注意事项以及维护保养方法,以便用户正确使用气缸并延长其使用寿命。
二、气缸结构及工作原理1. 结构气缸一般由气缸筒、活塞、活塞杆、密封件、进气口和出气口等部分组成。
其中,气缸筒是气缸的主体部分,用于容纳压缩空气;活塞通过活塞杆与气缸筒相连接,并能在气缸内做往复运动;密封件用于保证气缸的密封性能。
2. 工作原理气缸的工作原理基本上是依靠压缩空气的作用。
在工作过程中,当气缸内的压缩空气通过进气口进入气缸筒时,活塞向前运动;当气缸内的压缩空气通过出气口排出时,活塞向后运动。
通过合理控制进气口和出气口的开闭,可以实现气缸的正常工作。
三、使用注意事项1. 安装在使用气缸之前,首先需要进行正确的安装。
安装时应注意以下事项:- 气缸应采用固定安装方式,并保证其与相应设备的连接牢固稳定。
- 确保气缸的进气口和出气口连接正确,并且密封良好,避免漏气现象的发生。
- 安装过程中,避免碰撞气缸,以免损坏。
2. 操作在正式使用气缸时,需要注意以下操作事项:- 在使用气缸前,应先检查气缸及其连接部分是否有损坏或松动情况,确保安全可靠。
- 根据实际需要,合理控制气缸的进气口和出气口的开闭,以保证气缸的正常工作。
- 在操作过程中,避免过度使用气缸,以免增加其工作负荷或损坏零件。
- 在气缸工作时,注意观察气缸的工作状态,发现异常情况及时停止使用并进行检修。
3. 维护保养为了延长气缸的使用寿命,定期进行维护保养是必要的。
以下是一些建议的维护保养方法:- 定期清洁气缸,避免灰尘和污垢积累,影响气缸的正常工作。
- 检查气缸的密封件是否完好,如有损坏应及时更换,以保证气缸的密封性能。
- 定期给气缸加油润滑,以减少磨损和摩擦,保持气缸的良好运行状态。
- 定期检查气缸的连接部分是否松动,如有松动应紧固,保证气缸的稳定性。
四、故障排除在使用气缸的过程中,可能会出现一些故障情况。
气缸结构原理
气缸结构原理气缸是一种常见的机械部件,广泛应用于各种机械设备中。
气缸的结构原理对于了解其工作原理和性能具有重要意义。
本文将介绍气缸的结构原理,帮助读者更好地理解和应用这一机械部件。
一、气缸的基本结构气缸通常由气缸筒、活塞、活塞杆、密封件等部件组成。
气缸筒是气缸的主体部件,通常由铝合金、不锈钢等材料制成,具有一定的强度和刚性。
活塞是气缸中的运动部件,通常与气缸筒密封配合,能够在气缸筒内做直线往复运动。
活塞杆连接活塞和外部机构,传递活塞的运动力。
密封件用于保证气缸的密封性能,防止气缸内的气体泄漏。
二、气缸的工作原理气缸通过外部的气压力驱动活塞在气缸筒内做往复运动,从而实现对物体的推拉或压力作用。
气缸的工作原理可以简单概括为:气体通过气源进入气缸,气缸内的活塞随之受到气压力的作用而运动,完成相应的工作任务。
气缸的工作过程包括进气、工作、排气等阶段,通过控制气源的开关和气压力大小可以实现对气缸的控制和调节。
三、气缸的种类和应用根据气缸的结构和工作原理,可以将气缸分为气压缸、液压缸、气液压缸等不同类型。
气压缸通过气体的压力驱动活塞运动,适用于对速度要求较高的场合;液压缸通过液体的压力驱动活塞运动,适用于对力要求较大的场合;气液压缸结合了气压缸和液压缸的优点,具有速度快、力大的特点,广泛应用于工业自动化设备中。
气缸在各种机械设备中都有着重要的应用,如汽车发动机、工业机械、农业机械等。
在汽车发动机中,气缸是发动机的重要部件,通过气缸的工作可以实现燃油的燃烧和活塞的往复运动,从而驱动汽车前进。
在工业机械中,气缸可以实现对物体的推拉、升降、夹持等功能,广泛应用于各种生产线和装配设备中。
