最新九年级数学上学期期末考试试题

合集下载

安徽省六安市2023-2024学年九年级上学期期末考试数学试题

安徽省六安市2023-2024学年九年级上学期期末考试数学试题

安徽省六安市2023-2024学年九年级上学期期末考试数学试题一、单选题1.若点()2,3是反比例函数ky x=图象上一点,则此函数图象一定经过点( ) A .()2,3-B .()3,2-C .()1,6-D .()1,6--2.已知()320a b ab =≠,则下列比例式成立的是( ) A .32a b= B .32a b = C .32a b = D .32b a = 3.在Rt ABC △中,90C ∠=︒,5AB =,3BC =,则tan A 的值是( )A .34B .43C .35D .454.河堤的横断面如图所示,堤高6m BC =,迎水坡AB 的坡比为,则AB 的长是( )A .12mB .6mC .D .5.一枚炮弹射出x 秒后的高度为y 米,且y 与x 之间的关系式为y =ax 2+bx +c (a ≠0).若此炮弹在第3.2秒与第5.8秒时的高度相等,则在下列时间中炮弹所在高度最高的是( ) A .第3.3秒B .第4.3秒C .第5.2秒D .第4.5秒6.已知,在△ABC 中,点D 为AB 上一点,过点D 作DE ∥BC ,DH ∥AC 分别交AC 、BC 于点E 、H ,点F 是延长线BC 上一点,连接FD 交AC 与点G ,则下列结论中错误的是( )A .AD AEDB DH= B .CF DHDE CG= C .FD ECFG CG= D .CH AEBC AC= 7.已知二次函数()20y ax bx c a =++≠的图象如图所示,则反比例函数ay x=与一次函数y cx b =-+在同一平面直角坐标系内的图象可能是( )A .B .C .D .8.如图,在▱ABCD 中,点E 在AD 上,且AE =2ED ,CE 交对角线BD 于点F ,若S △DEF =2,则S △BCF 为( )A .4B .6C .9D .189.Rt ABC ∆中,90ACB ∠=︒,ABC ∠的平分线交AC 于D ,M 在AC 延长线上,N 在BD 上,MN 经过BC 中点E ,MD MN =,若6sin 7A =,则BN DN的值为( )A .34B .45C .37D .4710.已知关于x 的一元二次方程20ax bx c ++=的一个根为1-,二次函数2y ax bx c =++的图象的顶点坐标为(1,4),则关于x 的不等式2(2)1ax c b x +>--的解为( )A .1x <-或3x >B .<2x -或2x >C .13x -<<D .22x -<<二、填空题11.已知线段AB =P 是它的黄金分割点,则BP 的长为=. 12.如图,点D 、E 是ABC V 边BC AC 、 上的点,:2:5BD CD =,连接AD BE 、,交点为F ,:1:4DF AF =,那么CEAE的值是.13.如图,点A 在双曲线()0ky k x=≠的第一象限的图像上,AB 垂直于y 轴于点B ,点C 在x 轴的正半轴上,且3OC AB =,点E 在线段AC 上,且3AE EC =,点D 为OB 的中点,若ADE V 的面积为3,则k 值为.14.如图,在菱形ABCD 中,60A ∠=︒,M 、N 是边,AD AB 上任意两点,将菱形ABCD 沿MN 翻折,点A 恰巧落在对角线BD 上的点E 处(1)若20DME ∠=︒,则ANM ∠=; (2)若:1:2AM MD =,则:BE EN =三、解答题15112cos3013-⎛⎫-︒+ ⎪⎝⎭. 16.已知12y y y =+,其中1y 与3x -成正比例,2y 与21x +成正比例,且当0x =时,=2y -,当1x =时,4y =. (1)求y 与x 的函数关系式;(2)求出该函数与坐标轴的交点坐标. 17.如图,在ABC V 中,5AB =,3sin 5B =,1tan 2C =.(1)求BC 的长.(2)若点D 在BC 边上,且:3:2BD CD =,求tan CAD ∠的值.18.