浅谈计算机视觉与数字摄影测量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈计算机视觉与数字摄影测量
发表时间:2018-06-19T16:47:42.070Z 来源:《基层建设》2018年第12期作者:熊健1 汪军2 施航3 [导读] 摘要:计算机视觉是数字摄影测量的重要组成部分,研究其相关课题有着重要意义。 1江苏省地质勘查技术院江苏南京 210000;2安徽省第四测绘院安徽合肥 230000 3华东冶金地质勘查局八一一地质队安徽滁州 239000 摘要:计算机视觉是数字摄影测量的重要组成部分,研究其相关课题有着重要意义。本文首先对相关内容做了概述,分析了计算机视觉与数字摄影测量的处理流程,并结合相关实践经验,分别从多个角度与方面就计算机视觉技术在影像处理系统中的实际应用展开了研究,阐述了个人对此的几点看法与认识,望有助于相关工作的实践。
关键词:计算机;视觉;数字摄影;测量
1前言
计算机视觉与数字摄影测量是一项实践性较强的综合性工作,其具体实施方法的特殊性不言而喻。该项课题的研究,将会更好地提升对计算机视觉的分析与掌控力度,从而通过合理化的措施与途径,进一步优化该项工作的最终整体效果。 2计算机视觉技术核心问题
视觉问题复杂性的本质在于相对声音等物理信号的描述,视觉信号充满了非常丰富的信息,描述起来也更加困难。比如,很多图像中蕴含了大量简单(如颜色、形状、纹理、几何特征等)及复杂(如场景、字符、物体分布、人物而部特征、人体姿势等)信息并具有较大的动态范围和主观性,如何攻克图像信息提取过程中的各种难题一直是当今计算機图像学研究的热点问题。而且,在科学家们还未完全破译生物视觉系统的奥秘的前提下,大多数CV问题只能采用“逆向推导机制”—依据己知或假设的关联将视觉系统的输入(数字图像)和输出(语义描述)对应起来,通过图片猜测真实世界物体具有的形状,照明度以及颜色分布。因此,基于概率论和数理统计的数学模型是最适合解决这类逆推问题的工具,这也是目前CV领域普遍采用各种统计模型和机器学习算法的本质原因。由于各种学习机制和统计模型需要基于先验知识并建立在对待测图像内容的约束、简化及假设的基础上,和生物视觉几亿年的发展进化相比,其建立的数学模型也只能片而而且粗糙地描绘出视觉系统输入与输出之间的关系。因此,对某组特定图像检测时表现十分优秀的系统,往往对另一组语义相同的图片素手无策;很多看似稳定的机器学习机制,在增加样本种类和数量后,检测率反而会下降;很多设计复杂的检测算法在实际应用中的表现反而不如一些简单且基本的数学描述困。
3计算机视觉与数字摄影测量的处理流程
3.1立体视觉
立体视觉是计算机视觉中的一个重要分支,一直是计算机视觉研究的重点和热点之一,在20多年的发展过程中,逐渐形成了自己的方法和理论。立体视觉的基本原理是从两个(或多个)视点观察同一景物,以获取在不同视角下的感知图像,通过三角测量原理计算像像素间的位置偏差(即视差)来获取景物的三维信息,这一过程与人类视觉的立体感知过程是类似的。一个完整的立体视觉系统通常可分为图像获取、摄像机定标、特征提取、影像匹配、深度确定及内插等6个大部分。其中影像匹配是立体视觉中最重要也是最困难的问题,也是计算机视觉和数字摄影测量的核心问题。
3.2影像匹配
立体视觉的最终目的是为了恢复景物可视表面的完整信息。当空间三维场景被投影为二维图像时,同一景物在不同视点下的图像会有很大不同,而且场景中的诸多因素,如光照条件,景物几何形状和物理特性、噪声干扰和畸变以及摄像机特性等,都被综合成单一的图像中的灰度值。因此,要准确地对包含了如此之多不利因素的图像进行无歧义的匹配,显然是十分困难的。
在摄影测量中最基本的过程之一就是在两幅或者更多幅的重叠影像中识别并定位同名点,以产生立体影像。在模拟摄影测量和解析摄影测量中,同名点的识别是通过人工操作方式完成的;而在数字摄影测量中则利用计算机代替人工解决同名点识别的问题,即采用影像匹配的方法。
3.3多目立体视觉
根据单张相片只能确定地面某个点的方向,不能确定地面点的三维空间位置,而有了立体像对则可构成与地面相似的立体模型,解求地面点的空间位置。双目立体视觉由不同位置的两台或者一台摄像机(CCD)经过移动或旋转拍摄同一幅场景,就像人有了两只眼睛,才能看三维立体景观一样,然后通过计算空间点在两幅图像中的视差,获得该点的三维坐标值。现在的数字摄影测量中的立体像对技术通常是在一条基线上进行的,但是由于采用计算机匹配替代人眼测定影像同名像对时存在大量的误匹配,使自动匹配的结果很不可靠。其存在的问题主要是,对存在特殊结构的景物,如平坦、缺乏纹理细节、周期性的重复特征等易产生假匹配;在摄像机基线距离增大时,遮挡严重,能重建的空间点减少。为了解决这些问题,降低双目匹配的难度,自1986年以来出现了三目立体视觉系统,即采用3个摄像机同时摄取空间景物,通过利用第三目图像提供的信息来消除匹配的歧义性。采用“多目立体视觉技术”可以利用摄影测量的空中三角测量原理,对多度重叠点进行“多方向的前方交会”,既能较有效地解决随机的误匹配问题,同时又能增加交会角,提高高程测量的精度。这项技术的应用,将很大程度地解决自动匹配结果的不可靠性,提高数字摄影测量系统的准确性。 4计算机视觉技术在影像处理系统中的实际应用 4.1计算机视觉技术关于图像的预处理的應用
影像测量系统在采集图像的时候,很容易受到周围环境的影响,例如:电磁波的干扰,光的折射,温度的影响等,这将很容易导致测量系统采集到事物图像在播发过程中都会夹杂着刺耳的噪声,对测量物品的边缘描述过于模糊,使得零件的精准度的测量受到了影响。因此需要把计算机视觉技术和影响测量系统的应用结合在一起,在测量产品,处理图像过程中,需要进行原始图像的修改和清晰度的矫正并且选择性的过滤影响产品测量的噪声。由于在测量过程中结合了计算机视觉技术,所以在图像的预处理的时候,不需要对图画质量的降低,可以运用计算机视觉技术对于图像进行修改,重要的部位采用灰色直方图修改技术特别标出,其他部位选择性消除。虽然计算机技术跟影像测量系统的结合很好的处理了这些的问题,但是也要避免在测量过程中受到噪音的干扰,从而使得图像变质。因此,在测量的时候可以先对周围环境进行预处理,采用计算机视觉技术中的边缘保持滤波算法降低周围环境的噪声影响,从而保证了测量图像的精确性。
4.2计算机视觉技术关于图像边缘处理的应用