在农业机械中,气缸可以实现对农机部件的控制和调节,提高农机设备的工作效率和生产能力。
气缸作为一种常见的机械部件,具有重要的应用价值和工作原理。
了解气缸的结构原理可以帮助我们更好地应用和维护这一机械部件,提高设备的工作效率和性能。
希望本文的介绍能够帮助读者更好地理解和掌握气缸的相关知识,为工程实践和应用提供参考和借鉴。
气缸结构原理
气缸结构原理
气缸是一种常见的机械元件,广泛应用于各种工程和机械设备中。
其结构原理主要包括气缸筒、活塞、密封件、气门等部件。
下面将逐一介绍这些部件的作用和工作原理。
1. 气缸筒
气缸筒是气缸的主要部件之一,通常由金属材料制成。
气缸筒的作用是容纳压缩空气或液体,同时起到导向活塞运动的作用。
气缸筒内表面通常经过精密加工,以确保活塞在其中能够自由运动,并保持密封性能。
2. 活塞
活塞是气缸中起到往复运动作用的零件,通常由金属材料制成。
活塞与气缸筒之间的间隙通常非常小,以确保密封性能。
活塞在气缸内部受到压缩空气或液体的作用,从而产生推动力,实现往复运动。
3. 密封件
气缸中的密封件主要包括活塞环、O型圈等部件,其作用是防止压缩空气或液体泄漏,同时保持气缸内部的密封性能。
密封件的选择和安装质量直接影响气缸的工作效率和寿命。
4. 气门
气门是气缸中用来控制气体流动的部件,通常安装在气缸筒的一侧。
气门的开启和关闭通过气缸内部的压力变化来实现,从而控制活塞
的运动。
气门的设计和调节直接影响气缸的工作效率和性能。
气缸的结构原理是通过活塞在气缸筒内的往复运动,利用压缩空气或液体产生推动力,从而实现机械设备的运动。
各个部件的密封性能和配合精度直接影响气缸的工作效率和寿命。
因此,在设计和使用气缸时,需要考虑这些因素,以确保气缸的稳定性和可靠性。
希望本文能够帮助读者更好地理解气缸的结构原理,为相关领域的工程和技术工作者提供参考。
物理高考知识点气缸
物理高考知识点气缸气缸是物理学中的一个重要概念,被广泛应用于工程领域和日常生活中。
本文将介绍气缸的基本原理、结构和应用,并探讨与气缸相关的高考物理考点。
一、气缸的基本原理气缸是一种能够将气体能量转化为机械能的装置。
其基本原理是通过活塞的运动来实现气体的压缩和释放。
当气缸内的气体受到外部压力作用时,活塞会被迫移动,从而改变气缸内的体积。
二、气缸的结构气缸一般由活塞、气缸体、气缸盖和密封件等组成。
活塞是气缸中的移动部件,气缸体是容纳气体的空间,气缸盖则用于密封气缸。
在气缸的设计中,密封件的选择十分重要,能够确保气缸内气体的密封性和工作稳定性。
三、气缸的应用气缸在工程领域有广泛的应用,常见的应用包括:1. 汽车发动机:气缸是发动机的核心部件之一,通过活塞的上下运动实现气体的压缩和燃烧,驱动汽车运行。
2. 工业机械:气动系统中的气缸常用于推动和控制各类机械设备,如液压机、升降机等。
3. 气动工具:许多手持式工具,如钉枪、喷枪等,都采用气缸来提供动力。
4. 气动装置:自动化生产线中常用的输送带、夹具等设备,也会使用气缸来实现运动和控制。
四、与气缸相关的高考物理考点1. 气体压力:气缸的工作原理与气体压力的概念紧密相关。
考生需要了解气体压强和密度的概念,并能够应用到气缸的分析和计算中。
2. 牛顿第二定律:活塞在气缸内的运动可以通过牛顿第二定律来描述,即F=ma。
考生需要掌握运动学和动力学的基本知识,并能够将其应用到气缸的分析中。
3. 能量转化:气缸实现了气体能量到机械能的转化过程,考生应掌握能量守恒和转化的基本原理,并能够运用到气缸的分析中。
4. 热力学:气体在气缸内的压缩和膨胀过程还涉及到热力学的概念,如绝热过程和等熵过程。
