四年级下册数学乘法运算定律教学设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四年级《乘法运算定律》教学设计
教学内容:人教版四年级数学下册第三单元P24--P26例5、例6、例7及相应练习。
教学目的:
1、使学生经历探索乘法交换律和乘法结合律的过程,理解并掌握规律,能用字母表示规律。
2、理解乘法分配律,掌握乘法分配律的成立条件,能初步应用乘法分配律解决简单的实际问题。
3、使学生学会运用乘法运算定律进行简便计算,体验运算律的应用价值,培养学生灵活选用计算方法的意识和能力。
4、培养学生观察、比较、分析、综合和归纳、概括等思维能力。
教学重点:理解并掌握乘法运算定律,并会运用运算律进行简便计算。
教学难点:理解并掌握乘法分配律的含义。教法与学法:
本课主要采用情境创设法和启发式谈话法,并辅以练习法等,以激发学生的主观能动性,让学生在自主探索和合作交流的过程中学习新知,真正体现学生的主体地位。
教学过程:
一、复习引入
1、同学们,我们学习了加法的哪些运算定律?下列等式应用了什么定律?80+A=A+80
(48+36)+52=(48+52)+36
321+28+79+172=(321+79)+(28+172)
2、口算抢答比赛
12×525×435×2125×845×425×8
师:同学们看一看这些积有什么特点?(引导发现:当两个数相乘等于整十、整百、整千的数时会使计算更加简便。)
师:再看这道题。
57×12+43×12
你还能快速算出结果吗?
要想快速算出结果需要用一样数学法宝,那就是“乘法运算定律”。
板书课题:乘法运算定律
今天我们就借助于植树活动探究乘法运算定律。
【分析:一组口算看似简单,其用意则不凡。前几题学生能很快说出得数,正在学生兴奋之时,出示57×12+43×12,学生都迟迟说不出或说不准,这样由“很快”突然到“很慢”,使学生产生了急于想知道得数的心理需要,就在这时,教师又故作玄虚地说:“需要用一样数学法宝……”短短几句,又一次把学生的求知欲望激发起来。】
二、探索新知
师:观察植树活动的主题图,说说你从图中都了解到了哪些信息?(学生可以复述图中的两段说明文字,也可用自己的话进行叙述。)师:根据图中带给我们的信息,可以提出哪些数学问题?(根据学生的回答,课件出示例1、例2、例3。)
1、学习例1。
1)思考:要解答负责挖坑、种树的一共有多少人?这个问题,需要知道哪些相关的信息?
预设:一共有25个小组,每组里4人负责挖坑、种树。
2)可以怎样列式?
根据学生回答,板书4×25 25×4
3)引导学生进行观察、比较。
两个算式结果是多少?(100人)那可以用什么符号来表示它们之间的关系?(等号)
板书:4×25=25×4
4)你能再举出几个像这样的例子吗?根据学生的举例板书。
5)归纳总结。
同学们观察一下每组等号左右两边的算式,你发现了什么?
预设1:左边和右边的算式都是两个相同的数相乘,乘的结果都相等。
预设2:左边算式和右边算式的两个因数位置不一样,都交换了。
师:这就是乘法交换律。(课件出示:两个数相乘,交换两个因数的位置,积不变,这叫做乘法交换律。)
6)你能用字母表示乘法交换律吗?
板书:a×b=b×a 请同学说说这里的a、b可以是哪些数?
7)其实,乘法交换律早就是我们的朋友了,还记得乘法口诀吗?生说一句
乘法口诀,并根据这句口诀写出两道乘法算式。这里应用了什么?
2、学习例2
接下来我们解决第二个问题:一共有25组,每组要植树5棵,每棵树要浇水2桶。一共要浇多少桶水?
1)师:请同学们认真读题,说说你的想法,你会先求什么,再求什么?
预设1:我先求一共种了多少棵树,再求一共要浇多少桶水。
预设2:我先求每组浇多少桶水,再求一共要浇多少桶水。
师:同学们想好以后就可以根据自己的想法列出综合算式并计算。
(教师巡视,请两种不同算法的同学板演)
2)师:你们计算的结果是多少?(250桶。)
师:这两种列式的结果一样,所以我们可以写作:
(25×5)×2=25×(5×2)
你还能出类似的算式吗?(学生举例)
3)师:从上面这些式子,你发现了什么?能试着用自己的话说一说吗?
预设:先乘前两个数,或者先乘后两个数,积不变。
师:是的,这就是乘法结合律。
(板书,课件出示内容)
师:你能用字母表示出来吗?
预设:(a×b)×c=a×(b×c)
4)思考:比较加法交换律和乘法交换律、加法结合律和乘法结合律,你发现了什么?
预设:交换律是两数相加、相乘的规律;结合律是三数相加、相乘的规律,既可以从左往右一次计算,也可以先把后两个数相加(乘),和(积)不变。
3、学习例3
现在我们解决第三个问题:(课件出示)
一共有25组,每组里4个人挖坑种树,2个人抬水浇树。一共有多少名同学参加了这次植树活动?
1)师:请同学们认真读题,说说你的想法,你会先求什么,再求什么?
预设1:我先求每组的人数,再求总人数。
预设2:我先求挖坑种树的人数,再求抬水浇树的人数,最后加起来。
师:好,下面请同学们根据自己的想法列出综合算式并计算。
(教师巡视,请两种不同算法的同学板演)
师:同学们,你们的结果是多少?(150人。)
师:这两种列式的结果一样,所以我们可以写作:
(4+2)×25 = 4×25+2×25
师:等号两边的算式有什么相同和不同?
2)探究、验证。
出示:((出示一组算式)猜一猜:它们的结果会怎样?
(3+2)×4 ○3×4+2×4 (5+10)×2 ○5×2+10×2 师:中间可以用“=”来连接吗?(通过计算验证)
师:这两道算式相等是一种巧合还是有规律呢?请同学们从左到右观察,你能发现什么规律吗?
3)小组讨论,全班总结。
预设:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再把两个积相加,结果不变。
师:是的,这就是乘法分配律。(板书,课件出示内容)
师:你能用字母表示出来吗?
预设:(a+b)×c= a×c+ b×c或a×(b+c)=a×b+a×c
三、巩固联系,提升认识。
同学们,乘法的三个定律你觉得学得怎样?老师这儿有些练习题,你敢接受挑战吗?
1.根据乘法运算定律,在()里填上适当的数。
15×16=16×( )
(25×7)×4=( ×)×7
3×4×8×5=(3×4)×( ×)
117×13+117×7=117×( + )
167×2+167×3+167×5=167×( + )
2、下面哪些算式是正确的?正确的画“√”,错误的画“×”。说一说你的判断理由。
56×(19+28)=56×19+28 ()
32×(8×2)=32×8+32×2 ()
87×87+13×87=(87+13)×87 ()