如图,在平面直角坐标系中,OAB V 的顶点坐标分别为()0,0O ,()2,1A ,()1,2B -.(1)以原点O 为位似中心,在y 轴的右侧画出OAB V 的一个位似11OA B V ,使它与OAB V 的位似比为2:1;(2)画出将OAB V 向左平移2个单位,再向上平移1个单位后得到的222O A B V; (3)判断11OA B V和222O A B V 是位似图形吗?若是,请在图中标出位似中心点M ,并写出点M 的坐标.19.某同学利用数学知识测量建筑物DEFG 的高度.他从点A 出发沿着坡度为i =1:2.4的斜坡AB 步行26米到达点B 处,用测角仪测得建筑物顶端D 的仰角为37︒,建筑物底端E 的俯角为30︒.若AF 为水平的地面,侧角仪竖直放置,其高度 1.6BC =米,则此建筑物的高度DE ,(结果保留根号)(sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)20.如图,一次函数22y x =-的图象与反比例函数ky x=的图象交于,M N 两点.(1)求反比例函数的表达式; (2)求OMN V的面积; (3)根据图象,直接写出使反比例函数值大于一次函数值时x 的取值范围.21.如图,在矩形ABCD 中,AB =6cm ,BC =8cm ,动点P 以2cm /s 的速度从点A 出发,沿AC 向点C 移动,同时动点Q 以1cm /s 的速度从点C 出发.沿CB 向点B 移动,设P 、Q 两点移动ts (0<t <5)后,△CQP 的面积为Scm 2(1)在P 、Q 两点移动的过程中,△CQP 的面积能否等于3.6cm 2?若能,求出此时t 的值;若不能,请说明理由;(2)当运动时间为多少秒时,△CPQ 与△CAB 相似.22.如图,抛物线212y x bx c =-++与x 轴交于点A 和点()4,0B ,与y 轴交于点()0,4C ,点E 在抛物线上.(1)求抛物线的解析式;(2)点E 在第一象限内,过点E 作EF y ∥轴,交BC 于点F ,作E H x P轴,交抛物线于点H ,点H 在点E 的左侧,以线段EF ,EH 为邻边作矩形EFGH ,当矩形EFGH 的周长为11时,求线段EH 的长;(3)点M 在直线AC 上,点N 在平面内,当四边形OENM 是正方形时,请直接写出点N 的坐标.23.已知,如图ABC ∆中,BD 是中线,点E 是AB 上一点,CE 与BD 交于点F ,EB EF =.(1)在图中与DFC ∠相等的角有__________和__________; (2)在图中找出与线段AB 相等的线段并证明;(3)若AB kAC =,且1902ADB ABD ∠=︒-∠,求BF DF 的值.(用含k 的代数式表示)。

河北省石家庄市第二十八中学2023-2024学年九年级上学期期末数学试题(含答案)

河北省石家庄市第二十八中学2023-2024学年九年级上学期期末数学试题(含答案)

2023-2024学年度第一学期期末学业质量检测九年级数学试卷(ZX )注意事项:1.答卷前,考生务必将自己的姓名、班级等信息填写在答题卡相应位置上.2.答选择题时,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.答非选择题时,用黑色碳素笔在答题卡上各题的答题区域内作答,在试卷上作答无效.4.考试结束后,将本试卷和答题卡一并交回.一、选择题(1-6每题3分,7-16每题2分,共16小题,满分38分)1.一元二次方程3x 2+1=6x 的一次项系数为6,二次项系数和常数项分别为( )A .3,1B .-3,-1C .3,-1D .-3x 2,-12.下列函数中不是二次函数的有( )A .y =(x -1)2B .yx 2-1C .y =3x 2+2x -1D .y =(x +1)2-x 23.在平面直角坐标系中,点P (3,2)关于原点的对称点的坐标是( )A .(2,-3)B .(3,-2)C .(-2,3)D .(-3,-2)4.如图,△ABC 内接于⊙O ,CD 是⊙O 的直径,∠BAC =38°,则∠BCD 的度数是( )A .38°B .76°C .52°D .60°5.