考生需要了解热力学的基本原理,并能够应用到气缸的分析和计算中。
总结:气缸作为一种重要的装置,广泛应用于工程领域和日常生活中。
了解气缸的基本原理、结构和应用,对于理解其工作原理和解决实际问题具有重要意义。
气缸结构及工作原理
气缸结构及工作原理
气缸是一种常用的机械装置,可以将气体能量转化为机械能。
它通常由一个圆筒形的容器和一个与之密封紧密的活塞构成。
工作原理如下:
1. 气缸压缩:当活塞向缸内移动时,气缸容器内的气体被挤压,导致气体压力增加。
这发生在活塞向缸头方向移动时。
2. 气缸膨胀:当活塞向缸外移动时,气缸容器内的气体被拉伸,导致气体压力降低。
这发生在活塞向缸底方向移动时。
3. 气缸工作循环:在内燃机等应用中,气缸通常与燃烧室相连。
燃烧室内的燃料在燃烧过程中释放能量,推动活塞向下运动。
然后,排气门打开,废气被释放到环境中,准备进行下一工作循环。
4. 气缸传动:气缸可以通过连杆与其他机械部件连接,以实现工作传动。
例如,在内燃机中,气缸的工作往复运动可通过连杆将能量传递给曲轴,从而将活塞运动转化为轴的旋转运动。
这一传动方式被广泛应用于汽车、发电机和机械设备中。
总之,气缸的结构和工作原理使其成为众多工程领域中的重要组成部分,能够将气体能量转化为机械能,推动机械系统运动。
气缸的结构及基本工作原理
气缸的结构及基本工作原理气缸是一种常见的机械传动元件,在各种机械设备和工业生产中广泛应用。
它主要是通过气压力将引擎或压缩机中的气体或液体推动,将能量转化为机械运动。
下面详细介绍气缸的结构和基本工作原理。
一、气缸的结构气缸主要由气缸筒和活塞组成。
气缸筒是一个内中空的圆筒形构件,通常由铸铁或铝合金制成。
活塞则是一个在气缸筒内能够移动的零件,通常由铸铁或铝合金制成。
气缸筒内经常受到气体或液体的高压作用,为了增加强度和耐用性,气缸筒通常具有较厚的壁厚。
而活塞则是一个直径略小于气缸筒的杆状构件,可以紧密贴合在气缸筒内壁上移动。
活塞通常具有两个密封环,使得活塞与气缸筒之间形成封闭的密封腔,防止气体或液体泄漏。
气缸筒的顶部通常被称为气缸盖,与气缸筒相连接,并用螺栓固定。
气缸盖上有一个或多个进气和排气口,分别与进气和排气系统相连。
进气和排气口的开闭由气缸盖上的活塞杆或曲柄驱动机构控制。
气缸在内部产生气压,用于推动活塞运动。
活塞在气缸筒内作往复运动,将能量转化为机械工作。
气缸工作的基本原理是通过气体或液体的压力差来驱动活塞运动。
当活塞处于最低点时,气缸筒内没有或低压的气体或液体进入气缸筒。
而当活塞向上移动,进入气缸筒内的气体或液体被压缩,其压力增加。
当气缸内的压力超过外部压力时,气缸上的活塞受到压力的作用被推向下方。
当活塞这一部分继续上升时,活塞转向另一方向,并压缩气体或液体。
当活塞达到最高点时,气缸内的压力达到峰值。
然后,通过适当的设计和调整,排气门打开,使气体或液体从气缸筒中排出。
活塞随后又开始向下运动,以回到开始位置。
整个过程不断重复,通过适当的供气或供液方式,推动活塞反复运动。
需要注意的是,气缸盖上的进气和排气口的开闭是由气缸盖上的活塞杆或曲柄驱动机构控制的。
活塞杆或曲柄驱动机构将气缸内的气体或液体引导到所需的位置,并控制气缸的工作周期。
通过以上描述,可以看出气缸的结构和基本工作原理。
气缸作为一种常见的机械传动元件,广泛应用于各种机械设备和工业生产中。
气缸的实际行程
气缸的实际行程气缸是一种常见的工业设备,广泛应用于各个领域。
它的实际行程是指活塞在气缸内部运动的距离。
在这篇文章中,我们将详细介绍气缸的实际行程及其相关知识。
