五年级奥数分解质因数(一)答案

合集下载

五年级奥数之分解质因数

五年级奥数之分解质因数

分解质因数例1:判断269、439是质数还是合数?例2:两个质数的和是40,求这两个质数的乘积的最大值是多少?例3:36的全部因数有多少个?216的全部因数有多少个?例4:36的因数和是多少?216的因数和是多少?例5: 李聪是个中学生,他参加了全市的数学竞赛(满分100分)。

他说:“我的名次、分数和我的年龄乘起来是3738。

”李聪得了多少分,获得了第几名?例6: 小亚、小美和小欧是三个好朋友,他们三人的年龄依次相差2岁,已知他们三人的年龄之积是1680,他们中年龄最大的上了初中,小亚和小欧在同一学校学习,小亚不是年龄最小的,那么三个好朋友的年龄分别是多少?例7: 连续九个自然数中至多有几个质数?为什么?例8:把14、33、35、30、75、39、143、169这八个数平均分成两组,使每组数的乘积相等。

例9:一个整数a与1080的乘积是一个完全平方数,求a的最小值与这个平方数。

例10:有3个自然数a、b、c.已知a×b=6,b×c=15,a×c=10.求a×b×c是多少?应用与拓展1. 两个质数和是45,这两个质数的积是多少?2.一个两位质数,将它们的十位数字和个位数字对调后仍是一个两位质数,这样的数共有几个,求它们的和是多少?3.求100以内所有只有三个因数的自然数的和是多少?4.把1008分解质因数,并求出它们因数的个数及因数和。

5.冬冬参加小学数学竞赛,满分是100分。

他说:“我的分数、我的岁数和我竞赛得的名次乘起来,积是2134。

”你能否求出冬冬的年龄、考试成绩和名次分别是多少?6.a、b、c、d都是不同的质数,a+b+c=d,那么a×b×c×d的最小值是多少?7. 1,2,3,4,5,6,7,8,9九张卡片,甲、乙、丙各拿了三张。

甲拿的三张卡片上的数字乘积是24,乙拿的三张卡片上的数字乘积是48,丙拿的三张卡片上的数字之和是21,丙拿的是哪三张卡?8.在射箭运动中,运动员每射一箭的环数只能是下列数之一:0、1、2、3、4、5、6、7、8、9、10,其中0环表示脱靶,现在甲、乙两名运动员各射了5箭,每人5箭得到的环数的积都是1764。

小学五年级奥数100题(含答案)+100题(不含答案)

小学五年级奥数100题(含答案)+100题(不含答案)

小学五年级奥数100题(含答案)1、一间屋子里有100盏灯排成一行,按从左到右的顺序编上号1、2、3、4、5……99、100,每盏灯都有一个开关,开始全都关着,把100个学生排在后面,第1个学生把1的倍数的灯全都拉一下,第2个同学把2的倍数的灯全都拉一下……第100个学生把100的倍数的灯都拉一下,这时有多少盏灯是开着的?1、分析与解答:一盏灯被拉的次数是奇数,则灯是开着的,被拉的次数是偶数次,则灯是关着的,在1至100中,只有10个完全平方数的约数的个数是奇数个,其余的约数都是偶数个,所以有10盏灯是开着的,即12、22、32、42、52、62、72、82、92、1022、一游客划着小船逆流而上,船上一只皮球掉入河里,2分钟后游客发现,立即掉头追皮球,问游客几分钟追上皮球?2、分析与解答:2分钟游客与皮球的距离为:(球速+游客速度)×2=(水速+船速-水速)×2=2个船速追的时间2个船速÷(顺速-水速)=2个船速÷船速=2分钟即游客2分钟追上皮球。

3、饲养场的白兔是黑兔的5倍,后来卖掉了10只黑兔,买回来20只白兔,现在白兔的只数是黑兔的7倍,原来白兔、黑兔各有多少只?分析与解答:卖掉10只黑兔,也应卖掉50只白兔,这样白兔只数正是黑兔的5倍,而现在却买回20只白兔,相关20+50=70只,现在白兔是黑兔的7倍,相关7-5=2倍,一倍差是70÷2=35只,原来黑兔只数为35+10=45只,白兔只数为45×5=225只4、在4点与5点之间,时针与分针什么时候成直角的?分析与解答:分针的速度是1格,时针的速度是格,时针与分针成直角,它们要相距15小格,而4点时,时针与分针相差20小时格(20-15)÷(1- )=5 分(20+15)÷(1- )=38 分即:在4点5 分,4点38 分时,时针和分针成直角。

5、有四个不同的自然数,这四个数字总和是1001,如果让这四个数的公约数尽可能大,那么,这四个数中最大的一个数是多少?分析与解答:1001=7×11×13,要使公约数最大,首先考虑它是“11×13”,但“7”不能拆成四个不同的数,再考虑“7×13”,而11=1+2+3+5,所以最大的公约数是7×13=91,不同的四个数分别是91×1,91×2,91×3,91×5,最大的数是91×5=4556、一种彩电按定价卖出可得利润960元,如果按定价的八折出售,则亏832元,该彩电购入价是多少元?分析与解答:把定价看作单位“1”,按定价的八折出售,则亏832元,则定价为(960+832)÷(1-80%)=8960元,所以购入价为8960-960=8000元7、一列火车通过320米的隧道时间用了52秒,当它通过864米长的大桥时,速度比通过隧道时提高了,结果用1分36秒,火车身长多少米。