一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有40次摸到白球.请你估计这个口袋中有( )个红球.A .2B .3C .6D .86.反比例函数在同一坐标系中的图象如图所示,则的大小关系为( )P '312123,,k k k y y y x x x===123,,k k kA .B .C .D .7.如图,△AOB 和△COD 是位似图形,点O 是位似中心,CD =2AB .若点A 的坐标为(2,1),则点C 的坐标为( )A .(-6,-3)B .(-5,-3)C .(-4,-2)D .(-4,-3)8.如图,点A ,B ,C 都是正方形网格的格点,连接BA ,CA ,则∠BAC 的正弦值为( )A.BCD .29.课堂上丁老师带来一个立体图形的模型,嘉嘉同学从某一角度看到的形状为三角形,则这一立体图形一定不是( )A .圆柱B .圆锥C .棱柱D .棱锥10.一元二次方程2x (x +1)=3(x +1)的解是( )A .x =-1B .x =C .D .无实数解11.若点A (0,y 1),B (1,y 2),C (-2,y 3)是抛物线y =x 2-2x +1上的三点,则( )A .y 3>y 2>y 1B .y 1>y 2>y 3C .y 1>y 3>y 2D .y 3>y 1>y 212.如图,⊙C 过原点O ,且与两坐标轴分别交于点A 、B ,点A 的坐标为(0,5),点M 是第三象限内上312k k k >>132k k k >>321k k k >>213k k k >>12321231,2x x =-=)OB一点,∠BMO =120°,则⊙C 的半径为( )A .4B .5C .6D .13.如图,△ABC 和△ADE 都是等腰直角三角形,∠ACB 和∠D 都是直角,点C 在AE 上,△ABC 绕着A 点经过逆时针旋转后能够与△ADE 重合,再将图(1)作为“基本图形”绕着A 点经过逆时针旋转得到图(2).两次旋转的角度分别为( )(1)(2)A .45°90°B .90°45°C .60°30°D .30°60°14.如图,一次函数y =ax +b 与反比例函数y=(k >0)的图象交于点A (1,2),B (-2,-1).则关于x 的不等式ax +b >的解集是( )A .x <-2或0<x <1B .x <-1或0<x <2C .-2<x <0或x >1D .-1<x <0或x >215.如图,在正六边形ABCDEF 中,M ,N 是对角线BE 上的两点.添加下列条件中的一个:①BM =EN ;②∠FAN =∠CDM ;③AM =DN ;④∠AMB =∠DNE .能使四边形AMDN 是平行四边形的是( )k x k xA .①②④B .①③④C .①②③④D .①④16.二次函数y =(a -1)x 2-(2a -3)x +a -4的图象与x 轴有两个公共点,a 取满足条件的最小整数,将图象在x 轴上方的部分沿x 轴翻折,其余部分保持不变,得到一个新图象,当直线y =kx -2与新图象恰有三个公共点时,则k 的值不可能是( )A .-1B .-2C .1D .2二、填空题(共3小题,满分10分)17.(2分)如图,抛物线y =ax 2+bx +3(a <0)交x 轴于点A ,B (4,0),交y 轴于点C ,以OC 为边的正方形OCDE 的顶点D 在抛物线上,则点A 的坐标是.18.(4分)如图,A 是⊙O 外一点,AB ,AC 分别与⊙O 相切于点B ,C ,P 是弧BC 上任意一点,过点P 作⊙O 的切线,交AB 于点M ,交AC 于点N .AO =8,BO =6,则△AMN 的周长是,若∠BAC =40°,则∠BPC =.19.(4分)如图,在平面直角坐标系xOy 中,正方形ABCD 的顶点A 、C 恰好落在双曲线y 上,且点O 在AC 上,AD 交x 轴于点E.①当A点坐标为(1,m)时,D点的坐标为;②当CE平分∠ACD时,正方形ABCD的面积为.三、解答题(共7小题,满分72分)20.(9分)已知m是方程2x2-7x+1=0的一个根,求代数式m(2m-7)+5的值.21.