1.1 你能证明它们吗(二)

合集下载

北师大版九年级数学上册1.1你能证明它们吗(第二课时)课件

北师大版九年级数学上册1.1你能证明它们吗(第二课时)课件

探 索 新 知
2013年12月23日星期一
10:37:25
定理
有两个角相等的三角形是
等腰三角形.
可简述为:等角对等边.
如图,在ABC中, B C AC AB(等角对等边) ABC是等腰三角形


2013年12月23日星期一
10:37:25
在一个三角形中,如果两个角
不相等,那么,这两个角所对的边
10:37:25
请作出等腰三角形各角的平分线,
你发现了什么?
探 索 新 等腰三角形两底角的平分线相等. 知
你能证明这个结论吗?
2013年12月23日星期一 10:37:25
证明:等腰三角形两底角的平分线相 等.
已知:如图,在ABC中,AB AC, BD、CE是ABC的角平分线. 求证:BD CE.
你 信 吗 ?
也不相等.
2013年12月23日星期一
10:37:25
已知:如图,在ABC中,B C. 求证:AB AC.
你 行 吗 ?
2013年12月23日星期一
10:37:25
证明:假设AB AC. 那么,由“等边对等角”知C B, 这与已知条件“B C”矛盾. 故假设不成立. 所以,AB AC.
参 考 答 案
2013年12月23日星期一
10:37:25
证明: AB AC ACB ABC (等边对等角) BD、CE是ABC的中线 1 1 CD AC,BE AB(中线的性质) 2 2 CD BE (等量代换) 在DBC和ECB中 CD BE DCB EBC BC CB DBC ECB( SAS ) BD CE (全等三角形的对应边相等)

九年级数学(上册)第一章

九年级数学(上册)第一章

例题欣赏P 例题欣赏 211
例2 已知:如图6-14,在△ABC中, ∠1 是它的一个外角, E为边AC上一点,延长 2 BC到D,连接DE. C 求证: ∠1>∠2. 3 证明:∵ ∠1是△ABC的一个外角(已知), E 5 ∴ ∠1>∠3(三角形的一个外角大 于任何一个和 它不相邻的内角). 4 1 A B F ∵∠3是△CDE的一个外角 (外角定义). 把你所悟到的 证明一个真命 ∴∠3>∠2(三角形的一个外角大于 题的方法,步骤, 任何一个和 它不相邻的内角). 书写格式以及 注意事项内化 ∴ ∠1>∠2(不等式的性质). 为一种方法.
试一试P 试一试 213
你认识 外角吗? B
D E A
已知:如图所示. 求证:(1)∠BDC>∠A; (2) ∠BDC=∠A+∠B+∠C. 证明(1):∵ ∠BDC是△DCE的一个外角 C (外角意义),
∴ ∠BDC>∠CED(三角形的一个外角大于和它不相邻 的任何一个外角). ∵ ∠DEC是△ABE的一个外角 (外角意义), ∴ ∠DEC>∠A(三角形的一个外角大于和它不相邻的 任何一个外角). ∴ ∠BDC>∠A (不等式的性质).
九年级数学(上册) 第一章 证明(二)
1.你能证明它们吗(1) 证明(一)回顾与思考
回顾与思考
直观是把“双刃 剑”
直观是重要的,但它有时也会骗 人,你还能找到这样的例子吗?
a a b b a bc
驶向胜利 的彼岸
d
回顾与思考
“原名” 知多少
原名:某些数学名词称为原名. 定义:对名称和术语的含义加以描述,作出明确的规定,也 就是给出它们的定义(definition) . 命题:判断一件事情的句子,叫做命题(statement). 每个命题都由条件(condition)和结论(conclusion)两部 分组成.条件是已知事项,结论是由已事项推断出的事项. 一般地,命题可以写成“如果……,那么……”的形式,其 中“如果”引出的部分是条件,“那么”引出的部分是结论. 正确的命题称为真命题(true statement),不正确的的命 题称为假命题(false statement). 要说明一个命题是假命题,通常可以举出一个例子,使之 具备命题的条件,而不具备命题的结论,这种例子称为反例 (counter example).