五年级奥数质数分解质因数问题

五年级奥数质数分解质因数问题

质数问题1.任意调换54321的各个数位上的数字位置,所得五位数中有质数吗?2.判断437和277是质数还是合数?3.一个质数加上6或减去6得到的数仍是质数,在50以内有多少个这样的质数?4.将543表示为两个质数之和,543=□+□,在□中填入质数,共有多少种表示方法?5.一个质数的3倍和另一个质数的2倍之和为100,这个质数的积是多少?6.已知A是质数,而且A+4,A+6,A+10都是质数,求符合条件的最小质数A。

7.连续9个自然数中最多有几个质数?8.用1、2、3、4、5、8中的3个数字组成的最大三位质数是多少?9.任意调换72835461的各个数位上的数字位置,所得八位数中有质数吗?10.在式子中的□中分别填入3个质数,使等式□+□+□=60成立,有多少种填法?11.判断223,431是质数还是合数?分解质因数12.两个奇数的积是4303,这两个奇数的和是多少?13.边长为自然数,面积为1001平方分米的形状不同的长方形共用多少种?14.将8个数14,30,33,75,143,169,4445,4953分成两组,每组4个数,要使各组中4个数相乘的积相等,其中一组有14,另一组的4个数分别是多少?15.把1112111这个对称数分解质因数。

16.已知两个大于1的数互质,它们的和是5的倍数,它们的积是2924,那么它们的差等于多少?17.学校组织对老人院的慰问活动,决定由一、二、三、四、五年级各出一名代表,这5名同学的年龄一个比一个大1岁,他们的年龄乘积是55440,这5个同学的年龄分别是多少岁?18.2000年的哪几天,年数、、月数、日数的乘积恰好等于3个连续的5的倍数(如5,10,15)的乘积?19.边长为自然数,面积为455的形状不同的长方形共用多少种?20.将下面8个数平均分成两组,使这两组数各自的乘积相等:14,33,335,30,75,39,143,169。

21.一个正方体的体积是110592立方米,它的表面积是多少?22.一个千位数字是1的四位数,当它分别被4个不同的质数相除时,余数都是1.满足这些条件的最大偶数是多少?23.五年级一位同学参加数学竞赛,他获得的名次、他的年龄、他得的分数的乘积是2910,这个学生得第几名?成绩是多少分?24.王老师带领同学们去划船,总共用去667元,那么划船的有多少位同学?每位同学需要多少多少钱?有几种情况?25.一个长方体木块,它的长、宽、高的长度正好是3个连续自然数,这个长方体体积是2730立方分米。

小学五年级奥数(上)第十三单元 分解质因数(仁华版)

小学五年级奥数(上)第十三单元  分解质因数(仁华版)
• 例1、面积是165平方厘米的形状不同的长方形共有 多少种? • 分析:长方形的面积等于长乘以宽,即,要把165分 解成两个数的乘积。 • 解:165=1×165=3×55=5×33=11×15 • 所以,面积是165平方厘米的形状不同的长方形共有 4种。
我们来看引入时的问题吧
• 例2、五年级(1)班的小丽参加了区钢琴比赛, 回来后,同学们问她的名次和分数,她告诉大家: “我的名次乘以我的年龄再乘以我的分数,恰好 是2328分。”你能猜到她的名次和分数吗? • 分析:由题意知:名次、年龄、分数都是2328的 因数。 因为小丽是五年级的学生,她 的年龄不可能是2、3、4、6、8、 • 解:2328=2×2×2×3×97 岁,也不可能是24岁,因此, 小丽的年龄是12岁。 • =2×12×97 • 答:她取得的名次是第二名,分数是97分。
• 2、质数与合数: • 像2=1×2,3=1×3,5=1×5,7= 1×7,11=1×11,13=1×13这样,如果 一个数只有1和本身两个因数,这个数就叫 做质数。 • 像4=1×4=2×2,6=1×6=2×3, 15=1×15=3×5这样,一个数除了1和本 身,还有其它的因数,就叫做合数。 • 特别的,1既不是质数,也不是合数。 • 你能再写出几个质数吗? 。
(二)分解质因数的方法
• • • • • 1、逐步分解法: 72 =8×9 =2×4×3×3 =2×2×2×3×3
72

8

9
∕ \
2 4
∕ \
3 3
∕\
2 2
分解质因数的方法
• 2、短除法: • ∣72 2 • ∣36 2 • ∣ 18 2 • ∣9 3 • 3
我们还以72为例 子说明怎样用短除法 来分解质因数:

五年级培优奥数——质数、合数与分解质因数

五年级培优奥数——质数、合数与分解质因数

质数、合数与分解质因数知识讲解:例题讲解:【例1】试写出1 —-100中的所有质数,并将111111分解质因数.【例2] 2004个连续自然数的和是“a×b×c×d,若出a、b、c、d都是不同的质数,则a+b+c+d 最小值应是____(全国第二届“创新杯”数学邀请赛试题)【例3】两个质数的和是39.这两个质数的积是多少?【例4】在三张纸片上分别写上三个最小的奇质数,如果随意从其中至少取出一张组成一个数,其中有几个是质数,将它们写出来。

【例5] 2002=2×7×11×13,其特点是4个不相等的质数之积.20世纪(1901—2000年)具有相同特点(即可以分解成4个小同质数的积)的所有年份为_______________。