(9分)已知:如图,AB是⊙O的直径,CD是⊙O的弦,且AB⊥CD,垂足为E.(1)求证:∠CDB=∠A;(2)若∠DBC=120°,⊙O的直径AB=8,求BC、CD的长.22.(10分)某镇为创建特色小镇,助力乡村振兴,决定在辖区的一条河上修建一座步行观光桥.如图,河旁有一座小山,山高BC=80m,点C、A与河岸E、F在同一水平线上,从山顶B处测得河岸E和对岸F的俯角分别为∠DBE=45°,∠DBF=31°.若在此处建桥,求河宽EF的长(结果精确到1m)[参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60]Y23.(10分)如图,ABCD中,点E是AD的中点,连接CE并延长交BA的延长线于点F.(1)求证:AF=AB;(2)点G是线段AF上一点,满足∠FCG=∠FCD,CG交AD于点H.①求证:AH·CH=DH·GH;②若AG=2,FG=6,求GH的长.24.(本小题满分10分)某学校为丰富课后服务内容,计划开设经典诵读、花样跳绳、电脑编程、国画赏析、民族舞蹈五门兴趣课程.为了解学生对这五门兴趣课程的喜爱情况,随机抽取了部分学生进行问卷调查(要求每位学生只能选择一门课程),并将调查结果绘制成如下两幅不完整的统计图.学生对五门兴趣课程喜爱情况条形统计图学生对五门兴趣课程喜爱情况扇形统计图根据图中信息,完成下列问题:(1)本次调查共抽取了名学生;(2)补全条形统计图;(3)计算扇形统计图中“电脑编程”所对应扇形的圆心角度数;(4)若全校共有1200名学生,请估计选择“民族舞蹈”课程的学生人数;(5)在经典诵读课前展示中,甲同学从标有A《出师表》、B《观沧海》、C《行路难》的三个签中随机抽取一个后放回,乙同学再随机抽取一个,请用列表或画树状图的方法,求甲乙两人至少有一人抽到A《出师表》的概率.25.(本小题满分12分)某学校要修建一个占地面积为64平方米的矩形体育活动场地,四周要建上高为1米的围挡,学校准备了可以修建45米长的围挡材料(可以不用完).设距形地面的边长AB=x米,BC=y米.(1)求y关于x的函数关系式(不写自变量的取值范围);(2)能否建造AB=20米的活动场地?请说明理由;(3)若矩形地面的造价为1千元/平方米,侧面围挡的造价为0.5千元/平方米,建好距形场地的总费用为80.4千元,求出x的值.(总费用=地面费用+围挡费用)26.(12分)如图,抛物线y=ax2+bx-8与x轴交于A(2,0),B(4,0),D为抛物线的顶点.图1图2(1)求抛物线的解析式;(2)如图1,若H为射线DA与y轴的交点,N为射线AB上一点,设N点的横坐标为t,△DHN的面积为S,求S与t的函数关系式;(3)如图2,在(2)的条件下,若N与B重合,G为线段DH上一点,过G作y轴的平行线交抛物线于F,连接AF,且∠AGN=∠FAG,求F点的坐标.2023-2024学年度第一学期期末学业质量检测九年级数学试卷参考答案及评分标准(zx )一.选择题(共16小题,满分38分)1-5BDDCC 6-10CCBAC 11-16DBACAD二.填空题(共3小题,满分10分)17.(-1,0),110°19.(,-1),12三.解答题(共7小题,满分72分)20.解:根据题意得:2m 2-7m +1=0,………………2分∴2m 2-7m=-1, (6)分∴m (2m -7)+5=2m 2-7m +5=-1+5=4……………………9分21.(1)证明:∵AB 是⊙O 的直径,CD 是⊙O 的弦,且AB ⊥CD ,∴,∴∠BCD =∠CDB ,∵,∴∠A =∠BCD ,∴∠CDB =∠A ;……………4分(2)解:∵∠DBC =120°,∴∠BCD =∠CDB =(180°-∠DBC )=30°,∠A =∠CDB =30°,∵AB 是⊙O 的直径,且AB =8,∴∠ADB =90°,∴在Rt △ADB 中,BD =AB =4,又∵,∴.BC =BD =4;……………………6分∵AB ⊥CD ,∠BCD =∠CDB =30°,∴在Rt △BCE 中,BE =BC =2,∴CE 又∵AB 是⊙O 的直径,AB ⊥CD ,∴.CD =2CE =……………………9分22.