第二章有理数及其运算教案汇总

合集下载

北师大版七年级数学上册第二章有理数及其运算全章教案(共180页)

北师大版七年级数学上册第二章有理数及其运算全章教案(共180页)

第二章有理数及其运算1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小.2.能借助数轴理解相反数和绝对值的意义,知道|a|的含义(这里a表示有理数).3.理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主).4.理解有理数的运算定律,能运用运算律简化计算.5.能运用有理数的运算解决简单的问题.1.在求一个数的相反数和绝对值的过程中,让学生掌握求有理数的相反数和绝对值的方法.2.能按照有理数的运算法则进行有理数的加、减、乘、除及混合运算,掌握计算的方法和技巧.3.能用科学记数法表示数,以及用四舍五入法取近似数,掌握其表示的方法.1.在认识数的过程中,体验知识之间的必然联系,激发学生爱数学、学数学的兴趣.2.培养学生养成认真做题的良好习惯,认识数学是解决实际问题和进行交流的重要工具.3.在解决问题的过程中,能对问题提出自己的猜想,树立学好数学的信心.对于负数的引入,教材借助生活中的实例,引进负数,让学生在活动中体会数概念的扩张,了解负数的本质意义,然后再指出可以用正负数表示现实生活中具有相反意义的量,使学生感受到负数的引入源自实际生活的需要,体会数学知识与现实世界的联系.就学生的学习而言,负数的概念、意义有一定的抽象性,为什么要引进负数正是学生理解的困难所在.从数学的发展进程来看,数的出现的主要原因更多的是由于对实际现象(事物)“表示”的需要.所以教材遵循历史发展的过程,采用这样的线索展开:产生的实际背景——有理数的意义——数的表示.对于有理数运算法则的获得,教材没有采用直接给出的方式而是设置了丰富的现实背景,如足球比赛中的净胜球数、气温变化等,以直观形象地解释、归纳、探索的方式,寻求有理数运算法则和运算律.如有理数的加法法则,仅仅借助数轴理解,学生会有一定的困难,所以教材先从知识竞赛中的答对题数与答错题数入手,使学生首先理解(+1)+(- 1)=0和(- 1)+(+1)=0,然后利用“正负抵消”的思想,讨论整数加法的几种情形,最后再由特例归纳出有理数的加法法则,并借助数轴加深理解.基于有理数运算的学习重点是对法则和运算律的理解,所以为了避免因为小数、分数运算的复杂性而冲淡学习的重点,有理数的运算以整数运算的学习为出发点,然后过渡到含有小数、分数的运算.【重点】理解有理数的意义,掌握有理数的运算法则和运算律,会用科学记数法表示较大的数.【难点】利用有理数的加、减、乘、除、乘方等运算解决简单的实际问题.1.负数是一个比较抽象的概念.在教学中应该让学生充分了解引入负数的必要性和实际背景,通过生活中具有相反意义的量的讲解,让学生接受负数的概念.2.本章的重点内容是有理数的运算,所以一定要让学生有足够的练习的机会,只有通过一定量的计算实践,才能真正体会并熟练掌握有理数计算的一些技巧.让学生通过计算、观察、猜测、归纳等数学活动,自己总结出有理数的运算律.3.对绝对值概念的学习也要有一个循序渐进的过程,与绝对值相关的知识,如数轴上两点之间的距离的表示、绝对值不等式等,都是在后续学习中要专门安排的,因此这里不要涉及.本章安排绝对值概念,目的是为有理数的运算作准备,会求一个数的绝对值就达到了本章的要求.教材中用字母表示求一个数的绝对值的结论,只是给出一个数的绝对值的符号表示,教学时不要对这个符号表示进行变式训练,更不要在绝对值中出现字母并加以讨论.4.计算器是一个既简便又实用的计算工具,让学生通过实际操作,掌握计算器的基本用法.5.在本章的学习中,要注意数形结合思想、转化与化归思想、分类讨论思想的运用.1有理数1课时2数轴1课时3绝对值1课时4有理数的加法2课时5有理数的减法1课时6有理数的加减混合运算3课时7有理数的乘法2课时8有理数的除法1课时9有理数的乘方2课时10科学记数法1课时11有理数的混合运算1课时12用计算器进行运算1课时本章概括整合1课时1有理数1.通过实例理解引入负数的必要性和负数应用的广泛性,理解有理数的含义,体会有理数应用的广泛性.2.能用正数和负数表示具有相反意义的量.3.培养逻辑思维能力,以及按一定规律对事物进行分类整理的能力.会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量,能把有理数合理分类和把具体数正确归类.1.通过实例,使学生深刻体会到有理数和负数的实用性,加深对数的理解.2.让学生体会到数学中的基本概念都来源于实际需要.3.让学生进一步了解学习数学对于解决实际生活中各种问题的必要性,增强学习数学知识的兴趣.【重点】负数的意义、特点及实际应用,有理数的概念,能够对学过的数进行分类.【难点】正确用正、负数表示生活中具有相反意义的量,正确理解有理数的概念,会合理进行有理数的分类和把具体数归类到相应的数集.【教师准备】多媒体课件.【学生准备】预习教材P23~24.导入一:师:同学们小学都学过哪些数?生:整数、小数、分数、奇数、偶数……师:原始社会,从打猎记数开始,首先出现自然数,经过漫长岁月,人们用数“0”表示没有,随着人类的不断进步,在丈量土地进行分配时,又用小数使测量结果更加准确,小数也属于分数.那么小学学过的这些数能否满足社会生产生活及数学自身发展的需要呢?[设计意图]通过介绍数的产生与发展,向学生渗透“实践第一”的辩证唯物主义观点,使同学们感到数的每一次发展都是为了满足社会生产与生活的需要,也为讲述有理数概念及其分类做好铺垫.导入二:观察课本P22的图片.珠穆朗玛峰高出海平面8844 m,记作:+8844 m;吐鲁番盆地低于海平面155 m,记作: - 155 m.教师出示图片,并提出问题:1.生活中我们会遇到用负数表示的量,你能说出一些例子吗?2.你在小学的学习中对负数有什么样的认识?3.有了负数,数的运算与过去相比有什么区别和联系?有了负数,能解决哪些实际问题?本章将在小学学习的基础上,进一步学习负数,研究有理数的有关概念及其运算,并利用有理数的知识解决实际问题.[设计意图]通过提供学生熟悉的情境引导学生回顾小学有关负数的知识,三个问题不仅为本节课成功引入,也为本章的学习做了铺垫.学生在对问题的思考与交流中体会负数在生活中的广泛应用,激发了学生学习本章内容的兴趣.(出示课件1)(例题讲解)请同学们完成以下问题,并与同伴交流.某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基本分均为0分.两个队答题情况如下表:答题情况第一队第二队如果答对题所得的分数用正数表示,那么你能写出每个队答题得分的情况吗?思路一试完成下表:答对题的得分答错题的得分未回答题的得分第一队+6第二队- 2思路二提出思考问题:(1)第一队答对几题?是如何表示的?答错几题?又是如何表示的?(2)第二队答对几题?是如何表示的?答错几题?又是如何表示的?(3)如何理解+6和- 2?(出示课件2)(教材议一议)生活中你见过其他用负数表示的量吗?与同伴进行交流.想一想:根据上面各队分数的计算及2010年全国居民消费价格的上涨情况及温度计上的温度,你能知道正、负数和零的大小关系吗?[处理方式]学生思考交流,完成后再展示说明,学生之间互相补充,教师适时点评.师生总结:“加分与扣分”“上涨量与下跌量”“零上温度与零下温度”等都是具有相反意义的量.为了表示具有相反意义的量,我们把其中一个量规定为正的,用正数来表示,而把与这个意义相反的量规定为负的,用负数来表示.[设计意图]本活动的设计意在引导学生通过自主探究、合作交流,用知识竞赛得分的情境启发学生用正、负数表示相反意义的量.通过练习引导学生举一反三地找出身边可以用正、负数表示的量,从而体会学习负数的必要性.从学生熟悉的情境讨论问题,学生积极参与,在教师的引导下寻找生活实例的过程中充分体会学习负数是生活的需要.探究活动2用正、负数表示生活中具有相反意义的量(出示课件3)(教材例题)(1)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(2)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02 g 记作+0.02 g,那么- 0.03 g 表示什么?(3)某大米包装袋上标注着“净含量:10 kg±150 g”,这里的“10 kg±150 g”表示什么?[处理方式]学生先独立思考,再小组交流如何用正、负数表示生活中具有相反意义的量.思路一如果用+5圈表示沿逆时针方向转了5圈,那么和逆时针方向具有相反意义的量是,所以沿顺时针方向转了12圈可表示为;一只乒乓球超出标准质量0.02 g记作+0.02 g,那么和超出标准质量具有相反意义的量是,所以- 0.03 g可以表示为;综上所述,“净含量:10 kg±150 g”,这里的“10 kg±150 g”表示.思路二(1)想一想:什么是具有相反意义的量?(2)品一品:如何表示具有相反意义的量?(3)考一考:和逆时针方向具有相反意义的量是,和超出标准质量具有相反意义的量是.【师生活动】学生讨论,教师巡视发现问题,并及时解决.解:(1)沿顺时针方向转了12圈记作- 12圈.(2) - 0.03 g表示乒乓球的质量低于标准质量0.03 g.(3)每袋大米的标准质量应为10 kg,但实际每袋大米可能有150 g的误差,即每袋大米的净含量最多是10 kg+150 g,最少是10 kg - 150 g.反馈练习(出示课件4) (1)在知识竞赛中如果用“+10”表示加10分,那么扣20分记作什么? (2)东、西为两个相反方向,如果 - 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?(3)某粮库运进面粉7.5吨记作+7.5吨,那么运出3.8吨应记作什么?议一议:你能选定一个高度为标准,用正、负数表示本班每位同学的身高与选定的身高标准的差异吗?你是怎样表示的?与同伴交流.通过例题和练习题的分析,让学生知道用正、负数表示相反意义的量时要明确“基准”.教材例题中各题的基准分别是“转盘静止不动”“一只乒乓球的标准质量”“10 kg ”. “议一议”则联系生活实际让学生学会如何选定“基准”.学生认识当用正、负数表示相反意义的量时要考虑“基准”.“0”是常用的基准,但不是所有的基准都必须为0.探究活动3 有理数的概念及分类1.新的整数、分数概念:引进负数后,数的范围扩大了.过去我们说整数只包括正整数和零,引进负数后,正整数前加上负号的数叫做负整数,因而整数包括正整数、负整数和零,同样分数包括正分数、负分数.整数和分数统称为有理数.(有理数分类结构图如下)有理数{整数{正整数0负整数分数{正分数负分数 2.有理数的分类.问题:为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同,根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法呢?待学生思考后,请学生回答、评议、补充.教师小结:按有理数的符号分为三类:正有理数、负有理数和零,并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:对有理数的分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.[设计意图] 使学生在原有认知结构的基础上,将数扩充到了有理数的范围.通过练习使学生加深理解有理数的意义.[知识拓展] 对正数和负数的理解要注意以下几点:(1)并不一定必须将某一种量规定为正,若将其中的一种量规定为正,则与其意义相反的量即为负.(2)零既不是正数,也不是负数,这个数十分特殊,随着我们的学习,对于零这个数将有更深刻的认识.(3)负数前面的“一”号,表示这个数的性质,是性质符号,读作“负”号,但正数前面的“+”可以省略.即时巩固将下列各数填入到相应的数集中: - 2015, - 13,14,12, - 513, - 7.3,3,369,0.1,92, - 374.正数集合{ …}; 负数集合{ …}; 正整数集合{ …}; 负整数集合{ …}; 分数集合{ …}; 负分数集合{ …}; 负有理数集合{ …}; 有理数集合{ …}.〔解析〕 小数 - 7.3,0.1都属于分数,369=4不属于分数.(学生口述解答过程,师总结、板演)1.正数与负数都来自于生活实际,用正、负数可以表示实际问题中具有相反意义的量.2.正数前面添上“ - ”号的数是负数;0既不是正数,也不是负数,它表示正、负数的界限.3.有理数的分类方法不是唯一的,可以按整数和分数分成两大类,也可以按正有理数、零、负有理数分成三大类.1.如果将汽车向东行驶3千米记为+3千米,那么记为 - 3千米表示的是 ( )A.向西行驶3千米B.向南行驶3千米C.向北行驶3千米D.向东南方向行驶3千米解析:先根据向东行驶3千米记为+3千米,可确定向西为负,而 - 3千米表示的应是向西行驶3千米.故选A .2.在0,2, - 7, - 513,3.14, - 317, - 3,+0.75中,负数共有 ( )A.1个B.2个C.3个D.4个解析:在正数的前面加上“ - ”号的数即是负数,本题中的 - 7, - 513, - 317, - 3是负数.故选D .3.飞机上升了 - 80米,实际上是 ( ) A.上升80米 B.下降 - 80米C.先上升80米,再下降80米D.下降80米解析:解题的关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.负号表示与上升意义相反,即下降.故选D .4.举一个能用正数、负数表示生活中的量的实例,并解释其中相关数量的含义.解:本题答案不唯一,只要满足题意即可,如:河道中第一天的水位是 - 0.2米,第二天的水位是+0.3米,其中 - 0.2米表示比正常水位低0.2米,+0.3米表示比正常水位高0.3米.1有理数1.认识生活中的负数.2.用正、负数表示生活中具有相反意义的量.3.有理数的概念及分类.一、教材作业【必做题】教材第26页习题2.1的2,3题.【选做题】教材第26页习题2.1的4,5题.二、课后作业【基础巩固】1.下列结论中正确的是()A.0既是正数,又是负数B.0是最小的正数C.0是最大的负数D.0既不是正数,也不是负数2.向东运动记作“+”,向西运动记作“- ”,下列说法正确的是()A. - 5米表示向东运动了5米B.向西运动5米表示向东运动了- 5米C.+5米表示向西运动了5米D.向西运动5米也可以记作向西运动- 5米3.武汉市夏季气温比较高,若以30 ℃为标准,高出标准的为正,低于标准的为负,则38 ℃与28 ℃分别记作()A.+8 ℃- 2 ℃B.+8 ℃+2 ℃C. - 8 ℃- 2 ℃D. - 8 ℃+2 ℃4.某药品说明书上标明药品保存的温度是(20±2)℃,该药品在温度范围内保存才合适.5.请指出下列各数中哪些是正数,哪些是负数.- 18,+227,3.1416,0.2011, - 35, - 0.1010…, - π, - 2,99%.【能力提升】6.如果海平面的高度为0 m,一潜水艇在海平面以下40 m处航行,一条鲨鱼在潜水艇上方10 m 处游动,试用正、负数分别表示潜水艇和鲨鱼的高度.7.用正数和负数表示下列具有相反意义的量.(1)钟表的指针逆时针方向旋转20°记作- 20°,顺时针方向旋转30°记作;(2)运进200箱记作,运出150箱记作- 150箱.【拓展探究】8.某日小明在一条南北方向的公路上跑步,他从A地出发,如果把向北跑1100 m记作- 1100 m,那么他向北跑1100 m时向后转又继续跑了1200 m是什么意思?这时他停下来休息,此时他在A地的什么方向?距A地多远?【答案与解析】1.D(解析:根据0既不是正数,也不是负数,可以判断A,B,C都错误,D正确.故选D.)2.B(解析:A. - 5米表示向西运动了5米,故A错误;C.+5米表示向东运动了5米,故C错误;D.向西运动5米记为- 5米,故D错误.故选B.)3.A (解析:因为以30 ℃为标准,高出标准的为正,低于标准的为负,所以38 ℃与28 ℃分别记作:+8 ℃, - 2 ℃.故选A.)4.18~22 ℃(解析:温度是20 ℃±2 ℃,表示最低温度是20 ℃- 2 ℃=18 ℃,最高温度是20 ℃+2 ℃=22 ℃,即18~22 ℃之间是合适温度.)5.解:正数有:+227,3.1416,0.2011,99%;负数有: - 18, - 35, - 0.1010…, - π, - 2.6.解:因为海平面的高度为0 m,所以低于海平面的高度为负数,由于潜水艇和鲨鱼的高度都在海平面的下方,故分别为- 40 m和- 30 m.7.(1)+30°(2)+200箱8.解:如果把向北跑1100 m 记作 - 1100 m ,那么他向北跑1100 m 时向后转又继续跑了1200 m ,说明小明又向南跑了1200 m ,此时他在A 地的南边,距A 地的距离=1200 - 1100=100(m ).本节课从学生较熟悉的珠穆朗玛峰、气温开始,接下来从具体问题情境出发,使学生感受到现有的数确实不够用了,唤起学生的好奇心和求知欲,然后引出负数、正数和零的概念和实际意义,接着引导学生回顾、总结学过的数,告诉学生有理数的意义,和学生一起探讨有理数的分类,这样学生易于接受,在学习过程中,学生经历了观察、比较、归纳、总结,学会了研究问题、解决问题的方法,加深了对所学知识的理解,完成了从数不够用到数可以表示具有相反意义的量的成长过程。