【例6】将2l、30、65、126、143、169、275分成两组,使两纽数的积相等。

【例7】边长是自然数,面积是165的形状不同的长方形共有多少种?【例8】用216元去买一种钢笔,正好将钱用完,如果每支钢笔便宜1元.则可以多买3支钢笔,钱也正好用完.问共买了多少支钢笔?【例9】小兰家的电话号码是个七位数,它恰好是几个连续质数的乘积,这个积的末4位数是前3位数的1 0倍,小兰家的电话号码是多少?【例10】一个自然数可以分解为3个质因数的积,如果这3个质因数的平方和为3 9 6 30,求这个自然数.【例1l】求3 6 0有多少个因数?其因数和是多少?【例12】问:100以内有6个因数的数有哪些?基础训练:1。

165有多少个因数?这些因数的和是多少?2.已知自然数a有两个因数,那么3a有几个因数?3.两个质数的和是1995,这两个质数的乘积是多少?4.两个连续自然数的积加上11,其和是一个合数,这两个自然数的和最小是多少? 5.两个相邻的自然数积是1980,求这两个相邻的自然数.6.某四年级学生参加数学竞赛,他获得的名次,他的年龄,他得的分数的乘积是2910。

高斯小学奥数五年级上册含答案_质数与合数

高斯小学奥数五年级上册含答案_质数与合数

第三讲 质数与合数什么是质数?每一个数都能写成若干个数相乘的形式,考虑到任何一个数都能写成若干个1乘以它本身的形式,所以不考虑1作为乘数的情况:623=⨯,824222=⨯=⨯⨯,122634223=⨯=⨯=⨯⨯……这些数都能拆成若干个不为1的数相乘的形式,我们把这样的数称为合数.而像2,3,7……这些不能拆成若干个不为1的数相乘形式的数,我们称之为质数.如果说得形象一点,质数就是“拆不开”的数,合数就是拆得开的数.严格说来,质数就是只能被1和自身整除的数;合数是除了1和它本身之外,还能被其它数整除的数.注意,1既不是质数也不是合数.我们先来看一个关于质数的小问题,提高大家对质数的熟悉程度:请写出所有颠倒个位十位之后还是质数的两位质数._____________________________________________(填写在横线上)相信对100以内的质数比较熟悉的同学,做这个题目会很轻松.质数是我们后面学习的基础,因此同学们一定要牢牢记住常见的质数.请同学们在下面的横线上写出100以内的所有质数:同学们还可以这样做:从大到小....写出100以内的质数.如果你能一个不少地写出来,说明你对100以内的质数确实掌握得很牢固了^_^.当然,同学们写出的这些质数只是质数大军中的冰山一角.在100以上还有无穷多个质数,比如接着100的就有四个质数:101,103,107,109.【分析】1~56以内的质数有哪些?把它们列出来,然后依次找出对应的汉字,这句话就出来了.下面是主试委员会为第六届“华杯赛”写的一首诗:美少年华朋会友,幼长相亲同切磋; 杯赛联谊欢声响,念一笑慰来者多; 九天九霄志凌云,九七共庆手相握; 聚起华夏中兴力,同唱移山壮丽歌.将诗中56个字第1行左边第一字起逐行逐字编为1—56号,再将号码中的质数由小到大找出来,将它们对应的字依次排成一行,组成一句话,请写出这句话.自然数N 是一个两位数,它是一个质数,而且N 的个位数字与十位数字都是质数,这样的自然数有多少个?【分析】对于第1问,依次枚举即可,可知这两个不同的质数一定都是奇数.那么后两问中的质数可以都是奇数吗?如果三个互不相同的质数相加,和为52,这三个质数可能是多少?通过前面的学习,我们对质数已经有了基本了解.下面我们来学习这一讲中最重要的内容:分解质因数.分解质因数是指把一个数写成质因数相乘的形式.如:30235=⨯⨯,1002255=⨯⨯⨯,28022257=⨯⨯⨯⨯.同学们请注意:分解式应该把质因数按从小到大的顺序写好,每个数分解质因数的形式是唯一的.分解质因数的方法一般是短除法,如下图所示,我们将30分解质因数,在计算的过程(1)如果两个不同的质数相加等于26,那么这两个质数的乘积可能是多少?请全部写出. (2)如果两个不同的质数相加等于25,那么这两个质数的乘积可能是多少?请全部写出. (3)三个互不相同的质数相加,和为40,这三个质数的乘积可能是多少?请全部写出.中要善用各种特殊数的整除特性.100在分解质因数时也可以写成:2210025=⨯;280在分解质因数时也可以写成3280257=⨯⨯.这种写法更简洁更方便,其中位于质因数右上角,表示质因数个数的数叫作指数,如:这里280的分解式中5和7的指数都是1,写的时候可以省略.如何确定一个大数是不是质数呢?我们要判断197是不是质数,难道需要一一验算197以内的所有质数吗?同学们不用担心,数学家们早就为我们准备了简单的方法,只需要试很少的几个就能判断.例如我们要判断197是否为质数,只需要验算15以内的质数就足够了!因为1515225⨯=比197大.类似的,如果我们要判断2011是不是质数,只需要验算45以内的质数,因为45452025⨯=比2011大.有了这个方法,同学们以后判断一个大数是不是质数就非常方便了.「分析」将一个数分解质因数,可以从最小的质数开始,一个一个去试商,写成短除的形式.请把下面的数分解质因数: (1)373;(2)12660.