解:在Rt △BCE 中,BC =80m ,∠BEC =∠DBE =45°,∴∠CBE =45°,……………2分∴∠BEC =∠CBE =45°,∴CE =BC =80m .………………4分在Rt △BCF 中,BC =80m ,∠BFC =∠DBF =31°,tan ∠BFC =,……………………6分∴≈0.60,∴CF =133.3∴EF =CF -CE =133.3-80=53.3≈53(m ).……………………9分»»BCBD =»»BDBD =1212»»BCBD =12==BC CF 80CF答:河宽EF 的长约为53m .……………………10分23.(1)证明:∵四边形ABCD 是平行四边形,∴AD //BC ,CD //AB .∴∠D =∠FAD ,∠DCE =∠F ,∵E 是AD 的中点,∴ DE =AE ,∴△CDE ≌△FME (AAS ).∴CE =EF ,∵AE ∥BC,∴,∴AF =AB ;……………………3分(2)①证明:∵AG =2,FG =6,∴AF =FG +AG =6+2=8,∴AB =AF =8,∵四边形ABCD 是平行四边形,∴CD =AB =8,∵∠DCE =∠F ,∠FCG =∠FCD .∴∠F =∠FCG ,∴CG =FG =6,∵CD //AF ,∴△DCH ∽△AGH .∴,∴AH ∙CH =DH ∙GH ;………………7分②解:由①得△DCH ∽△AGH ,∴,即,∴GH =1.2………………10分24.解:(1)300……………………2分(2)……………………4分(3)×360°=120°…………………………6分答:“电脑编程”的圆心角度数为120°.(4)×1200=200(名)……………………8分答:选择“民族舞蹈”课程学生约有200名.(5)列表法如下:AB C AAA BA CA BAB BB CB C AC BC CC1FA FE AB CE==AH GH DH CH=CD CH AG GH =862GH GH-=10030050300由表格可以看出,所有可能出现的结果共有9种,这些结果出现的可能性相等,其中甲乙两人至少有一人抽到A 的情况有5种.∴P (甲乙两人至有一人抽到A )=…………………………10分25.解:(1)∵xy =64∴y =…………………2分(2)根据题意得x =20时,y ==3.2(20+3.2)×2=46.4(米)∵46.4>45∴不能建造AB =20的活动场地.………………6分(3)64×1+(x +)×2×1×0.5=80.4……………………8分解得x =10或6.4………………………10分当x =10时y =6.4(10+6.4)×2<45;当x =6.4时y =10(6.4+10)×2<45当x =10或6.4时总费用为80.4元………………12分26.解:(1)∵抛物线y =ax 2+bx -8与x 轴交于A (2,0),B (4,0),∴解得∵抛物线解析式为y =-x 2+6x -8;………………4分(2)如图1,连接OD .图1∵抛物线解析式为y =-x 2+6x -8=-(x -3)2+1,∴抛物线顶点D 坐标(3,1),∵A (2,0),设直线AD 的解析式为:y =kx +t ,∴,解得,5964x642064x428016480a b a b +-=⎧⎨+-=⎩16a b =-⎧⎨=⎩2031k t k t +=⎧⎨+=⎩12k t =⎧⎨=-⎩∴直线AD 的解析式为:y =x -2,∴H (0,-2)……………………6分∵,∴S 与t 的函数关系式为;……………………8分(3)如图2中,延长FG 交OB 于M .图2∵A (2,0),H (0,-2),∴OH =OA ,∴∠OAH =∠OHA =45°,∵FM //OH ,∴∠MGA =∠OHA =∠MAG =45°,∴MG =MA ,∵∠FAG =∠NGA ,∴∠MAF =∠MGN ,在△MAF 和△MGN 中,,∴△MAF ≌△MGB (ASA ),∴FM =BM .……………………10分设M (m ,0),则F (m ,-m 2+6m -8),∴-(-m 2+6m -8)=4-m ,解得m =1或4(舍去),∴F (1,-3). (12)分1113122332222OND ONH OHD S S S S t t t =+-=⨯⨯+⨯⨯-⨯⨯=-V V V 33(2)2S t t =->AMF GMB AM MGMAF MGB =⎧⎪=⎨⎪=⎩∠∠∠∠。