北师大版九年级上册数学全册导学案

北师大版九年级上册数学全册导学案

第一章 证明(二)1.1你能证明它们吗(1) 目标导航1.了解作为证明基础的几条公理的内容;掌握证明的基本步骤和书写格式.2.能够用综合法证明等腰三角形的有关性质(等边对等角,三线合一). 基础过关1.边边边公理的内容是 .2.边角边公理的内容是 .3.角边角公理的内容是 .4.全等三角形的 相等, 相等.5.角角边推论的内容是 .6.三角形ABC 中,如果AB=AC ,则 .7.等腰三角形的 、 、 互相重合. 8.等边三角形的各边都 ,各角都是 . 能力提升9.下列说法中,正确的是( )A.两边及一角对应相等的两个三角形全等B.有一边对应相等的两个等腰三角形全等C.两边及其中一边上的中线对应相等的两个三角形全等D.两边对应相等的两个三角形全等10.若等腰△ABC 的顶角为∠A ,底角为∠B =α,则α的取值范围是( )A. α<45°B. α<90°C.0°<α<90°D.90°<α<180°11.△ABC 中, AB =AC , CD 是△ABC 的角平分线, 延长BA 到E 使DE =DC , 连结EC , 若 ∠E =51°,则∠B 等于( )A.68°B.52°C.51°D.78° 12.等腰三角形的顶角是n °,那么它的一腰上的高与底边的夹角等于( )A.290 n -B.90-2 nC.2n D.90°-n °13.等腰三角形的两边分别是7 cm 和3 cm ,则周长为_________.14.等腰三角形的一边长为23,周长为43+7,则此等腰三角形的腰长为_________. 15.如图,∆ABC 中,AB=AC, ∠BAD=︒30 ,AE=AD,则∠EDC= .EDCBA15题图 16题图16.如图,在△ABC 中,∠A =20°,D 在AB 上,AD =DC ,∠ACD ∶∠BCD =2∶3,求:∠ABC 的度数.17.已知:如图∆ABD 、∆ACE 都是等边三角形,求证:BE=DC.EDCBA18.如图,在∆ABC 中,AB=AC,点D 在AC 上,且BD=BC=AD,求∠ADB 的度数.DCBA聚沙成塔已知:如图,D 是等腰ABC 底边BC 上一点,它到两腰AB 、AC 的距离分别为DE 、DF.当D 点在什么位置时,DE=DF ?并加以证明.1.1你能证明它们吗(2)目标导航1.能够用综合法证明等腰三角形的有关性质.2.了解并能证明等腰三角形的判定定理.3.结合实例体会反证法的含义. 基础过关1.一个等腰三角形有一角是70°,则其余两角分别为_________.2.一个等腰三角形的两边长为5和8,则此三角形的周长为_________.3.等腰三角形两腰上的高相等,这个命题的逆命题是________________,这个逆命题是_________命题.4.在△ABC 中,AB=AC ,∠A=︒36,BD 是的角平分线,图中等腰三角形有( )A.1个B.2个C.3个D.4个5.在下列三角形中,若AB=AC ,则能被一条直线分成两个小等腰三角形的是( ) A.(1)(2)(3) B.(1)(2)(4) C.(2)(3)(4) D.(1)(3)(4)CAC BAC B AB AP EDCBA(1) (2) (3) (4) 7题图 能力提升6.三角形三边分别为a 、b 、c ,且a 2-bc =a (b -c ),则这个三角形(按边分类)一定是_________三角形.7.如图,在△ABC 中,BC=5cm,BP 、CP 分别是∠ABC 和∠ACB 的角平分线,且PD//AB ,PE//AC ,则△PDE 的周长是 .8.等腰△ABC 中,AC =2BC ,周长为60,则BC 的长为( )A.15B.12C.15或12D.以上都不正确 9.已知:如图,AB =AC ,DE ∥AC ,求证:△DBE 是等腰三角形.10.如图,△ABC 中,AB =AC ,∠1=∠2,求证:AD 平分∠BAC.11.用反证法证明:△ABC 中至少有两个角是锐角.12.如图,小明欲测量河宽,选择河流北岸的一棵树(点A )为目标,然后在这棵树得正南岸(点B )插一小旗作标志,从B 点沿南偏东︒60方向走一段距离到C 处,使∠ACB 为︒30,这时小明测得BC 的长度,认为河宽AB=BC ,他说得对吗?为什么?60︒CBA13.如图,在ABC Rt ∆中,∠CAB=︒90,AD ⊥BC 于D ,∠ACB 的平分线交AD 于E ,交AB 于F.求证:△AEF 为等腰三角形.F EDCBA14.如图,在△ABC 中,AB=AC,P 是BC 上一点,PE ⊥AB, PF ⊥AC,垂足为E 、F,BD 是等腰三 角形腰AC 上的高, ⑴求证:BD=PE +PF.⑵当点P 在BC 边的延长线上时,而其它条件不变,又有什么样的结论呢?请用文字加以说明本题的结论.聚沙成塔如图所示,点O 是等边△ABC 内一点,∠AOB=110。

初三数学上册全册教案(北师大版)

初三数学上册全册教案(北师大版)

初三数学上册全册教案(北师大版)北师大版九年级数学上全册精品教案第一证明(二)(时安排)1.你能证明它们吗?3时2.直角三角形2时3.线段的垂直平分线2时4.角平分线1时1你能证明它们吗?(一)教学目标:知识与技能目标:1.了解作为证明基础的几条公理的内容。

2.掌握证明的基本步骤和书写格式.过程与方法1.经历“探索——发现——猜想——证明”的过程。

2.能够用综合法证明等区三角形的有关性质定理。

情感态度与价值观1.启发、引导学生体会探索结论和证明结论,即合情推理与演绎推理的相互依赖和相互补充的辩证关系.2.培养学生合作交流、独立思考的良好学习习惯.重点、难点、关键1.重点:探索证明的思路与方法。

能运用综合法证明问题.2.难点:探究问题的证明思路及方法.3.关键:结合实际事例,采用综合分析的方法寻找证明的思路.教学过程:一、议一议:1.还记得我们探索过的等腰三角形的性质吗?2.你能利用已有的公理和定理证明这些结论吗?给出公理和定理:1.等腰三角形两腰相等,两个底角相等。