七年级上册第二章有理数及其运算教案

七年级上册第二章有理数及其运算教案

学生姓名教师姓名上课时间教学方式一对一授课内容有理数及其运算时间安排学习目标1、温习整理有理数有关概念和有理数运算法则,运算律以及近似计算等有关知识;2、培养学生综合运用知识解决题目的能力;3、渗透数形结合的思想学习重点学习趣点学习笔记第二章:有理数及其运算2.1数怎么不够用了一、教学目标1.使学生了解正数与负数是从实际需要中产生的;2.使学生理解正数与负数的概念,并会判断一个数是正数还是负数;3.初步会用正负数表示具有相反意义的量;4.在负数概念的形成过程中,培养学生的观察、归纳与概括的能力.二、教学重难点重点:负数的意义;有理数包括哪些数.难点:负数的意义;有理数的分类及其分类的标准.三、教学过程(一)、从学生原有的认知结构提出问题大家知道,数学与数是分不开的,它是一门研究数的学问.现在我们一起来回忆一下,小学里已经学过哪些类型的数?学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.为了表示一个人、两只手、我们用到整数1,2,为了表示“没有人”、“没有羊”、我们要用到0.但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示.(二)、师生共同研究形成正负数概念某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚.它们是具有相反意义的两个量.现实生活中,像这样的相反意义的量还有很多.例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.同学们能举更多例子吗?学生回答后,教师提出:怎样区别相反意义的量才好呢?待学生思考后,请学生回答、评议、补充.教师小结:同学们成了发明家.甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃…….其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”.如今这种方法在记账的时候还使用.所谓“赤字”,就是这样来的.现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了.让学生用同样的方法表示出前面例子中具有相反意义的量:高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;教师讲解:什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量.并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号.例所有的正数组成正数集合,所有的负数组成负数集合.把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:学习笔记此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分.然后,指出不仅可以用圈表示集合,也可以用大括号表示集合.课堂练习任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:正数集合:{…},负数集合:{…}.由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数.正数是大于0的数,负数就是在正数前面加上“-”号的数.0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃.(三)、数的分类1.给出新的整数、分数概念引进负数后,数的范围扩大了.过去我们说整数只包括自然数和零,引进负数后,我们把除去0的自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数。

第二章有理数及其运算全章教案

第二章有理数及其运算全章教案

第一节数怎么不够用了〖教学目的:〗〖知识与技能目标:〗借助生活中的实例,从扩充运算的角度引进负数,然后使用正负数表示现实生活中具有相反意义的量.〖过程与方法:〗经历从生活中发现数学问题,体会数学与现实生活的联系。

〖情感态度与价值观:〗培养自主探索能力并体验成功•〖教学重点、难点:〗理解正、负数及有理数的意义〖教学方法:〗引导发现法〖教具准备:〗尺、小黑板。

〖教学过程:〗I •创设现实情景,弓I入新课观察一组图片回答下列问题:某班举行知识竞赛,评分标准是:答对一题加10分,答错一题扣10分,不回答得0分;每个队的基本分均为0分。

四个代表队答题情况如下表:第1题第2题第3题第4题第5题第一队第二队©©©第三队Q)L©第四队©o加10分得0分扣10分算一算:每个代表队的得分是多少?n.根据现实情景,讲授新课生活中你见过带有“ ”号的数吗?比0大的数叫做正数,如,5,1.2, ,…在正数前面加上“ ”号的数叫做负数,女口 -0, - 3,…0既不是正数,也不是负数•为了突出数的符号,可以在正数前面加“ +号,如+5,+1.2,+ 9,2. 讲解例题:例1 (1)在知识竞赛中,如果用+10分表示加10分,那么扣20分怎样表示?(2)某人转动转盘,如果用+5表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(3)在某次乒乓球的质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?川.做一做将所有学过的数进行分类,并与同伴进行交流。

正数、负数与零统称为有理数通过这节课的学习,你学到了什么?感受到了什么?还想知道什么?比0大的数叫做正数,在正数前面加上“”号的数叫做负数,0即不是正数,也不是负数.为了突出数的符号,可以在正数前面加“ +”数、负数与零统称为有理数.W.课时小结根据课堂的实际情况作评价.并让小组成员叙述自己对有理数加减法的看法和掌握有困难的地方。

第二章有理数及其运算第三讲有理数的运算法则(教案)

第二章有理数及其运算第三讲有理数的运算法则(教案)
-有理数除法法则:理解除法是乘法的逆运算,掌握除以一个数等于乘以这个数的倒数。
-有理数混合运算:掌握混合运算的顺序和法则,解决实际问题。
举例解释:
-加法重点:强调两个正数或两个负数相加时,结果的符号不变,绝对值为两个数绝对值之和。如:3 + 4 = 7,-3 + (-4) = -7。
-减法重点:强调减法实际上是加上相反数,如:5 - 3 = 5 + (-3)。
第二章有理数及其运算第三讲有理数的运算法则(教案)
一、教学内容
本节课选自教材第二章“有理数及其运算”的第三讲,主题为“有理数的运算法则”。教学内容主要包括以下几点:
1.有理数的加法法则:掌握同号相加、异号相加的规律,理解“正负相抵”的概念。
-同号相加:两个正数或两个负数相加,结果为同号的较大绝对值。
五、教学反思
在今天的教学中,我重点关注了有理数的运算法则这一章节。我尝试通过日常生活中的例子引入新课,希望这样能让学生感受到数学与生活的紧密联系。在理论讲解部分,我尽力将有理数的概念和运算法则阐述清楚,同时用具体的案例帮助学生理解这些抽象的规则。
课堂上,我发现学生在异号相加和乘法符号规律这两个部分有些吃力。我通过反复举例和对比分析,尽量让学生明白这些难点。在实践活动和小组讨论中,我鼓励学生积极思考,提出问题,并尝试解决问题。看到他们认真讨论、动手操作的样子,我觉得他们已经开始体会到数学学习的乐趣。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“有理数的运算法则”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算相反意义的量,比如温度上升和下降?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数运算法则的奥秘。

北师大版数学七年级上册《 第二章 有理数及其运算 》教案

北师大版数学七年级上册《 第二章 有理数及其运算 》教案

北师大版数学七年级上册《第二章有理数及其运算》教案一. 教材分析《第二章有理数及其运算》这一章主要介绍了有理数的概念、分类及有理数的运算规则。

内容涵盖了有理数的概念、分类、加减乘除运算、乘方运算等。

这部分内容是整个初中数学的基础,对于学生理解和掌握后续知识具有重要意义。

二. 学情分析学生在学习这一章内容时,已经具备了初步的数学运算能力,对数学概念有一定的理解。

但部分学生可能对有理数的概念和分类理解不深,对于有理数的运算规则容易混淆。

因此,在教学过程中,需要注重对学生概念的理解和运算规则的训练。

三. 教学目标1.理解有理数的概念,掌握有理数的分类。

2.掌握有理数的加减乘除运算规则,能够熟练进行计算。

3.理解有理数的乘方运算规则,能够进行相应的计算。

4.培养学生的运算能力和逻辑思维能力。

四. 教学重难点1.有理数的概念和分类。

2.有理数的运算规则,特别是乘方运算。

五. 教学方法采用讲解、示例、练习、讨论等教学方法,通过引导学生自主探究、合作交流,让学生在实践中掌握知识,提高能力。

六. 教学准备1.准备相关的教学课件和教学素材。

2.准备练习题,包括基础题和拓展题。

七. 教学过程1.导入(5分钟)通过复习小学学过的加减乘除运算,引出有理数的概念和分类。

2.呈现(15分钟)讲解有理数的概念和分类,示例说明有理数的运算规则。

3.操练(15分钟)让学生进行有理数的加减乘除运算,引导学生掌握运算规则。

4.巩固(10分钟)让学生进行一些有关有理数的运算题目,巩固所学知识。

5.拓展(10分钟)讲解有理数的乘方运算规则,让学生进行相关的计算。

6.小结(5分钟)对本节课的主要内容进行总结,强调重点和难点。

7.家庭作业(5分钟)布置一些有关有理数运算的题目,让学生课后巩固。

8.板书(课后整理)整理本节课的主要板书内容,方便学生复习。

教学过程每个环节所用时间共计50分钟,剩余10分钟用于学生自主学习和教师解答疑问。

针对以上教案对教学情境和教学活动的分析如下:一、教学情境本节课的主题是有理数及其运算,我通过创设生动有趣的教学情境,激发学生的学习兴趣。

初中数学新人教版七年级上册第二章第2课《有理数的乘法与除法》教案(2024秋)

初中数学新人教版七年级上册第二章第2课《有理数的乘法与除法》教案(2024秋)