贵州省黔东南苗族侗族自治州2023-2024学年九年级上学期期末数学考试试题[答案]

贵州省黔东南苗族侗族自治州2023-2024学年九年级上学期期末数学考试试题[答案]

贵州省黔东南州教学资源共建共享实验基地名校2023-2024学年九年级上学期数学期末考试试卷一、选择题:本题共12小题,每小题3分,共36分.在每小题给出的选项中,只有一项是符合题目要求的.1.一元二次方程 2320x x --=的一次项系数是( )A .3xB .3x -C .3D .3-2.下列图形是中心对称图形的是( )A .B .C .D .3.下列事件是必然事件的是( )A .打开电视机,正在播放动画片.B .太阳每天从东方升起.C .某彩票中奖率是1%,买100张一定会中奖.D .某运动员跳高的最好成绩是10米.4.点P (2,﹣1)关于原点对称的点P ′的坐标是( )A .(﹣2,1)B .(﹣2,﹣1)C .(﹣1,2)D .(1,﹣2)5.二次函数()214y x =-+的顶点坐标是( )A .()1,4B .()1,4-C .()1,4-D .()1,4--6.如图,ABC V 为等边三角形,D 是ABC V 内一点,将ABD △经过旋转到ACP △的位置,则旋转角的度数为( )A .15°B .30°C .45°D .60°7.如图,AB 是O e 的直径,BC 是O e 的弦,80AOC Ð=°,则ABC Ð的度数为( )A .20°B .30°C .40°D .50°8.关于x 的方程230x mx +-=的一根是1,则m 的值是( )A .3-B .3C .2-D .29.一次函数y x a =+与二次函数2y ax a =-在同一坐标系中的大致图象可能是( )A .B .C .D .10.如图,已知O e 的直径10cm AE B EAC =Ð=Ð,,则AC 的长为( )A .5cmB .cmC .D .6cm11.如图,正三角形ABC 的边长为4cm ,D ,E ,F 分别为BC ,AC ,AB 的中点,以A ,B ,C 三点为圆心,2cm 为半径作圆.则图中阴影部分面积为( )A .()cm 2B .(cm 2C .()cm 2D .(cm 212.二次函数()20y ax bx c a =++¹中,自变量x 与函数y 的对应值如下表:x L2-1-01234¼y L 4.5m -2m -0.5m -m 0.5m -2m - 4.5m -¼若1 1.5m <<,则下面叙述正确的是( )A .该函数图象开口向上B .该函数图象与y 轴的交点在x 轴的下方C .对称轴是直线x m =D .若1x 是方程20ax bx c ++=的正数解,则123x <<二、填空题:本题共4小题,每小题4分,共16分.13.一天中钟表时针从上午6时到上午9时旋转的度数为 .14.抛物线23y x =-可以由抛物线2y x =向 平移3个单位得到.15.设a ,b 是一元二次方程23270x x --=的两根,则23a a b -+= .16.在矩形ABCD 中,3AB =,4BC =,且满足2BM =,点M 是平面内一点,且满足N 为MD 的中点,点M 运动过程中线段CN 长度的取值范围是 .三、解答题:本题共9小题,共98分.解答应写出文字说明,证明过程或演算步骤.17.解方程:(1)230x x --=;(2)()()223523x x +=+.18.如图,二次函数()20y ax bx c a =++¹的图象与x 轴交于A 、B 两点,对称轴是y 轴,利用图象解答下列问题:(1)点A 、B 的坐标分别是:A (_______),B (_______);(2)若0y >,则x 的取值范围是_________;(3)函数y 的最小值是__________.19.