请把下面的数分解质因数:(1)360;(2)539;(3)999;(4)10101.2210025=⨯指数3280257=⨯⨯ 指数2 30 315 5能整除30相除后得在整数问题中,有一类特殊的问题,专求乘积末尾连续0的个数.解决这类问题的方法同样是质因数分解.下面我们来看一个例题.【分析】乘积的末尾要出现一个0,只需要乘数中凑出一个10,那么能凑出来几个10,末尾就有多少个连续的0.注意到1025=⨯,我们只需要计算这个算式中含有的质因数2和5的个数就可以了.算式12330⨯⨯⨯⨯的计算结果的末尾有多少个连续的0?分解质因数是学习数论问题时非常重要的方法,大家一定要能熟练的将一个数分解质因数,这应该作为一项基本的能力来培养.下面我们来看看如何利用分解质因数来解决实际的问题.三个连续自然数的乘积等于39270,那么这三个数的和等于多少?算式123100⨯⨯⨯⨯计算结果的末尾有多少个连续的0?「分析」39270是三个自然数的乘积,于是先将39270分解质因数,再对这些质因数进行适当的组合,凑出题目中的三个连续自然数.由于连续自然数相互之间比较接近,所以凑的时候也必须尽量接近.360与一个三位数的乘积是完全平方数,这个三位数最小是多少?【分析】完全平方数是两个相同数的乘积,那么分解后它的每个质因数的次数都是偶数.而32360235=⨯⨯,它不是一个平方数.它最小再乘上多少,结果就是平方数了?通过上面例题的讲解,相信大家能体会到分解质因数的好处.它就像手术刀一样,把整数解剖开来,让我们把整数的组成结构看得一清二楚.很多看似复杂的问题,如果从分解质因数的角度来看,就会变得非常简单.课堂内外质数有无穷个吗?在正整数里走得越远,我们就发现质数变得越来越稀少.有人可能会问:质数出现频率越来越小,它们会不会在某处终止呢?会不会从某个数开始之后就没有质数了呢?早在公元前300年左右,欧几里得就第一次证明了质数有无穷多个.他用的是如下的反证法:设n代表最后一个质数,那么从2到n的所有质数的积是2357n⨯⨯⨯⨯⨯.将这个积加1称为k,因为2,3,5,7,11,…,n都不能整除k,所以k必然含有一个更大的质因数!这与n代表最后一个质数相矛盾!作业1.(1)如果两个不同的质数相加等于39,那么这两个质数的乘积是多少?(2)三个互不相同的质数相加,和为30,这三个质数的乘积是多少?2.自然数49,87,101,103,121中,哪些是质数?3.请把下面的数分解质因数:(1)240;(2)1080.4.三个连续自然数的乘积为336,则这三个数的和是多少?⨯⨯⨯⨯的计算结果的末尾有多少个连续的0?5.算式12335第三讲质数与合数例题1.答案:少年朋友亲切联欢一九九七相聚中山详解:1~56中的质数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53共16个.例题2.答案:(1)69、133;(2)46;(3)434详解:(1)26可以拆成3与23的和,或者7与19的和;(2)25只能拆成2和23的和;(3)三个数的和是偶数,可以是三个偶数,或者一偶两奇.考虑到质数中只有2是偶数,可知一定是一偶两奇,且偶数是2.另外两个奇数是7和31.例题3.答案:(1)32360235=⨯;=⨯;(3)3999337=⨯⨯;(2)2539711(4)10101371337=⨯⨯⨯.例题4.答案:24详解:末尾0的个数与算式结果所含质因数2和5的个数有关,结果中质因数的个数又与乘数中质因数的个数有关.因为2的个数要比5的个数多,所以0的个数等于5的个数.乘数中5的倍数有20个,25的倍数有4个,所以质因数5的个数有20424+=个.末尾有24个连续的0.例题5.答案:102详解:3927023571117=⨯⨯⨯⨯⨯.考虑其中最大的质因数17,三个自然数中一定有17的倍数.如果是17,那么一定有16或18.这不可能.如果是34,另外两个数是33和35,正好满足.333435102++=.例题6.答案:160详解:完全平方数的每个质因数的次数一定是偶数.而32=⨯⨯,360235至少要再乘上2510⨯=才是一个平方数.题目要求是三位数,即是一个平方数.可知空格上也要填入一个平方数,最⨯⨯36010____三位数小要填16.要乘的三位数最小是160.练习1. 答案:23、37、53、73简答:一位数中的质数只有2、3、5、7.而N 的个位数字只能是3和7,分类枚举即可. 练习2. 答案:2、3、47或者2、7、43或者2、13、37或者2、19、31简答:三个质数一定是一偶两奇,偶数是2. 练习3. 答案:(1)质数;(2)212660235211=⨯⨯⨯. 练习4. 答案:7简答:1~30中5的倍数有6个,25的倍数有1个,所以其中有7个5.计算结果的末尾有7个连续的0.作业1. 答案:(1)74;(2)230或374简答:(1)39237=+,乘积为74.(2)30252321117=++=++,乘积为230或374.作业2. 答案:101,103.作业3. 答案:(1);(2).作业4. 答案:21简答:,和为21. 作业5. 答案:8个简答:看含有因子5的个数,是5的倍数的数有7个,是25的倍数的数有1个,共8个.4336237678=⨯⨯=⨯⨯ 331080235=⨯⨯ 4240235=⨯⨯。