2.等边三角形三边相等,三个角都相等,并且每个角都等于延伸.二、回忆上学期学过的公理本套教材选用如下命题作为公理:1两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2两条平行线被第三条直线所截,同位角相等;3两边夹角对应相等的两个三角形全等; (SAS)4两角及其夹边对应相等的两个三角形全等; (ASA)三边对应相等的两个三角形全等; (SSS)6全等三角形的对应边相等,对应角相等三、推论两角及其中一角的对边对应相等的两个三角形全等。

(AAS)证明过程:已知:∠A=∠D,∠B=∠E,B=EF求证:△AB≌△DEF证明:∵∠A+∠B+∠=180°,∠D+∠E+∠F=180°(三角形内角和等于180°)∴∠=180°-(∠A+∠B)∠F=180°-(∠D+∠E)又∵∠A=∠D,∠B=∠E(已知)∴∠=∠F又∵B=EF(已知)∴△AB≌△DEF(ASA)推论等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。

1.1 你能证明它们吗 课件 北师大版九年级上

1.1 你能证明它们吗 课件  北师大版九年级上

含300角的直角三角形
1.已知:如图, 在△ABC中,∠ACB=900,∠A=300,CD⊥AB于D. AB 求证:BD=
4
分析:因为∠A=300,所以
C B A
BC=AB/2.要证明BD=AB/4,只 要能使BD=BC/2即可,此时若 ∠BCD=300就可以了.而由“ 双垂直三角形”即可求得.
D
0
定理:在直角三角形中, 如果一条直角边等于 斜边的一半,那么它所对的锐角等于300.
符号表述:在△ABC中 ∵∠ACB=900,BC=AB/2(已知), ∴∠A=300(在直角三角形中,如果 一条直角边等于斜边的一半,那么 它所对的锐角等于300).
A
B
300

C
这是一个通过线段之间的关系 来判定一个角的具体度数(300) 的根据之一.
试一试P14 2
1.如图(1):四边形ABCD是一张正方形纸片,E,F分别 是AB,CD的中点,沿着过点D的折痕将A角翻折,使得 A落在EF上(如图(2)), 折痕交AE于点G,那么∠ADG 等于多少度?你能证明你的结论吗?
B E A C F D B E A G (1) A (2) D C F
试一试P14 2
A
600
B
600
600
C
这是判定等边三角形的根据之一.
操作:用两个含有300角的三角尺,
你能拼成一个怎样的三角形?
300 300 300 300 300 300
能拼出一个等边三角形吗?说说你的理由. 在直角三角形中, 300角所对的直角边与斜边 有怎样的大小关系?
结论: 在直角三角形中, 300角所对的直角边 等于斜边的一半.
A
证明:∵∠A=∠B (已知), ∴ BC=AC,(等角对等边). B C 又∵∠B=∠C(已知), ∴ AB=AC,(等角对等边). ∴AB=BC=AC(等式性质). ∴ △ABC是等边三角形(等边三角形意义).

你能证明它们吗(二)(2019年9月)

你能证明它们吗(二)(2019年9月)
§1.1你能证明它们吗?(二)
在等腰三角形中作出一些线段(如角平分线、 中线、高等),你能发现其中一些相等的线段 吗?你能证明你的结论吗?
例1 证明:等腰三角形两底角的平分线相等 已知:如图,在△ABC中,AB=AC,BD,CE是 △ABC的角平分线 求证:BD=CE
证明:
; 燕窝怎么炖 燕窝价格 / 印尼燕窝 燕窝食谱 燕窝什么时候吃
;
;ห้องสมุดไป่ตู้
郦道元为行台 "稚答曰 蠕蠕世为边害 舆驾所过 累石记行 称朕意焉 尽仰还其家 夙夜兢兢 加征东大将军 妻兴德兄兴恩以报之 "夫婚姻者 雍州刺史萧宝夤据州反 太祖赐名焉 蒲坂一陷 并赐死 调折来岁之资 章安子陆丽为平原王 以州镇五蝗 欲以天子自处 何必改作也 北齐·魏收卷五 皆蒙显擢 "朕每岁以秋日闲月 田亩多荒 天所命也 水 是月 "莫有对者 疏勒国遣使朝献 昌邑侯和天德使于刘骏 乃有数四 更听后敕 改年 封皇弟小新成为济阴王 食不兼味 十有二月戊申 诏曰 舆驾还宫 常参决可否 镇虎牢;崔浩之诛也 乃诏群官仰射山峰 见于乌渥 秋七月戊寅 进爵为王 寻改冯翊王 嵩与 平阳王长孙翰 二月癸未 皇妣薨 三月甲申 除雍州刺史 敦煌公李宝薨 二月己酉 无罪者妄受其辜 稚后殿 讳浚 既长 甲申 使上恩不达于下 云中 起堂庑 申告天下 太祖承大统 巨细同贯 嵩宽雅有器度 而深文极墨 遣使者安慰之 从高祖南讨 字念僧 高宗兴时消息 保达 录尚书事 罢大使 二月丁巳 遂平其国 立皇子弘为皇太子 因大傩耀兵 嵩等曰 秋八月甲申 秋七月乙丑 五月壬辰 庙号高宗 "八月丙寅 三年春正月壬戌 各具以名上 求欲无厌 蠲除烦苛 员外郎昌邑侯和天德使于刘骏 曲赦京师 洛侯为广平王 见太祖于三汉亭 恭宗景穆皇帝之长子也 "大檀迁徙鸟逝 有故冢毁废 自今常调不充

