高中物理复习专题 动量与能量

合集下载

高中物理公式大全(全集)八动量与能量

高中物理公式大全(全集)八动量与能量

高中物理公式大全(全集)八动量与能量1.动量 2.机械能1.两个〝定理〞〔1〕动量定理:F ·t =Δp 矢量式 (力F 在时刻t 上积存,阻碍物体的动量p ) 〔2〕动能定理:F ·s =ΔE k 标量式 (力F 在空间s 上积存,阻碍物体的动能E k )动量定理与动能定理一样,差不多上以单个物体为研究对象.但所描述的物理内容差不极大.动量定理数学表达式:F 合·t =Δp ,是描述力的时刻积存作用成效——使动量变化;该式是矢量式,即在冲量方向上产生动量的变化.例如,质量为m 的小球以速度v 0与竖直方向成θ角打在光滑的水平面上,与水平面的接触时刻为Δt ,弹起时速度大小仍为v 0且与竖直方向仍成θ角,如下图.那么在Δt 内:以小球为研究对象,其受力情形如下图.可见小球所受冲量是在竖直方向上,因此,小球的动量变化只能在竖直方向上.有如下的方程:F ′击·Δt -mg Δt =mv 0cos θ-〔-mv 0cos θ〕小球水平方向上无冲量作用,从图中可见小球水平方向动量不变.综上所述,在应用动量定理时一定要专门注意其矢量性.应用动能定理时就无需作这方面考虑了.Δt 内应用动能定理列方程:W 合=mυ02/2-mυ02 /2 =02.两个〝定律〞〔1〕动量守恒定律:适用条件——系统不受外力或所受外力之和为零公式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2 ′或 p =p ′〔2〕机械能守恒定律:适用条件——只有重力〔或弹簧的弹力〕做功公式:E k2+E p2=E k1+E p1 或 ΔE p = -ΔE k3.动量守恒定律与动量定理的关系一、知识网络二、画龙点睛 规律动量守恒定律的数学表达式为:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′,可由动量定理推导得出. 如下图,分不以m 1和m 2为研究对象,依照动量定理:F 1Δt = m 1v 1′- m 1v 1 ①F 2Δt = m 2v 2′- m 2v 2 ②F 1=-F 2 ③∴ m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ 可见,动量守恒定律数学表达式是动量定理的综合解.动量定理能够解决动量守恒咨询题,只是较苦恼一些.因此,不能将这两个物理规律孤立起来.4.动能定理与能量守恒定律关系——明白得〝摩擦生热〞(Q =f ·Δs )设质量为m 2的板在光滑水平面上以速度υ2运动,质量为m 1的物块以速度υ1在板上同向运动,且υ1>υ2,它们之间相互作用的滑动摩擦力大小为f ,通过一段时刻,物块的位移为s 1,板的位移s 2,现在两物体的速度变为υ′1和υ′2由动能定理得:-fs 1=m 1υ1′2/2-m 1υ12/2 ①fs 2=m 2υ2′2/2-m 2υ22/2 ②在那个过程中,通过滑动摩擦力做功,机械能不断转化为内能,即不断〝生热〞,由能量守恒定律及①②式可得:Q =(m 1υ12/2+m 2υ22/2)-(m 1υ1′2/2-m 2υ2′2/2)=f (s 1-s 2)= f ·Δs ③ 由此可见,在两物体相互摩擦的过程中,缺失的机械能〔〝生热〞〕等于摩擦力与相对位移的乘积。

专题07动量和能量的综合应用

专题07动量和能量的综合应用

专题07动量和能量的综合应用知识梳理考点一 动量与动量定理应用动量定理解题的一般步骤及注意事项线如图所示,则( )A .t=1 s 时物块的速率为1 m/sB .t=2 s 时物块的动量大小为4 kg·m/sC .t=3 s 时物块的动量大小为5 kg·m/sD .t=4 s 时物块的速度为零【答案】AB【解析】由动量定理可得:Ft=mv ,解得m Ft v = ,t=1 s 时物块的速率为s m m Ft v /212⨯===1 m/s ,故A 正确;在Ft 图中面积表示冲量,所以,t=2 s 时物块的动量大小P=Ft=2×2=4kg.m/s ,t=3 s 时物块的动量大小为P /=(2×21×1)kgm/s=3 kg·m/s ,t=4 s 时物块的动量大小为P //=(2×21×2)kgm/s=2 kg·m/s ,所以t=4 s 时物块的速度为1m/s ,故B正确 ,C 、D 错误 考点二 动量守恒定律一、应用动量守恒定律的解题步骤二、几种常见情境的规律碰撞(一维)动量守恒动能不增加即p122m1+p222m2≥p1′22m1+p2′22m2速度要合理①若两物体同向运动,则碰前应有v后>v前;碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′。

②若两物体相向运动,碰后两物体的运动方向不可能都不改变。

爆炸动量守恒:爆炸物体间的相互作用力远远大于受到的外力动能增加:有其他形式的能量(如化学能)转化为动能位置不变:爆炸的时间极短,物体产生的位移很小,一般可忽略不计反冲动量守恒:系统不受外力或内力远大于外力机械能增加:有其他形式的能转化为机械能人船模型两个物体动量守恒:系统所受合外力为零质量与位移关系:m1x1=m2x2(m1、m2为相互作用的物体质量,x1、x2为其位移大小)例一(多选)(2021·甘肃天水期末)如图所示,木块B与水平面间的摩擦不计,子弹A沿水平方向射入木块并在极短时间内相对于木块静止下来,然后木块压缩弹簧至弹簧最短。

高三物理第二轮专题复习:专题三——动量和能量高中物理

高三物理第二轮专题复习:专题三——动量和能量高中物理

高三物理第二轮专题复习:专题三——动量和能量高中物理高考形势分析及历年部分省市高考试题分布:高中物理在力学、热学、电磁学、光学和原子物理等各分支学科中涉及到许多形式的能,如动能、势能、电能、内能、核能,这些形式的能能够相互转化,同时遵循能量转化和守恒定律,能量是贯穿于中学物理教材的一条主线,是分析和解决物理咨询题的要紧依据。

在每年的高考物理试卷中都会显现考查能量的咨询题。

并经常发觉〝压轴题〞确实是能量试题。

动量与能量知识框架:一、考点回忆1.动量、冲量和动量定理2.动量守恒定律3.动量和能量的应用4.动量与动力学知识的应用5.航天技术的进展和宇宙航行6.动量守恒定律实验二、动量和能量知识点1.动量(1)动量:运动物体的质量和速度的乘积叫做动量,即p=mv.是矢量,方向与v 的方向相同.两个动量相同必须是大小相等,方向一致。

(2)冲量:力和力的作用时刻的乘积叫做该力的冲量,即I=Ft.冲量也是矢量,它的方向由力的方向决定。

2.能量动能定理21222121mv mv W A -=动量 p =mv力的积存和效应力对时刻的积存效应力对位移的积存效应 功:W=FS cos α瞬时功率:P =Fv cos α 平均功率:αcos v F tW P ==动能221mv E k =势能重力势能:E p =mgh 弹性势能机械能机械能守恒定律E k1+E P1=E k2+E P2ΔE =ΔE系统所受合力为零或不受外力牛顿第二定律F=ma冲量 I =Ft动量定理Ft =mv 2-mv 1动量守恒定律m 1v 1+m 2v 2=m 1v 1’+m 2v 2’能量是状态量,不同的状态有不同的数值的能量,能量的变化是通过做功或热传递两种方式来实现的,力学中功是能量转化的量度,热学中功和热量是内能变化的量度。

(1)W合=△E k:包括重力、弹簧弹力、电场力等各种力在内的所有外力对物体做的总功,等于物体动能的变化。

(动能定理)(2)W F=△E:除重力以外有其它外力对物体做功等于物体机械能的变化。

2024届高考物理一轮复习热点题型归类训练:动量能量在各类模型中的应用(学生版)

2024届高考物理一轮复习热点题型归类训练:动量能量在各类模型中的应用(学生版)

动量能量在各类模型中的应用目录题型一碰撞模型类型1 一动一静的弹性碰撞类型2 弹性碰撞中的“子母球”模型题型二非弹性碰撞中的“动能损失”问题类型1 非弹性小球碰撞中的动能损失类型2 滑块木板模型中的动能损失类型3 滑块-曲面模型中的动能损失问题类型4 小球-弹簧模型中的动能损失问题类型5 带电系统中动能的损失问题类型6 导体棒“追及”过程中的动能损失问题题型三碰撞遵循的规律类型1 碰撞的可能性类型2 碰撞类型的识别题型四 “滑块-弹簧”碰撞模型中的多过程问题题型五 “滑块-斜(曲)面”碰撞模型题型六滑块模型中的多过程题型七子弹打木块模型中的能量动量问题题型八两体爆炸(类爆炸)模型中的能量分配题型九人船模型及其拓展模型的应用题型十悬绳模型题型一:碰撞模型1.类型1一动一静的弹性碰撞.以质量为m1、速度为v1的小球与质量为m2的静止小球发生弹性碰撞为例,则有m1v1=m1v1′+m2v2′1 2m1v21=12m1v1′2+12m2v2′2联立解得:v1′=m1-m2m1+m2v1,v2′=2m1m1+m2v1讨论:①若m1=m2,则v1′=0,v2′=v1(速度交换);②若m1>m2,则v1′>0,v2′>0(碰后两小球沿同一方向运动);当m1≫m2时,v1′≈v1,v2′≈2v1;③若m1<m2,则v1′<0,v2′>0(碰后两小球沿相反方向运动);当m1≪m2时,v1′≈-v1,v2′≈0.1(2023春·江西赣州·高三校联考阶段练习)弹玻璃球是小孩子最爱玩的游戏之一,一次游戏中,有大小相同、但质量不同的A、B两玻璃球,质量分别为m A、m B,且m A<m B,小朋友在水平面上将玻璃球A以一定的速度沿直线弹出,与玻璃球B发生正碰,玻璃球B冲上斜面后返回水平面时与玻璃球A速度相等,不计一切摩擦和能量损失,则m A、m B之比为()A.1:2B.1:3C.1:4D.1:52(2023·四川达州·统考二模)如图所示,用不可伸长的轻绳将质量为m1的小球悬挂在O点,绳长L= 0.8m,轻绳处于水平拉直状态。