2022-2023学年小学五年级奥数(全国通用)测评卷09《质数和合数、分解质因数》(解析版)

2022-2023学年小学五年级奥数(全国通用)测评卷09《质数和合数、分解质因数》(解析版)

【五年级奥数举一反三—全国通用】测评卷09《质数和合数、分解质因数》试卷满分:100分 考试时间:100分钟姓名:_________班级:_________得分:_________一.选择题(共10小题,满分20分,每小题2分)1.(2分)38、83相加的和是( )倍数.A .9B .11C .6D .7【解答】解:3883121+= 1211111=⨯121的质因数只有11,所以他不是9、6、7的倍数,是11的倍数.故选:B 。

2.(2分)在整数0、1、2、3、4、5、6、7、8、9中,质数的个数为x ,偶数的个数为y ,完全平方数的个数为z ,则x y z ++等于( )A .14B .13C .12D .11【解答】解:在整数0,1,2,3,4,5,6,7,8,9中,质数为2,3,5,7.共4个.所以4x =; 在整数0,1,2,3,4,5,6,7,8,9中,偶数为0,2,4,6,8.共5个.所以5y =; 在整数0,1,2,3,4,5,6,7,8,9中,完全平方数为0,1,4,9.共4个.所以4z =; 4x =,5y =,4z =,13x y z ∴++=.故选:B 。

3.(2分)2000年后为三个连续自然数乘积的第一个年份是( )A .2013B .2048C .2146D .2184【解答】解:A 、20133671=⨯B 、204822222222222=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯C 、214621073=⨯D 、21842223713(223)13(27)121314=⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯=⨯⨯.故选:D 。

4.(2分)在下列算式的空格中填入互不相同的数字:□(⨯□+□□)(⨯□+□+□+□□)2014=.其中五个一位数的和最大是( )A .15B .24C .30D .35【解答】解:由题意,201421953=⨯⨯,五个一位数之和最大,则两位数应最小 由2(1)(3)2014a b c d e f ⨯+⨯+++=,可得990238654a b c d e f +==+⎧⎨+++==+++⎩, (2)2986530max a c d e ∴++++=++++=,故选:C 。

小学奥数5-3-4 分解质因数(一).专项练习及答案解析

小学奥数5-3-4 分解质因数(一).专项练习及答案解析

1.能够利用短除法分解 2. 整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、质因数与分解质因数 (1).质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.(2).互质数:公约数只有1的两个自然数,叫做互质数.(3).分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.(4).分解质因数的方法:短除法例如:212263,(┖是短除法的符号) 所以12223=⨯⨯;二、唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯其中为质数,12k a a a <<<为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式.例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.三、部分特殊数的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.模块一、分解质因数 【例 1】 分解质因数20034= 。

【考点】分解质因数 【难度】1星 【题型】填空【关键词】走美杯,决赛,5年级,决赛,第2题,10分【解析】 原式323753=⨯⨯⨯例题精讲知识点拨教学目标5-3-4.分解质因数(一)【答案】3⨯⨯⨯23753【例2】三个连续自然数的乘积是210,求这三个数是多少?【考点】分解质因数【难度】1星【题型】填空【解析】210分解质因数:2102357=⨯⨯⨯,可知这三个数是5、6和7。

最新小学五年级奥数全册讲义(1-30讲)(含详解)【值得拥有】

最新小学五年级奥数全册讲义(1-30讲)(含详解)【值得拥有】

小学五年级奥数全册讲义第1讲数字迷(一)第2讲数字谜(二)第3讲定义新运算(一)第4讲定义新运算(二)第5讲数的整除性(一)第6讲数的整除性(二)第7讲奇偶性(一)第8讲奇偶性(二)第9讲奇偶性(三)第10讲质数与合数第11讲分解质因数第12讲最大公约数与最小公倍数(一)第13讲最大公约数与最小公倍数(二)第14讲余数问题第15讲孙子问题与逐步约束法第16讲巧算24第17讲位置原则第18讲最大最小第19讲图形的分割与拼接第20讲多边形的面积第21讲用等量代换求面积第22 用割补法求面积第23讲列方程解应用题第24讲行程问题(一)第25讲行程问题(二)第26讲行程问题(三)第27讲逻辑问题(一)第28讲逻辑问题(二)第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。

例如用猜想、拼凑、排除、枚举等方法解题。

数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。

这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小数的除法竖式问题。

例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。

分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。

当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。

(5÷13-7)×(17+9)。

当“÷”在第二或第四个○内时,运算结果不可能是整数。

当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。

例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。

五年级奥数 质数合数分解质因数

五年级奥数 质数合数分解质因数

一、基本概念和知识1.质数与合数一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数)。

一个数除了1和它本身,还有别的约数,这个数叫做合数。

要特别记住:1不是质数,也不是合数。

2.质因数与分解质因数如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例:把30分解质因数。

解:30=2×3×5。

其中2、3、5叫做30的质因数。

又如12=2×2×3=22×3,2、3都叫做12的质因数。

二、例题例1 三个连续自然数的乘积是210,求这三个数.解:∵210=2×3×5×7∴可知这三个数是5、6和7。

例2 两个质数的和是40,求这两个质数的乘积的最大值是多少?解:把40表示为两个质数的和,共有三种形式:40=17+23=11+29=3+37。

∵17×23=391>11×29=319>3×37=111。

∴所求的最大值是391。

答:这两个质数的最大乘积是391。

例3 自然数123456789是质数,还是合数?为什么?解:123456789是合数。

因为它除了有约数1和它本身外,至少还有约数3,所以它是一个合数。

例4 连续九个自然数中至多有几个质数?为什么?解:如果这连续的九个自然数在1与20之间,那么显然其中最多有4个质数(如:1~9中有4个质数2、3、5、7)。

如果这连续的九个自然中最小的不小于3,那么其中的偶数显然为合数,而其中奇数的个数最多有5个.这5个奇数中必只有一个个位数是5,因而5是这个奇数的一个因数,即这个奇数是合数.这样,至多另4个奇数都是质数。