2.2 有理数的乘法与除法2.2.1 有理数的乘法2.2.1 第1课时:有理数的乘法【素养目标】1.用类比、归纳的方式总结出有理数乘法法则,提高推理能力.2.能利用有理数乘法法则进行有理数的乘法运算,提高运算能力.3.理解倒数的意义,会求一个有理数的倒数.4.能运用有理数的乘法解决简单实际问题,增强应用意识.【教学重点】1.能利用有理数乘法法则进行有理数的乘法运算.2.理解倒数的意义,会求一个有理数的倒数.【教学难点】用类比、归纳的方式总结出有理数乘法法则.【教学过程】活动一:创设情境,导入新课[情境导入]如图,有甲、乙两座水库,甲水库的水位每天升高3 cm,乙水库的水位每天下降3 cm.如果用“+”号表示水位的上升,用“-”号表示水位的下降,请用算式表示,4天后甲、乙水库水位的总变化量分别是多少?你能找到更简洁的表示方法吗?甲水库水位的总变化量:3+3+3+3或3×4;乙水库水位的总变化量:(-3)+(-3)+(-3)+(-3)或(-3)×4.我们发现(-3)×4这个乘法算式中出现了负数,这节课我们就来学习有理数的乘法.[教学提示]鼓励学生交流讨论,用多种方式表示水位的总变化量,引导学生类比小学学过的乘法表示出(-3)×4.[设计意图]从实际情境出发,提出疑问,激发学生的学习兴趣和求知欲,使学生快速地进入学习状态,同时又让学生体会到数学源于生活又应用于生活.活动二:问题引入,合作探究探究点有理数乘法法则我们已经熟悉正数及0的乘法运算.与加法类似,引入负数后,有理数的乘法运算有哪几种情况呢?教师总结:共三种类型,即:(1)同号两个数相乘;(2)异号两个数相乘;(3)一个数与0相乘.该怎样进行有理数的乘法运算呢?接下来我们先进行下面的探究.问题1 观察下面的乘法算式.3×3=9;(1)四个算式有什么共同点?3×2=6;算式的左边都是3×□的形式.3×1=3;(2)其他两个数有什么变化规律?3×0=0. 随着后一乘数逐次递减1,积逐次递减3.(3)要使这个规律在引入负数后仍然成立,那么应有:3×3=9;(1)四个算式有什么共同点?2×3=6;算式的左边都是□×3的形式.1×3=3;(2)其他两个数有什么变化规律?0×3=0. 随着前一乘数逐次递减1,积逐次递减3.(3)要使这个规律在引入负数后仍然成立,那么应有:(-1)×3= -3 ,(-2)×3= -6 ,(-3)×3= -9 .思考:从符号和绝对值两个角度观察上述所有算式,你能发现什么规律?正数乘正数,积为正数;正数乘负数,积为负数;负数乘正数,积也为负数.积的绝对值等于乘数的绝对值的积.问题3 利用上面归纳的结论计算下面的算式.思考:从中可以归纳出什么结论?负数乘负数,积为正数,且积的绝对值等于乘数的绝对值的积.问题4 总结上面所有的情况,按照活动二开头分的三种类型,你能试着自己总结出有理数乘法法则吗?显然,两个有理数相乘,积是一个有理数.例1 (教材P39例1) 计算:(1)8×(-1); (2)(-12 )×(-2); (3)(-23 )×(-57 ).分析提问:例如(1)8×(-1), 异号两数相乘8×(-1)=-( ), 得负8×1=8, 把绝对值相乘所以8×(-1)=-8.(2)(-12 )×(-2) 同号两数相乘(-12 )×(-2)= +( ) 得正12 ×2 = 1, 把绝对值相乘所以(-12 )×(-2)= 1解:(1)8×(-1)=-(8×1)=-8;(2)(-12 )×(-2)=+(12 ×2)=1;(3)(-23 )×(-57 )=+(23 ×57 )=1021 .归纳总结同号两数相乘,可以先确定积的符号,再确定积的绝对值补充说明:例1(2)中,(-12 )×(-2)=1,我们说-12 和互为倒数.一般地,在有理数中仍然有:乘积是1的两个数互为倒数.【对应训练】教材 P40 练习第 1.3 题[教学提示]教师引导学生类比有理数的加法,对乘法的各种情况进行分类,然后总结出三种类型,为后续归纳有理数乘法法则做铺垫.[教学提示]教师注意一定要引导学生解决好问题1,为后续的过程打下基础.要让学生知道“观察下面的乘法算式”的含义是:看算式两边,左边两个数相乘,有什么共同点和不同点;右边的积有什么变化规律.[教学提示]鼓励学生类比有理数的加法,从符号和绝对值两个角度观察算式,先看乘数与积的符号,再看积的绝对值和两个乘数绝对值之积的关系,然后总结出规律.[教学提示]指定学生代表上台解答,并说明计算中每一步的理由,其他学生在纸上作答,做完后引导学生总结出计算有理数乘法的一般步骤.[教学提示]提醒学生:如果把整数看成分母是1的分数,那么任何一个有理数(除0以外)的倒数,就是把分子和分母颠倒后所得的数.提醒学生:从倒数的定义出发,因为没有一个数与0相乘等于1,所以0没有倒数.[设计意图]从小学学过的乘法运算出发,提出引入负数后的乘法问题,再通过大量算式类比、归纳,总结出有理数乘法法则,然后借助实例将倒数的概念扩充到有理数的范围. 活动三:知识延伸,巩固升华例2 (教材P40 例2)用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km气温的变化量为-6℃.登高3km后,气温有什么变化?解:(-6)×3=-18.答:登高3km后,气温下降18℃.例2变式在例2的条件下,若登山队已经到达山顶,现在要下山,当他们下山2km后,气温相对山顶的气温有什么变化?解:(-6)×(-2)=12.答:下山2km后,气温上升12℃.【对应训练】教材P40练习第2题.[教学提示]在例2变式中,可将下山 2 km 理解成登高-2 km,得(-6)×(-2),也可将“每登高 1km 气温的变化量为-6℃”理解成“每下山1km 气温的变化量为6℃”,得6×2,用两种方式让学生更深刻地理解有理数的乘法.[设计意图]将新知识应用到实际情境中,使学生更深刻地体会有理数乘法的意义,提高运算能力与应用意识. 活动四:随堂训练,课堂总结【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.有理数乘法法则是什么?2.有理数的倒数是什么?【作业布置】1.教材P47习题2.2第1,2,3,14题.【教学后记】2.2.1 第2课时:有理数的乘法运算律【素养目标】经历探索有理数的乘法运算律的过程,理解运算律并了解运算律的字母表示,培养抽象能力.体会用实例类比、归纳出多个有理数相乘时积的符号的确定方法的过程,提高推理能力. 熟悉有理数的乘法运算并能用乘法运算律简化运算,提高运算能力.【教学重点】经历多个有理数相乘时积的符号的确定方法的探究过程,会利用有理数的乘法运算律简化运算.【教学难点】逆向利用分配律简化运算.【教学过程】活动一:知识回顾,导入新课【回顾导入】问题1 计算4×17×0.25×1317 .4×17×0.25×1317 =(4×0.25)×(17×1317 )=1×13=13.问题2 你是怎样做的?过程中运用了乘法运算律吗?如果运用了,运用了哪些运算律?将4与0.25,17与1317 分别相乘,再把它们的积相乘,其中运用了乘法交换律与乘法结合律.问题3 小学学习了乘法的哪些运算律?小学学习了乘法交换律、乘法结合律、分配律.引入负数后,这些运算律还成立吗?这节课我们就来学习有理数乘法的运算律.[教学提示] 问题1指定两名学生代表上台板书过程,其余学生在练习本上完成.问题2由两名学生口答完成.对于问题3,要求学生能说出乘法交换律、乘法结合律和分配律.设计意图由小学学过的知识入手,回顾学过的乘法运算律,由旧知过渡到新知,引出本节课要学习的有理数乘法运算律. 活动二:问题引入,合作探究探究点1 有理数的乘法运算律1.乘法交换律问题1 计算5×(-6)与(-6)×5.5×(-6)=-30,(-6)×5=-30.问题2 任意选择两个有理数,分别对应填入下列□和○内,并比较两个运算结果:□×○和○×□,你有什么发现?两个运算的结果相同.在有理数乘法中, 两个数相乘,交换乘数的位置,积不变.即乘法交换律:ab=ba.补充说明: a×b也可以写为a·b或ab.当字母表示乘数时,“×”可以写为“· ”或省略.2.乘法结合律问题1 计算[3×(-4)]×(-5)与3×[(-4)×(-5)].[3×(-4)]×(-5)=(-12)×(-5)=60,3×[(-4)×(-5)]=3×20=60.问题2 任意选择三个有理数,分别对应填入下列□,○和◇内,并比较两个运算结果:(□×○)×◇和□×(○×◇),你又有什么发现?两个运算的结果相同.在有理数乘法中, 三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.即乘法结合律:(ab)c=a(bc).3.分配律问题1 计算5×[3+(-7)]与5×3+5×(-7).5×[3+(-7)]=5×(-4)=-20,5×3+5×(-7)=15-35=-20.问题2 任意选择三个有理数,分别对应填入下列□,○和◇内,并比较两个运算结果:□×(○+◇)和□×○+□×◇,你又有什么发现?两个运算的结果相同.在有理数乘法中,一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加.即分配律:a(b+c)= ab+ac..思考:回顾活动一中提出的问题,引入负数后,小学学过的乘法运算律在有理数乘法中还成立吗?小学学过的乘法交换律、乘法结合律、分配律在有理数乘法中仍然成立.例1 (教材P41例3)(1)计算2×3×0.5×(-7);(2)用两种方法计算(14 + 16 -12 )×12.解:(1)2×3×0.5×(-7)=(2×0.5)×[3×(-7)]=1×(-21)=-21.(2)解法1:(14 + 16 -12 )×12=(312 + 212 -612 )×12=-112 ×12=-1.解法2:(14 + 16 -12 )×12=14 ×12+ 16 ×12-12 ×12×12=3+2-6=-1.思考:比较例1(2)的两种解法,它们在运算顺序上有什么区别?解法2用了什么运算律?哪种解法更简便?答:解法1先做加法运算,再做乘法运算.解法2先做乘法运算,再做加法运算.解法2用了分配律.解法2更简便,因为解法1先要计算三个分数的和.【对应训练】教材P43练习第1题.[教学提示]提醒学生:乘法运算律的字母表示中,字母可以取任意的有理数,可以表示正数,也可以表示负数或0.告诉学生:乘法的运算律与加法运算律类似,可以推广到多个有理数相乘的情况:(1)三个以上有理数相乘,可以任意交换乘数的位置,或者先把其中的几个乘数相乘,例如,abcd=d(ac)b;(2)一个数同几个数的和相乘,等于把这个数分别同这几个数相乘,再把积相加,例如,a(b+c+d)=ab+ac+ad.[教学提示]提醒学生:在有理数乘法中,分配律既可以正用,也可以逆用,关键是注意观察算式的特点,看怎么用能简化运算,使用分配律时一定要注意数前面的符号,不要出现遗漏或者错误.告诉学生:运算律在运算中有重要作用,它是解决许多数学问题的基础.[设计意图]类比加法运算律的学习过程,让学生通过一些包含负数的简单例子,说明这些运算律在有理数乘法中仍然适用,使学生理解乘法运算律并能利用它们简化运算. [设计意图] 探究点2 多个有理数相乘的符号法则1.几个不为0的数相乘问题改变例1(1)的乘积式子中某些乘数的符号,得到下列一些式子.观察这些式子,它们的积是正的还是负的?填表:思考:几个不为0的数相乘,积的符号与负的乘数的个数之间有什么关系?几个不为0的数相乘,负的乘数的个数是偶数时,积为正数;负的乘数的个数是奇数时,积为负数.2.几个数相乘(其中有乘数为0)问题你能看出下列式子的结果吗?如果能,请说明理由.7.8×(-8.1)×0×(-19.6).结果为0.理由:任何数与0相乘,都得0.思考:(1)你能总结出多个有理数相乘时,积的符号情况吗?归纳总结:几个不为0的数相乘,负的乘数的个数是偶数时,积为正数;负的乘数的个数是奇数时,积为负数;几个数相乘,如果其中有乘数为0,那么积为0.(2)总结出结论以后,该怎么计算多个有理数相乘的积?遇到多个不为0的数相乘,可以先用前面的结论确定积的符号,再把乘数的绝对值相乘作为积的绝对值;遇到有乘数为0的情况,可直接得积为0.例2 (教材P42) 计算:(-3)×56 ×(-95 )×(-14 ); (-5)×6×(-45 )×14 .解:(1)(-3)×56 ×(-95 )×(-14 )=-(3×56 ×95 ×14 )=-98 ;(2)(-5)×6×(-45 )×14 =5×6×45 ×14 =6.【对应训练】教材P43练习第2题.[教学提示]指定学生代表回答问题,检查对有理数乘法法则的掌握情况.[教学提示]告诉学生:多个有理数相乘,不管多复杂,只要其中有乘数0,积都是0,是不必具体计算的.计算之前注意观察其中是否有乘数0,若有可直接得积为0,若没有再按法则计算.通过例子让学生自己归纳出多个有理数相乘的符号法则,提高推理能力与归纳能力.活动三:知识延伸,巩固升华解:(1)(-0.2)×(-316 )×(-5)×113 =-(0.2×316×5×43 )=-[(0.2×5)×(316 ×43 )]=-(1×14 )=-14 ;(2)(-34 +156 -78 )×(-24)=-34 ×(-24)+116 ×(-24)-78 ×(-24)=18-44+21=-5;(3)(-5.25)×(-4.73)-4.73×(-19.75)-25×(-5.27)=(-4.73)×(-5.25-19.75)-25×(-5.27)=(-4.73)×(-25)-25×(-5.27)=(-25)×(-4.73-5.27)=(-25)×(-10)=250.【对应训练】计算:(1)(-4)×8×(-2.5)×(-0.125);(2)(134 -78 -12 )×117 ;(3)81.8×2.14+(-3.14)×35.2+3.14×(-46.6).