一、气缸的基本结构和工作原理气缸通常由气缸筒、活塞、活塞杆和密封件等部件组成。
当压缩空气通过进气口进入气缸筒时,活塞会受到压力的作用而向外推动,完成工作过程。
而气缸的实际行程就是活塞在气缸内部移动的距离。
二、气缸的实际行程计算气缸的实际行程可以通过以下公式计算得出:实际行程 = 活塞杆长度 - (气缸筒长度 + 活塞长度 + 密封件厚度)三、气缸的实际行程与工作效果的关系气缸的实际行程直接影响到其工作效果。
如果实际行程过小,可能无法满足工作需求;而实际行程过大,则会造成浪费和能源消耗增加。
因此,在设计和选择气缸时,需要根据实际应用需求来确定合适的实际行程。
四、气缸的实际行程与密封性能的关系气缸的实际行程还与其密封性能密切相关。
在气缸工作过程中,密封件起到了关键的作用,它能够防止气体泄漏,确保气缸的正常工作。
因此,在选择气缸时,需要考虑密封件的质量和密封性能,以保证气缸的实际行程和工作效果。
五、气缸的实际行程与运动速度的关系气缸的实际行程还与其运动速度有一定的关系。
通常情况下,当实际行程较大时,气缸的运动速度相对较慢;而当实际行程较小时,气缸的运动速度相对较快。
因此,在实际应用中,需要根据具体情况来选择合适的气缸实际行程和运动速度。
六、气缸实际行程的调节方法为了满足不同工作需求,气缸的实际行程可以通过调节活塞杆长度或更换不同尺寸的气缸筒、活塞和密封件来实现。
这样可以灵活地调节气缸的实际行程,以适应不同工作场景的需求。
七、气缸实际行程的应用领域气缸的实际行程在许多领域都有广泛的应用。
例如,在工业自动化装备中,气缸常用于控制机械臂、推动输送带等;在汽车制造中,气缸被用于控制发动机活塞的运动;在航空航天领域,气缸常用于控制飞机起落架的展收等。
可以说,气缸的实际行程影响到了许多重要的工业和交通设备的正常运行。
气缸工作原理
气缸工作原理气缸是一种常见的机械装置,广泛应用于各种工业和机械设备中。
它是通过压缩空气或液体来产生力和运动的装置。
气缸工作原理主要包括气缸结构、气缸工作过程和气缸的应用。
一、气缸结构气缸通常由气缸筒、活塞、活塞杆、密封装置和连接件等组成。
1. 气缸筒:气缸筒是气缸的外壳,通常由金属材料制成。
它具有足够的强度和刚度来承受压力和力的作用。
2. 活塞:活塞是气缸内部移动的部件,通常是圆柱形的。
它通过密封装置与气缸筒相连,可以在气缸内部产生压力。
3. 活塞杆:活塞杆是连接活塞和外部设备的部件。
它通常是圆柱形的,具有足够的强度和刚度来传递力和运动。
4. 密封装置:密封装置用于确保气缸内部的压力不会泄漏。
常见的密封装置包括活塞环、密封圈和密封垫等。
5. 连接件:连接件用于连接气缸和其他设备或系统。
常见的连接件包括法兰、螺纹和销等。
二、气缸工作过程气缸的工作过程可以分为四个阶段:吸气、压缩、供气和排气。
1. 吸气阶段:在吸气阶段,气缸内的活塞向外移动,从而扩大气缸的容积。
这样,外部的气体就会进入气缸内部,形成低压区域。
2. 压缩阶段:在压缩阶段,活塞向内移动,从而减小气缸的容积。
这样,气体就会被压缩,并增加了气体的压力。
3. 供气阶段:在供气阶段,活塞继续向内移动,直到达到最大压力。
此时,气缸内的压力达到所需的工作压力。
4. 排气阶段:在排气阶段,活塞开始向外移动,从而增大气缸的容积。
这样,气体就会被排出气缸,完成一个工作循环。
三、气缸的应用气缸广泛应用于各种工业和机械设备中,包括自动化生产线、机床、汽车、航空航天等领域。
1. 自动化生产线:气缸常用于自动化生产线上的各种执行机构,如夹紧装置、推拉装置和旋转装置等。
它们可以根据控制信号实现精确的运动和力的传递。