《你能证明它们吗》证明PPT课件2 (共16张PPT)

《你能证明它们吗》证明PPT课件2 (共16张PPT)
10
议一议
论证命题的新思维与新方法
小明说, 在一个三角形中,如果两个角不相等, 那么这两个角所对的边也不相等. 即 在△ABC中, 如果∠B≠∠C, 那么AB≠AC.
想一想
A
C
B
你认为这个结论成立吗? 如果成立,你能证明它吗?
小明 是这 样想 的:
如图,在△ABC中,已知∠B≠∠C, 此时,AB与AC要么相等,要么不相等. 假设AB=AC, 那么根据“等角对 等边”定理可得∠B=∠C, 但已知条件是 ∠B≠∠C. “∠B=∠C”与“∠B≠∠C”相矛盾, 因此, AB≠AC. 你能理 解他的 证明过 程吗?
2019年1月20日星期日
13
用反证法证题的一般步骤
1. 假设: 先假设命题的结论不成立;
2. 归谬: 从这个假设出发,应用正确的推论方法,
得出与定义,公理、已证定理或已知条件 相矛盾的结果; 3. 结论: 由矛盾的结果判定假设不正确, 从而肯定命题的结论正确.
2019年1月20日星期日
14
顶角

底角 底角 底边 A C

2019年1月20日星期日
B
D
C
2
”三线合一“的三种语言 及 条件的轮换
A 【性质定理的推论】 等腰三角形顶角的平分线、 底边上的中线、底边上的高 图形语言 互相重合。 1 2 (简称:“三线合一”) 高线 ? B C 如图,在△ABC中, 符号语言 D ∵AB=AC, ∠1=∠2 (已知). 轮换条件∠1=∠2, ∴BD=CD,AD⊥BC (三线合一). BD=CD,AD⊥BC 中线 ? 可得三线合一的三种 符号语言 如图,在△ABC中, 不同形式的运用. ∵AB=AC, BD=CD (已知). 左边方框中的的格 ∴∠1=∠2,AD⊥BC(三线合一). 式,以后可以直接运用.

北师大版九年级数学上册全册教案

北师大版九年级数学上册全册教案

6
2011 年北师大版九年级数学上册全册教案
备课教师:dyj
课题 教学目标 教学重点
1.2、直角三角形(一)
课型
新授课
1、要求学生掌握直角三角形的性质定理(勾股定理)和判定定理,并能应用
定理解决与直角三角形有关的问题。
2、了解逆命题、互逆命题及逆定理、互逆定理的含义,能结合自己的生活
及学习体验举出逆命题、互逆命题及逆定理、互逆定理的例子。
在哪里。
2.高度评价学生的参与热情和学习成果, 2.受到老师的表扬和鼓励,很有成就感,
激励学生继续努力。可以把其中很有创意 增加了学习 趣。
的积极性。
3.总结学生的“成果”,启发学生思考既 3.听取老师的分析,找出自己“成果”的
然学生所找的三角形同属直角类,那么它 优缺点;积极思考直角三角形的共性,有些
已知:如图,在 ABC 中,AB=AC。
A
让同学们
求证:∠B=∠C
通过探索、
证明:取 BC 的中点 D,连接 AD。
合作交流
∵AB=AC,BD=CD,AD=AD,
找出其他
∴△ABC△≌△ACD (SSS)
B
D
C 的证明方
∴∠B=∠C (全等三角形的对应边角相等)

四、想一想:
在上图中,线段 AD 还具有怎样的性质?为什么?由此你能得到什么结论? 学生回顾
腰三角形是等边三角形。
二、一种特殊直角三角形的性质
1.积极动手操作,并很快得到结果:可以拼
1.让学生拼摆事先准备好的三角尺,提问: 出等边三角形。
能拼成一个怎样的三角形?能否拼出一个
等边三角形?并说明理由。
2.在拼摆的基础上继续探索,得出结论。并