第八关 动力学、动量和能量观点在力学中的应用-高考物理专题复习及典型试题

第八关 动力学、动量和能量观点在力学中的应用-高考物理专题复习及典型试题

第八关动力学、动量和能量观点在力学中的应用1.动量和能量综合应用例 1 (多选)如图甲所示,质量M=0.8kg的足够长的木板静止在光滑的水平面上,质量m=0.2kg的滑块静止在木板的左端,在滑块上施加一水平向右、大小按图乙所示随时间变化的拉力F,4 s后撤去力F.若滑块与木板间的动摩擦因数μ=0.2,最大静摩擦力等于滑动摩擦力,重力加速度g=10m/s2,则下列说法正确的是()A.0∼4s时间内拉力的冲量共为3.2N⋅sB.t=4s时滑块的速度大小为9.5m/sC.木板受到滑动摩擦力的冲量共为2.8N⋅sD.木板的速度最大为2m/s练习1-1如图所示,带有圆管轨道的长轨道水平固定,圆管轨道竖直(管内直径可以忽略),底端分别与两侧的直轨道相切,圆管轨道的半径R=0.5 m,P点左侧轨道(包括圆管)光滑,右侧轨道粗糙.质量m=1 kg的物块A以v0=10 m/s的速度滑入圆管,经过竖直圆管轨道后与直轨道上P处静止的质量M=2 kg的物块B发生碰撞(碰撞时间极短),碰后物块B在粗糙轨道上滑行18 m后速度减小为零.已知物块A、B与粗糙轨道间的动摩擦因数均为μ=0.1,取重力加速度大小g=10 m/s2,物块A、B均可视为质点.求:(1)物块A滑过竖直圆管轨道最高点Q时受到管壁的弹力;(2)最终物块A静止的位置到P点的距离.2.综合分析多过程问题例2如图所示,有一个可视为质点的质量为m=1 kg的小物块,从光滑平台上的A点以v0=2 m/s的初速度水平抛出,到达C点时,恰好沿C点的切线方向进入固定在水平地面上的光滑圆弧轨道,最后小物块滑上紧靠轨道末端D点的质量为M=3 kg的长木板.已知木板上表面与圆弧轨道末端切线相平,木板下表面与水平地面之间光滑,小物块与长木板间的动摩擦因数μ=0.3,圆弧轨道的半径为R=0.4 m,C点和圆弧的圆心连线与竖直方向的夹角θ=60°,不计空气阻力,g取10 m/s2.求:(1)小物块到达C点时的速度大小;(2)小物块刚要到达圆弧轨道末端D点时对轨道的压力;(3)要使小物块不滑出长木板,木板的长度L至少多大.练习2-1如图所示,半径为R的四分之一光滑圆弧轨道竖直固定在水平地面上,下端与水平地面在P点相切,一个质量为2m的物块B(可视为质点)静止在水平地面上,左端固定有水平轻弹簧,Q点为弹簧处于原长时的左端点,P、Q间的距离为R,PQ段地面粗糙、动摩擦因数为μ=0.5,Q点右侧水平地面光滑,现将质量为m的物块A(可视为质点)从圆弧轨道的最高点由静止开始下滑,重力加速度为g.求:(1)物块A沿圆弧轨道滑至P点时对轨道的压力大小;(2)弹簧被压缩的最大弹性势能(未超过弹性限度);(3)物块A最终停止位置到Q点的距离.课后检测1. 质量为1 kg的物体静止在水平面上,t=0时受到水平拉力F的作用开始运动,F随时间t 变化的关系图象如图所示.已知t=4 s时物体刚好停止运动,取g=10m/s2,以下判断正确的是()A.物体所受摩擦力为3 NB.t=2 s时物体的速度最大C.t=3 s时物体的动量最大D.物体的最大动能为2 J2. 粗糙水平地面上的物体,在一个水平恒力作用下做直线运动,其v-t图象如图所示,下列物理量中第1 s内与第2 s内相同的是()A.摩擦力的功B.摩擦力的冲量C.水平恒力的功D.水平恒力的冲量3. 如图所示,质量均为m的两带电小球A与B,带电荷量分别为+q、+2q,在光滑绝缘水平桌面上由静止开始沿同一直线运动,当两带电小球运动一段时间后A球速度大小为v,在这段时间内,下列说法正确的是()A.任一时刻B的加速度比A的大B.两球均做加速度增大的加速运动C.两球组成的系统电势能减少了mv2,但动能和电势能之和不变D.两球动量均增大,且总动量也增大4.如图所示,质量为m、带有半圆形轨道的小车静止在光滑的水平地面上,其水平直径AB 的长度为2R,现将质量也为m的小球从距A点正上方为h的位置由静止释放,然后由A点ℎ(不计空气阻力),则() 进入半圆形轨道后从B点冲出,在空中上升的最大高度为12A.小球冲出B点后做斜上抛运动B.小球第二次进入轨道后恰能运动到A点C.小球第一次到达B点时,小车的位移大小是RmgℎD.小球第二次通过轨道克服摩擦力所做的功等于125.光滑水平面上放有质量分别为2m和m的物块A和B,用细线将它们连接起来,两物块中间加有一压缩的轻质弹簧(弹簧与物块不相连),弹簧的压缩量为x.现将细线剪断,此刻物块A的加速度大小为a,两物块刚要离开弹簧时物块A的速度大小为v,则()A.物块B的加速度大小为a时弹簧的压缩量为x3xB.物块A从开始运动到刚要离开弹簧时位移大小为23mv2C.物块开始运动前弹簧的弹性势能为32D.物块开始运动前弹簧的弹性势能为3mv26. “飞针穿玻璃”是一项高难度的绝技表演,曾度引起质疑.为了研究该问题,以下测量能够得出飞针在穿越玻璃的时间内,对玻璃平均冲击力大小的是()A.测出玻璃厚度和飞针穿越玻璃前后的速度B.测出玻璃厚度和飞针穿越玻璃所用的时间C.测出飞针质量、玻璃厚度和飞针穿越玻璃所用的时间D.测出飞针质量、飞针穿越玻璃所用时间和穿越玻璃前后的速度7.如图,立柱固定于光滑水平面上O点,质量为M的小球a向右运动,与静止于Q点的质量为m的小球b发生弹性碰撞,碰后a球立即向左运动,b球与立柱碰撞能量不损失,所有碰撞时间均不计,b球恰好在P点追到a球,Q点为OP间中点,则a、b球质量之比M:m=()A.3:5B.1:3C.2:3D.1:28. (多选)如图,在光滑的水平面上有一个长为L的木板,小物块b静止在木板的正中间,小物块a以某一初速度v0从左侧滑上木板.已知物块a、b与木板间的摩擦因数分别为μa、μb,木块与木板质量均为m,a、b之间的碰撞无机械能损失,滑动摩擦力等于最大静摩擦力.下列说法正确的是()mv02A.若没有物块从木板上滑下,则无论v0多大整个过程摩擦生热均为13B.若μb<2μa,则无论v0多大,a都不会从木板上滑落μa gL,则ab一定不相碰C.若v0≤√32D.若μb>2μa,则a可能从木板左端滑落9.(多选)如图所示,甲、乙两个小滑块(视为质点)静止在水平面上的A、B两处,B处左侧水平面光滑,右侧水平面粗糙.若甲在水平向右的拉力F=kt(其中k=2N/s)的作用下由静止开始运动,当t=3s时撤去力F,随后甲与乙发生正碰而粘合在一起,两滑块共同滑行2.4m后停下,已知甲的质量为1kg,两滑块与粗糙水平面间的动摩擦因数均为0.75,取g=10m/s2,则()A.0∼3s内,力F的冲量大小为18N⋅sB.撤去力F时甲的速度大小为9m/sC.两滑块正碰后瞬间的速度大小为4.5m/sD.乙的质量为0.5kg10. 如图所示,质量为M的木块位于光滑水平面上,在木块与墙壁之间用轻质弹簧连接,当木块静止时刚好位于A点,现有一质量为m的子弹以水平速度v0射向木块并嵌入其中(作用时间极短),求:(1)当木块回到A点时的速度大小;(2)从开始到木块回到A点的过程中,墙壁对弹簧的冲量.11. 如图所示,一轻质弹簧的一端固定在小球A上,另一端与小球B接触但未连接,该整体静止放在离地面高为H=5m的光滑水平桌面上.现有一小球C从光滑曲面上离桌面ℎ= 1.8m高处由静止开始滑下,与小球A发生碰撞(碰撞时间极短)并粘在一起压缩弹簧推动小球B向前运动,经一段时间,小球B脱离弹簧,继续在水平桌面上匀速运动一段时间后从桌面边缘飞出.小球均可视为质点,忽略空气阻力,已知m A=2kg,m B=3kg,m C=1kg,g=10m/s2.求:(1)小球C与小球A碰撞结束瞬间的速度;(2)小球B落地点与桌面边缘的水平距离.12. 如图所示,在水平桌面上放有长度为L=2m的木板C,C上右端是固定挡板P,在C 中点处放有小物块B,A、B的尺寸以及P的厚度皆可忽略不计.C上表面与固定在地面上半径为R=0.45m的圆弧光滑轨道相切,质量为m=1kg的小物块A从圆弧最高点由静止释放,设木板C与桌面之间无摩擦,A、C之间和B、C之间的滑动摩擦因数均为μ,A、B、C(包含挡板P)的质量相同,开始时,B和C静止,(g=10m/s2)(1)求滑块从释放到离开轨道受到的冲量大小;(2)若物块A与B发生碰撞,求滑动摩擦因数μ应满足的条件;(3)若物块A与B发生碰撞(设为完全弹性碰撞)后,物块B与挡板P发生碰撞,求滑动摩擦因数μ应满足的条件.13.一质量为m的烟花弹获得动能E后,从地面竖直升空.当烟花弹上升的速度为零时,弹中火药爆炸将烟花弹炸为质量相等的两部分,两部分获得的动能之和也为E,且均沿竖直方向运动.爆炸时间极短,重力加速度大小为g,不计空气阻力和火药的质量.求:(1)烟花弹从地面开始上升到弹中火药爆炸所经过的时间;(2)爆炸后烟花弹向上运动的部分距地面的最大高度.14. 如图所示,水平光滑地面上有两个静止的小物块A和B(可视为质点),A的质量m=1.0 kg,B的质量M=4.0 kg,A、B之间有一轻质压缩弹簧,且A、B间用细线相连(图中未画出),弹簧的弹性势能E p=40 J,弹簧的两端与物块接触但不固定连接.水平面的左侧有一竖直墙壁,右侧与倾角为30°的光滑斜面平滑连接.将细线剪断,A、B分离后立即撤去弹簧,物块A与墙壁发生弹性碰撞后,A在B未到达斜面前追上B,并与B相碰后结合在一起向右运动,g取10 m/s2,求:(1)A与弹簧分离时的速度大小;(2)A、B沿斜面上升的最大距离.15. 如图所示,半径R1=1 m的四分之一光滑圆弧轨道AB与平台BC在B点平滑连接,半径R2=0.8 m的四分之一圆弧轨道上端与平台C端连接,下端与水平地面平滑连接,质量m =0.1 kg的乙物块放在平台BC的右端C点,将质量也为m的甲物块在A点由静止释放,让其沿圆弧下滑,并滑上平台与乙相碰,碰撞后甲与乙粘在一起从C点水平抛出,甲物块与平台间的动摩擦因数均为μ=0.2,BC长L=1 m,重力加速度g取10 m/s2,不计两物块的大小及碰撞所用的时间,求:(1)甲物块滑到B点时对轨道的压力大小;(2)甲和乙碰撞后瞬间共同速度的大小;(3)粘在一起的甲、乙两物块从C点抛出到落到CDE段轨道上所用的时间.16. 如图所示,一圆心为O、半径为R的光滑半圆轨道固定在竖直平面内,其下端和粗糙的水平轨道在A点相切,AB为圆弧轨道的直径.质量分别为m、2m的滑块1、2用很短的细线连接,在两滑块之间夹有压缩的短弹簧(弹簧与滑块不固连),滑块1、2位于A点.现剪断两滑块间的细线,滑块1恰能过B点,且落地点恰与滑块2停止运动的地点重合.滑块1、2可视为质点,不考虑滑块1落地后反弹,不计空气阻力,重力加速度为g,求:(1)滑块1过B点的速度大小;(2)弹簧释放的弹性势能大小;(3)滑块2与水平轨道间的动摩擦因数.17. 汽车A在水平冰雪路面上行驶.驾驶员发现其正前方停有汽车B,立即采取制动措施,但仍然撞上了汽车B.两车碰撞时和两车都完全停止后的位置如图所示,碰撞后B车向前滑动了4.5 m,A车向前滑动了2.0 m.已知A和B的质量分别为2.0×103 kg和1.5×103 kg,两车与该冰雪路面间的动摩擦因数均为0.10,两车碰撞时间极短,在碰撞后车轮均没有滚动,重力加速度大小g=10 m/s2.求:(1)碰撞后的瞬间B车速度的大小;(2)碰撞前的瞬间A车速度的大小.。