解:(1)(-4)×8×(-2.5)×(-0.125)=-(4×8×2.5×0.125)=-[(4× 2.5)×(8×0.125)]= -(10×1)=-10;(2)(134 -78 -12 )×117 =74 ×87 -78 ×87 -12 ×87 =2-1-47 =37 ;(3)81.8×2.14+(-3.14)×35.2+3.14×(-46.6)=81.8×2.14+3.14×(-35.2-46.6)=81.8×2. 14+3.14×(-81.8)=81.8×(2.14-3.14)=81.8×(-1)=-81.8[教学提示]告诉学生:告诉学生:在做运算之前一定要先观察算式的特点,尤其是较复杂的运算,一般都需要用运算律来简化,提醒学生重点关注两个方面:(1)是否有积能凑整的乘数,若有,则可以用乘法交换律和乘法结合律优先相乘;(2)是否有相同的乘数,若有,则可以逆向运用分配律简化运算,有时候分配律在一个算式中会用到多次.[设计意图]通过例题和练习让学生更深刻地体会乘法运算律对于简化运算的作用,提高运算能力. 活动四:随堂训练,课堂总结【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.有理数乘法的运算律有哪些?2.多个有理数相乘时怎么确定积的符号?【作业布置】1.教材P48习题2.2第4,5,15题.【教学后记】2.2.2 有理数的除法第1课时:有理数的除法【素养目标】1.经历用转化的数学思想探究有理数除法法则的过程,体会除法与乘法的关系,强化推理能力.2.理解并掌握有理数的除法法则,会进行有理数的除法运算,提高运算能力.3.从除法的角度理解分数,会利用有理数除法法则化简分数.【教学重点】理解并掌握有理数的除法法则,会进行有理数的除法运算.【教学难点】会根据不同的情况来选取除法法则的其中一种说法求商.【教学过程】活动一:创设情境,导入新课[情境导入]1.如图,王芳从家里到学校,每分钟走50 m,共走了20 min,则王芳家离学校有多远?放学时,王芳仍然以每分钟50 m的速度回家,应该走多少分钟?20×50=1 000(m),1 000÷50=20(min).因此王芳家离学校1 000 m,放学时应该走20 min.2.从上面这个例子你可以发现,除法与乘法之间满足怎样的关系?除法是乘法的逆运算.引入负数后,在有理数的范围内,该怎么计算除法呢?这节课我们就来学习有理数的除法.[教学提示]在实际情境问题中,引导学生根据“路程=速度×时间”发现除法与乘法的互逆关系,鼓励学生思考有理数的除法.[设计意图]创设情境,激发学生的学习兴趣,引导学生理解有理数除法和有理数乘法之间的互逆关系,从而引出本节课的主题.活动二:问题引入,合作探究探究点1 有理数的除法法则问题1 怎样计算8÷(-4)呢?结合下面图示说一说.一个数除以-4可以转化为乘-14 来进行,即一个数除以-4,等于乘-4的倒数-14 .问题2 我们换其他数的除法进行类似讨论(如下面例子),是否仍有除以a(a≠0)可以转化为乘1a ?可以看出其他数的除法仍有这种关系.思考:根据上面你尝试过的例子,能否类比有理数减法法则,总结出有理数除法法则?有理数除法法则(说法1):除以一个不等于0的数,等于乘这个数的倒数.这个法则也可以表示成:a÷b=a·1b (b≠0).例如:两个有理数相除(除数不为0),商是一个有理数.问题3 计算:6÷3= 2 ,6÷(-3)= -2 ,(-6)÷3= -2 ,(-6)÷(-3)= 2 ,0÷3= 0 ,0÷(-3)= 0 .思考:两数相除的商仍由符号和绝对值两部分组成.由于除法可转化为乘法,因此商的符号确定与有理数乘法类似.从符号和绝对值两个角度观察上述算式,你能否得到与有理数乘法法则类似的除法法则?有理数除法法则(说法2):两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商.0除以任何一个不等于0的数,都得0.例1 (教材P44例4) 计算:(1)(-36)÷9; (2)(-1225 )÷(-35 ).解:(1)(-36)÷9=-(36÷9)=-4;(2)(-1225 )÷(-35 )=(-1225 )×(-53 )=45 .思考:对于例1中的两个算式,用有理数除法法则的哪种说法来计算比较简便?例1(1)用说法2比较简便,例1(2)用说法1比较简便.【对应训练】教材P45练习第1题.[教学提示]提醒学生:除法与乘法的互逆关系在有理数中也是成立的,这属于除法的意义,即已知两个乘数的积与其中一个乘数,求另一个乘数的运算,这是数学上的一种规定.[教学提示]为了有利于学生接受,可让学生自己举例,并模仿教科书的方法进行说明,然后引导学生总结出除法法则.若有困难可让学生类比有理数减法法则来思考如何表述.规定0不能作除数的理由可简单地用0没有倒数来说明,更具体的理由不必在课堂上讲授.[教学提示]提醒学生:这是有理数除法法则的另一种说法.指定学生代表上台板演计算过程,并用除法法则的两种说法分别计算,再引导学生思考对于不同形式的算式,怎么判断用哪种说法计算更简便.引导学生总结:一般来说,能整除的情况下,往往采用法则的说法2,在确定符号后,再确定商的绝对值.在不能整除的情况下,则往往采用法则的说法1,即将除数换成倒数,除法转化成乘法.[设计意图]类比有理数减法法则的探究过程,根据除法与乘法的互逆关系,让学生通过算式实例探究有理数除法法则的两种说法,增强推理能力.在例题与练习中让学生掌握有理数的除法,并感受除法法则两种说法的适用情况,提升运算能力.[设计意图]探究点2 分数的化简问题化简84 ,观察8-4 ,引入负数后,沿用小学时分数的意义,那么8-4 化简的结果是什么?84 =2,8-4 =8÷(-4)=-2.例2 (教材P44例5) 化简:(1)-23 ; (2)-45-12 .解:(1)-23 =(-2)÷3=-(2÷3)=-23 ;(2)-45-12 =(-45)÷(-12)=45÷12=154 .思考:-23 是有理数吗?-23 可以写成两个整数相除的形式吗?-23 =-23 ,这表明-23 是负分数,因而是有理数;反过来看,-23 =-23 ,又表明-23 可以写成A-23 这样两个整数相除的形式.【对应训练】教材P45练习第2题.[教学提示]提醒学生:(1)化简时,若分母是负数,改为除数后要加括号.(2)可以用除法化简,也可以确定符号后直接约分,要根据数的特点灵活选用.(3)一般地,根据有理数的除法,形如pq (p,q是整数,q≠0)的数都是有理数;有理数又都可以写成上述形式(整数可以看成分母为1的分数).这样,有理数就是形如pq (p,q是整数,q≠0)的数.引导学生从除法的角度理解并化简分数,并认识到有理数都可以表示为分数形式,为以后的学习打好基础.活动三:知识延伸,巩固升华解:(1)1÷(-1.2)=1÷(-65 )=1×(-56 )=-56 ;(2)(-2311 )÷(-522 )=(-2511 )×(-225 )=10;(3)(-0.125)÷83 =-18 ×38 =-364 ;(4)|-427 |÷(-313 )=307 ×(-310 )=-97 .【对应训练】计算:(1)1÷(-0.8); (2)(-212 )÷(-57 );(3)(-0.25)÷112 ; (4)|-223 |÷(-179 ).解:(1)1÷(-0.8)=1÷(-45 )=1×(-54 )=-54 ;(2)(-212 )÷(-57 )=(-52 )×(-75 )=72 ;(3)(-0.25)÷112 =(-14 )×23 =-16 ;(4)|-223 |÷(-179 )=83 ×(-916 )=-32 .[教学提示]提醒学生:应用法则“除以一个不等于0的数,等于乘这个数的倒数”时,如果有小数或带分数,应先化小数为分数,化带分数为假分数,另外有绝对值符号的先去绝对值符号.引导学生观察发现:1除以一个不等于0的数,等于这个数的倒数.[设计意图]通过具体的算式让学生从除法的角度理解有理数的倒数,并进一步掌握用除法法则计算各种形式的数的除法,提高运算能力. 活动四:随堂训练,课堂总结【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.有理数除法法则有哪几种说法?2.怎么根据除法算式的情况决定选用哪一种说法?3.怎么利用有理数的除法法则化简分数?【作业布置】1.教材P48习题2.2第6,7,8,12,16题.【教学后记】第2课时:有理数的加减乘除混合运算【素养目标】能运用运算律简化有理数的除法运算,能进行乘除混合运算.掌握有理数的加减乘除混合运算的法则和运算顺序,能够熟练进行混合运算,提高运算能力.能运用有理数的运算解决简单的实际问题.熟悉计算器的操作方法,知道如何用计算器进行一些复杂运算,逐步培养使用信息技术的能力和意识.【教学重点】能熟练地进行有理数的加减乘除混合运算.【教学难点】巧用运算律简化有理数加减乘除混合运算.【教学过程】活动一:知识回顾,导入新课【回顾导入】1.我们学过的有理数的运算有哪些?其运算法则分别是什么?2.我们学过的有理数运算中哪些有运算律?分别是哪些?这节课我们就来学习有理数的加减乘除混合运算.[教学提示]指定学生代表分别回答,查漏补缺,补充提问倒数的概念.[设计意图]带学生整体回顾有理数的加减乘除的运算法则与运算律,为接下来的学习做铺垫.活动二:问题引入,合作探究探究点1 除法运算的简化与有理数的乘除混合运算例1 (教材P45例6) 计算:(-12557 )÷(-5); (2)-2.5÷58 ×(-14 ).分析提问:①例1(1)用除法法则的哪一种说法来计算比较好?②联想分配律,将例1(1)转化为乘法后怎样计算更简便?③沿用小学的乘除混合运算顺序,例1(2)可以从左到右依次计算,或者将除法统一成乘法后再计算,你觉得哪种算法更简便?【对应训练】教材P47练习第1题.[教学提示]指定学生代表回答分析中的提问,上台板演例1的计算过程,并说明每一步的理由.提醒学生:(1)注意有理数的乘除混合运算中,一般先将除法转化为乘法,再根据负的乘数的个数确定积的符号;(2)同时将小数化为分数、带分数化为假分数,方便约分;(3)还可应用乘法运算律简化运算.[设计意图]通过例题和对应训练,让学生理解可将除法化成乘法后再运用运算律简化运算,并发现总结出有理数乘除混合运算的基本步骤,提升运算能力. [设计意图]探究点2 有理数的加减乘除混合运算问题1 小学学过的四则混合运算的顺序是怎样的?先算乘除,再算加减,同级运算从左往右依次计算,如有括号,先算括号内的.问题2 依照运算顺序计算613 ×(12 -13 )+6÷3,说一说每一步是怎样的?613 ×(12 -13 )+6÷3=613 ×16 +6÷3……先进行小括号中的减法运算=113 +2……进行乘除运算=2113 .……进行加法运算后得到结果问题3 引入负数后,若沿用小学学过的加减乘除四则运算顺序,则有理数的加减乘除混合运算的顺序是怎样的?有理数的加、减、乘、除混合运算,如无括号指出先做什么运算,则与小学所学的混合运算一样,按照“先乘除,后加减”的顺序进行.【对应训练】教材P47练习第2题.[教学提示]指定学生代表回答问题1,2,3,上台板演例2的计算过程,并说明每一步的理由,其他同学在纸上作答.从小学学过的加减乘除混合运算的算式出发,引导学生总结出有理数加减乘除混合运算的顺序,再通过例题与练习增强运算能力.活动三:知识延伸,巩固升华例3 (教材P46例8) 某公司去年1月-3月平均每月亏损1.5万元,4月-6月平均每月盈利32万元,7月-10月平均每月盈利21.7万元,11月-12月平均每月亏损2.3万元.这个公司去年总的盈亏情况如何?分析:总的盈亏=1月-12月盈亏情况之和.1月-3月――→亏损 (-1.5)×3 4月-6月――→盈利(+32)×37月-10月――→盈利(+21.7)×4 11月-12月――→亏损 (-2.3)×2解:记盈利额为正数,亏损额为负数.由(-1.5)×3+32×3+21.7×4+(-2.3)×2=-4.5+96+86.8-4.6=173.7可知,这个公司去年全年盈利173.7万元.工具引入:计算器是一种方便实用的计算工具,用计算器进行比较复杂的数的计算,比笔算要快捷得多.例如,可以用计算器计算上面例3中列出的算式:(-1.5)×3+32×3+21.7×4+(-2.3)×2.试试看结果和你笔算的是否相同.【对应训练】1.教材P47练习第3题.2.刘亮的妈妈每天早上要送新鲜蔬菜到市场去卖,下表是一周送出的20筐新鲜蔬菜的质量记录(每筐均以25 kg为标准,超过的质量记为正,不足的质量记为负,单位:kg): 求这一周送出的20筐新鲜蔬菜的总质量.解:20×25+2×(-0.8)+5×0.6+3×(-0.5)+4×0.4+2×0.5+4×(-0.3)=500-1.6+3-1.5+1.6+1 -1.2=501.3(kg).答:这一周送出的20筐新鲜蔬菜的总质量是501.3 kg.[教学提示]对于例3,提醒学生注意题中具有相反意义的量,可先帮助学生理解1月-3月平均每月亏损1.5万元与1月-3月的亏损额之间的关系,再类比得出一年总的盈亏额.让学生阅读教材P46有关计算器的内容,按课本介绍的方法操作.教师巡视,关注学习有困难的学生,给予指导.提醒学生注意不同品牌的计算器的操作方法可能有所不同,具体参见使用说明.[教学提示]对应训练第2题中可带学生回顾教材P29例3的解法,并引导学生理解表格的具体含义,笔算出结果以后可让学生再用计算器验算一遍,进一步熟悉操作.[设计意图]借助实例运用有理数的加减乘除混合运算,将课本知识与实际生活联系起来,增强应用意识.引入计算器的操作学习,计算较复杂的算式,初步培养学生使用计算工具的能力和意识. 活动四:随堂训练,课堂总结【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.怎么做有理数的乘除混合运算?2.有理数的加减乘除混合运算的顺序是怎样的?3.你学会使用计算器进行有理数加减乘除运算了吗?【作业布置】1.教材P48习题2.2第9,10,11,13题.【教学后记】.。