你能证明它们吗ppt2 北师大版

你能证明它们吗ppt2 北师大版

2.如图,在三角形ABD中,C是BD上 的一点, 且AC垂直BD,AC=BC=CD. (1) 求证:△ABD是等腰三角形
A
(2)求∠ABD的度数
B D
C

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
46.凡事不要说"我不会"或"不可能",因为你根本还没有去做! 47.成功不是靠梦想和希望,而是靠努力和实践. 48.只有在天空最暗的时候,才可以看到天上的星星. 49.上帝说:你要什么便取什么,但是要付出相当的代价. 50.现在站在什么地方不重要,重要的是你往什么方向移动。 51.宁可辛苦一阵子,不要苦一辈子. 52.为成功找方法,不为失败找借口. 53.不断反思自己的弱点,是让自己获得更好成功的优良习惯。 54.垃圾桶哲学:别人不要做的事,我拣来做! 55.不一定要做最大的,但要做最好的. 56.死的方式由上帝决定,活的方式由自己决定! 57.成功是动词,不是名词! 28、年轻是我们拼搏的筹码,不是供我们挥霍的资本。 59、世界上最不能等待的事情就是孝敬父母。 60、身体发肤,受之父母,不敢毁伤,孝之始也; 立身行道,扬名於后世,以显父母,孝之终也。——《孝经》 61、不积跬步,无以致千里;不积小流,无以成江海。——荀子《劝学篇》 62、孩子:请高看自己一眼,你是最棒的! 63、路虽远行则将至,事虽难做则必成! 64、活鱼会逆水而上,死鱼才会随波逐流。 65、怕苦的人苦一辈子,不怕苦的人苦一阵子。 66、有价值的人不是看你能摆平多少人,而是看你能帮助多少人。 67、不可能的事是想出来的,可能的事是做出来的。 68、找不到路不是没有路,路在脚下。 69、幸福源自积德,福报来自行善。 70、盲目的恋爱以微笑开始,以泪滴告终。 71、真正值钱的是分文不用的甜甜的微笑。 72、前面是堵墙,用微笑面对,就变成一座桥。 73、自尊,伟大的人格力量;自爱,维护名誉的金盾。 74、今天学习不努力,明天努力找工作。 75、懂得回报爱,是迈向成熟的第一步。 76、读懂责任,读懂使命,读懂感恩方为懂事。 77、不要只会吃奶,要学会吃干粮,尤其是粗茶淡饭。 78、技艺创造价值,本领改变命运。 79、凭本领潇洒就业,靠技艺稳拿高薪。 80、为寻找出路走进校门,为创造生活奔向社会。 81、我不是来龙飞享福的,但,我是为幸福而来龙飞的! 82、校兴我荣,校衰我耻。 83、今天我以学校为荣,明天学校以我为荣。 84、不想当老板的学生不是好学生。 85、志存高远虽励志,脚踏实地才是金。 86、时刻牢记父母的血汗钱来自不易,永远不忘父母的养育之恩需要报答。 87、讲孝道读经典培养好人,传知识授技艺打造能人。 88、知技并重,德行为先。 89、生活的理想,就是为了理想的生活。 —— 张闻天 90、贫不足羞,可羞是贫而无志。 —— 吕坤

1.1 你能证明它们吗 PPT课件2

1.1 你能证明它们吗 PPT课件2

∴BD=CD, ∠1=∠2 (三线合一).
2020年9月30日星期三
3
本节课学些什么?
•等腰三角形还具有哪些重要的性质? •除了用定义来判定三角形是等腰三 角形外, 还有一些什么简单的方法来 判定三角形是等腰三角形? 这就是本节课的学习的主要内容。
2020年9月30日星期三
4
实践观察猜想证明
画一画 先画一个等腰三角形,
请与同伴交流你的做法.
如:作BC边上的中线;
B
C
作∠A的平分线或作BC边上的高.
结论 有两个角相等的三角形是等腰三角形(等角对等边).
在△ABC中 ∵∠B=∠C(已知), ∴AB=AC(等角对等边).
2020年9月30日星期三
这又是一个判定两条线 段相等的依据之一.
10
论证命题的新思维与新方法
想一想
9
等腰三角形பைடு நூலகம் 判 定 定 理
议一议
2. 前面已经证明了“等边对等角”,反 过来,“等角对等边”吗?
即有两个角相等的三角形是等腰三角形吗?
已知: 如图, 在△ABC中, ∠B=∠C.
A
求证: AB=AC.
分析: 要证明AB=AC,只要能构造出AB,AC所

在的两个三角形全等就可以了. 你是如何思考的?
∵ BC=CB(公共边), ∠MCB=∠NBC(已知), CM=BN(已证),
∴△BMC≌△CNB(SAS).
2020年9月3∴0日B星M期三=CN (全等三角形的对应边相等)
A
NM
B
C
7
“等腰三角形两腰上的高相等”的证明
证明: 等腰三角形两腰上的高相等.
已知: 如图, 在△ABC中, AB=AC,BP,CQ是△ABC两腰上的高.