动量和能量的综合问题-高考物理复习

动量和能量的综合问题-高考物理复习

(2)小物块第一次返回到B点时速度v的大小; 答案 8 m/s
当小物块第一次回到B点时,设车和子弹的速度为v3,取水平向右为 正方向,由水平方向动量守恒有(m0+M)v1=(m0+M)v3+mv 由能量守恒定律有 12(m0+M)v12=12(m0+M)v32+12mv2 联立解得v3=2 m/s,v=8 m/s, 即小物块第一次返回到B点时速度大小为v=8 m/s.
1234
(2)从C球由静止释放到第一次摆到最低点的过程中,B
移动的距离;
答案
l 3
对A、B、C组成的系统,由人船模型规律可得mxC=2mxAB, xC+xAB=l 联立解得从 C 球由静止释放到第一次摆到最低点的过程中,B 移动 的距离为 xAB=3l .
1234
(3)C球向左摆动的最高点距O点的竖直高度.

设在M点轨道对物块的压力大小为FN,
则 FN+mg=mvRM2

由⑩⑪解得FN=(1- 2 )mg<0,假设不成立,即物块B不能到达M点.
(3)物块A由静止释放的高度h. 答案 1.8 m
物块A、B的碰撞为弹性正碰且质量相等,
碰撞后速度交换,则vA=v0=6 m/s ⑫
设物块A释放的高度为h,对下落过程,根
(3)求平板A在桌面上滑行的距离.
答案
3 8m
A、B碰撞后,A向左做匀减速直线运动,B向左做匀加速直线运动,
则对B有μmBg=mBaB 对A有μmBg+μ(mB+mA)g=mAaA 解得aA=6 m/s2,aB=2 m/s2 设经过时间t,两者共速,则有v=aBt=vA-aAt 解得 v=12 m/s,t=14 s 此过程中A向左运动距离 x1=vA+2 vt=2+2 12×14 m=156 m

高中物理动量和能量知识点

高中物理动量和能量知识点

高考物理知识归纳(三) ---------------动量和能量1.力的三种效应:力的瞬时性(产生a )F=ma 、⇒运动状态发生变化⇒牛顿第二定律 时间积累效应(冲量)I=Ft 、⇒动量发生变化⇒动量定理 空间积累效应(做功)w=Fs ⇒动能发生变化⇒动能定理2.动量观点:动量:p=mv=KmE 2 冲量:I = F t动量定理:内容:物体所受合外力的冲量等于它的动量的变化。

公式: F 合t = mv ’一mv (解题时受力分析和正方向的规定是关键)I=F 合t=F 1t 1+F 2t 2+---=∆p=P 末-P 初=mv 末-mv 初动量守恒定律:内容、守恒条件、不同的表达式及含义:'p p =;0p =∆;21p -p ∆=∆P =P ′ (系统相互作用前的总动量P 等于相互作用后的总动量P ′) ΔP =0(系统总动量变化为0)如果相互作用的系统由两个物体构成,动量守恒的具体表达式为P 1+P 2=P 1′+P 2′ (系统相互作用前的总动量等于相互作用后的总动量) m 1V 1+m 2V 2=m 1V 1′+m 2V 2′ ΔP =-ΔP '(两物体动量变化大小相等、方向相反)实际中应用有:m 1v 1+m 2v 2='22'11v m v m +; 0=m 1v 1+m 2v 2 m 1v 1+m 2v 2=(m 1+m 2)v 共 原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。

即:P+(-P)=0注意理解四性:系统性、矢量性、同时性、相对性矢量性:对一维情况,先选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负,把矢量运算简化为代数运算。

相对性:所有速度必须是相对同一惯性参照系。

同时性:表达式中v 1和v 2必须是相互作用前同一时刻的瞬时速度,v 1’和v 2’必须是相互作用后同一时刻的瞬时速度。

物理高中高考总总结复习动量与能量的综合压轴题

物理高中高考总总结复习动量与能量的综合压轴题

高考第 2 轮总复习首选资料动量的综合运用1.(20XX 年重庆卷理科综合能力测试一试题卷,T25 ,19 分)某兴趣小组用如题25 所示的装置进行实验研究。

他们在水平桌面上固定一内径为d 的圆柱形玻璃杯,杯口上放 置向来径为2d,质量为m 的匀质薄原板,板上放一质量为2m 的小物体。

板中心、物块均在杯的轴线上,物块与3板间动摩擦因数为,不计板与杯口之间的摩擦力,重力加快度为g ,不考虑板翻转。

( 1)对板施加指向圆心的水平外力F ,设物块与板间最大静摩擦力为f max ,若物块能在板上滑动,求F 应知足的条件。

( 2)假如对板施加的指向圆心的水平外力是作用时间极短的较大冲击力,冲量为I ,① I 应知足什么条件才能使物块从板上掉下?②物块从开始运动到掉下时的位移s 为多少?③依据 s 与I 的关系式说明要使s 更小,冲量应怎样改变。