在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.20.如图,O e 是ABC V 的外接圆,AD 是O e 的直径,AD BC ^于点E .(1)求证:BAD CAD Ð=Ð;(2)连接BO 并延长,交O e 于点G ,连接GC ,若3OE =,求GC 的长.21.某扶贫单位为了提高贫困户的经济收入,购买了33m 的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示),(1)若要建的矩形养鸡场面积为90m 2,求鸡场的长(AB)和宽(BC);(2)该扶贫单位想要建一个100m 2的矩形养鸡场,这一想法能实现吗?请说明理由.22.如图,ABC V 中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE Ð=Ð,连接EF ,EF 与AC 交于点G(1)求证:EF BC =;(2)若65ABC Ð=°,28ACB Ð=°,求FGC Ð的度数.23.某公司以每件40元的价格购进一种商品,在销售过程中发现这种商品每天的销售量y (件)与每件的销售单价x (元)满足一次函数关系:y =﹣2x +140(x >40).(1)当x =50时,总利润为 元;(2)若设总利润为w 元,则w 与x 的函数关系式是 ;(3)若每天的销售量不少于38件,则销售单价定为多少元时,此时利润最大,最大利润是多少?24.如图,抛物线2y x bx c =-++交x 轴于()1,0A -、B 两点,交y 轴于()0,3C ,点P 在抛物线上,横坐标设为m .(1)求抛物线的解析式;(2)当点P 在x 轴上方时,直接写出m 的取值范围;(3)若抛物线在点P 右侧部分(含点P )的最高点的纵坐标为1--m ,求m 的值.25.如图,在Rt △ABC 中,∠BAC =90°,AB =AC .在平面内任取一点D ,连结AD (AD <AB ),将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连结DE ,CE ,BD .(1)请根据题意补全图1;(2)猜测BD 和CE 的数量关系并证明;(3)作射线BD ,CE 交于点P ,把△ADE 绕点A 旋转,当∠EAC =90°,AB =2,AD =1时,补全图形,直接写出PB 的长.【分析】本题考查了一元二次方程的一般形式,能熟记一元二次方程的一般形式a¹)是解此题的关键.根据一元二次方程的一(20++=,其中a、b、c为常数,0ax bx c般形式找出一次项系数即可.【详解】解:一元二次方程2320--=的的一次项系数为3-.x x故选:D.2.B【分析】本题考查中心对称图形,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,由此即可判断即可.【详解】解:A.图形是轴对称图形,故本选项不符合题意;B.图形是中心对称图形,故本选项符合题意;C.图形是轴对称图形,故本选项不符合题意;D.图形是轴对称图形,故本选项不符合题意;故选:B.3.B【分析】根据必然事件的定义,逐项判断即可求解.【详解】解:A、打开电视机,正在播放动画片是随机事件,故本选项不符合题意;B、太阳每天从东方升起是必然事件,故本选项符合题意;C、某彩票中奖率是1%,买100张一定会中奖是随机事件,故本选项不符合题意;D、某运动员跳高的最好成绩是10米是不可能事件,故本选项不符合题意;故选:B【点睛】本题考查的是对必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.4.A【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可直接写出答案.【详解】解:点P(2,﹣1)关于原点对称的点P′的坐标是(﹣2,1),故选:A.【点睛】本题考查关于原点对称的点的特征,是基础考点,难度较易,掌握相关知识是解题5.A【分析】本题主要考查了求抛物线的顶点坐标,已知解析式为抛物线的顶点式,结合顶点式的坐标特点直接写出顶点坐标即可.