你能证明它们吗ppt9 北师大版

你能证明它们吗ppt9 北师大版

B
C
这又是一个判定两条线段相等方法之一.
想一想
小明说,在一个三角形中,如果 两个角不相等,那么这两个角所对的 边也不相等。你认为这个结论成立吗? 如果成立,你能证明它吗?
小明是这样想的:如上 图,在△ABC中,已知 ∠B≠ ∠C,此时AB与 AC要么相等,要么不 想等。假设AB=AC,那 么根据“等边对等角” 定理可得,∠C=∠B, 但已知条件是 ∠ B≠∠C。“∠C=∠B” 与已知条件 “∠B≠∠C”相矛盾, 因此,AB≠AC。
46.凡事不要说"我不会"或"不可能",因为你根本还没有去做! 47.成功不是靠梦想和希望,而是靠努力和实践. 48.只有在天空最暗的时候,才可以看到天上的星星. 49.上帝说:你要什么便取什么,但是要付出相当的代价. 50.现在站在什么地方不重要,重要的是你往什么方向移动。 51.宁可辛苦一阵子,不要苦一辈子. 52.为成功找方法,不为失败找借口. 53.不断反思自己的弱点,是让自己获得更好成功的优良习惯。 54.垃圾桶哲学:别人不要做的事,我拣来做! 55.不一定要做最大的,但要做最好的. 56.死的方式由上帝决定,活的方式由自己决定! 57.成功是动词,不是名词! 28、年轻是我们拼搏的筹码,不是供我们挥霍的资本。 59、世界上最不能等待的事情就是孝敬父母。 60、身体发肤,受之父母,不敢毁伤,孝之始也; 立身行道,扬名於后世,以显父母,孝之终也。——《孝经》 61、不积跬步,无以致千里;不积小流,无以成江海。——荀子《劝学篇》 62、孩子:请高看自己一眼,你是最棒的! 63、路虽远行则将至,事虽难做则必成! 64、活鱼会逆水而上,死鱼才会随波逐流。 65、怕苦的人苦一辈子,不怕苦的人苦一阵子。 66、有价值的人不是看你能摆平多少人,而是看你能帮助多少人。 67、不可能的事是想出来的,可能的事是做出来的。 68、找不到路不是没有路,路在脚下。 69、幸福源自积德,福报来自行善。 70、盲目的恋爱以微笑开始,以泪滴告终。 71、真正值钱的是分文不用的甜甜的微笑。 72、前面是堵墙,用微笑面对,就变成一座桥。 73、自尊,伟大的人格力量;自爱,维护名誉的金盾。 74、今天学习不努力,明天努力找工作。 75、懂得回报爱,是迈向成熟的第一步。 76、读懂责任,读懂使命,读懂感恩方为懂事。 77、不要只会吃奶,要学会吃干粮,尤其是粗茶淡饭。 78、技艺创造价值,本领改变命运。 79、凭本领潇洒就业,靠技艺稳拿高薪。 80、为寻找出路走进校门,为创造生活奔向社会。 81、我不是来龙飞享福的,但,我是为幸福而来龙飞的! 82、校兴我荣,校衰我耻。 83、今天我以学校为荣,明天学校以我为荣。 84、不想当老板的学生不是好学生。 85、志存高远虽励志,脚踏实地才是金。 86、时刻牢记父母的血汗钱来自不易,永远不忘父母的养育之恩需要报答。 87、讲孝道读经典培养好人,传知识授技艺打造能人。 88、知技并重,德行为先。 89、生活的理想,就是为了理想的生活。 —— 张闻天 90、贫不足羞,可羞是贫而无志。 —— 吕坤

你能证明它们吗(共17张PPT)

你能证明它们吗(共17张PPT)

思考
如图,在Rt△ABC中,∠C=90°,经
过点B的一直线BE折叠这个三角形,使 2、若等腰三角形的腰长为6,腰上的高为3,则此等腰三角形的顶角为_____.
若PB=3,则PP′=_____. 4、如图,P是等边三角形ABC内一点,将△ABP绕点B顺时针方向旋转60°,得到△CBP′.
如图,O是△ABC的∠ABC与∠ACB的平分线的交点,DE∥BC交AB于点D,交AC于点E.
∴∠DAC= ∠ABC+∠ACB 当如图∠A,满在足△什A么BC条中件,时∠A,C点B=D9恰0°好,为∠AA=B3的0°中,点则?∠B写=6出0°一.个
∵若P∠BA=B3C,=则∠APCPB′==_1_5__°,_. 小(B)明有根一据个两角个等三于6角0尺°的拼等出腰的三图角形形发现了结论,并证明如下:
任意一点,点N是射线CA上任意一点,
且BM=CN,直线BN与AM相交于点Q.就
下面给出的三种情况,先用量角器分别
测量∠BQM的大小,然后猜测∠BQM等
于多少度.并且选取其中的某一图证明你的
结论。
A
N
Q A
A
N
Q
B
M
N CB
Q
M
CB
CM
作业
A
P
B
C
P′
感悟与反思
定理 有一个角等于60°的等腰 三角形是等边三角形.
定理 三个角都相等的三角形是 等边三角形。
感悟与反思
定理 在直角三角形中,如果一 个锐角等于30°,那么他所对 的直角边等于斜边的一半.
定理 在直角三角形中,如果一 条直角边等于斜边的一半,那 么这条直角边所对的锐角等于 30°.
∴如C果D一= 个12A锐C=角等12×于2a3=0a°(在,直那角么三它角所形对中的, 直角边等与斜边的一半).

1.1你能证明它们吗(2)

1.1你能证明它们吗(2)

∵AB=AC, ∠1=∠2(已知). ∴BD=CD,AD⊥BC(等腰三角形三线合一).
∵AB=AC, BD=CD (已知). ∴∠1=∠2,AD⊥BC(等腰三角形三线合一) ∵AB=AC, AD⊥BC(已知). ∴BD=CD, ∠1=∠2(等腰三角形三线合一)
轮换条件∠1=∠2, AD⊥BC,BD=CD,可得三线合一的 三种不同形式的运用.
1.证明:等边三角形的三个角都相等,并且 每个角都等于60°.
2.如图,在三角形ABD中,C是BD上的一点, 且AC垂直BD,AC=BC=CD. (1) 求证:△ABD是等腰三角形 (2)求∠ABD的度数
A
B
C
D
开拓思维
1.将下面证明中每一步的理由写在括号内: 已知:如图,AB=CD,AD=CB. 求证:∠A=∠C.
A
●●
B′
C

●●
C′
驶向胜利 的彼岸
回顾与思考 6
几何的三种语言
B
推论: 两角及其一角的对边对应相 等的两个三角形全等(AAS).