答案:( 1)设圆板与物块相对静止时,它们之间的静摩擦力为f ,共同加快度为a由牛顿运动定律,有对物块 f = 2ma 两物相对静止,有 得 F ≤3f max2相对滑动的条件对圆板F - f = ma f ≤f maxF3fm a x2( 2)设冲击刚结束的圆板获取的速度大小为v 0 ,物块掉下时,圆板和物块速度大小分别为v 1 和 v 2由动量定理,有 I mv 0由动能定理,有对圆板2 mg(s3 d )1 mv 12 1 mv 0 24 2 2对物块2 mgs1(2 m)v 2 2 02由动量守恒定律,有mv 0 mv 1 2mv 2要使物块落下,一定 v 1 v 2由以上各式得I3m 2gd221 I I 29m 2 gds =22 g3m分子有理化得3md 21s = g 22 II 29 m 2 gd2 依据上式结果知: I 越大, s 越小.2.(20XX 年湛江市一模理综)如下图,圆滑水平面上有一长板车,车的上表面0A 段是一长为己的水平粗拙轨道, A 的右边圆滑,水平 轨道左边是一圆滑斜面轨道,斜面轨道与水平轨道在O 点光滑连结。

高中物理压轴题04 用动量和能量的观点解题(解析版)

高中物理压轴题04 用动量和能量的观点解题(解析版)

压轴题04用动量和能量的观点解题1.本专题是动量和能量观点的典型题型,包括应用动量定理、动量守恒定律,系统能量守恒定律解决实际问题。

高考中既可以在选择题中命题,更会在计算题中命题。

2024年高考对于动量和能量的考查仍然是热点。

2.通过本专题的复习,不仅利于完善学生的知识体系,也有利于培养学生的物理核心素养。

3.用到的相关知识有:动量定理、动量守恒定律、系统机械能守恒定律、能量守恒定律等。

近几年的高考命题中一直都是以压轴题的形式存在,重点考查类型为弹性碰撞,完全非弹性碰撞,爆炸问题等。

考向一:动量定理处理多过程问题1.动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F应理解为变力在作用时间内的平均值。

2.动量定理的表达式F·Δt=Δp是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力。

3.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt越短,力F就越大,力的作用时间Δt越长,力F就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎。

(2)当作用力F一定时,力的作用时间Δt越长,动量变化量Δp越大,力的作用时间Δt越短,动量变化量Δp越小。

4.应用动量定理解题的一般步骤(1)明确研究对象和研究过程。

研究过程既可以是全过程,也可以是全过程中的某一阶段。

(2)进行受力分析.只分析研究对象以外的物体施加给研究对象的力,不必分析内力。

(3)规定正方向。

(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和),根据动量定理列方程求解.考向二:动量守恒定律弹性碰撞问题两球发生弹性碰撞时应满足动量守恒和机械能守恒。

以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有m1v1=m1v′1+m2v′2①12m 1v 21=12m 1v ′21+12m 2v ′22②由①②得v ′1=m 1-m 2v 1m 1+m 2v ′2=2m 1v 1m 1+m 2结论:①当m 1=m 2时,v ′1=0,v ′2=v 1,两球碰撞后交换了速度。

高考物理二轮专题复习第十一讲 动量和能量

高考物理二轮专题复习第十一讲   动量和能量

高考物理二轮专题复习第十一讲 动量和能量概述:处理力学问题、常用的三种方法一是牛顿定律;二是动量关系;三是能量关系。

若考查的物理量是瞬时对应关系,常用牛顿运动定律;若研究对象为一个系统,首先考虑的是两个守恒定律;若研究对象为一个物体,可优先考虑两个定理。

特别涉及时间问题时,优先考虑的是动量定理、而涉及位移及功的问题时,优先考虑的是动能定理。

两个定律和两个定理,只考查一个物理过程的始末两个状态,对中间过程不予以细究,这正是它们的方便之处,特别是变力问题,就显示出其优越性。

动量与能量的综合问题,是高中力学最重要的综合问题,也是难度较大的问题。

分析这类问题时,应首先建立清晰的物理图景、抽象出物理模型、选择物理规律、建立方程进行求解。

例题分析:例1. 如图所示,质量分别为m 和2m 的A 、B 两个木块间用轻弹簧相连,放在光滑水平面上,A 靠紧竖直墙。

用水平力F 将B 向左压,使弹簧被压缩一定长度,静止后弹簧储存的弹性势能为E 。

这时突然撤去F ,关于A 、B 和弹簧组成的系统,下列说法中正确的是 (BD )A.撤去F 后,系统动量守恒,机械能守恒B.撤去F 后,A 离开竖直墙前,系统动量不守恒,机械能守恒C.撤去F 后,A 离开竖直墙后,弹簧的弹性势能最大值为ED.撤去F 后,A 离开竖直墙后,弹簧的弹性势能最大值为E /3[A 离开墙前墙对A 有弹力,这个弹力虽然不做功,但对A 有冲量,因此系统机械能守恒而动量不守恒;A 离开墙后则系统动量守恒、机械能守恒。

A 刚离开墙时刻,B 的动能为E ,动量为p =mE 4向右;以后动量守恒,因此系统动能不可能为零,当A 、B 速度相等时,系统总动能最小,这时的弹性势能为E /3。

]指出:应用守恒定律要注意条件。

对整个宇宙而言,能量守恒和动量守恒是无条件的。

但对于我们选定的研究对象所组成的系统,守恒定律就有一定的条件了。

如系统机械能守恒的条件就是“只有重力做功”;而系统动量守恒的条件就是“合外力为零”。

高中物理公式大全全集八动量与能量

高中物理公式大全全集八动量与能量

八、动量与能量1.动量 2.机械能1.两个“定理”(1)动量定理:F ·t =Δp 矢量式 (力F 在时间t 上积累,影响物体的动量p )(2)动能定理:F ·s =ΔE k 标量式 (力F 在空间s 上积累,影响物体的动能E k ) 动量定理与动能定理一样,都是以单个物体为研究对象.但所描述的物理内容差别极大.动量定理数学表达式:F 合·t =Δp ,是描述力的时间积累作用效果——使动量变化;该式是矢量式,即在冲量方向上产生动量的变化.例如,质量为m 的小球以速度v 0与竖直方向成θ角打在光滑的水平面上,与水平面的接触时间为Δt ,弹起时速度大小仍为v 0且与竖直方向仍成θ角,如图所示.则在Δt 内:以小球为研究对象,其受力情况如图所示.可见小球所受冲量是在竖直方向上,因此,小球的动量变化只能在竖直方向上.有如下的方程:F ′击·Δt -mg Δt =mv 0cos θ-(-mv 0cos θ)小球水平方向上无冲量作用,从图中可见小球水平方向动量不变.综上所述,在应用动量定理时一定要特别注意其矢量性.应用动能定理时就无需作这方面考虑了.Δt 内应用动能定理列方程:W 合=mυ02/2-mυ02 /2 =02.两个“定律”(1)动量守恒定律:适用条件——系统不受外力或所受外力之和为零公式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2 ′或 p =p ′(2)机械能守恒定律:适用条件——只有重力(或弹簧的弹力)做功公式:E k2+E p2=E k1+E p1 或 ΔE p = -ΔE k3.动量守恒定律与动量定理的关系一、知识网络二、画龙点睛 规律动量守恒定律的数学表达式为:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′,可由动量定理推导得出. 如图所示,分别以m 1和m 2为研究对象,根据动量定理:F 1Δt = m 1v 1′- m 1v 1 ①F 2Δt = m 2v 2′- m 2v 2 ②F 1=-F 2 ③∴ m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ 可见,动量守恒定律数学表达式是动量定理的综合解.动量定理可以解决动量守恒问题,只是较麻烦一些.因此,不能将这两个物理规律孤立起来.4.动能定理与能量守恒定律关系——理解“摩擦生热”(Q =f ·Δs )设质量为m 2的板在光滑水平面上以速度υ2运动,质量为m 1的物块以速度υ1在板上同向运动,且υ1>υ2,它们之间相互作用的滑动摩擦力大小为f ,经过一段时间,物块的位移为s 1,板的位移s 2,此时两物体的速度变为υ′1和υ′2由动能定理得:-fs 1=m 1υ1′2/2-m 1υ12/2 ①fs 2=m 2υ2′2/2-m 2υ22/2 ②在这个过程中,通过滑动摩擦力做功,机械能不断转化为内能,即不断“生热”,由能量守恒定律及①②式可得:Q =(m 1υ12/2+m 2υ22/2)-(m 1υ1′2/2-m 2υ2′2/2)=f (s 1-s 2)= f ·Δs ③ 由此可见,在两物体相互摩擦的过程中,损失的机械能(“生热”)等于摩擦力与相对位移的乘积。