第二章有理数及其运算教案

第二章有理数及其运算教案

第二章 有理数2.1有理数教学目标1.理解有理数的概念,掌握有理数的分类方法;(重点) 2.会把所给的有理数填入相应的集合;(难点)3.经历对有理数进行分类探索的过程,初步感受分类讨论的数学思想.(重点)板书设计:1.有理数的概念(1)整数:正整数、零和负整数统称整数.(2)有理数:正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数. 2.有理数的分类①按定义分类为: ②按性质分类为:有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数零负整数分数⎩⎪⎨⎪⎧正分数负分数有理数⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数零负有理数⎩⎪⎨⎪⎧负整数负分数例题:探究点一:有理数的有关概念例1下列各数:-45,1,8.6,-7,0,56,-423,+101,-0.05,-9中,( )A .只有1,-7,+101,-9是整数B .其中有三个数是正整数C .非负数有1,8.6,+101,0D .只有-45,-445,-0.05是负分数解析:根据有理数的有关概念,整数包括:1,-7,0,+101,-9,故选项A 错误;正整数只有两个,即1和+101,故选项B 错误;非负数包括有1,8.6,+101,0,56,故选项C 错误;负分数包括-45,-423,-0.05,故选项D 正确.故选D.方法总结:当有理数只含有单个符号时,带负号的数即为负数.然后再区分是整数还是分数. 探究点二:有理数的分类例2把下列各数填入相应的集合内.-10,8,-712,334,-10%,3101,2,0,3.14,-67,37,0.618,-1,0.3080080008…正数集合{ …}; 负数集合{ …}; 整数集合{ …};分数集合{ …}.解析:要将各数填入相应的集合里,首先要弄清楚有理数的分类标准,其次要弄清楚每个数的特征.在填入相应的集合时,要注意每个有理数,身兼不同的身份,所以解答时不要顾此失彼.解:正数集合{8,334,3101,2,3.14,37,0.618,0.3080080008… …};负数集合{-10,-712,-10%,-67,-1 …};整数集合{-10,8,2,0,-67,-1 …};分数集合{-712,334,-10%,3101,3.14,37,0.618,0.3080080008… …}.方法总结:在填数时要注意以下两种方法:(1)逐个考察给出的每一个数,看它是什么数,是否属于某一集合;(2)逐个填写相应集合,从给出的数中找出属于这个集合的数,避免出现漏数的现象2.2数轴教学目标1.掌握数轴的概念,理解数轴上的点和有理数的对应关系;(重点) 2.会正确地画出数轴,会用数轴上的点表示给定的有理数;(难点) 3.会根据数轴上的点读出所表示的有理数;(难点) 4.感受在特定的条件下数与形是可以相互转化的.板书设计:1.数轴 (1)原点 (2)正方向 (3)单位长度2.数轴上的点与有理数间的关系 (1)原点表示零(2)原点右边的点表示正数 (3)原点左边的点表示负数例题:探究点一:数轴的概念例1 下列图形中是数轴的是( )A. B. C. D.解析:A 中的没有单位长度,错误;B 中没有正方向,错误;C 中满足原点,正方向,单位长度,正确;D 中没有原点,错误.故选C.方法总结:要判断一条直线是不是数轴,要抓住它的三要素:原点、正方向和单位长度,三者缺一不可.探究点二:有理数与数轴的关系【类型一】 读出数轴上的点所表示的数例2指出如图中所表示的数轴上的A 、B 、C 、D 、E 、F 各点所表示的数.解析:要确定数轴上的点所表示的数可利用以下方法:(1)确定符号,在原点右边为正数,在原点左边为负数;(2)确定数字,即距离原点是几个单位长度.解:由图可知,A 点表示:-4.5;B 点表示:4;C 点表示:-2;D 点表示:5.5;E 点表示:0.5;F 点表示7.方法总结:在确定数字时,要认真观察已知点是在原点的左边还是右边,对于A 、D 这种情况,要注意它们所表示的数是在哪两个数之间.【类型二】 在数轴上表示有理数例3 画出数轴,并用数轴上的点表示下列各数:-5,2.5,3,-52,0,-3,312.解析:(1)画数轴必须具备“三要素”,三者缺一不可;单位长度必须一致,不能长短不一;正方向向右;(2)用数轴上的点表示数时,注意数的符号和该数到原点的距离.解:如图:方法总结:用数轴上的点表示数时,首先由数的性质符号确定该数应在原点的左边还是右边,然后再根据该数到原点的距离,确定位置.【类型三】 数轴上两点间的距离问题例4 数轴上的点A 表示的数是+2,那么与点A 相距5个单位长度的点表示的数是( ) A .5 B .±5 C .7 D .7或-3解析:与点A 相距5个单位长度的点表示的数有2个,分别是7或-3,故选D.方法总结:解答此类问题要注意考虑两种情况,即要求的点在已知点的左侧或右侧.另外,点在数轴上移动时也要分向左、向右两种情况.2.3相反数教学目标:1.借助数轴理解相反数的概念,并能求给定数的相反数;(重点) 2.了解一对相反数在数轴上的位置关系;(重点) 3.掌握双重符号的化简;(难点)4.通过从数和形两个方面理解相反数,初步体会数形结合的思想方法.板书设计:1.相反数(1)只有符号不同的两个数.(2)a 的相反数是-a ,0的相反数是0. (3)互为相反数的两个数和为0. 2.多重符号的化简(1)偶数个“-”号,结果为正数. (2)奇数个“-”号,结果为负数.例题:探究点一:相反数的意义【类型一】 相反数的代数意义例1 写出下列各数的相反数:16,-3,0,-12015,m ,-n .解析:只需将各数前面的正、负号换一下即可,但要注意0的相反数是0. 解:-16,3,0,12015,-m ,n .方法总结:求一个数的相反数,只需改变它前面的符号,符号后面的数不变;0的相反数是0. 【类型二】 相反数的几何意义例2(1)数轴上离原点3个单位长度的点所表示的数是________,它们的关系为____________.(2)在数轴上,若点A 和点B 分别表示互为相反数的两个数,点A 在点B 的左侧,并且这两个数的距离是12.8,则A =______,B =______.解析:(1)左边距离原点3个单位长度的点是-3;右边距离原点3个单位长度的点是3,∴距离原点3个单位长度的点所表示的数是3或-3.它们互为相反数;(2)∵点A 和点B 分别表示互为相反数的两个数,∴原点到点A 与点B 的距离相等,∵A 、B 两点间的距离是12.8,∴原点到点A 和点B 的距离都等于6.4.∵点A 在点B 的左侧,∴这两点所表示的数分别是-6.4,6.4.方法总结:本题考查了相反数的几何意义,解题时应从相反数的意义入手,明确互为相反数的两数到原点距离相等,这种“利用概念解题,回到定义中去”是一种常用的解题技巧.【类型三】 相反数与数轴相结合的问题 例3如图,图中数轴(缺原点)的单位长度为1,点A 、B 表示的两数互为相反数,则点C 所表示的数为( )A .2B .-4C .-1D .0 解析:由题意如图,数轴向右为正方向,数轴(缺原点)的单位长度为1,∴点C 所表示的数为-1,故应选C.方法总结:先在数轴上找到原点,从而确定点C 所表示的数,同时牢记互为相反数的两个点到原点的距离相等.探究点二:化简多重符号 例4 化简下列各数. (1)-(-8)=________;(2)-(+1518)=________;(3)-[-(+6)]=________; (4)+(+35)=________.解:(1)-(-8)=8; (2)-(+1518)=-1518;(3)-[-(+6)]=-(-6)=6;(4)+(+35)=35.方法总结:化简多重符号时,只需数一下数字前面有多少个负号,若有偶数个,则结果为正;若有奇数个,则结果为负.2.4绝对值教学目标1.理解绝对值的概念及其几何意义,通过从数、形两个方面理解绝对值的意义,初步了解数形结合的思想方法;(重点)2.会求一个数的绝对值,知道一个数的绝对值,会求这个数;(难点)3.通过应用绝对值解决实际问题,培养学生的学习兴趣,提高学生对数学的好奇心和求知欲.板书设计:1.绝对值的几何定义:一般地,数轴上表示数a 的点与原点的距离叫作数a 的绝对值,记作|a |. 2.绝对值的代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.用符号表示为:|a |=⎩⎪⎨⎪⎧a (a >0)0(a =0)-a (a <0)或|a |=⎩⎪⎨⎪⎧a (a ≥0)-a (a <0)例题:探究点一:绝对值的意义及求法【类型一】 求一个数的绝对值 例1 -3的绝对值是( ) A .3B .-3C .-13 D.13解析:根据一个负数的绝对值是它的相反数,所以-3的绝对值是3.故选A.方法总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 【类型二】 利用绝对值求有理数例2 如果一个数的绝对值等于23,则这个数是__________.解析:∵23或-23的绝对值都等于23,∴绝对值等于23的数是23或-23.方法总结:解答此类问题容易漏解、考虑问题不全面,所以一定要记住:绝对值等于某一个数的值有两个,它们互为相反数,0除外.【类型三】 化简绝对值例3 化简:|-35|=______;-|-1.5|=______;|-(-2)|=______.解析:|-35|=35;-|-1.5|=-1.5;|-(-2)|=|2|=2.方法总结:根据绝对值的意义解答.即若a >0,则|a |=a ;若a =0,则|a |=0;若a <0,则|a |=-a .探究点二:绝对值的性质及应用【类型一】绝对值的非负性及应用例4 若|a-3|+|b-2015|=0,求a,b的值.解析:由绝对值的性质可知|a-3|≥0,|b-2015|≥0,则有|a-3|=|b-2015|=0.解:由绝对值的性质得|a-3|≥0,|b-2015|≥0,又因为|a-3|+|b-2015|=0,所以|a-3|=0,|b-2015|=0,所以a=3,b=2015.方法总结:如果几个非负数的和为0,那么这几个非负数都等于0.【类型二】绝对值在实际问题中的应用例5 第53届世乒赛于2015年4月26日至5月3日在苏州举办,此次比赛中用球的质量有严格的规定,下表是6个乒乓球质量检测的结果(单位:克,超过标准质量的克数记为正数,不足标准重量的克数记为负数).(1)请找出三个误差相对较小一些的乒乓球,并用绝对值的知识说明.(2)若规定与标准质量误差不超过0.1g的为优等品,超过0.1g但不超过0.3g的为合格品,在这六个乒乓球中,优等品、合格品和不合格品分别是哪几个乒乓球?请说明理由.解析:由绝对值的几何定义可知,一个数的绝对值越小,离原点越近,将实际问题转化为距离标准质量越小,即绝对值越小,就越接近标准质量.解:(1)四号球,|0|=0正好等于标准的质量,五号球,|-0.08|=0.08,比标准球轻0.08克,二号球,|+0.1|=0.1,比标准球重0.1克.(2)一号球|-0.5|=0.5,不合格,二号球|+0.1|=0.1,优等品,三号球|0.2|=0.2,合格品,四号球|0|=0,优等品,五号球|-0.08|=0.08,优等品,六号球|-0.15|=0.15,合格品.方法总结:判断质量、零件尺寸等是否合格,关键是看偏差的绝对值的大小,而与正、负数无关.2.5有理数大小的比较教学目标1.掌握有理数大小的比较法则;(重点)2.会比较有理数的大小,并能正确地使用“>”或“<”号连接;(重点)3.能初步进行有理数大小比较的推理和书写.(难点)板书设计:1.借助数轴比较有理数的大小:在数轴上右边的数总比左边的数大2.运用法则比较有理数的大小:正数与0的大小比较负数与0的大小比较正数与负数的大小比较负数与负数的大小比较例题:探究点一:借助数轴比较有理数的大小【类型一】借助数轴直接比较数的大小例1 画出数轴,在数轴上表示下列各数,并用“<”连接:+5,-3.5,12,-112,4,0.解析:画出数轴,在数轴上标出表示各数的点,然后根据右边的数总比左边的数大进行比较.解:如图所示:因为在数轴上右边的数大于左边的数,所以-3.5<-112<0<12<4<+5.方法总结:此类问题是考查有理数的意义以及数轴的有关知识,正确地画出数轴是解决本题的关键.【类型二】 借助数轴间接比较数的大小例2 已知有理数a 、b 在数轴上的位置如图所示.比较a 、b 、-a 、-b 的大小,正确的是( )A .a <b <-a <-bB .b <-a <-b <aC .-a <a <b <-bD .-b <a <-a <b解析:由图可得a <0<b ,且|a |<|b |,则有:-b <a <-a <b .故选D.方法总结:解答本题的关键是结合数轴和绝对值的相关知识,从数轴上获取信息,判断数的大小. 探究点二:运用法则比较有理数的大小 【类型一】 直接比较大小例3 比较下列各对数的大小: (1)3和-5; (2)-3和-5;(3)-2.5和-|-2.25|; (4)-35和-34.解析:(1)根据正数大于负数;(2)、(3)、(4)根据两个负数比较大小,绝对值大的数反而小. 解:(1)因为正数大于负数,所以3>-5;(2)因为|-3|=3,|-5|=5,3<5,所以-3>-5; (3)因为|-2.5|=2.5,-|-2.25|=-2.25,|-2.25|=2.25,2.5>2.25,所以-2.5<-|-2.25|; (4)因为|-35|=35,|-34|=34,35<34,所以-34<-35.方法总结:在比较有理数的大小时,应先化简各数的符号,再利用法则比较数的大小.【类型二】 有理数的最值问题例4 设a 是绝对值最小的数,b 是最大的负整数,c 是最小的正整数,则a 、b 、c 三数分别为( ) A .0,-1,1 B .1,0,-1 C .1,-1,0 D .0,1,-1解析:因为a 是绝对值最小的数,所以a =0,因为b 是最大的负整数,所以b =-1,因为c 是最小的正整数,所以c =1,综上所述,a 、b 、c 分别为0、-1、1.故选A.方法总结:要理解并记住以下数值:绝对值最小的有理数是0;最大的负整数是-1;最小的正整数是1.2.6有理数加减法1.同号两数相加,取__相同的符号__,并把__绝对值__相加.2.绝对值不相等的异号两数相加,取__绝对值较大的加数__的符号,并用__较大的绝对值__减去__较小的绝对值__.互为相反数的两个数相加得__0__.3.一个数同0相加,仍得__这个数__.1.有理数加法的交换律:两个数相加,交换加数的位置,__和__不变,数学表达式__a +b =b +a __.2.有理数加法的结合律:三个数相加,__先把前两个数相加或先把后两个数相加__,和不变,数学表达式__(a +b )+c =a +(b +c )__.3.在有理数中,所有整数的和为__0__.1.有理数减法法则:__减去一个数,等于加这个数的相反数__,数学表达式是__a -b =a +(-b )__. 2.若a >b ,则a -b__>__0; 若a <b ,则a -b__<__0.3.利用有理数减法法则进行计算,其步骤是 (1)__减数变为其相反数__;(2)__相加__.4.一般地,较小的数减去较大的数,所得差的符号是__负号__.1.根据有理数的减法法则,可以将有理数加减混合运算统一为__加法__运算,然后按__加法__的运算法则进行计算,即a +b -c =a +b +__(-c )__.2.有理数加减混合运算的一般步骤是:(1)__先转化为加法运算__;(2)__运用加法的运算律化简运算__.探究点三 数轴上两点之间的距离活动三:在数轴上,当A ,B 分别表示数a ,b ,利用有理数的减法,分别计算下列情况下A ,B 之间的距离.(1)a =2,b =6; (2)a =0,b =6; (3)a =-2,b =6; (4)a =-2,b =-6. 【展示点评】根据AB =|a -b|,可得:当a>b 时,AB =a -b ;当a =b 时,AB =0,当a<b 时,AB =b -a. 【小组讨论】:两数之差的绝对值与两数之间的距离有什么关系?【反思小结】利用数轴,把数和形结合起来,有利于把抽象的知识直观化.两数之差的绝对值等于表达两数的点之间的距离.例题:1.上升10 m ,再上升-3 m ,则共上升了__7__m. 2.-713的绝对值与513的相反数的和是__2__.3.两数相加,其和小于每一个数,那么( C ) A .这两个加数必定有一个为0B .这两个加数一正一负,且负数的绝对值较大C .这两个加数必定都是负数D .这两个加数的符号不能确定4.数a ,b 表示的点如图所示,则(填“>”“<”或“=”)(1)a +b__>__0;(2)a +(-b)__<__0; (3)(-a)+b__>__0; (4)(-a)+(-b)__<__0.5.计算题:(1)(+3)+(+8); (2)(+14)+(-12);(3)(-312)+(-3.5);(4)(-314)+(+213);(5)|(-19)+8.3|;(6)-3.4+4.3.解:(1)11 (2)-14 (3)-7 (4)-1112(5)10.7 (6)0.91.下列说法正确的是( C ) A .零减去一个数,仍是这个数 B .负数减去负数,结果仍是负数 C .正数减去负数,结果是正数 D .被减数一定大于差2.-7,-12,+2三个数的和比它们的绝对值的和小( D ) A .4 B .-4 C .-38 D .383.温度3℃比-7℃高__10℃__,海拔300 m 比海拔-80 m 高__380__m ,-3比__3__小6,-3比__-9__大6.4.计算:(1)(-5)-(-3); (2)0-(-7); (3)(+25)-(-13); (4)(-11)-(+5). 解:(1)-2 (2)7 (3)38 (4)-165.计算:(1)12-21; (2)(-1.7)-(-2.5); (3)23-(-12); (4)(-16)-(-13). 解:(1)-9 (2)0.8 (3)76 (4)162.7有理数的乘除法1.有理数的乘法法则:两数相乘,同号__得正__,异号__得负__,并把__绝对值相乘__.任何数与0相乘都得0. 2.互为倒数:乘积是__1__的两个数互为倒数.3.有理数乘法运算时,应注意,先__确定符号__,再__确定积的绝对值__.4.几个有理数相乘,如果其中一个因数为0,则积为__0__.两个有理数相乘先确定积的符号,再把绝对值相乘.其法则是:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.3.(1)乘法交换律__ab =ba __;(1)(-25)×39×(-4); (2)乘法结合律__(ab )c =a (bc )__;(3)乘法分配律__a (b +c )=ab +ac __. 用两种方法计算(14+16-12)×12. 1.有理数除法法则:(1)除以一个不等于0的数,等于乘以这个数的__倒数__,即a ÷b =__a ×1b__(b 不等于0); (2)两数相除,同号得__正__,异号得__负__,并把绝对值相__除__. 2.a(a ≠0)的倒数是__1a__.3.若a >0,b <0,则ab__<__0,ab __<__0;若a <0,b <0,则ab__>__0,ab__>__0.1.有理数混合运算,应先__乘除__,再__加减__,如果有括号则先__算括号__里面的. 2.同级运算应按__从左到右__的顺序进行计算.3.有理数的混合运算中,有些能用__乘法的运算律__简化运算.例题:探究点一 有理数的乘法法则 例1 计算:(1)(-3)×9; (2)8×(-1); (3)(-12)×(-2); (4)(-5)×(-7).探究点三 多个有理数相乘的符号法则 活动三:计算:(1)(-3)×56×(-95)×(-14);(2)(-5)×6×(-45)×14.五、达标检测 反思目标1.两个有理数的积是负数,和为0,那么这两个有理数一定是( D ) A .一个为0,另一个数是负数 B .两个都是负数C .一个为正数,另一个为负数D .均不为0,且互为相反数 2.下列运算结果错误的是( D )A .(-2)×(-3)=6B .(+3)×(+4)=12C .(-5)×0=0D .(-12)×(-6)=-33.6×(-9)=__-54__; (-114)×(-45)=__1__;3×(-32)=__-92__; (-54)×32=__-158__. 4.写出下列各数的倒数:1,-1,13,-123,-34,0.45. 解:1,-1,3,-35,-43,2095.计算:(1)13×(-6);(2)(-312)×27; (3)(-35)×(-152);(4)(-123)×(-127). 解:(1)-2 (2)-1 (3)92 (4)157有理数除法法则例1 填空:(1)8÷(-4)=8×______=______;(2)(-15)÷3=(-15)×______=______;(3)(-14)÷(-12)=(-14)×______=______; (4)0÷(-1212)=______;0÷2012=______. (1)18-6÷(-2)×(-13); (2)214×(-76)÷(12-2). 2.8有理数乘方运算板书设计1.有理数乘方的意义2.有理数乘方运算的符号法则:负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,0的任何正整数次幂都是0.3.与乘方有关的探求规律问题例题:探究点一:乘方的意义例1 把下列各式写成乘方的形式,并指出底数和指数各是什么.(1)(-3.14)×(-3.14)×(-3.14)×(-3.14)×(-3.14); (2)25×25×25×25×25×25解析:首先化成幂的形式,再指出底数和指数各是什么.解:(1)(-3.14)×(-3.14)×(-3.14)×(-3.14)×(-3.14)=(-3.14)5,其中底数是-3.14,指数是5; (2)25×25×25×25×25×25=(25)6,其中底数是25,指数是6;方法总结:乘方是一种特殊的乘法运算,幂是乘方的结果,当底数是负数或分数时,要先用括号将底数括起来再写指数.探究点二:乘方的运算例2 计算:(1)-(-3)3; (2)(-34)2; (3)(-23)3; (4)(-1)2015. 解析:可根据乘方的意义,先把乘方转化为乘法,再根据乘法的运算法则来计算;或者先用符号法则来确定幂的符号,再用乘法求幂的绝对值.解:(1)-(-3)3=-(-33)=33=3×3×3=27;(2)(-34)2=34×34=916; (3)(-23)3=-(23×23×23)=-827; (4)(-1)2015=-1.方法总结:乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数;-1的奇数次幂是-1,-1的偶数次幂是1.2.9有理数的混合运算有理数的混合运算顺序:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.例题:探究点一:有理数的混合运算例1 计算:(1)(-5)-(-5)×110÷110×(-5); (2)-1-{(-3)3-[3+23×(-112)]÷(-2)}. 解析:(1)题是含有减法、乘法、除法的混合运算,运算时,一定要注意运算顺序,尤其是本题中的乘除运算.要从左到右进行计算;(2)题有大括号、中括号,在运算时,可从里到外进行.注意要灵活掌握运算顺序.解:(1)(-5)-(-5)×110÷110×(-5)=(-5)-(-5)×110×10×(-5)=(-5)-25=-30; (2)-1-{(-3)3-[3+23×(-112)]÷(-2)}=-1-{-27-[3+23×(-32)]÷(-2)}=-1-{-27-2÷(-2)}=-1-{-27-(-1)}=-1-(-26)=25.方法总结:有理数的混合运算可用下面的口诀记忆:混合运算并不难,符号第一记心间;加法需取大值号,乘法同正异负添;减变加改相反数,除改乘法用倒数;混合运算按顺序,乘方乘除后加减. 探究点二:数字规律探索例2 为了求1+2+22+23+24+…+22015的值,可令S =1+2+22+23+…+22015,则2S =2+22+23+24+…+22016,因此2S -S =22016-1,所以1+2+22+23+…+22015=22016-1,仿照以上推理,那么1+5+52+…+52015=________.解析:观察等式,可发现规律,根据规律即可进行解答.则设S =1+5+52+53+…+52015,5S =5+52+53+54+…+52016,5S -S =52016-1,∴S =52016-14,故填52016-14. 方法总结:解规律性问题的关键在于发现规律,应用规律解题.2.10科学计数法科学记数法:(1)把大于10的数表示成a ×10n 的形式.(2)a 的范围是1≤|a |<10,n 是正整数.(3)n 比原数的整数位数少1.例题:探究点一:用科学记数法表示大数例1 我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨,将167000用科学记数法表示为( )A .167×103B .16.7×104C .1.67×105D .1.6710×106解析:根据科学记数法的表示形式,先确定a ,再确定n ,解此类题的关键是a ,n 的确定.167000=1.67×105,故选C.方法总结:科学记数法的表示形式为a ×10n ,其中1≤|a |<10,n 为整数,表示时关键要正确确定a的值以及n 的值.例2 2014年3月发生了一件举国悲痛的空难事件——马航失联,该飞机上有中国公民154名.噩耗传来后,我国为了搜寻生还者及找到失联飞机,花费了大量的人力物力,已花费人民币大约934千万元.把934千万元用科学记数法表示为______元( )A .9.34×102B .0.934×103C .9.34×109D .9.34×1010解析:934千万=9340000000=9.34×109.故选C.方法总结:对用带“万”“千万”“亿”等单位的数用科学记数法表示时,要化成不带单位的数,再用科学记数法表示.探究点二:将用科学记数法表示的数转换为原数例3 已知下列用科学记数法表示的数,写出原来的数:(1)2.01×104;(2)6.070×105;(3)-3×103.解析:(1)将2.01的小数点向右移动4位即可;(2)将6.070的小数点向右移动5位即可;(3)将-3扩大1000倍即可.解:(1)2.01×104=20100;(2)6.070×105=607000;(3)-3×103=-3000.方法总结:将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.。