2. 机床:气缸在机床上的应用非常广泛。
例如,气缸可以用于控制切削工具的进给和退刀,实现工件的加工和定位。
3. 汽车:气缸在汽车发动机中起着关键的作用。
气缸的工作原理及常见故障维修
引言:气缸是内燃机中的一个关键部件,它承担着将燃烧室与冷却系统隔离、产生必要的压力以及顺序完成气缸工作循环等重要任务。
然而,由于工作环境的恶劣和长时间的使用,气缸常常会遭受到一些故障和损坏。
本文将详细介绍气缸的工作原理以及常见的故障和维修方法。
概述:气缸可以看作是内燃机的心脏,它通过活塞和连杆的运动将燃烧室内的燃油混合气压缩并转化为机械能。
同时,它还能完成凸轮轴和气门等部件的工作。
然而,气缸在长时间使用过程中可能出现漏气、磨损、裂纹等问题,需要进行维修。
正文:一、气缸的工作原理1.1 气缸的结构1. 气缸体:承受气缸内部高压力的主体部分,通常由坚固的铁材料制成。
2. 活塞:与气缸内壁之间形成密封空间,并通过连杆传递功率。
3. 凸轮轴和气门:控制气缸内混合气的进出。
1.2 气缸的工作循环气缸的工作循环可以分为四个阶段:进气、压缩、燃烧和排气。
具体步骤如下:1. 进气:活塞往下运动,使气缸内形成低压,进气门开启,混合气进入。
2. 压缩:活塞往上运动,使混合气被压缩,进气门关闭。
3. 燃烧:汽油点火,混合气燃烧产生高温和高压。
4. 排气:活塞往上运动,废气经过排气门排出。
二、常见故障及原因2.1 漏气1. 活塞环磨损:活塞环老化或使用时间过长,导致活塞与气缸壁之间的密封性能下降。
2. 气缸体磨损:气缸表面变形或磨损,使密封性能减弱。
2.2 磨损1. 活塞磨损:长时间高温和高压下,活塞与气缸内壁摩擦,导致磨损和间隙变大。
2. 缸套磨损:活塞与气缸壁之间的间隙变大,引起缸套磨损。
2.3 裂纹1. 高温变形:长时间高温工作会使气缸体产生变形和应力集中,造成裂纹。
2. 制造缺陷:制造过程中存在缺陷,如气缸体内部有夹杂物或裂纹。
三、常见故障的维修方法3.1 漏气的维修1. 更换活塞环:将老化或磨损的活塞环更换为新的,保持活塞与气缸壁之间的密封性能。
2. 研磨气缸体:使用研磨机对气缸体进行修复,恢复其表面平整度和密封性。
发动机气缸的结构与工作原理
发动机气缸的结构与工作原理发动机是现代汽车的核心组成部分,而发动机气缸则是发动机的重要构件之一。
本文将介绍发动机气缸的结构与工作原理,帮助读者更好地理解发动机的工作原理。
一、气缸的结构气缸是发动机的燃烧室,用于容纳活塞和压缩、燃烧气体。
气缸通常由铸铁或铝合金材料制成,外表光滑平整。
气缸具有以下主要结构:1. 气缸壁:气缸壁是气缸的内壁,与活塞紧密配合,形成密封空间。
气缸壁通常通过镀铬等表面处理提高其耐磨性和润滑性。
2. 活塞:活塞是气缸内的运动部件,与气缸壁之间形成密封空间。
活塞通常由铝合金制成,具有轻量化的特点。
3. 活塞环:活塞环位于活塞上,用于密封活塞与气缸壁之间的空间。
活塞环通常由高强度的材料制成,如铸铁或钢。
4. 气门:气门是气缸与气缸盖之间的开口,用于控制气缸内气体的进出。
气门通常由高温合金或不锈钢制成,具有耐高温和耐磨性能。
5. 气缸盖:气缸盖是气缸的顶部覆盖物,安装在气缸上方,与气缸通过垫片密封连接。
气缸盖通常由铝合金制成,具有较好的散热性能。
二、气缸的工作原理气缸是发动机中实现压缩、燃烧和排放的关键部分。
其工作原理可以归纳为以下步骤:1. 进气冲程:活塞向下运动,气门开启,气缸内进入混合气或空气。
气门关闭后,活塞向上运动,压缩气体。
2. 压缩冲程:活塞上行压缩空气或混合气,提高其密度和温度。