动量与能量守恒高三知识点

动量与能量守恒高三知识点

动量与能量守恒高三知识点动量与能量守恒是高中物理中的重要知识点,它们是描述物体运动的基本原理。

本文将从理论原理、实例分析以及应用等方面介绍动量与能量守恒的概念和作用。

一、动量与能量守恒的理论原理动量守恒定律是指在没有外力或者合外力为零的情况下,物体或系统的总动量保持不变。

动量的定义是物体的质量与速度的乘积,用数学公式表示为p=mv,其中p为动量,m为质量,v为速度。

根据动量守恒定律,如果物体在一个封闭系统内发生碰撞,那么碰撞前后物体的总动量将保持不变。

能量守恒定律是指在一个封闭系统中,能量总量保持不变。

能量可以分为动能和势能两种形式。

动能是指物体由于运动而具有的能量,计算公式为KE=1/2mv²,其中KE为动能,m为质量,v 为速度。

势能是指物体由于位置或状态而具有的能量,常见的包括重力势能、弹性势能等。

根据能量守恒定律,封闭系统内的能量总和在任何时刻都保持不变。

二、动量守恒实例分析1. 弹性碰撞在弹性碰撞中,碰撞前后物体的总动量保持不变。

例如,两个相互碰撞的小球A和小球B,它们之间不存在能量损失,碰撞前后它们的总动量保持不变。

假设小球A的质量为m1,速度为v1,小球B的质量为m2,速度为v2,根据动量守恒定律可得m1v1 +m2v2 = m1v1' + m2v2',其中v1'和v2'分别为碰撞后两个小球的速度。

2. 爆炸在爆炸过程中,物体内部发生剧烈的分解,将储存的内能转化为动能,物体的总动量保持不变。

例如,火箭发射时,燃料燃烧释放出巨大能量,将火箭推向空中。

此时,火箭与燃料的总动量保持不变,燃料的推力将火箭向上推进。

三、动量与能量守恒的应用1. 轨道运动在行星绕太阳的运动中,动量守恒保证了行星的运动轨道的稳定性。

太阳和行星的总动量始终保持不变,行星的速度和轨道半径相应调整以维持动量守恒。

同样地,卫星绕地球的运动也遵循动量守恒原理。

2. 交通事故分析在交通事故中,动量守恒和能量守恒的原理可以用来分析事故发生的原因和结果。

高考物理总复习 专题五 动力学、动量和能量观点的综合应用

高考物理总复习 专题五 动力学、动量和能量观点的综合应用

专题五动力学、动量和能量观点的综合应用力学的三个基本观点:①动力学观点(牛顿运动定律、运动学基本规律);②能量观点(动能定理、机械能守恒定律、功能关系与能量守恒定律);③动量观点(动量定理、动量守恒定律).熟练应用三大观点分析和解决综合问题是本专题要达到的目的.考点一碰撞模型的拓展模型1“弹簧系统”模型1.模型图2.模型特点(1)在能量方面,由于弹簧的形变会具有弹性势能,系统的总动能将发生变化,若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒.(2)在动量方面,系统动量守恒.(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大.(4)弹簧处于原长时,弹性势能为零.例1. (多选)如图甲所示,物块a、b间拴接一个压缩后被锁定的轻质弹簧,整个系统静止放在光滑水平地面上,其中a物块最初与左侧固定的挡板相接触,b物块质量为1 kg.现解除对弹簧的锁定,在a物块离开挡板后,b物块的v ­ t关系图象如图乙所示.则下列分析正确的是( )A.a的质量为1 kgB.a的最大速度为4 m/sC.在a离开挡板后,弹簧的最大弹性势能为1.5 JD.在a离开挡板前,a、b及弹簧组成的系统动量和机械能都守恒模型2“滑块—木板”模型1.模型图2.模型特点(1)当滑块和木板的速度相等时木板的速度最大,两者的相对位移也最大.(2)系统的动量守恒,但系统的机械能不守恒,摩擦力与两者相对位移的乘积等于系统机械能的减少量,当两者的速度相等时,系统机械能损失最大.例2.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m.P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L.物体P 置于P 1的最右端,质量为2m 且可看作质点.P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起.P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内).P 与P 2之间的动摩擦因数为μ.求:(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧的最大压缩量x 和相应的弹性势能E p . 教你解决问题第一步:审条件 挖隐含①“与静止的P 2发生碰撞,碰撞时间极短”隐含→ P 的速度不变. ②“碰撞后P 1与P 2粘连在一起”隐含→ P 1、P 2获得共同速度. ③“P 压缩弹簧后被弹回并停在A 点”隐含→ P 1、P 2、P 三者有共同速度及整个碰撞过程中的弹性势能变化为零.第二步:审情景 建模型 ①P 1与P 2碰撞建模→ 碰撞模型.②P 与P 2之间的相互作用建模→ 滑块—滑板模型. 第三步:审过程 选规律 ①动量守恒定律―→求速度.②能量守恒定律―→求弹簧的压缩量x 及弹性势能E p .模型3“子弹打木块”模型 1.模型图2.模型特点(1)子弹打入木块若未穿出,系统动量守恒,能量守恒,即mv 0=(m+M)v,Q热=fL相对=12mv02-12(M+m)v2.(2)若子弹穿出木块,有mv0=mv1+Mv2,Q热=fL相对=1 2mv−0212mv−1212Mv22.例3.(多选)如图所示,一质量m2=0.25 kg的平顶小车,车顶右端放一质量m3=0.30 kg的小物体,小物体可视为质点,与车顶之间的动摩擦因数μ=0.45,小车静止在光滑的水平轨道上.现有一质量m1=0.05 kg 的子弹以水平速度v0=18 m/s射中小车左端,并留在车中,子弹与车相互作用时间很短.若使小物体不从车顶上滑落,g取10ms2.下列分析正确的是( )A.小物体在小车上相对小车滑行的时间为13sB.最后小物体与小车的共同速度为3 m/sC.小车的最小长度为1.0 mD.小车对小物体的摩擦力的冲量为0.45 N·s跟进训练1.[黑龙江哈尔滨模拟](多选)如图所示,两个小球A、B大小相等,质量分布均匀,分别为m1、m2,m1<m2,A、B与轻弹簧拴接,静止在光滑水平面上,第一次用锤子在左侧与A球心等高处水平快速向右敲击A,作用于A的冲量大小为I1,第二次两小球及弹簧仍静止在水平面上,用锤子在右侧与B球心等高处水平快速向左敲击B,作用于B的冲量大小为I2,I1=I2,则下列说法正确的是( )A.若两次锤子敲击完成瞬间,A、B两球获得的动量大小分别为p1和p2,则p1=p2B.若两次锤子敲击分别对A、B两球做的功为W1和W2,则W1=W2C.若两次弹簧压缩到最短时的长度分别为L1和L2,则L1<L2D.若两次弹簧压缩到最短时,A、弹簧、B的共同速度大小分别为v1和v2,则v1>v22.如图甲所示,质量为M=3.0 kg的平板小车C静止在光滑的水平面上,在t=0时,两个质量均为1.0 kg的小物体A和B同时从左右两端水平冲上小车,1.0 s内它们的v ­ t图象如图乙所示,g取10 m/s2.(1)小车在1.0 s内的位移为多大?(2)要使A、B在整个运动过程中不会相碰,车的长度至少为多少?考点二力学三大观点解决多过程问题1.三大力学观点的选择技巧根据问题类型,确定应采用的解题方法.一般来说,只涉及作用前后的速度问题,考虑采用动量守恒和能量守恒;涉及运动时间与作用力的问题,采用动量定理,考虑动能定理;涉及变化情况分析时由于涉及变量较多,一般采用图象法等.2.三大解题策略(1)力的观点解题:要认真分析运动状态的变化,关键是求出加速度.(2)两大定理解题:应确定过程的初、末状态的动量(动能),分析并求出过程中的冲量(功).(3)过程中动量或机械能守恒:根据题意选择合适的初、末状态,列守恒关系式,一般这两个守恒定律多用于求某状态的速度(率).例4.如图所示,质量为M=100 g、带有光滑弧形槽的滑块放在水平面上,弧形槽上圆弧对应的圆心角为θ=60°,半径R=0.2 m,与其处于同一竖直平面内的光滑半圆轨道cd的半径为r=0.2 m,c、d两点为半圆轨道竖直直径的两个端点,轨道与水平面相切于c点,已知b点左侧水平面光滑,b、c间的水平面粗糙.两质量分别为m1=100 g、m2=50 g的物块P、Q放在水平面上,两物块之间有一轻弹簧(弹簧与两物块均不拴接),用外力将轻弹簧压缩一定长度后用细线将两物块拴接在一起,初始时弹簧储存的弹性势能为E p=0.6 J.某时刻将细线烧断,弹簧将两物块弹开,两物块与弹簧分离时,物块P还未滑上弧形槽,物块Q还未滑到b点,此后立即拿走弹簧,物块P冲上弧形槽,已知/s2,两物块均可看成质点,忽略物块P冲上弧形槽瞬间的能量损失.(1)通过计算分析物块P能否从滑块左侧冲出,若能,求出物块P上升的最大高度,若不能,求出物块P和滑块的最终速度大小.(2)要使物块Q能冲上半圆轨道且不脱离半圆轨道,则物块Q与水平面间的动摩擦因数μ应满足什么条件?跟进训练3.如图所示,在竖直平面(纸面)内固定一内径很小、内壁光滑的圆管轨道ABC,它由两个半径均为R的四分之一圆管顺接而成,A、C两端切线水平.在足够长的光滑水平台面上静置一个光滑圆弧轨道DE,圆弧轨道D 端上缘恰好与圆管轨道的C端内径下缘水平对接.一质量为m的小球(可视为质点)以某一水平速度从A点射入圆管轨道,通过C点后进入圆弧轨道运动,过C点时轨道对小球的压力为2mg,小球始终没有离开圆弧轨道.已知圆弧轨道DE的质量为2m.重力加速度为g.求:(1)小球从A点进入圆管轨道时的速度大小;(2)小球沿圆弧轨道上升的最大高度.专题五 动力学、动量和能量观点的综合应用 关键能力·分层突破例1 解析:由题意可知,当b 的速度最小时,弹簧恰好恢复原长,设此时a 的速度最大为v ,由动量守恒定律和机械能守恒定律得:m b v 0=m b v 1+m a v ,12m b v 02=12m b v 12+12m a v 2,代入数据解得:m a =0.5 kg ,v =4m/s ,故A 错误,B 正确;两物块的速度相等时,弹簧弹性势能最大,由动量守恒定律和机械能守恒定律得:m b v 0=(m a +m b )v 2,E p =12m b v −0212(ma + mb)v 22,代入数据解得:E p =1.5 J ,故C 正确;在a 离开挡板前,a 、b 及弹簧组成的系统受到挡板向右的力,所以系统机械能守恒、动量不守恒,故D 错误.答案:BC例2 解析:(1)P 1、P 2碰撞瞬间,P 的速度不受影响,根据动量守恒mv 0=2mv 1,解得v 1=v02最终三个物体具有共同速度,根据动量守恒: 3mv 0=4mv 2, 解得v 2=34v 0(2)根据能量守恒,系统动能减少量等于因摩擦产生的内能:12×2mv +1212×2mv −0212×4mv 22=2mgμ(L+x)×2解得x =v 0232μg-L在从第一次共速到第二次共速过程中,弹簧弹性势能等于因摩擦产生的内能,即:E p=2mgμ(L+答案:(1)v0234v0(2)v0232μg-L 116mv02例3 解析:子弹射入小车的过程中,由动量守恒定律得:m1v0=(m1+m2)v1,解得v1=3 m/s;小物体在小车上滑行过程中,由动量守恒定律得(m1+m2)v1=(m1+m2+m3)v2,解得v2=1.5 m/s,选项B错误;以小物体为研究对象,由动量定理得I=μm3gt=m3v2,解得t=13s,选项A正确;小车对小物体的摩擦力的冲量为I=0.45 N·s,选项D正确;当系统相对静止时,小物体在小车上滑行的距离为l,由能量守恒定律得μm3gl=1 2(m1+m2)v−1212(m1+m2+m3)v22,解得l=0.5 m,所以小车的最小长度为0.5 m,选项C错误.答案:AD1.解析:由动量定理I=Δp可知,由于I1=I2,则两次锤子敲击完成瞬间有p1=p2,故A正确;由于两次锤子敲击完成瞬间两球具有动量大小相等,由E k=p 22m可知,A球获得的初动能更大,由动能定理可知W1>W2,故B错误;由动量守恒定律可得m1v0=(m1+m2)v,得v=m1v0m1+m2,由能量守恒有12m1v02=12(m1+m2)v2+E p,得E p=m1m22(m1+m2)v02,由于p1=p2,则质量越大的,初速度越小,即A球获得的初速度较大,则敲击A球后弹簧的最大弹性势能较大,即L1<L2,故C正确;由动量守恒定律可得m1v0=(m1+m2)v=p,得v=m1v0m1+m2=pm1+m2,则两次共速的速度大小相等,即v1=v2,故D错误.答案:AC2.解析:(1)由v-t图象可知:A、B的加速度大小为a A=2 m/s2,a B=2 m/s2由牛顿第二定律可知,f A=2 N,f B=2 N所以平板小车在1.0 s内所受合力为零,故小车不动,即位移为零.(2)由图象可知0~1.0 s内A、B的位移分别为:=3 m,=1 m1.0 s后,系统的动量守恒,三者的共同速度为v,则mv A=(M+2m)v,代入数据得:v=0.4 m/s1.0 s后A减速,小车和B一起加速且a车=23+1m/s2=0.5 m/s2车的长度至少为l=x A+x B+例 4 解析:(1)弹簧将两物块弹开的过程中弹簧与两物块组成的系统动量守恒、机械能守恒,设弹簧恢复原长后P、Q两物块的速度大小分别为v1、v2,则有0=m1v1-m2v2,E p=12m1v+1212m2v22解得v1=2 m/s,v2=4 m/s物块P以速度v1冲上滑块,P与滑块相互作用的过程中水平方向动量守恒,系统的机械能守恒,假设P不能从滑块的左侧冲出,且P在滑块上运动到最高点时的速度为v ,距水平面的高度为h ,则有m 1v 1=(m 1+M )v ,12m 1v 12=12(m 1+M)v 2+m 1gh解得h =0.1 m由于h =R(1-cos 60°),所以物块P 恰好不能从滑块左侧冲出,假设成立,之后物块P 沿弧形槽从滑块上滑下,设物块P 返回到水平面时的速度为v 3、滑块的速度为v 4,由动量守恒定律和机械能守恒定律得m 1v 1=m 1v 3+Mv 4,12m 1v 12=12m 1v +3212Mv 42 解得v 3=0,v 4=2 m/s.(2)若Q 恰能经过d 点,则Q 在d 点的速度v d 满足m 2g =m 2v d2rQ 从b 点运动到半圆轨道最高点d 的过程,由动能定理有-μm 2gx bc -2m 2gr =12m 2v −d 212m2v 22解得Q 恰能经过半圆轨道最高点时μ=0.3若Q 恰好能运动到与半圆轨道圆心等高点,则由动能定理得-μm 2g 解得Q 恰能运动到与半圆轨道圆心等高点时μ=0.6 若Q 恰能到达c 点,则由动能定理得-μm 2g 解得Q 恰能运动到c 点时μ=0.8分析可知,要使Q 能冲上半圆轨道且不脱离半圆轨道,应使0<μ≤0.3或0.6≤μ<0.8.答案:(1)见解析 (2)0<μ≤0.3或0.6≤μ<0.83.解析:(1)小球过C 点时,有2mg +mg =m v C2R,解得v C =√3gR .小球从A 到C ,由机械能守恒定律得12mv 02=12mv C 2+mg·2R,联立解得v 0=√7gR(2)小球冲上圆弧轨道后的运动过程,在水平方向上,由动量守恒定律得mv C=(m+2m)v共.由机械能守恒定律得12mv C2=12(m+2m)v共2+mgh,联立解得h=R.答案:(1)√7gR(2)R。