第二章有理数及其运算教案

第二章有理数及其运算教案

第二章《有理数及其运算》教案一、《标准》要求1、经历数与代数的抽象、运算与建模等过程,掌握数与代数的基础知识和基本技能。

2、建立数感、符号意识,初步形成运算能力,发展形象思维和抽象思维。

3、获得分析问题和解决问题的一些基本方法,体验解决问题方法的多样性,发展创新意识。

4、体验从具体情境中抽象出数学符号过程,理解有理数;掌握必要的运算(包括估算)技能。

5、理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小。

6、借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道|a|的含义(这里a表示有理数)7、理解乘方的意义,掌握有理数的加、减、除、乘方及简单的混合运算(以三步以内为主)。

8、理解有理数的运算律,能运用运算律简化运算。

能运用有理数的运算解决简单的问题。

9、了解近似数,在解决实际问题中,能用计算器进行近似计算,并会按问题的要求对结果取近似值。

10、会用科学计数法表示数(包括在计算器上表示)。

二、教学目标1、在具体情境中,理解有理数及其运算的意义,发展运算能力。

2、能用数轴上的点表示有理数,会比较有理数的大小。

3、借助数轴理解相反数和绝对值的意义,会求有理数的相反数和绝对值。

4、经历探索有理数运算法则和运算律的过程,体会转化、归纳等思想;掌握有理数的加、减、除、乘方及简单的混合运算(以三步以内为主);理解有理数的运算律,并能运动运算律简化运算。

5、能运用有理数及其运算解决简单的实际问题。

6、会有科学计数法表示大数;能对含有较大数字的信息作出合理的解释和推断,发展数感。

7、了解近似数,在解决实际问题中,能用计算器进行近似计算,并会按问题的要求对结果取近似值。

三、设计思路“有理数”是在小学数的知识基础上展开的。

一方面,从算术数到有理数,数的范围扩大了——跨越具有物理或几何背景的算术数,进入了抽象领域。

一个有理数可以表示两个信息:数量与符号(方向)。

另一方面,可以解决的问题范围扩大了。

第二章_有理数及其运算复习教案

第二章_有理数及其运算复习教案

有理数及其运算综合复习【知识与结构】【教学目标】1、通过复习让学生熟练掌握有理数的分类,有理数的运算法则及有理数的加、减、乘、除、乘方等混合运算;2、让学生熟练掌握数轴、相反数、绝对值、倒数等基本概念,并能灵活应用,尤其是绝对 值问题; 【易错点】1、数的分类:把无限不循环小数当成有理数;对“非正整数”、“非负整数”的理解;把42当作分数;2、对负数的认识:易把a -当作负数,从而就认为||a a -=,这是错误的;3、对相反数的判断:认为a b -的相反数就是a b +,正确答案应该是:a b -的相反数是()a b a b b a --=-+=-;4、底数的认识:认为52-的底数为2-,正确答案应该是2;5、有理数的混合运算是学生出错的一个重点,要加强训练。

【典型题型及解法】 一、有理数的有关概念有理数的有关概念主要包括正数、负数、数轴、相反数、绝对值、倒数等,它们是最基本的代数知识点,主要是为有理数的运算及其它代数知识做准备。

例1、把下列各数填在相应的大括号中:138232,65,3.1415,10,,0.62,,2,0.303003000,0, 2.4,6.7273π---⋅⋅⋅⋅⋅⋅- (1)整数集合:{ …} (2)负数集合:{ …} (3)非正数集合:{ …} (4)非正整数集合:{ …} (5)非负整数集合:{ …} (6)有理数集合:{ …} 例2、已知,a b 互为相反数,,c d 互为倒数,且x 的绝对值是5,求2()()43x a b cd x a b cd -+-++-+-的值。

例3、已知有理数,,a b c 在数轴上的对应位置如图所示,则|1|||||c a c a b -+-+-化简后的结果是( )bac-1.1.21.122.12A b B a b C a b c D c b ---+---+变式练习:c0b a,,a b c 位置如上图,化简下列两式:(1)|2|||||a b b c a c +-++-= ;(2)|2||||||2|a b a b c a c b c --+++---= 。

北师大版数学七年级上册《 第二章 有理数及其运算 》教学设计

北师大版数学七年级上册《 第二章 有理数及其运算 》教学设计

北师大版数学七年级上册《第二章有理数及其运算》教学设计一. 教材分析《第二章有理数及其运算》这一章节是北师大版数学七年级上册的重要内容,主要介绍了有理数的概念、分类、大小比较、加减乘除运算及其应用。

本章内容是学生学习数学的基础,对后续的学习具有重要意义。

教材通过丰富的例题和练习题,帮助学生掌握有理数的运算方法,培养学生的运算能力和逻辑思维能力。

二. 学情分析七年级的学生已经掌握了整数和分数的基本知识,对运算有一定的理解。

但是,对于有理数的概念、分类、大小比较等可能还比较陌生,需要通过实例和练习来逐步理解和掌握。

此外,学生可能对负数和分数的运算存在一定的困难,需要教师进行针对性的引导和讲解。

三. 教学目标1.理解有理数的概念、分类、大小比较方法。

2.掌握有理数的加减乘除运算方法,并能灵活运用。

3.培养学生的运算能力和逻辑思维能力。

4.培养学生的团队合作意识和问题解决能力。

四. 教学重难点1.有理数的概念、分类、大小比较。

2.有理数的加减乘除运算方法。

3.运用有理数解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究和发现。

2.使用实例和练习题,让学生在实践中学习和掌握知识。

3.分组讨论和合作,培养学生的团队合作意识和问题解决能力。

4.教师讲解和引导,帮助学生理解和克服难点。

六. 教学准备1.准备PPT和教学课件,用于展示和讲解。

2.准备实例和练习题,用于让学生练习和巩固。

3.准备小组讨论的问题和任务,用于培养学生的团队合作意识。

七. 教学过程1.导入(5分钟)通过引入实例,如温度、海拔等,引导学生思考和讨论这些实例与有理数的关系,激发学生的兴趣和好奇心。

2.呈现(15分钟)使用PPT和教学课件,呈现有理数的概念、分类、大小比较等内容,并进行讲解和解释。

通过丰富的实例和图示,帮助学生理解和掌握。

3.操练(15分钟)让学生进行有理数的加减乘除运算练习,教师给予指导和讲解。

通过练习题,让学生在实践中学习和掌握运算方法。

北师大版七年级数学上册教案《第二章有理数及其运算2.1有理数》x

北师大版七年级数学上册教案《第二章有理数及其运算2.1有理数》x

北师大版七年级数学上册教案《第二章有理数及其运算2.1有理数》x一. 教材分析《北师大版七年级数学上册》第二章《有理数及其运算》2.1《有理数》是整个初中数学的基础知识,主要介绍了有理数的概念、分类和运算。

本节课的内容对于学生来说是比较抽象的,需要通过实例和练习让学生理解和掌握有理数的概念和运算方法。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于数的认识有一定的了解,但是对有理数的概念和运算可能还比较陌生。