压缩过程中,气缸壁和活塞上的活塞环起到密封作用,防止气体泄漏。
3. 爆发冲程:当活塞上行至顶点时,点火系统发送火花,引燃压缩的混合气。
混合气燃烧产生高温高压气体,推动活塞向下运动。
4. 排气冲程:活塞下行时,气门打开,排出燃烧后产生的废气。
排气冲程结束后,活塞再次上行开始新的工作循环。
以上是四冲程式发动机的工作原理,也是大多数汽车发动机的基本工作原理。
通过气缸内的往复运动,发动机可以实现将燃料燃烧产生的化学能转化为机械能,推动汽车运动。
总结:发动机气缸的结构与工作原理是理解发动机工作原理的关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气缸的结构及基本原理一、气缸-气缸种类气压传动中将压缩气体的压力能转换为机械能的气动执行元件。
气缸有作往复直线运动的和作往复摆动的两类(见图)。
作往复直线运动的气缸又可分为单作用、双作用、膜片式和冲击气缸 4种。
①单作用气缸:仅一端有活塞杆,从活塞一侧供气聚能产生气压,气压推动活塞产生推力伸出,靠弹簧或自重返回。
②双作用气缸:从活塞两侧交替供气,在一个或两个方向输出力。
③膜片式气缸:用膜片代替活塞,只在一个方向输出力,用弹簧复位。
它的密封性能好,但行程短。
④冲击气缸:这是一种新型元件。
它把压缩气体的压力能转换为活塞高速(10~20米/秒)运动的动能,借以作功。
冲击气缸增加了带有喷口和泄流口的中盖。
中盖和活塞把气缸分成储气腔、头腔和尾腔三室。
它广泛用于下料、冲孔、破碎和成型等多种作业。
作往复摆动的气缸称摆动气缸,由叶片将内腔分隔为二,向两腔交替供气,输出轴作摆动运动,摆动角小于 280°。
此外,还有回转气缸、气液阻尼缸和步进气缸等。
二、气缸的作用:将压缩空气的压力能转换为机械能,驱动机构作直线往复运动、摆动和旋转运动。
三、气缸的分类:直线运动往复运动的气缸、摆动运动的摆动气缸、气爪等。
四、气缸的结构:气缸是由缸筒、端盖、活塞、活塞杆和密封件组成。
五、SMC气缸原理图1)缸筒缸筒的内径大小代表了气缸输出力的大小。
活塞要在缸筒内做平稳的往复滑动,缸筒内表面的表面粗糙度应达到Ra0.8um。
对钢管缸筒,内表面还应镀硬铬,以减小摩擦阻力和磨损,并能防止锈蚀。
缸筒材质除使用高碳钢管外,还是用高强度铝合金和黄铜。
小型气缸有使用不锈钢管的。
带磁性开关的气缸或在耐腐蚀环境中使用的气缸,缸筒应使用不锈钢、铝合金或黄铜等材质。
SMC CM2气缸活塞上采用组合密封圈实现双向密封,活塞与活塞杆用压铆链接,不用螺母。
2)端盖端盖上设有进排气通口,有的还在端盖内设有缓冲机构。
杆侧端盖上设有密封圈和防尘圈,以防止从活塞杆处向外漏气和防止外部灰尘混入缸内。
杆侧端盖上设有导向套,以提高气缸的导向精度,承受活塞杆上少量的横向负载,减小活塞杆伸出时的下弯量,延长气缸使用寿命。
导向套通常使用烧结含油合金、前倾铜铸件。
端盖过去常用可锻铸铁,现在为减轻重量并防锈,常使用铝合金压铸,微型缸有使用黄铜材料的。
3)活塞活塞是气缸中的受压力零件。
为防止活塞左右两腔相互窜气,设有活塞密封圈。
活塞上的耐磨环可提高气缸的导向性,减少活塞密封圈的磨耗,减少摩擦阻力。
耐磨环长使用聚氨酯、聚四氟乙烯、夹布合成树脂等材料。
活塞的宽度由密封圈尺寸和必要的滑动部分长度来决定。
滑动部分太短,易引起早期磨损和卡死。
活塞的材质常用铝合金和铸铁,小型缸的活塞有黄铜制成的。
4)活塞杆活塞杆是气缸中最重要的受力零件。
通常使用高碳钢,表面经镀硬铬处理,或使用不锈钢,以防腐蚀,并提高密封圈的耐磨性。