高三物理动量和能量专题PPT优秀课件

高三物理动量和能量专题PPT优秀课件

五、两个守恒定律 1、动量守恒定律:
公式: p =p ′或Δp 1=-Δp2
或m1v1+m2v2=m1v1′+m2v2 ′
成立条件—(1)系统不受外力或合外力为零;
(2)系统所受合外力不为零,但沿某个方向的合外力为 零,则系统沿该方向的动量守恒 ;(3)系统所受合外 力不为零,但合外力远小于内力且作用时间极短,如爆 炸或瞬间碰撞等。
(1)小球m1滑到的最大高度 (2)小球m1从斜面滑下后,二者速度 (3)若m1= m2小球m1从斜面滑下后,二者速度
m1 v0
m2
析与解 (1)以向右为正,对上升过程水平方向由动量守恒
m1V0 = (m1+m2)V
V= m1V0 / (m1+m2) =0.5m/s
对系统上升过程由机械能守恒
1 2m 1 v021 2(m 1m 2)v2m 1gh h=0.15m
⑤都不做功.
作用力与反作用力冲量大小相等,方向相反。
4.合力做功
W合=F合scosα=W总=F1s1cosα1+F2s2cosα2 +…
返回
二、动能与动量
①动能与动量从不同角度都可表示物体运动
状态的特点;
Ek
1mv2 2
pmv
②物体要获得动能,则在过程中必须对它做
功,物体要获得动量,则在过程中必受冲量
(2)若一个物体相对于另一个物体作往返运动,S相为相
对路程。
动量守恒定律
矢量性、瞬时间、同 一性和同时性
能量守恒定律
功是能量转化的量度
守恒思想是一种系统方法,它是把物体组成 的系统作为研究对象,守恒定律就是系统某 种整体特性的表现。
解题时,可不涉及过程细节,只需要关键状态

高考物理二轮复习专题突破—动量和能量观点的应用(含解析)

高考物理二轮复习专题突破—动量和能量观点的应用(含解析)

高考物理二轮复习专题突破—动量和能量观点的应用1.(2021福建泉州高三月考)如图所示,建筑工地上的打桩过程可简化为重锤从空中某一固定高度由静止释放,与钢筋混凝土预制桩在极短时间内发生碰撞,并以共同速度下降一段距离后停下来。

则()A.重锤质量越大,撞预制桩前瞬间的速度越大B.重锤质量越大,预制桩被撞后瞬间的速度越大C.碰撞过程中,重锤和预制桩的总机械能保持不变D.整个过程中,重锤和预制桩的总动量保持不变2.(2021福建高三二模)如图所示,A车以某一初速度水平向右运动距离l后与静止的B 车发生正碰,碰后两车一起运动距离l后停下。