综上所述,连续九个自然数中至多有4个质数。

例5 把5、6、7、14、15这五个数分成两组,使每组数的乘积相等。

解:∵5=5,7=7,6=2×3,14=2×7,15=3×5,这些数中质因数2、3、5、7各共有2个,所以如把14(=2×7)放在第一组,那么7和6(=2×3)只能放在第二组,继而15(=3×5)只能放在第一组,则5必须放在第二组。

五年级奥数2.分解质因数

五年级奥数2.分解质因数

2、分解质因数在数学学习中,许多题目初看起来很玄妙,但它们都与乘积有关。

对于这类题目,我们可以用分解质因数的方法来解答。

把一个合数用质数相乘的形式表示出来,叫作分解质因数。

此时,分解式中的因数称为质因数。

如:12=2×2×3,式中的2和3都是12的质因数。

判断一个数是不是质数的技巧如下:(1)判断一个自然数是不是质数,可以用所有比它小的质数,由小到大依次去除它,除到商比除数小时仍除不尽,那么它就是质数。

(2)判断100以内的数是不是质数,只需用2,3,5,7这四个数去试除,如果没有一个数能整除它,那么这个数一定是质数。

(3)判断200以内的数是不是质数,只需用2,3,5,7,11,13这六个质数去试除,如果没有一个数能整除它,那么这个数一定是质数。

分解质因数时,我们常用短除法。

掌握并灵活运用分解质因数的知识,能帮助我们解答许多用常规方法无法解答的与积有关的应用题。

如果将分解式中相同的质因数合并为它的幂,则任一个大于1的整数N只能唯一地表示成:N=p1r1×p2r2×···×pnrn ①(其中p1<p2<…<pn均为质数.r1,r2,…,rn是正整数,它们分别是p 1,p2,…,pn的指数)我们称①式为整数N的“质因数标准分解式”.例如: 72=2×2×2×3×3=23×32 就是72的标准分解式.例1.把100分解质因数。

(提示:用短除法)随堂练习1.(1)把60分解质因数(2)把210分解质因数(3)把750分解质因数例2.如果将某日子的日期与月份用数写出时,若该日期与其月份的乘积等于120,则称该日子为一个“幸运日”,例如:4月30日是“幸运日”,因为4×30=120.请间2022年共有多少个“幸运日”?随堂练习2.如果两个合数互质,它们的最小公倍数是126,那么它们的和是。

(完整word版)五年级奥数举一反三第222324周之作图法解题、分解质因数

(完整word版)五年级奥数举一反三第222324周之作图法解题、分解质因数

第222324周之作图法解题、分解质因数作图法解题专题简析:用作图的方法把应用题的数量关系提示出来,使题意形象具体,一目了然,以便较快地找到解题的途径,它对解答条件隐蔽、复杂疑难的应用题,能起化难为易的作用。

在解答已知一个数或者几个数的和差、倍差及相互之间的关系,求其中一个数或者几个数问题等应用题时,我们可以抓住题中给出的数量关系,借助线段图进行分析,从而列出算式。

例题1 五(1)班的男生人数和女生人数同样多。

抽去18名男生和26名女生参加合唱队后,剩下的男生人数是女生的3倍。

五(1)班原有男、女生各多少人?分析根据题意作出示意图:从图中可以看出,由于女生比男生多抽去26-18=8名去合唱队,所以,剩下的男生人数是女生人数的3倍,而这8名同学正好相当于剩下女生人数的2倍,剩下的女生人数有8÷2=4名,原来女生人数是26+4=30名。

练习一1,两根电线一样长,第一根剪去50厘米,第二根剪去180厘米后,剩下部分,第一根是第二根长度的3倍。

这两根电线原来共长多少厘米?2,甲、乙两筐水果个数一样多,从第一筐中取出31个,第二筐中取出19个后,第二筐剩下的个数是第一筐的4倍。

原来两筐水果各有多少个?3,哥哥现存的钱是弟弟的5倍,如果哥哥再存20元,弟弟再存100元,二人的存款正好相等。

哥哥原来存有多少钱?例题2 同学们做纸花,做了36朵黄花,做的红花比黄花和紫花的总数还多12朵。

红花比紫花多几朵?分析通过线段图来观察:从图中可以看出:红花比紫花多的朵数由两部分组成,一部分是36朵,另一部分是12朵,所以,红花比紫花多36+12=48朵。

练习二1,奶奶家养了25只鸭子,养的鸡比鸭和鹅的总数还多10只。

奶奶家养的鸡比鹅多几只?2,批发部运来一批水果,其中梨65筐,苹果比梨和香蕉的总数还多24筐。

运来的香蕉比苹果少多少筐?3,期末测试中,明明的语文得了90分。

数学比语文和作文的总分少70分。

明明的数学比作文高多少分?例题3 甲、乙、丙、丁四个小组的同学共植树45棵,如果甲组多植2棵,乙组少植2棵,丙组植的棵数扩大2倍,丁组植树棵数减少一半,那么四个组植的棵数正好相同。