5)密封圈回转或往复运动处的部件密封称为动密封,静止件部分的密封称为静密封。
缸筒与端盖的连接方法主要有以下几种:整体型、铆接型、螺纹联接型、法兰型、拉杆型。
6)气缸工作时要靠压缩空气中的油雾对活塞进行润滑。
也有小部分免润滑气缸。
六、气缸-工作原理根据工作所需力的大小来确定活塞杆上的推力和拉力。
由此来选择气缸时应使气缸的输出力稍有余量。
若缸径选小了,输出力不够,气缸不能正常工作;但缸径过大,不仅使设备笨重、成本高,同时耗气量增大,造成能源浪费。
在夹具设计时,应尽量采用增力机构,以减少气缸的尺寸。
气缸下面是气缸理论出力的计算公式:F:气缸理论输出力(kgf)F′:效率为85%时的输出力(kgf)--(F′=F×85%)D:气缸缸径(mm)P:工作压力(kgf/cm2)例:直径340mm的气缸,工作压力为3kgf/cm2时,其理论输出力为多少?芽输出力是多少?将P、D连接,找出F、F′上的点,得:F=2800kgf;F′=2300kgf在工程设计时选择气缸缸径,可根据其使用压力和理论推力或拉力的大小,从经验表1-1中查出。
例:有一气缸其使用压力为5kgf/cm2,在气缸推出时其推力为132kgf,(气缸效率为85%)问:该选择多大的气缸缸径?●由气缸的推力132kgf和气缸的效率85%,可计算出气缸的理论推力为F =F′/85%=155(kgf)●由使用压力5kgf/cm2和气缸的理论推力,查出选择缸径为 63的气缸便可满足使用要求。
七、原因分析在气缸运行过程中,气缸渗漏和气缸变形是最为常见的设备问题,气缸结合面的严密性直接影响机组的安全经济运行,检修研刮气缸的结合面,使其达到严密,是气缸检修的重要工作,在处理结合面漏汽的过程中,要仔细分析形成的原因,根据变形的程度和间隙的大小,可以综合的运用各种方法,以达到结合面严密的要求。
原因如下:1.气缸是铸造而成的,气缸出厂后都要经过时效处理,就是要存放一些时间,使气缸在住铸造过程中所产生的内应力完全消除。
如果时效时间短,那么加工好的汽缸在以后的运行中还会变形,这就是为什么有的气缸在第一次泄漏处理后还会在以后的运行中还有漏汽发生。
因为气缸还在不断的变形。
2.气缸在运行时受力的情况很复杂,除了受气缸内外气体的压力差和装在其中的各零部件的重量等静载荷外,还要承受蒸汽流出静叶时对静止部分的反作用力,以及各种连接管道冷热状态下对气缸的作用力,在这些力的相互作用下,气缸发生塑性变形造成泄漏。
3.气缸的负荷增减过快,特别是快速的启动、停机和工况变化时温度变化大、暖缸的方式不正确、停机检修时打开保温层过早等,在汽缸中和发兰上产生很大的热应力和热变形。
4.气缸在机械加工的过程中或经过补焊后产生了应力,但没有对气缸进行回火处理加以消除,致使气缸存在较大的残余应力,在运行中产生永久的变形。
5.在安装或检修的过程中,由于检修工艺和检修技术的原因,使内缸、气缸隔板、隔板套及气封套的膨胀间隙不合适,或是挂耳压板的膨胀间隙不合适,运行后产生巨大的膨胀力使汽缸变形。
6.使用的气缸密封剂质量不好、杂质过多或是型号不对;气缸密封剂内若有坚硬的杂质颗粒就会使密封面难以紧密的结合。
7.气缸螺栓的紧力不足或是螺栓的材质不合格。
气缸结合面的严密性主要靠螺栓的紧力来实现的。
机组的起停或是增减负荷时产生的热应力和高温会造成螺栓的应力松弛,如果应力不足,螺栓的预紧力就会逐渐减小。
如果气缸的螺栓材质不好,螺栓在长时间的运行当中,在热应力和汽缸膨胀力的作用下被拉长,发生塑性变形或断裂,紧力就会不足,使气缸发生泄漏的现象。
8.气缸螺栓紧固的顺序不正确。