已知两车质量均为m,运动时受到的阻力为车重力的k倍,重力加速度为g,碰撞时间极短,则()A.两车碰撞后瞬间的速度大小为√kglB.两车碰撞前瞬间A车的速度大小为√2kglC.A车初速度大小为√10kglD.两车碰撞过程中的动能损失为4kmgl3.(2021辽宁丹东高三一模)2022年冬奥会将在北京举行,滑雪是冬奥会的比赛项目之一,如图所示,某运动员(视为质点)从雪坡上先后以v0和2v0沿水平方向飞出,不计空气阻力,则运动员从飞出到落到雪坡上的整个过程中()A.空中飞行的时间相同B.落在雪坡上的位置相同C.动量的变化量之比为1∶2D.动能的增加量之比为1∶24.(多选)(2021辽宁大连高三一模)在光滑水平桌面上有一个静止的木块,高速飞行的子弹水平穿过木块,若子弹穿过木块过程中受到的摩擦力大小不变,则()A.若木块固定,则子弹对木块的摩擦力的冲量为零B.若木块不固定,则子弹减小的动能大于木块增加的动能C.不论木块是否固定,两种情况下木块对子弹的摩擦力的冲量大小相等D.不论木块是否固定,两种情况下子弹与木块间因摩擦产生的热量相等5.(多选)(2021河南洛阳高三二模)如图所示,质量均为2 kg的三个物块静止在光滑水平面上,其中物块B的右侧固定一轻弹簧,物块A与弹簧接触但不连接。

高中物理动量和能量专题 课件.ppt

高中物理动量和能量专题 课件.ppt
B D C
例3. 在光滑的水平面上停放着质量为m、带有弧 形槽的小车,现有一质量也为m的小球以v0 的水平 速度沿槽口向小车滑去(不计摩擦),到达某一高 度后,小球又返回车右端,则 ( B C )
A. 小球离车后,对地将向右做平抛运动
B. 小球离车后,对地将做自由落体运动
C. 此过程小球对车做功为mv0 2 / 2
D. 小球沿弧形槽上升的最大高度为v0 2 / 2g
例4. 电阻为R的矩形导线框abcd,边长ab=l, ad=h,质量为m,自某一高度自由落体,通过一匀强 磁场,磁场方向垂直纸面向里,磁场区域的宽度为 h ,如图,若线框恰好以恒定速度通过磁场,线框内 a b 产生的焦耳热等于 2mgh . h (不考虑空气阻力) 解: 由能量守恒定律, 线框通过磁场时减少的 重力势能转化为线框的内能,
F
= 1/2× mv2 + 1/2×μ mgv t=mv2
练习、 上题中,若物体m以水平向左的速度v 轻轻地放置 在木板上的P点处 ,那么F 对木板做的功有多大? 解:物体m 在摩擦力作用下向左做匀减速运动,经时间t 速 度减为0到达Q点,又 在摩擦力作用下向右做匀加速运动, 经时间t 速度达到v ,
相加得
在此过程中,木板B 的位移为S,小木块C 的位移为S+x.
1 mgs 2 MV 2 2 2
Mv0 x (2M m) g
C
2
2

解①、②两式得
代入数值得
③ A x
C
v0
x 1 .6 m
B
S B

题目 上页 下页
V
A
x 比B 板的长度l 大.这说明小物块C不会停在B板上, 而要滑到A 板上.设C 刚滑到A 板上的速度为v1,此时A、B 板的速度为V1,如图示: mv0 mv 则由动量守恒得 ⑤ 1 2MV 1 1 1 1 2 由功能关系得 mv 0 mv12 2MV12 mgl ⑥ 2 2 2 以题给数据代入解得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题三动量与能量思想方法提炼牛顿运动定律与动量观点和能量观点通常称作解决问题的三把金钥匙.其实它们是从三个不同的角度来研究力与运动的关系.解决力学问题时,选用不同的方法,处理问题的难易、繁简程度可能有很大差别,但在很多情况下,要三把钥匙结合起来使用,就能快速有效地解决问题.一、能量1.概述能量是状态量,不同的状态有不同的数值的能量,能量的变化是通过做功或热传递两种方式来实现的,力学中功是能量转化的量度,热学中功和热量是内能变化的量度.高中物理在力学、热学、电磁学、光学和原子物理等各分支学科中涉及到许多形式的能,如动能、势能、电能、内能、核能,这些形式的能可以相互转化,并且遵循能量转化和守恒定律,能量是贯穿于中学物理教材的一条主线,是分析和解决物理问题的主要依据。

在每年的高考物理试卷中都会出现考查能量的问题。

并时常发现“压轴题”就是能量试题。

2.能的转化和守恒定律在各分支学科中表达式(1)W合=△E k包括重力、弹簧弹力、电场力等各种力在内的所有外力对物体做的总功,等于物体动能的变化。

(动能定理)(2)W F=△E除重力以外有其它外力对物体做功等于物体机械能的变化。

(功能原理) 注:(1)物体的内能(所有分子热运动动能和分子势能的总和)、电势能不属于机械能(2)W F=0时,机械能守恒,通过重力做功实现动能和重力势能的相互转化。

(3)W G=-△E P重力做正功,重力势能减小;重力做负功,重力势能增加。

重力势能变化只与重力做功有关,与其他做功情况无关。

(4)W电=-△E P 电场力做正功,电势能减小;电场力做负功,电势能增加。

在只有重力、电场力做功的系统内,系统的动能、重力势能、电势能间发生相互转化,但总和保持不变。

注:在电磁感应现象中,克服安培力做功等于回路中产生的电能,电能再通过电路转化为其他形式的能。

(5)W+Q=△E物体内能的变化等于物体与外界之间功和热传递的和(热力学第一定律)。

(6)mv02/2=hν-W 光电子的最大初动能等于入射光子的能量和该金属的逸出功之差。

(7)△E=△mc2在核反应中,发生质量亏损,即有能量释放出来。

(可以以粒子的动能、光子等形式向外释放)动量与能量的关系1.动量与动能动量和能量都与物体的某一运动状态相对应,都与物体的质量和速度有关.但它们存在明显的不同:动量的大小与速度成正比p=mv;动能的大小与速度的平方成正比Ek=mv2/2两者的关系:p2=2mE k动量是矢量而动能是标量.物体的动量发生变化时,动能不一定变化;但物体的动能一旦发生变化,则动量必发生变化.2.动量定理与动能定理动量定理:物体动量的变化量等于物体所受合外力的冲量.△p=I,冲量I=Ft是力对时间的积累效应动能定理:物体动能的变化量等于外力对物体所做的功.△E k=W,功W=Fs是力对空间的积累效应.3.动量守恒定律与机械能守恒定律动量守恒定律与机械能守恒定律所研究的对象都是相互作用的物体系统,(在研究某个物体与地球组成的系统的机械能守恒时,通常不考虑地球的影响),且研究的都是某一物理过程.动量守恒定律的内容是:一个系统不受外力或者所受外力之和为0,这个系统的总动量保持不变;机械能守恒定律的内容是:在只有重力和弹簧弹力做功的情形下,系统机械能的总量保持不变运用动量守恒定律值得注意的两点是:(1)严格符合动量守恒条件的系统是难以找到的.如:在空中爆炸或碰撞的物体受重力作用,在地面上碰撞的物体受摩擦力作用,但由于系统间相互作用的内力远大于外界对系统的作用,所以在作用前后的瞬间系统的动量可认为基本上是守恒的.(2)即使系统所受的外力不为0,但沿某个方向的合外力为0,则系统沿该方向的动量是守恒的.动量守恒定律的适应范围广,不但适应常见物体的碰撞、爆炸等现象,也适应天体碰撞、原子的裂变,动量守恒与机械能守恒相结合的综合的试题在高考中多次出现,是高考的热点内容.【例1】如图所示,滑块A、B的质量分别为m1与m2,m1<m2,由轻质弹簧相连接置于水平的气垫导轨上,用一轻绳把两滑块拉至最近,使弹簧处于最大压缩状态后绑紧。