在△ABC与△A′B′C′中 ∵∠A=∠A′ ∠C=∠C′ A′ AB=A′B′ ∴△ABC≌△A′B′C′(AAS).
A

●●
B′
C

●●
C′
证明后的结论,以后可以直接运用.
证明:连接BD, 在△BAD和△DCB中, ∵ AB=CD( AD=CB( BD=DB( ∴ △BAD≌ △DCB( ∴ :∠A=∠C (
A
D
) ) )B ) )
C
2.已知:如图,点B,E,C,F在同一条直线 上,AB=DE,AC=DF,BE=CF. 求证:∠A=∠D
A D

你能证明它们吗 PPT课件 2 北师大版

你能证明它们吗 PPT课件 2 北师大版


18、励志照亮人生,创业改变命运。

19、就算生活让你再蛋疼,也要笑着学会忍。

20、当你能飞的时候就不要放弃飞。

21、所有欺骗中,自欺是最为严重的。

22、糊涂一点就会快乐一点。有的人有的事,想得太多会疼,想不通会头疼,想通了会心痛。

23、天行健君子以自强不息;地势坤君子以厚德载物。

24、态度决定高度,思路决定出路,细节关乎命运。

52、思想如钻子,必须集中在一点钻下去才有力量。

53、年少时,梦想在心中激扬迸进,势不可挡,只是我们还没学会去战斗。经过一番努力,我们终于学会了战斗,却已没有了拼搏的勇气。因此,我们转向自身,攻击自己,成为自己最大的敌人。

54、最伟大的思想和行动往往需要最微不足道的开始。

55、不积小流无以成江海,不积跬步无以至千里。
主动探究
A
推论: 等腰三角形的顶角
的平分线、底边上的中线、 1 2
底边上的高互相重合。
B
D
C
这个推论通常简述为“三线
合一”。
知识的巩固
◆证明一个命题的一般步骤: (1)弄清题设和结论; (2)根据题意画出相应的图形; (3)根据题设和结论写出已知,求证; (4)分析证明思路,写出证明过程.
探索与拓展

56、远大抱负始于高中,辉煌人生起于今日。

57、理想的路总是为有信心的人预备着。

58、抱最大的希望,为最大的努力,做最坏的打算。

59、世上除了生死,都是小事。从今天开始,每天微笑吧。

60、一勤天下无难事,一懒天下皆难事。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求证:等腰三角形两腰上的高相等. A
P C
驶向胜 利的彼 岸
议一议
1
学无止境
1.已知:如图,在△ABC中, (1)如果∠ABD=∠ABC/3,∠ACE=∠ACB/3呢? 由此你能 得到一个什么结论? (2)如果AD=AC/3,AE=AB/3呢? 由此你能得到一个什么 结论? A 你能证明得到的结论吗?
下课了!
结束寄语
• 严格性之于数学家,犹如道德之 于人. • 证明的规范性在于:条理清晰 ,因果相应,言必有据.这是初 学证明者谨记和遵循的原则.
● ●
我能行
1
命题的证明
求证:等腰三角形两腰上的中线相等. A 已知:如图,在△ABC中,AB=AC,BM,CN是 △ABC两腰上的中线. M N 求证:BM=CN. 证明:∵AB=AC(已知), B C ∴∠ABC=∠ACB(等边对等角). 1 1 又∵CM= 2 AC,BN= 2 AB(已知), ∴CM=BN(等式性质). 在△BMC与△CNB中 ∵ BC=CB(公共边), ∠MCB=∠NBC(已知), CM=BN(已证), 驶向胜利 ∴△BMC≌△CNB(SAS). 的彼岸 ∴BM=CN(全等三角形的对应边相等)
1.1 你能证明它们吗(二)
知识要点:
结论1: 等腰三角形腰上的高线与底边的夹角等于 顶角的一半. 结论2:等腰三角形底边上的任意一点到两腰的距 离之和等于一腰上的高
定理: 等腰三角形的两个底角相等 简称:等边对等角
推论: 等腰三角形顶角的平分线、底边上的中线、底边上的高线 互相重合 (三线合一)
驶向胜利 的彼岸
议一议
3
几何的三种语言
定理: 有两个角相等的三角形是等腰三角形(等角对等边).

在△ABC中 ∵∠B=∠C(已知), ∴AB=AC(等角对等边).
B
A
C
这又是一个判定两条线段相等方法之一.
驶向胜利 的彼岸
1.如图,△ABC中,D.E分别是AC.AB上的点,BD与CE交于 点O,给出下列四个条件:①∠EBO=∠DCO ②∠BEO=∠CDO ③BE=CD ④OB=OC
驶向胜利 的彼岸
证明命题的 新思路
开启
智慧
学无止境
A
小明说,在一个三角形中, 如果两个角所对的边不相 等,那么这两个角也不相等.C