因此,在教学过程中,需要通过实例和练习让学生理解和掌握有理数的概念和运算方法。

三. 教学目标1.了解有理数的概念,能够对有理数进行分类。

2.掌握有理数的加、减、乘、除运算方法。

3.能够运用有理数的运算解决实际问题。

四. 教学重难点1.有理数的概念和分类。

2.有理数的运算方法。

五. 教学方法采用问题驱动法、实例教学法和练习法,通过引导学生自主探究、合作交流,让学生在实际问题中理解和掌握有理数的概念和运算方法。

六. 教学准备1.PPT课件2.实例和练习题七. 教学过程1.导入(5分钟)通过问题驱动,引导学生思考:在日常生活中,我们经常用到数,比如身高、体重、温度等,这些数都属于什么类型?从而引出有理数的概念。

2.呈现(10分钟)通过PPT课件,呈现有理数的定义、分类和运算方法。

引导学生关注有理数的符号表示和性质,如正负号、绝对值等。

3.操练(10分钟)让学生分组进行练习,运用有理数的运算方法计算各组题目。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)教师选取一些典型题目,让学生上黑板演示解题过程,其他学生跟学。

通过这种方式,巩固学生对有理数运算方法的掌握。

5.拓展(10分钟)让学生运用所学知识解决实际问题,如计算购物时的找零、温度转换等。

教师引导学生思考,拓展学生思维。

6.小结(5分钟)教师引导学生总结本节课所学内容,巩固知识点。

7.家庭作业(5分钟)布置一些有关有理数运算的练习题,让学生课后巩固所学知识。

2024秋七年级数学上册第2章有理数及其运算2.1有理数教案(新版)北师大版

2024秋七年级数学上册第2章有理数及其运算2.1有理数教案(新版)北师大版
2.练习有理数的运算:设计一系列有理数的运算题目,要求学生熟练掌握加、减、乘、除等运算规则,并能够正确计算。
3.解决实际问题:提供几个涉及有理数的实际问题,要求学生运用所学知识解决这些问题。
4.有理数在生活中的应用:鼓励学生观察和思考日常生活中涉及有理数的问题,如购物时的打折、优惠等,尝试用所学的有理数知识解决实际问题。
-参与数学竞赛:鼓励学生参加数学竞赛,提高学生的数学水平和竞赛能力,培养学生的团队合作精神。
教学反思与改进
回过头来看,今天的内容感觉学生掌握得怎么样?我在讲解有理数运算规则时,是否讲解得足够清晰?学生在课堂上的参与度如何?这些问题都需要我在课后进行反思。
首先,我意识到在讲解有理数的概念时,有些学生似乎还是有些模糊。下次我在讲解时,可以结合更多的实际例子,让学生更好地理解有理数在日常生活中的应用。此外,我也可以让学生在课堂上更多的互动,比如通过小组讨论,让学生互相解释有理数的定义,这样也许能帮助他们更清晰地理解。
作业反馈:
1.对于有理数的定义和分类的作业,我会检查学生是否能够准确识别各种类型的有理数,并针对存在的问题给出改进建议。
2.对于有理数的运算的作业,我会检查学生的计算是否正确,并指出存在的问题,如运算错误、计算粗心等,给出改进建议。
3.对于解决实际问题的作业,我会检查学生是否能够运用所学知识解决这些问题,并针对存在的问题给出改进建议。
-设计预习问题:围绕有理数的定义和分类,设计一系列具有启发性和探究性的问题,引导学生自主思考。
-监控预习进度:利用平台功能或学生反馈,监控学生的预习进度,确保预习效果。
学生活动:
-自主阅读预习资料:按照预习要求,自主阅读预习资料,理解有理数的基本概念。
-思考预习问题:针对预习问题,进行独立思考,记录自己的理解和疑问。

有理数及其运算全章教案

有理数及其运算全章教案

第二章 有理数及其运算第一单元第一课时:数怎么不够用了教学目标:1、借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。

2、会判断一个数是正数还是负数,能应用正负数表示生活中具有相反意义的量。

教学重点与难点:重点:负数和有理数的概念难点:负数的概念的探索教学过程:一、引入新课请同学们看图2—1,这是某天世界城市天气预报表,你能读出这天东京和旧金山的气温世界城市天气城市 天气 高温 低温 城市 天气 高温 低温东京 莫斯科 法兰克福纽约 旧金山 曼谷 悉尼 多云 小雪 阴 小雪 阴 晴 晴 9 1 1 2 16 33 27 2 —4 —4 —3 9 23 19 开罗 巴黎 伦敦 柏林 罗马 汉城 新加坡 多云 阴 小雪 小雪 小雪 晴 雷阵雨 21 4 3 —1 9 —1 30 11—2—2—62—624我们的生活经验,也能知道纽约和柏林在这天的天气情况。

数据中—3、—1和—6是我们以前没有学过的数,但它们却在我们的生活中出现了。

你一定非常想知道这些数的来历,以及它们的意义等。

下面欠就来讨论这个问题。

二、新课的进行大家知道,气温分为零上温度、零度、零下温度,我们所学过的数只能表示零上温度和零度,而要表示零下温度,我们所学过的数就“不够用了”。

为了记录方便,人们就用带“—”号(读作“负”)的数来表示零下温度,这就出现了柏林的某一天的气温最高为—1度(即零下1度),最低—6度(即零下6度)。

对于比零度高的气温,可以在其前面加上“+”号(读作“正”),如东京某天的气温最高为+9度,最低+2度。

正数也可以不写前面的“正”号,如+9可以写成9等。

请同学们再看下面的问题:P 31讨论中,同学们可发现,第四队的分数“不够减”了,这里也出现了比零低的数,怎么办?这里我们同样可以用带有“—”号的数表示第四队的成绩,表示为—10。

这样我们就可用带有“+”号和“—”号的数表示各队每道题的得分情况,试完成下表:P 32表。

七年级数学上册 第二章有理数及其运算教案 教学设计、教案及练习

七年级数学上册 第二章有理数及其运算教案 教学设计、教案及练习

解析:由绝对值的性质可知|a-3|≥0,|b-2015|≥0,则有|a-3|=|b-2015|=0.
解:由绝对值的性质得|a-3|≥0,|b-2015|≥0,又因为|a-3|+|b-2015|=0,所以
|a-3|=0,|b-2015|=0,所以 a=3,b=2015.
方法总结:如果几个非负数的和为 0,那么这几个非负数都等于 0.
距离标准质量越小,即绝对值越小,就越接近标准质量.
解:(1)四号球,|0|=0 正好等于标准的质量,五号球,|-0.08|=0.08,比标准球轻 0.08
克,二号球,|+0.1|=0.1,比标准球重 0.1 克.
(2)一号球|-0.5|=0.5,不合格,二号球|+0.1|=0.1,优等品,三号球|0.2|=0.2,
三者缺一不可.
探究点二:有理数与数轴的关系
【类型一】读出数轴上的点所表示的数
例 2 指出如图中所表示的数轴上的 A、B、C、D、E、F 各点所表示的数.
解析:要确定数轴上的点所表示的数可利用以下方法:(1)确定符号,在原点右边为正数, 在原点左边为负数;(2)确定数字,即距离原点是几个单位长度.
解:由图可知,A 点表示:-4.5;B 点表示:4;C 点表示:-2;D 点表示:5.5;E 点表 示:0.5;F 点表示 7.
教学目标 1.理解绝对值的概念及其几何意义,通过从数、形两个方面理解绝对值的意义,初步了 解数形结合的思想方法;(重点) 2.会求一个数的绝对值,知道一个数的绝对值,会求这个数;(难点) 3.通过应用绝对值解决实际问题,培养学生的学习兴趣,提高学生对数学的好奇心和求 知欲. 板书设计: 1.绝对值的几何定义:一般地,数轴上表示数 a 的点与原点的距离叫作数 a 的绝对值, 记作|a|. 2.绝对值的代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0

2023-2024学年北师大版七年级数学上册《第二章有理数及其运算2.12用计算器进行运算》教案

2023-2024学年北师大版七年级数学上册《第二章有理数及其运算2.12用计算器进行运算》教案

2023-2024学年北师大版七年级数学上册《第二章有理数及其运算2.12用计算器进行运算》教案一. 教材分析《有理数及其运算》是初中数学的基础知识,对于学生后续学习有着重要的影响。

本节课主要让学生通过计算器进行有理数的运算,增强学生对有理数运算规则的理解,提高学生的运算速度和准确性。

教材通过实例讲解和练习,让学生熟练掌握计算器的基本使用方法,并能够运用计算器解决实际问题。

二. 学情分析学生在小学阶段已经接触过有理数的基本概念和运算,对于加、减、乘、除等运算规则有了一定的了解。

但部分学生可能对于计算器的使用还不够熟练,需要老师在课堂上进行指导和练习。

此外,学生可能存在对于数学运算的恐惧心理,需要老师通过鼓励和激励的方式激发学生的学习兴趣。

三. 教学目标1.让学生掌握计算器的基本使用方法。

2.使学生能够运用计算器进行有理数的加、减、乘、除等运算。

3.培养学生运用计算器解决实际问题的能力。

4.通过运算练习,提高学生的运算速度和准确性。

四. 教学重难点1.教学重点:计算器的基本使用方法,有理数的加、减、乘、除运算。

2.教学难点:计算器的熟练使用,以及运用计算器解决实际问题。

五. 教学方法1.实例教学法:通过具体的运算实例,讲解计算器的使用方法和运算规则。

2.练习法:通过大量的运算练习,让学生熟练掌握计算器的使用,并提高运算速度和准确性。

3.激励法:鼓励学生参与课堂练习,对表现优秀的学生给予表扬和奖励,激发学生的学习兴趣。

六. 教学准备1.准备计算器,确保每个学生都能接触到计算器。

2.准备相关的运算练习题,包括简单和复杂的题目,以满足不同学生的需求。

3.准备PPT或者黑板,用于展示运算实例和讲解运算规则。

七. 教学过程1. 导入(5分钟)教师通过提问方式引导学生回顾小学阶段学过的有理数的基本概念和运算规则。

然后提问:今天我们将要学习什么新的内容?通过这个问题引出本节课的主题。

2. 呈现(10分钟)教师通过PPT或者黑板,展示计算器的基本界面和操作方法。

第二章有理数及其运算 新教案

第二章有理数及其运算  新教案

课 题2.数 轴课时教 学 目 标知识与 技能 ①通过与温度计的类比认识数轴,会用数轴上的点表示有理数; ②借助数轴了解相反数的概念,知道互为相反数的一对数在数轴上的位置关系; ③利用数轴比较有理数的大小.过程与 方法 培养学生的观察、比较、分析、抽象、概括的逻辑思维能力和动手能力,渗透数形结合的数学思想和方法.情感态度与价值观通过数轴与温度变化这种自然现象的和谐结合,激发学生探索的好奇心,提高学生的学习兴趣,以培养学生勇于创新的精神和良好的学习习惯.教学重点 数轴的概念和用数轴上的点表示有理数教学难点数轴的概念和用数轴上的点表示有理数教 学 内 容 及 过 程学 生 活 动 一、创设情境,引入课题问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出课本图中三个温度计所表示的温度?问题2:在一条东西向的马路上,有一个汽车站,汽车站东 3 m 和7.5m 处分别有一棵柳树和一棵杨树,汽车站西3 m 和4.8m 处分别有一棵槐树和一根电线杆,试画图表示这一情境.二、 合作交流,探索新知由上述两问题得到什么启发?你能用一条直线上的点表示有理数吗?归纳:可以表示有理数的直线必须满足什么条件? 数轴的三要素:原点、正方向、单位长度. 三、 动手练习,归纳总结问题1: +3,-4,41,-1.5,0分别在数轴的什么位置?问题2:指出数轴上 A, B, C, D 各点分别表示什么数?问题3: 画出数轴,并用数轴上的点表示下列各数:23, -5, 0, 5, -4,23四人小组为单位讨论并回答教师的问题学生在讨论的基础上动手操作,在操作的基础上归纳学生回答问题,动手训练第二环节:讲授新课看下面问题:(出示下图是一条河流在枯水期的水位图).此时小康桥面距水面的高度为多少米?你知道小颖和小明分别是怎么想的吗?他们的结果为什么相同?第三环节:合作学习议一议:一架飞机进行特技表演,飞行的高度变化由表格给出。

