楼板裂缝处理方案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
板裂缝原因分析
近段时间来 部分楼板下面局部出现了裂缝,通过从现场情况来看,楼板下面混凝土出现的裂缝现象主要是早期收缩裂缝,形成裂缝的主要原因是混凝土浇筑期间中午温度较高、昼夜温差较大,导致混凝土失水较快,收缩增大,极易形成早期塑性收缩裂缝,通过及时收压和养护可减少和避免此类裂缝现象发生,但这种裂缝对混凝土的结构强度不会造成影响。
1、 原因分析:
(1)、塑性收缩裂缝:
塑性收缩是混凝土在初凝前的塑性阶段失水形成的,一种情况是新浇筑的混凝土表面泌水,在室外会很快的蒸发;另一种情况是由于新拌混凝土颗粒之间的空间充满了水,浇筑后的混凝土表面受风吹、日晒、外部的高温度和低温度等因素的影响,随着混凝土表面水分的蒸发,内部水分逐渐向外部迁移,继续蒸发水分,造成混凝土在塑性阶段的体积收缩。塑性收缩一般可达新浇筑混凝土体积的1%左右,大流动性混凝土有时可达2%。在浇筑大面积平板(如楼板层)时,当表面日晒或风大,内部水分迁移速度小于上表面水分蒸发的速度时,混凝土表面的收缩应力远大于混凝土的抗拉强度,就会产生大量不规则微细裂缝,如不及时抹压和覆盖保水养护,此类裂缝会迅速向内部延
伸,严重时会造成贯通裂缝;
(2)、温差太大所致的收缩裂缝:
因混凝土在尚未形成一定强度以前自由水较多,在混凝土硬化初期(水泥水化阶段),需消耗量大量自由水,受环境温
度的大幅度变化影响,表面游离水分蒸发过快,水泥水化缺乏
必要的水化水,形成内外硬化不均和异常收缩,产生急剧的体
积收缩,此时混凝土早期强度低,不能抵抗这种应力而产生开
裂,特别是因昼夜温差较大,最易产生温差裂缝,因此环境温
差是导致混凝土裂缝的主要原因之一;
(3)、砂率偏大:
泵送砼为了满足泵送条件,砂率较自卸砼偏大、坍落度大,流动性好,易产生局部粗骨料少、砂浆多的现象,如因收压养护不及时,导致此时砼脱水干缩,尤其大流动性泵送砼更易引起裂缝;
(4)、干燥收缩裂缝:
混凝土硬化后,内部的游离水会由表及里逐渐蒸发,导致混凝土由表及里逐渐产生干燥收缩。在约束条件下,收缩变形导致的收缩应力大于混凝土的抗拉强度时,混凝土就会出现由表及里的干燥收缩裂缝。混凝土的干燥收缩是从施工阶段撤除养护时开始的,早期的收缩裂缝比较细微,往往不为人们所注意。随着时间的推移,混凝土的蒸发量和干燥收缩量逐渐增大,裂缝也明显起来,混凝土干燥收缩值的大小与混凝土的体积稳定性直接相关,并受环境相对湿度的影响。混凝土的诸多成分中,以粗骨料的体积稳定性最好,砂子次之。收缩变形主要发
生在水泥及掺和料构成的浆体和砂浆上。因此,在施工和易性允许的情况下,尽可能加大石子用量,降低砂率,降低用水量,对减少干燥收缩裂缝以及提高混凝土的稳定性、强度和耐久性都是有利的。
(5)、自生干缩裂缝
水泥在水化过程中不断消耗水分,当养护不良或混凝土内部水分不充分时,混凝土毛细孔中水分消耗过多,导致毛细孔内产生负压,引起混凝土内部出现自生干缩裂缝,由于常态混凝土的水胶比较高,混凝土内有较充裕的水分,一般不会发生自生干缩裂缝;而对于水灰比低于0.38的混凝土,内部往往产生大量自生干缩裂缝,导致早期混凝土体积收缩。在约束条件下,会引起混凝土产生表面裂缝。
(6)、其他失水收缩
混凝土暴露在空气中,空中的二氧化碳溶进孔隙溶液中成为碳酸,与孔隙溶液中的氢氧化钙反应生成碳酸钙和游离水,这些游离水蒸发导致混凝土体积收缩成为碳化收缩。又如受碳化或淡水腐蚀等原因致使混凝土空隙液中PH值降低,氢氧化钙量不足时,会有一部分CSH凝胶或水化铝酸钙分解,析出氢氧化钙,以补充体系中的碱度,分解过程中都同时产生游离水,这些游离水进一步蒸发都会导致混凝土体积收缩。这些收缩都发生在混凝土硬化后较长时间内,一般会使干燥收缩裂缝扩宽或向深处发展。
(7)、施工工艺的影响:
根据在现场对施工过程的观察,以及对现场拆模后砼的外观查看,发现以下几个问题:一是混凝土立模和振捣方面存在不足;二是混凝土的养护,养护不良,对混凝土整体质量影响十分显著,直接影响混凝土的抗裂能力;三是拆模时间,过早拆模以及在混凝土构件上过早从事后续工序,对混凝土强度的发展有一定影响,并导致裂缝的产生。下面主要就第二个影响因素养护进行深入的分析:通常,人们理解的养护主要是浇水。其实所谓养护不仅是保持足够的湿度以满足水化的要求,而且要在不同的环境温度下保持尽可能小的内外温差和恰当的升温、降温速率,温度控制不当时造成混凝土早开裂的重要原因之一,对于混凝土的自收缩,水养护和密封养护的效果是相同的,但肯定会因没有及时(从初凝开始)水养护或密封养护而加剧,减小混凝土自收缩的方法主要靠原材料和配合比来解决,但是干缩不同,混凝土浇筑后应及时(从初凝开始)补充水分,随着水泥水化的进行,混凝土不断密实并增长抵抗拉应力的能力,混凝土的干缩是因为环境湿度降低后硬化浆体失去毛细孔中的水分(环境湿度低于100%)和凝胶吸附水(环境湿度低于65%)而导致的,其中凝胶失去的水分大部分是不可逆的,也就是说所产生的收缩不可逆。水化程度越高,凝胶越多,则混凝土的不可逆
收缩也越大应水泥如果全部水化,则所产生的水泥凝胶不仅使混凝土达不到所需要的强度,而且还会产生很大的干缩而严重开裂,像混凝土中的骨料起稳定体积的作用一样,水泥石中需要一定量未水化颗粒或其他惰性物质来稳定体积,因此湿养护期才是正确的方法。适宜养护期的长短和混凝土配合比、环境温度、湿度及风速有关。水灰比越低,越需要及时加强外部补充水的养护,但养护时间可以短些;水灰比很大时,自由水分多,在相对湿度较大的潮湿地区,湿养护的影响不大,但养护时间要长才能使其渗透性稳定。掺用矿物掺和了的混凝土由于水胶比低,在相对湿度不足的情况下,反应很慢的掺和料如粉煤灰,表面的吸附水很容易蒸发而出现裂缝。和强度作用一样,粉煤灰的抗裂作用只有在低水灰比下加强保湿养护才能发挥出来。
《混凝土结构工程施工质量验收规范》(GB50204-2011)的7.4.1条规定,“混凝土强度达到1.2Mpa之前,不可在其上踩踏和安装模板、支架”预拌混凝土都采用了缓凝技术,一般初凝时间控制在6-8h,大体积混凝土在10-12h,有特殊要求的甚至可能达到16h以上,混凝土的初凝与终凝之间的间隔时间较短,约在1-2h左右,终凝后的混凝土强度开始增长,达到1.2Mpa需要一定的时间,这个时间因混凝土强度等级和环境条件(主要是气温)的差异而有所不同,为稳妥起见,日平均气温在25℃以上时在12-16h,低于25℃时,一般应按浇筑后24h后方可上人。
在终凝后上人作业(浇筑完毕刚踩不出脚印),或往工作面上吊运材料,人员和材料的重量通过本身还需要模板支撑的混凝土传到模板上,不但搅动了浇筑的混凝土,而模板和模板支撑特别是板的模板支撑在集中的、不均匀的、过大的施工荷载作用下,混凝土会因刚度不足而发生挠曲,特别是吊运材料时产生集中的冲击荷载,更会使刚度不足的模板产生振动,即使轻微的振动也会对初凝前后的混凝土产生严重的影响,引起肉眼可见的裂缝,也必然会引起肉眼不可见的细小裂缝,使结构受到损伤。
同时,施工验收规范(GB50204-2011)在4.2.1条规
定:“安装现浇结构的上层模板及其支架时,下层楼板应具有承受上层荷载的承载能力或加设支架,上、下层支架的立柱应对准,并铺设垫板。第4.3.5条规定“模板拆除时,不应对楼层形成冲击荷载,拆除时模板和支架宜分散堆放并及时清运。”如果不按上述条文操作,会导致混凝土板下面裂纹,这种裂缝具有板底裂缝较宽,由一点向外发散,贯通时板面裂缝较细小或未贯通但在板面上浇水时,板底发现湿痕或水滴的特征,这种因不当的施工荷载引起的裂缝在结构进入使用阶段时,可能会进一步发展,轻则造成明显的功能缺陷,严重时会降低结构的承载能