两滑块一起以恒定的Array速率v0向右滑动.突然轻绳断开.当弹簧伸至本身的自然长度时,滑块A的速度正好为0.求:(1)绳断开到第一次恢复自然长度的过程中弹簧释放的弹性势能Ep;(2)在以后的运动过程中,滑块B是否会有速度为0的时刻?试通过定量分析证明你的结论.【解析】(1)当弹簧处压缩状态时,系统的机械能等于两滑块的动能和弹簧的弹性势能之和,当弹簧伸长到自然长度时,弹性势能为0,因这时滑块A的速度为0,故系统的机械能等于滑块B的动能.设这时滑块B的速度为v,则有E=m2v2/2.因系统所受外力为0,由动量守恒定律(m1+m2)v0=m2v.解得E=(m1+m2)2v02/(2m2).由于只有弹簧的弹力做功,系统的机械能守恒(m1+m2)v02/2+E p=E.解得E p=(m1-m2)(m1+m2)v02/2m2.(2)假设在以后的运动中滑块B可以出现速度为0的时刻,并设此时A的速度为v1,弹簧的弹性势能为E′p,由机械能守恒定律得m1v12/2+E′p=(m1+m2)2v02/2m2.根据动量守恒得(m1+m2)v0=m1v1,求出v1代入上式得:(m1+m2)2v02/2m1+E′p=(m1+m2)2v02/2m2.因为E′p≥0,故得:(m1+m2)2v02/2m1≤(m1+m2)2v02/2m2即m1≥m2,这与已知条件中m1<m2不符.可见在以后的运动中不可能出现滑块B的速度为0的情况.【解题回顾】“假设法”解题的特点是:先对某个结论提出可能的假设.再利用已知的规律知识对该假设进行剖析,其结论若符合题意的要求,则原假设成立.“假设法”是科学探索常用的方法之一.在当前,高考突出能力考察的形势下,加强证明题的训练很有必要.套在光滑的水平杆上,在A下面用细绳挂一质量为M的物体B,若A固定不动,给B一水平冲量I,B恰能上升到使绳水平的位置.当A不固定时,要使B物体上升到使绳水平的位置,则给它的水平冲量至少多大?【解析】当A固定不动时,B受到冲量后以A为圆心做圆周运动,只有重力做功,机械能守恒.在水平位置时B的重力势能应等于其在最低位置时获得的动能Mgh=E k=p2/2M=I2/2M.若A不固定,B向上摆动时A也要向右运动,当B恰能摆到水平位置时,它们具有相同的水平速度,把A、B看成一个系统,此系统除重力外,其他力不做功,机械能守恒.又在水平方向上系统不受外力作用,所以系统在水平方向上动量守恒,设M在最低点得到的速度为v0,到水平位置时的速度为v.Mv0=(M+m)v.Mv02/2=(M+m)v2/2+Mgh.I′=Mv0.I ′=【解题回顾】此题重要的是在理解A 不固定,B 恰能上升到使绳水平的位置时,其竖直方向的分速度为0,只有水平速度这个临界点.另外B 上升时也不再是做圆周运动,此时绳的拉力对B 做功(请同学们思考一下,绳的拉力对B 做正功还是负功),有兴趣的同学还可以分析一下系统以后的运动情况. 【例3】下面是一个物理演示实验,它显示:图中下落的物体A 、B 经反弹后,B 能上升到比初始位置高的地方.A 是某种材料做成的实心球,质量m 1=0.28kg ,在其顶部的凹坑中插着质量m 2=0.1kg 的木棍B.B 只是松松地插在凹坑中,其下端与坑底之间有小间隙. 将此装置从A 的下端离地板的高度H=1.25m处由静止释放.实验中,A 触地后在极短的时间内反弹, 且其速度大小不变;接着木棍B 脱离球A 开始上升,而球A 恰好停留在地板上,求木棍B 上升的高度.重力加速度(g=10m/s 2)【解析】根据题意,A 碰地板后,反弹速度的大小等于它下落到地面时的速度的大小,由机械能守恒得(m 1+m 2)gH=(m 1+m 2)v 2/2,v 1= .A 刚反弹时速度向上,立刻与下落的B 碰撞,碰前B 的速度v 2= . 由题意,碰后A 速度为0,以v 2表示B 上升的速度,根据动量守恒m 1v 1-m 2v 2=m 2v ′2.令h 表示B 上升的高度,有m 2v ′22/2=m 2gh ,由以上各式并代入数据得:h=4.05m. 【例4】质量分别为m 1、m 2的小球在一直线上做弹性碰撞,它们在碰撞前后的位移—时间图像如图所示,若m 1=1kg,m 2的质量等于多少?【解析】从位移—时间图像上可看出:m 1和m 2于t=2s 时在位移等于8m 处碰撞,碰前m 2的速度为0,m 1的速度v 0=△s/△t=4m/s 碰撞后,m 1的速度v 1=-2m/s ,m 2的速度v 2=2m/s ,由动量守恒定律得m 1v 0=m 1v 1+m 2v 2,m 2=3kg.【解题回顾】这是一道有关图像应用的题型,关键是理解每段图线所对应的两个物理量:位移随时间的变化规律,求出各物体碰撞前后的速度.不要把运动图像同运m m M IgH 2gH 2动轨迹混为一谈.【例5】云室处在磁感应强度为B的匀强磁场中,一质量为M的静止的原子核在云室中发生一次α衰变,α粒子的质量为m,电量为q,其运动轨迹在与磁场垂直的平面内.现测得α粒子运动的轨道半径为R,试求在衰变过程中的质量亏损.(注:涉及动量问题时,亏损的质量可忽略不计)【解析】α粒子在磁场中做圆周运动的向心力是洛伦兹力,设α粒子的运动速度为v,由牛顿第二定律得qvB=mv2/R.衰变过程中,粒子与剩余核发生相互作用,设衰变后剩余核的速度为v′,衰变过程中动量守恒(M-m)v′=mv.α粒子与剩余核的动能来源于衰变过程中亏损的质量,有△m·c2=(M-m)v′2/2+mv2/2.解得:△m=M(qBR)2/[2c2m(M-m)].【解题回顾】此题知识跨度大,综合性强,将基础理论与现代物理相结合.考查了圆周运动、洛伦兹力、动量守恒、核裂变、能量守恒等知识.这类题型需注意加强.【例6】如图所示,一轻绳穿过光滑的定滑轮,两端各拴有一小物块.它们的质量分别为m1、m2,已知m2=3m1,起始时m1放在地上,m2离地面的高度h=1.0m,绳子处于拉直状态,然后放手.设物块与地面相碰时完全没有弹起(地面为水平沙地),绳不可伸长,绳中各处拉力均相同,在突然提起物块时绳的速度与物块的速度相同,试求m2所走的全部路程(取3位有效数字)【解析】因m2>m1,放手后m2将下降,直至落地.由机械能守恒定律得m2gh-m1gh=(m1+m2)v2/2.m2与地面碰后静止,绳松弛,m1以速度v上升至最高点处再下降.当降至h时绳被绷紧.根据动量守恒定律可得:m1v=(m1+m2)v1由于m1通过绳子与m2作用及m2与地面碰撞的过程中都损失了能量,故m2不可能再升到h处,m1也不可能落回地面.设m2再次达到的高度为h1,m1则从开始绷紧时的高度h处下降了h1.由机械能守恒(m1+m2)v12/2+m1gh1=m2gh1由以上3式联立可解得h1=m12h/(m1+m2)2=[m1/(m1+m2)]2h此后m2又从h1高处落下,类似前面的过程.设m2第二次达到的最高点为h2,仿照上一过程可推得h 2=m 12h 1/(m 1+m 2)2=m 14h/(m 1+m 2)4=[m 1/(m 1+m 2)]4h由此类推,得:h 3=m 16h/(m 1+m 2)6=[m 1/(m 1+m 2)]6h所以通过的总路程s=h+2h 1+2h 2+2h 3+……【解题回顾】这是一道难度较大的习题.除了在数学处理方面遇到困难外,主要的原因还是出在对两个物块运动的情况没有分析清楚.本题作为动量守恒与机械能守恒定律应用的一种特例,应加强记忆和理解.【例7】如图所示,金属杆a 从 离地h 高处由静止开始沿光滑平行的弧形轨道下滑,轨道的水平部分有竖直向上的匀强磁场B ,水平轨道上原来放有一金属杆b ,已知a 杆的质量为m a ,且与杆b 的质量之比为m a ∶m b =3∶4,水平轨道足够长,不计摩擦,求: (1)a 和b 的最终速度分别是多大?(2)整个过程中回路释放的电能是多少?(3)若已知a 、b 杆的电阻之比R a ∶R b =3∶4,其余部分的电阻不计,整个过程中杆a 、b 上产生的热量分别是多少?【解析】(1)a 下滑过程中机械能守恒m a gh=m a v 02/2a 进入磁场后,回路中产生感应电流,a 、b 都受安培力作用,a 做减速运动,b 做加速运动,经过一段时间,a 、b 速度达到相同,之后回路的磁通量不发生变化,感应电流为0,安培力为0,二者匀速运动.匀速运动的速度即为a.b 的最终速度,设为v.由于所组成的系统所受合外力为0,故系统的动量守恒m a v 0=(m a +m b )v由以上两式解得最终速度v a =v b =v=(2)由能量守恒得知,回路中产生的电能应等于a 、b 系统机械能的损失,所以 E=m a gh-(m a +m b )v 2/2=4m a gh/7mh h m m m m m m m m m h 13.1567.02])41()41()41(21[2])()()(21[2642621142112211≈⨯=++++=+++++++= gh 273(3)由能的守恒与转化定律,回路中产生的热量应等于回路中释放的电能等于系统损失的机械能,即Q a +Q b =E.在回路中产生电能的过程中,电流不恒定,但由于R a 与R b 串联,通过的电流总是相等的,所以应有所以【例8】连同装备质量M=100kg 的宇航员离飞船45m 处与飞船相对静止,他带有一个装有m=0.5kg 的氧气贮筒,其喷嘴可以使氧气以v=50m/s 的速度在极短的时间内相对宇航员自身喷出.他要返回时,必须向相反的方向释放氧气,同时还要留一部分氧气供返回途中呼吸.设他的耗氧率R 是2.5×10-4kg/s ,问:要最大限度地节省氧气,并安全返回飞船,所用掉的氧气是多少?【解析】设喷出氧气的质量为m ′后,飞船获得的速度为v ′,喷气的过程中满足动量守恒定律,有:0=(M-m ′)v ′+m ′(-v+v ′)得v ′=m ′v/M宇航员即以v ′匀速靠近飞船,到达飞船所需的时间t=s/v ′=Ms/m ′v这段时间内耗氧m ″=Rt故其用掉氧气m ′+m ″=2.25×10-2/m ′+m ′因为(2.25×10-2/m ′)×m ′=2.5×10-2为常数,所以当2.25×10-2/m ′=m ′,即m ′=0.15kg 时用掉氧气最少,共用掉氧气是m ′+m ″=0.3kg.【解题回顾】(1)动量守恒定律中的各个速度应统一对应于某一惯性参照系,在本题中,飞船沿圆轨道运动,不是惯性参照系.但是,在一段很短的圆弧上,可以视飞船做匀速直线运动,是惯性参照系.(2)此题中氧气的速度是相对宇航员而不是飞船,因此,列动量守恒的表达式时,要注意速度的相对性,这里很容易出错误.(3)要注意数学知识在物理上的运用.【例9】质量为m 的飞机以水平速度v 0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其它力的合力提供,不含重力)。

相关文档
最新文档