一般的气缸螺栓在紧固时是从中间向两边同时紧固,也就是从垂弧最大处或是受力变形最大的地方紧固,这样就会把变形最大的处的间隙向气缸前后的自由端转移,最后间隙渐渐消失。
如果是从两边向中间紧,间隙就会集中于中部,气缸结合面形成弓型间隙,引起蒸汽泄漏。
八、处理方法气缸结合面产生变形和泄漏的原因不同,而且出现的部位和变形泄漏的程度不也不同,首先要用长平尺和塞尺检查汽缸结合面的变形情况,在检修中要根据泄漏的原因和变形程度采取相应的检修措施。
具体方法如下:1.气缸变形较大或漏汽严重的结合面,采用研刮结合面的方法如果上缸结合面变形在0.05mm范围内,以上缸结合面为基准面,在下缸结合面涂红丹或是压印蓝纸,根据痕迹研刮下缸。
如果上缸的结合面变形量大,在上缸涂红丹,用大平尺研出痕迹,把上缸研平。
或是采取机械加工的方法把上缸结合面找平,再以上缸为基准研刮下缸结合面。
气缸结合面的研刮一般有两种方法:(1)是不紧结合面的螺栓,用千斤顶微微推动上缸前后移动,根据下缸结合面红丹的着色情况来研刮。
这种方法适合结构刚性强的高压缸。
(2)是紧结合面的螺栓,根据塞尺的检查结合面的严密性,测出数值及压出的痕迹,修刮结合面,这种方法可以排除汽缸垂弧对间隙的影响。
2.采用适当的气缸密封材料汽轮机气缸密封剂产品质量参差不齐;在选择汽轮机气缸密封剂时,就要选在行业内有口碑,产品质量有保证的正规生产厂家,以保证检修处理后汽缸的严密性。
3.局部补焊的方法由于气缸结合面被蒸汽冲刷或腐蚀出沟痕,选用适当的焊条把沟痕添平,用平板或平尺研出痕迹,研刮焊道和结合面在同一平面内。
气缸结合面变形较大或是漏气严重时,在下缸的结合面补焊一条或两条10—20mm宽的密消除间隙封带,然后用平尺或是扣上缸测量,并涂红丹研刮,直到消除间隙。
此操作的工艺也很简单,焊前预热气缸至150℃,然后在室温下进行分段退焊或跳焊。
选用奥氏体焊条,如A407、A412,焊后用石棉布覆盖保温缓冷。
待冷却室温后进行打磨修刮。
4.气缸结合面的涂镀或喷涂当气缸结合面大面积漏汽,间隙在0.50mm左右时,为了减少研刮的工作量,可用涂镀的工艺。
用气缸做阳极,涂具做阴极,在气缸的结合面上反复涂刷电解溶液,涂层的厚度要根据气缸结合面间隙的大小而定,涂层的种类要根据气缸的材料和修刮的工艺而定。
喷涂就是用专用的高温火焰喷枪把金属粉末加热至熔化或达到塑性状态后喷射于处理过的汽缸表面,形成一层具有所需性能的涂层方法。
其特点就是设备简单,操作方便涂层牢固,喷涂后汽缸温度仅为70℃—80℃不会使气缸产生变形,而且可获得耐热,耐磨,抗腐蚀的涂层。
注意的是在涂渡和喷涂前都要对缸面进行打磨、除油、拉毛,在涂渡和喷涂后要对涂层进行研刮,保证结合面的严密。
5.结合面加垫的方法如果结合面的局部间隙泄漏不是很大,可用80—100目的铜网经热处理使其硬度降低,然后剪成适当的形状,铺在结合面的漏汽处,再配以气缸密封剂。
如果结合面的间隙较大,泄漏严重,可在上下结合面开宽50mm深5mm的槽,中间镶嵌IGr18Ni9Ti的齿形垫,齿形垫的厚度一般比槽的深度大0.05—0.08mm左右,并可用同等形状的不锈钢垫片做以调整。
6.控制螺栓应力的方法如果气缸结合面的变形较小,而且很均匀,可在有间隙处更换新的螺栓,或是适当的加大螺栓的预紧力。
按从中间向两边同时紧固,也就是从垂弧最大处或是受力变形最大的地方紧固螺栓。
理论上来说,控制螺栓的预紧力可用公式d/L ≤A来计算,但由于此计算的数据与测量的手段还在研究当中,多在螺栓的允许的最大应力内根据经验而定。
九、气缸的应用领域印刷(张力控制)、半导体(点焊机、芯片研磨)、自动化控制、机器人等等。