●●
B
即在△ABC中,如果AB≠AC,那么∠B≠∠C. 你认为这个结论成立吗? 如果成立,你能证明它吗?
开启
智慧
学无止境
A

●●
小明是这样想的:
C
B
假设∠B=∠C, 那么根据“等角对等边 ” 得AB=AC,与已知条件是AB≠AC相矛 盾 因此假设不成立,原命题成立 即∠B≠∠C. 你能理解他的推理过程吗?
(1)上述四个条件中,哪两个条件可判定△ABC是等腰三角形 (用序号写出所有情形) (2)选择的1小题的一种情形,证明△ABC是等腰三角形.
A
E
O
D C
①③; ①④; ②③; ②④
B
2.现有等腰三角形纸片,如果能从一个角的顶点出 发,将原纸片一次剪开成两块等腰三角形纸片,问此 时的等腰三角形的顶角的度数?
知识要点:
结论3:等腰三角形两底角的平分线相等.
结论4:等腰三角形两腰的高线、中线分别相等. 定理:有两个角相等的三角形是等腰三角形. 简称:等角对等边.
•反证法认识你吗?
小结
拓展
回味无穷
• 理解证明的必要性和规范性. • 理解几何命题证明的方法,步骤,格式及注意事 项. • 你对“执果索因”,“由因导果”理解与运用有 何进步. • 规范性中的条理清晰,因果相应,言心有据的要 求是否内化为一种技能. • 几何的三种语言融会贯通的水平是否有所提高. • 关注知识,经验,方法的积累和提高,是前进的 推进器. • 你准备如何提高证明命题的能力呢?
驶向胜 利的彼 岸
开启
智慧
反证法
假设 先假设命题的结论反面成立, 然后推导出与定义,公理、已证定理或 归谬 已知条件相矛盾的结果, 所以假设不成立,原命题成立
这种证明方法称为反证法 (reduction to absurdity) 反证法是一种重要的数学证明方法. 在解决某些问题时常常会有出人意 料的作用.
隋堂练习P91
成功者的摇篮
1.用反证法证明:一个三角形中不能有两个角是直角 已知:△ABC. 求证:∠A、∠B、∠C中不能有两个角是直角.
证明:假设∠A、∠B、∠C中有两个角是直角, 不妨设∠A=∠B=90°,则 ∠A+∠B+∠C=90°+90°+∠C>180°. 这与三角形内角和定理矛盾, 所以∠A=∠B=90°不成立. 所以一个三角形中不能有两个角是直角.
你可要结识“反证法”这个新朋友 噢!
结论
心动
不如行动
初露锋芒
例1.如何证明这个结论: 如果a1,a2,a3,a4,a5都是正数,且 a1+a2+a3+a4+a5=1,那么,这五个数中至少 有一个大于或等于1/5. 用反证法来证: 证明:假设这五个数全部小于1/5,那么这五 个数的和a1+a2+a3+a4+a5就小于1.这与已知 这五个数的和a1+a2+a3+a4+a5=1相矛盾.因此 假设不成立, 原命题成立,即这五个数中至 少有下个大于或等于1/5.

这里是一个由特殊结 论归纳出一般结论的 一种数学思想方法.
E B


D C
驶向胜利 的彼岸
等腰三角形的判 议一议 2 定 前面已经证明了“等边对等角”,反过来,
“等角对等边”成立吗? 即有两个角相等的三角形是等腰三角形吗?
A
已知:如图,在△ABC中,∠B=∠C. 求证:AB=AC.

B
C
如:作BC边上的中线; 作∠A的平分线 作BC边上的高.
公理:三边对应相等的两个三角形全等(SSS) 公理:两边及其夹角对应相等的两个三角形全等.(SAS) 公理:两角及其夹边对应相等的两个三角形全等(ASA) 公理:全等三角形的对应边、对应角相等。
推论:两角及其中一角的对应边相等的两个三角形全等(AAS)
例题欣赏
1
命题的证明
例1 求证:等腰三角形两底角的平分线相等. 已知:如图,在△ABC中,AB=AC,BD,CE是△ABC角平分线. A 求证:BD=CE. 证明:∵AB=AC(已知), E D ∴∠ABC=∠ACB(等边对等角). 1 1 又∵∠1= ∠ABC,∠2= ∠ACB(已知), B 1 2 C 2 2 ∴∠1=∠2(等式性质). 在△BDC与△CEB中 ∵∠DCB=∠ EBC(已知), BC=CB(公共边), ∠1=∠2(已证), ∴△BDC≌△CEB(ASA). 驶向胜利 ∴BD=CE(全等三角形的对应边相等) 的彼岸
我能行
2
命题的证明
已知:如图,在△ABC中,AB=AC,BP,CQ是 △ABC两腰上的高. Q 求证:BP=CQ. 证明:∵AB=AC(已知), B ∴∠ABC=∠ACB(等边对等角). 又∵ BP,CQ是△ABC两腰上的高(已知), ∴∠BPC=∠CQB=900(高的意义). 在△BPC与△CQB中 ∵∠BPC=∠CQB(已证), ∠PCB=∠QBC(已证), BC=CB(公共边), ∴△BPC≌△CQB(AAS). ∴BP=CQ(全等三角形的对应边相等)
36°90°108°
开启
智慧
路边苦李 古时候有个人叫王戍,7岁那年的某一 天和小朋友在路边玩,看见一棵李子树上 的果实多得把树枝都快压断了,小朋友们 都跑去摘,只有王戍站着没动。小朋友问 他为何不去摘,他说:“树长在路边,如 果李子是甜的,那么早没了,现在李子那么 多,肯定李子是苦的,不好吃。”小朋友 摘来一尝,李子果然苦用反证法证明:在一个三角形中,至少有一个内 角小于或等于60°
证明: 假设∠A ,∠B, ∠C是△ABC的三个内角, 且都大于60°, 则∠A> 60°,∠B > 60°, ∠C> 60°, ∴ ∠A+∠B+∠C>180°; 这与三角形的内角和是180定理矛盾 ∴假设不成立 ∴在一个三角形中,至少有一个内角小于或等于60°.
相关文档
最新文档