五年级下册数学试题 -奥数第03讲:质数与合数 人教版 (含答案)

五年级下册数学试题 -奥数第03讲:质数与合数    人教版 (含答案)

第3讲质数与合数内容概述:掌握质数与合数的概念;熟悉常用的质数,并掌握质数的判定方法;能够利用分解质因数的方法解决相关的整数问题;学会计算末尾零的个数。

典型问题:兴趣篇1.(1)如果两个质数相加等于16,这两个质数有可能等于多少?(2)如果两个质数相加等于25,这两个质数有可能等于多少?(3)如果两个质数相加等于29,这样的两个质数存在吗?【分析】(1)因为16是个偶数,偶等于偶+偶或是奇+奇,但是质数中只有2是偶数,所以只能是奇+奇,所以是3+13或是5+11(2)因为25是个奇数,奇等于偶+奇,但是质数中只有2是偶数,所以另一个是25-2=23 (3)因为29是个奇数,奇等于偶+奇,但是质数中只有2是偶数,所以另一个只能是29-2=27,但是27不是质数,所以不存在!(第1届华罗庚金杯数学邀请赛决赛二试试题)2.有个人说:“任何7个连续数中一定有质数”。

请你举一个例子,说明这句话是错的。

【分析】方法一:例100以内:90-96,100以上很多,例114-126。

方法二:又例如连续的7个整数:842、843、844、845、846、847、848分别能被2、3、4、5、6、7、8整除,也就是说它们都不是质数.评注:有些同学可能会说这是怎么找出来的,翻质数表还是……,我们注意到(n+1)!+2,(n+1)!+3,(n+1)!+4,…,(n+1)!+(n+1)这n个数分别能被2、3、4、…、(n+1)整除,它们是连续的n 个合数.其中n !表示从1一直乘到n 的积,即1×2×3×…×n .3. 请写出5个质数,使得它们正好构成一个公差为12的等差数列。

【分析】10以上质数的末位只能是1,3,7,9.,一个数的末位+2只能出现1,3,7,9,那么这个数最小不能是偶数,不能是3,所以可以试验5,5+12=17,17+12=29,29+12=41,41+12=53,即可满足要求。

五年级奥数专题讲义(基础卷+提高卷)-第23讲 分解质因数(一) 通用版(含答案)

五年级奥数专题讲义(基础卷+提高卷)-第23讲  分解质因数(一)   通用版(含答案)

第 23 讲分解质因数(一)基础卷1.有 24 个梨平均分给小朋友,每份大于 1 个,小于 24 个,一共有多少种不同的分配方法?有6种分法每人2个 12人每人3个 8人每人4个 6人每人6个 8人每人8个 3人每人12个 2人2. 150 个同学排成长队做操,行数和列数都不能为 1,共有多少种排法?2,753,505,306,2510,1510种3.甲比乙多 2 个苹果,两人苹果数的积是 24,问:甲、乙各有几个苹果?解:设乙x个,那么甲x+2个.x(x+2)=x*x+2x=24,x*x+2x-24=0,(x+1)*(x+1)-25=0,x+1等于5或者-5,得:x=4或者x=-6,x=-6舍去,那么x=4,得x+2=6. 所以甲6个,乙4个.4.公园内有三只小熊猫,恰好一只比一只大 1 岁,它们的年龄之积是 60,问:最小的熊猫几岁?解:设中间一只熊猫X岁,另二只分别是(X+1)岁与(X--1)岁。

根据题意得:(X--1)X(X+1)=60解这个方程得:X=4答:最小的熊猫3岁。

5.三个连续偶数的积是 192,这三个连续偶数的和是多少?192=8×24=8×2×3×4=4×6×8,所以这三个偶数分别为:4、6、8,它们的和:4+6+8=18.6.有一个长方体,它的长、宽、高是三个连续的自然数,且体积是 210cm 3,求长方体的表面积。

210=5×6×7表面积=2×(5×6+5×7+6×7)=214平方米提高卷1.要使()×15×19×125×30 的积的末尾有四个 0,括号内最小应是什么数?是8我们要看乘数里有几个5和几个2,所以先把每个乘数分解质因数:15=3×5,125=5×5×5,30=2×3×5,19里既没有2也没有5,现在乘数中共有5个5和1个2,因为积某尾要4个0所以还差3个2。

小学奥数:分解质因数(一).专项练习及答案解析

小学奥数:分解质因数(一).专项练习及答案解析

5-3-4.分解质因数(一).题库 教师版 page 1 of1.能够利用短除法分解 2. 整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、质因数与分解质因数 (1).质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.(2).互质数:公约数只有1的两个自然数,叫做互质数.(3).分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.(4).分解质因数的方法:短除法例如:212263,(┖是短除法的符号) 所以12223=⨯⨯;二、唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯L 其中为质数,12k a a a <<<L L 为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式.例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.三、部分特殊数的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.模块一、分解质因数 【例 1】 分解质因数20034= 。