北师大版七年级数学上册教案-第二章-有理数及其运算

北师大版七年级数学上册教案-第二章-有理数及其运算

北师大版七年级数学上册教案-第二章-有理数及其运算一、教学目标1.理解有理数的概念,能够正确表示正数和负数。

2.学会有理数的加法、减法、乘法和除法运算,掌握运算律。

3.能够运用有理数解决实际问题。

二、教学重点与难点1.教学重点:有理数的概念,有理数的加法、减法、乘法和除法运算。

2.教学难点:有理数的乘法和除法运算,以及混合运算中的符号法则。

三、教学过程第一课时:有理数的概念及加减法运算一、导入1.回顾小学阶段学习的自然数、整数、分数的概念。

2.提问:在日常生活中,我们经常遇到正数和负数,谁能举例说明?二、新课讲解1.引入有理数的概念:整数和分数统称为有理数,有理数包括正有理数、零和负有理数。

2.讲解正数和负数的表示方法:在数字前面加上“+”或“-”号,分别表示正数和负数。

3.讲解有理数的加法和减法运算:a.加法法则:同号相加,异号相减。

b.减法法则:减去一个数,等于加上这个数的相反数。

三、案例分析1.出示案例:2+3,-5(-2),472.学生分组讨论,尝试运用所学知识解决问题。

四、课堂练习1.学生独立完成课后习题。

2.老师抽取部分学生回答,检查掌握情况。

第二课时:有理数的乘除法运算一、复习导入1.复习有理数的加减法运算。

2.提问:有理数的乘除法运算与加减法运算有何不同?二、新课讲解1.讲解有理数的乘法运算:a.同号相乘得正,异号相乘得负。

b.乘法的交换律、结合律。

2.讲解有理数的除法运算:a.除法的定义:乘法的逆运算。

b.异号除法:同号得正,异号得负。

三、案例分析1.出示案例:(-3)×(-4),2÷(-5),(-6)÷32.学生分组讨论,尝试运用所学知识解决问题。

四、课堂练习1.学生独立完成课后习题。

2.老师抽取部分学生回答,检查掌握情况。

第三课时:有理数的混合运算一、复习导入1.复习有理数的加减法和乘除法运算。

2.提问:在有理数的混合运算中,应注意哪些问题?二、新课讲解1.讲解有理数的混合运算顺序:先乘除,后加减。

北师大版七年级上册(新)第二章《有理数及其运算》优秀教学案例

北师大版七年级上册(新)第二章《有理数及其运算》优秀教学案例
二、教学目标
(一)知识与技能
1.理解有理数的分类,掌握有理数的定义和特点,能够正确识别各种类型的有理数。
2.掌握有理数的加减乘除运算规则,能够熟练进行混合运算,并正确计算结果。
3.理解有理数乘方的概念,掌握有理数乘方的运算规则,能够正确计算乘方结果。
4.能够运用有理数的运算规则解决实际问题,提高运用数学知识解决实际问题的能力。
(三)小组合作
1.设计多样化的教学活动,如小组讨论、游戏、竞赛等,激发学生的学习积极性,培养学生的合作能力和竞争意识。
2.将学生分组,鼓励学生相互交流、合作解决问题,培养学生的团队合作精神和沟通能力。
3.教师应给予学生充分的时间和空间进行小组合作,同时进行观察和指导,及时发现问题并进行调整。
4.设计具有挑战性和实际意义的问题,让学生在小组合作的过程中,自然而然地运用所学的有理数运算规则,提高学生的解决问题的能力。
3.注重培养学生的团队合作精神,让学生在小组讨论和竞赛中体验到合作的重要性和团队的力量,提高学生的人际交往能力。
4.培养学生正确的价值观,使学生认识到数学对于社会发展和个人成长的重要性,培养学生的社会责任感和个人成就感。
三、教学策略
(一)情景创设
1.利用生活实例引入有理数的概念,例如温度、海拔、购物等,让学生感受到数学与实际的联系,激发学生的学习兴趣。
2.将学生分组,鼓励学生相互交流、合作解决问题,培养学生的团队合作精神和沟通能力。
3.教师应给予学生充分的时间和空间进行小组合作,同时进行观察和指导,及时发现问题并进行调整。
4.设计具有挑战性和实际意义的问题,让学生在小组合作的过程中,自然而然地运用所学的有理数运算规则,提高学生的解决问题的能力。
(四)总结归纳

第2章有理数及其运算(教案)2023-2024学年七年级上册数学(教案)(北师大版)

第2章有理数及其运算(教案)2023-2024学年七年级上册数学(教案)(北师大版)
五、教学反思
在今天的课堂中,我们学习了有理数及其运算。回顾整个教学过程,我觉得有几个方面值得反思和总结。
首先,关于导入新课环节,我通过提问方式引导学生思考有理数在日常生活中的应用,激发了他们的学习兴趣。但在实际操作中,我发现部分学生对这个问题还是有些迷茫,可能是我举的例子不够贴近他们的生活。在今后的教学中,我需要更加关注学生的生活实际,选择更合适的例子进行引导。
其次,在新课讲授环节,我着重讲解了有理数的加减乘除运算规则和乘方性质,并通过案例分析帮助学生理解。但在讲解过程中,我发现自己对部分难点的解释可能还不够透彻,导致部分学生仍然存在疑惑。因此,我需要在今后的教学中,针对这些难点进行更详细的讲解和举例,以确保学生能够真正理解。
再来说说实践活动环节,学生分组讨论和实验操作的过程总体来说还是比较顺利的。但在成果展示环节,我发现有些小组的展示不够充分,可能是他们对讨论成果的整理不够到位。为了提高展示效果,我可以在活动前给予学生一些指导,教他们如何整理和表达自己的观点。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解有理数的基本概念。有理数是可以表示为两个整数之比的数,包括正数、负数和0。它是数学运算的基础,广泛应用于日常生活和科学研究。
2.案例分析:接下来,我们来看一个具体的案例。比如,购物时找零、计算温度变化等,这些案例展示了有理数在实际中的应用,以及它如何帮助我们解决问题。
举例:(3-2)×(-4)+2÷(-1)的计算步骤。
2.教学难点
(1)负数的概念:对于负数的认识,学生可能会感到困惑,需要通过实例解释负数的实际意义。
难点举例:温度低于零度时,如何表示?
(2)有理数的加减运算:学生在进行正负数的加减运算时,容易混淆同号相加、异号相减的规则。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章:有理数及其运算一、有理数知识点一:具有相反意义的量(用正数和负数表示,负数的来源)如“零上”和“零下”、“收入”和“支出”、“增加”和“减少”、“升高”和“降低”。

由具有相反意义的词表示的两个量,就是具有相反意义的量。

我们可以把其中一个量规定为正的,用正“+” 数表示,而把与这个量意义相反的量规定为负的,用负“-”数表示。

如:零上20°C 记作+20°C ,零下17°C 就记作 -17°C如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈记作-12圈 因为是量,表示时需要带着单位名称,如圈、元。

知识点二:正数和负数的概念正数:像1、2.5、143、23这样大于0的数叫做正数;为了突出数的符号,可以在正数前加“+” 号。

如:+3、+5.6 ,有时也可省略“+”号 如:1、2.5、143 负数:像-5、-10、-2.3等在正数前面加上“-”号的数叫做负数,负数前面的“-”号不能省略。

由此看出,比0小的是负数,负数比0小。

0即不是正数,也不是负数,0是正数和负数的分界点。

正数比0大,负数比0小。

复习小学内容:质数:一个数只有1和它本身两个因数时,这个数是质数也称为素数。

如2、3、5、7、11、13、17、19等合数:一个数除了1和它本身两个因数外还有其他的因数,这个数就是合数。

如4、6、8、9、10、12、14、15等质数和合数都是指一个大于1的自然数中的数,所以,0和1既不是质数也不是合数。

除了2 其余的质数都是奇数再复习一下奇数和偶数偶数:整数中能够被2整除的数,叫做偶数,奇数:整数中不能被2整除的数,叫做奇数。

知识点三:有理数有理数概念:整数和分数统称为有理数。

整数:正整数、零、负整数统称为整数分数:正分数和负分数统称为分数,有限小数和无限循环小数也是分数 。

0.5=21 ;0.875=87 。

这些都是有限小数,化成了分数。

0..3=31 ;0..12.3=999123 ;0.1.2.3=99991123-- ;0.12.3=9999912123-- 上述都是无限循环的小数,也化成了分数。

小学学过的圆周率π,其值是3.141592653589793238462643383279502884197169399375…它是无限不循环的小数,它不是有理数,是八上实数中我们学到的无理数有理数的分类:(在前章学习了分类思想,关于几何体的分类)(1)按定义分类: (2)按性质符号分类:有理数的“四非”有理数“四非”⎪⎪⎩⎪⎪⎨⎧0000非负整数:正整数和非正整数:负整数和非负数:正数和非正数:负数和 注意上述“四非”,一定记住都包括着零。

注意断句:非负/整数,首先是整数,其次是不是负的,那就是正的和0。

而不是非/负整数,错误理解成正整数、0和分数了。

0 既不是正数也不是负数。

0是整数,是自然数,是偶数,是有理数。

二、数轴:知识点一:数轴1、数轴:画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

数轴就是规定了原点、正方向和单位长度的直线。

原点、正方向、单位长度是数轴的三要素注意:1)、约定成俗的规定向右的方向为正方向,向左就扣分。

2)、是单位长度,就是自己规定的一段长度作为单位长度,而不是长度单位。

2、数轴的画法:1)、画一条直线2)、直线上选取一点为原点,并用这点表示零3)、确定正方向,一般规定向右,用箭头标示出来。

4)、选取某一长度作为单位长度,根据实际情况选取,但长短一致。

3、数轴上的点与有理数的关系任何一个有理数都可以用数轴上的一个点来表示。

(反过来,不能说数轴上所有的点都表示的是有理数)。

正有理数可以用原点右侧的点表示,负有理数可以用原点左侧的点表示。

原点用零表示。

知识点二:利用数轴比较有理数的大小(1)在数轴上的所表示的数,右边的点所对应的数总比左边的点所对应的数大(2)正数都大于0,负数都小于0,正数大于一切负数。

利用这点,比较有理数的大小三、绝对值知识点一:相反数1、相反数:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数正整数整数有理数0越来越大 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数0个数互为相反数。

特别地,0的相反数是0。

这也是相反数的代数定义。

注意:1)“0的相反数是0”是相反数定义的一部分,不能把它漏掉。

2)相反数是成对出现的,不能单独存在。

3)“只有符号不同”中的只有是指除了符号不同,其余相同。

不能理解为“只要符号不同”。

如-2与+3不是相反数。

2、相反数的几何定义:在数轴上位于原点的两侧,与原点的距离相等的两个点所表示的数,互为相反数。

在数轴上,表示互为相反数的两点,位于原点的两侧,并且到原点的距离相等。

3、相反数的表示方法:表示一个数的相反数,只要在这个数的前面添加一个“-”号即可。

如6的相反数是-6,-6的相反数可以表示为-(-6)一般地,数a 的相反数是-a ,这里a 表示任意一个数,可以是正数、负数、0。

注意:1)表示“和”或者“差”形式的相反数时,要先用括号括上,再在括号前面添上一个“-”号。

如a+b 的相反数是-(a+b )2)因为a 可以表示任意一个数,所以,-a 不一定是负数。

知识点二:绝对值1、绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值用a 表示一个数,则a 的绝对值记作|a|,读作“a 的绝对值”。

因为距离都是0或者正数,所以,+3的绝对值等于3,记作|+3|=3-3的绝对值等于3,记作|-3|=3表示0的点与原点的距离是0,所以|0|=02、一个数的绝对值与这个数的关系(也就是绝对值的代数意义):正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;可用字母a 表示如下:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a 或 ⎩⎨⎧<-≥=)0()0(||a a a a a 书写:|a| = ±a 是错误的! 3、绝对值归纳总结:1)从数轴上看,一个数的绝对值就是表示这个数的点到原点的距离。

离原点的距离越远,绝对值越大。

由于距离总是正数或零,故有理数的绝对值不可能是负数,因此,绝对值最小的有理数是零。

2)绝对值非常重要的性质:绝对值的非负性。

任何数的绝对值总是非负数,即|a|≥0。

3)互为相反数的两个数绝对值相等;反之,特别注意:若两个数的绝对值相等,则这两个数相等或互为相反数。

4)任何数都有唯一的绝对值,但绝对值为某一正数的数有两个,且他们互为相反数。

如:绝对值为4的数是+4或-4。

字母表示式:若|a|=|b|,则a=±b5)若几个非负数之和为0,则每个加数分别为0。

若|a|+|b|+|c|=0,则|a|=|b|=|c|=0,即a=b=c=0。

这个关系很重要,期中考试一定有。

绝对值知识拓展:|x|几何意义是x 表示的点到原点0的距离|x-1|几何意义呢?代表x 到哪个点距离呢?推导:|x|=|x-0| 是x 表示的点到0的距离|x-1| 是x表示的点到1的距离|x-5| 是x表示的点到5的距离|x+5| 是x表示的点到-5的距离后面一系列都用到这个几何意义:|x-y|就是x表示的点到y表示的点的距离|x+y|就是x表示的点到-y表示的点的距离知识点三:比较两个负数的大小两个负数比较大小,绝对值大的反而小。

(也可以用数轴比较:右边的数大于左边的数)因为对于两个负数,他们都位于原点的左侧,因为绝对值大的距离原点越远,而在数轴上,右边的数总是大于左边的数,所以,对于两个负数,绝对值大的反而小。

由此看出先看绝对值的大小,再确定负数的大小。

如果负数里有分数,则要先通分再比较。

比较两个数的大小,最直观的比较就是把这些数表示在数轴上,右边的总大于左边的。

四,有理数的混合运算1、有理数加法法则:①同号两数相加,取相同符号,并把绝对值相加。

②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。

③一个数同0相加,仍得这个数。

有理数加法的运算律:加法的交换律:a+b=b+a;加法的结合律:( a+b ) +c = a + (b +c)用加法的运算律进行简便运算的基本思路是:①互为相反的两个数,可以先相加;②符号相同的数,可以先相加;③分母相同的数,可以先相加;④几个数相加能得到整数,可以先相加。

2、有理数的减法法则:减去一个数,等于加上这个数的相反数。

¤有理数减法运算时注意两“变”:①改变运算符号;②改变减数的性质符号(变为相反数)注意:运算符号“+”加号、“-”减号与性质符号“+”正号、“-”负号统一与转化,如a -b中的减号也可看成负号,看作a与b的相反数的和:a+(-b);一个数减去0,仍得这个数;0减去一个数,应得这个数的相反数。

3、有理数的加减法混合运算的步骤:①写成省略加号的代数和。

在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;②利用加法法则,加法交换律、结合律简化计算。

(注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数。

)※注意:运算结果一般写成假分数形式4、有理数的乘法(1)有理数乘法的法则:两个有理数相乘,同号得正,异号得负,把绝对值相乘;任何数与0相乘,积仍为0。

(2)有理数乘法的运算律:交换律:ab=ba ;结合律:(ab)c=a(bc);分配律:a(b+c)=ab+ac 。

(3)倒数的定义:乘积是1的两个有理数互为倒数,即ab=1,那么a 和b 互为倒数;倒数也可以看成是把分子分母的位置颠倒过来。

(分子大于或者等于分母的分数叫假分数,假分数大于1或等于1。

假分数通常可以化为带分数或整数。

如果分子和分母成倍数关系,就可化为整数,如不是倍数关系,则化为带分数)有一个数和它的倒数相等,这个数是1和-1 即 ±1注意:①正数的倒数是正数,负数的倒数是负数。

②零没有倒数。

③求分数的倒数,就是把分数的分子分母颠倒位置。

一个带分数要先化成假分数。

4、有理数的除法有理数的除法法则:1)、两个数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个非0的数都等于0;2)、这个法则可以把除法转化为乘法:除以一个数,等于乘上这个数的倒数。

0不能做除数。

a ÷b= a ×b1( b ≠0)5、有理数的乘方(1)有理数的乘方的定义:求n 个相同因数a 的积的运算叫做乘方,乘方是一种运算,是几个相同的因数的特殊乘法运算,记做“n a ”其中a 叫做底数,表示相同的因数,n 叫做指数,表示相同因数的个数,它所表示的意义是n 个a 相乘,不是n 乘以a ,乘方的结果叫做幂。

相关文档
最新文档