【考点】分解质因数 【难度】1星 【题型】填空【关键词】走美杯,决赛,5年级,决赛,第2题,10分【解析】 原式323753=⨯⨯⨯例题精讲知识点拨教学目标5-3-4.分解质因数(一)【答案】323753⨯⨯⨯【例 2】 三个连续自然数的乘积是210,求这三个数是多少?【考点】分解质因数 【难度】1星 【题型】填空【解析】 210分解质因数:2102357=⨯⨯⨯,可知这三个数是5、6和7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十三周分解质因数
例题1 把18个苹果平均分成若干份,每份大于1个,小于18个。

一共有多少种不同的分法?
分析先把18分解质因数:18=2×3×3,可以看出:18的约数是1、2、3、6、9、18,除去1和18,还有4个约数,所以,一共有4种不同的分法。

练习一
1.有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多于15人。

有哪几种分法?
2.195个同学排成长方形队伍做早操,行数和列数都大于1,共有几种排法?
3.甲数比乙数大9,两个数的积是792,求甲、乙两数分别是多少。

例题2 有168颗糖,平均分成若干份,每份不得少于10颗,也不能多于50颗。

共有多少种分法?
分析先把168分解质因数,168=2×2×2×3×7,由于每份不得少于10颗,也不能多于50颗,所以,每份有2×2×3=12颗,2×7=14颗,3×7=21颗,2×2×2×3=24颗,2×3×7=42颗,共有5种分法。

练习二
1.把462名学生分成人数相等的若干组去参加课外活动小组,每小组人数在10至25人之间,求每组的人数及分成的组数。

2.四个连续奇数的和是19305,这个四奇数分别是多少?
3.把1、2、3、4、5、6、7、8、9九张卡片分给甲、乙、丙三人,每人各3张。

甲说:“我的三个数的积是48。

”乙说:“我的三个数的和是16。

”丙说:“我的三个数的积是63。

”甲、乙、丙各拿了哪几张卡片?
例题3 将下面八个数平均分成两组,使这两组数的乘积相等。

2、5、14、24、27、55、56、99
分析 14=2×7 55=5×11
24=2×2×2×3 56=2×2×2×7
27=3×3×3 99=3×3×11
可以看出,这八个数中,共含有八个2,六个3,二个5,二个7和二个11。

因为要把这八个数分成两组,且积相等,所以,每组数中应含有四个2,三个3,一个5,一个7和一个11。

经排列为(5、99、24、14)和(55、27、56、2)。

练习三
1.下面四张小纸片各盖住一个数字,如果这四个数字是连续的偶数,请写出这个完整的算式。

□□×□□=1288
2.有三个自然数a、b、c,已知a×b=30,b×c=35,c×a=42,求a×b×c的积是多少?
3.把40、45、63、65、78、99、105这八个数平分成两组,使两组四个数的乘积相等。

例题4 王老师带领一班同学去植树,学生恰好分成4组。

如果王老师和学生每人植树一样多,那么他们一共植了539棵。

这个班有多少个学生?每人植树多少棵?
分析根据每人植树棵数×人数=539棵,把539分解质因数。

539=7×7×11,如果每人植7棵,这个班就有7×11-1=76人;如果每人植树11棵,这个班共有7×7-1=48人。

练习四
1.3月12日是植树节,李老师带领同学们排成两路人数相等的纵队去植树。

已知李老师和同学们每人植树的棵数相等,一共植了111棵树,求有多少个学生。

2。

小青去看电影,他买的票的排数与座位号数的积是391,而且排数比座位号数大6。

小青买的电影票是几排几座?
3,把一篮苹果分给4人,使四人的苹果数一个比一个多2,且他们的苹果个数之积是1920。

这篮苹果共有多少个?
例题5 下面的算式里,□里数字各不相同,求这四个数字的和。

□□×□□=1995
分析要使两个两位数的积等于1995,那么,这两个数的积应和1995有相同的质因数。

1995=3×5×7×19,可以有35×57=1995和21×95=1995。

因为要满足“数字各不相同”的条件,所以取21×95=1995,这四个数字的和是:2+1+9+5=17。

练习五
1.在下面算式的框内,各填入一个数字,使算式成立。

□□□×□=1995
2.有一个长方体,它的长、宽、高是三个连续的自然数,且体积是39270立方厘米,求这个长方体的表面积。

3.有三个自然数a,b,c,已知a×b=35,b×c=55,a×c=77,求三个数之积是多少?
参考答案:
一、1.60=4×15=5×12=6×10;
2.195=3×5×13,3×65 5×39 13×15;
3.792=2×2×2×3×3×11; 24×33
二、1. 462=2×3×7×11;
11×42 21×22 22×21 14×33
2.19305=3×3×3×5×11×13; 9×11×13×15
3.48=2×2×2×2×3 63=3×3×7
三、1.1288=2×2×2×7×23 28×46
2.30=5×2×3;35=5×7;42=2×3×7 5×6×7=210
3.78、44、45、105和65、99、40、63。

四、1.111=3×37; 37-1=36(个)
2.391=17×23;23排17座。

3.1920=2×2×2×2×2×2×2×3×5;4+6+8+10=28
五、1. 1995=3×5×7×19 665×3=5×399=7×285
2. 39270=2×3×5×7×11×17=33×34×35
(33×34+33×35+34×35)×2=6934;
3. a=7;b=5;c=11。

相关文档
最新文档