【详解】解:()214y x =-+是抛物线解析式的顶点式,根据顶点式的坐标特点可知,顶点坐标为()1,4,故选:A .6.D【分析】本题考查了旋转的性质和等边三角形的性质,根据等边三角形的性质得60BAC Ð=°,由旋转的性质可得旋转角为BAC Ð.【详解】解:∵ABC V 是等边三角形,∴60BAC Ð=°,AB AC =,∵将ABD △经过旋转到ACP △的位置,∴旋转角为60BAC Ð=°,故选:D .7.C【分析】本题考查了圆周角定理;解题的关键是熟练掌握基本知识,属于中考常考题型.根据圆周角定理即可解决问题.【详解】解:∵ AC AC =,∴1402ABC AOC Ð=Ð=°,故选:C .8.D【分析】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.把1x =代入原方程,求解关于m 的方程即可.【详解】解:把1x =代入方程230x mx +-=,得2130m +-=,所以2m =.故选:D .9.C【分析】分情况讨论,根据一次函数和二次函数的性质判断即可.【详解】解:∵y =x +a 中,k =1>0,∴一次函数y =x +a 的图象经过一、三象限,排除B 选项;当a >0时,一次函数y =x +a 的图象经过一二三象限,二次函数y =ax 2-a 的图象开口向上,顶点在y 轴的负半轴上;选项A 、C 、D 都不符合题意;当a <0时,一次函数y =x +a 的图象经过一三四象限,二次函数y =ax 2-a 的图象开口向下,顶点在y 轴的正半轴上;故C 符合题意;故选:C .【点睛】本题主要考查了一次函数和二次函数的图象,解题的关键是熟练掌握二次函数的图象和一次函数的图象与系数之间的关系.10.B【分析】连接EC ,根据圆周角定理得到90E B ACE Ð=ÐÐ=°,,根据等腰直角三角形的性质计算即可.【详解】连接EC ,由圆周角定理得,90E B ACE Ð=ÐÐ=°,,∵B EAC Ð=Ð,∴E EAC Ð=Ð,∴CE CA =,∵222CA CE AE +=,10AE =∴AC =故选:B .【点睛】本题考查的是圆周角定理,等腰直角三角形的性质,掌握直径所对的圆周角是直角是解题的关键.11.C【分析】连接AD ,由等边三角形的性质可知AD ⊥BC ,∠A=∠B=∠C=60°,根据S 阴影=S △ABC -3S扇形AEF 即可得出结论.【详解】连接AD ,∵△ABC 是正三角形,∴AB=BC=AC=4,∠BAC=∠B=∠C=60°,∵BD=CD ,∴AD ⊥BC ,∴=∴S 阴影=S △ABC -3S扇形AEF =1226023360p ´´2π)cm 2,故选C .【点睛】本题考查了有关扇形面积的计算,熟记扇形的面积公式是解答此题的关键.12.D【分析】根据1 1.5m <<,并结合二次函数的图象和性质以及表格中的数据,进行判断.【详解】A 、∵1 1.5m <<,由表格中的数据可以看出,当1x =时,y 的值最大,∴该函数图象开口向上,∴该选项错误;B 、当0x =时,0.5y m =-;∵1 1.5m <<,∴0.50.51m <-<,∴该函数图象与y 轴的交点在x 轴的上方,∴该选项错误;C 、当0x =时,0.5y m =-;当2x =时,0.5y m =-;∴()20y ax bx c a =++¹的对称轴为0212x +==,对称轴是直线1x =,∴该选项错误;D 、∵1 1.5m <<,∴120.5m -<-<-,0.50.51m <-<,由表中数据可知,0y =在2y m =-与0.5y m =-之间,故对应的x 的值在1-与0和2与3之间,∴若1x 是方程20ax bx c ++=的正数解,则123x <<,∴该选项正确.故选:D【点睛】本题考查二次函数的图象和性质,解题的关键是能够根据题目的条件熟练运用二次函数的图象和性质进行求解.13.90°##90度【分析】钟表上的刻度把一个圆平均分成12等份,根据题意知,时针运行了14圆周,即可得到答案.【详解】根据题意,从上午6时到上午9时,共3个小时\时针旋转了14圆周,旋转的角度为1360904´°=°.故答案为:90°.【点睛】本题考查了钟表上角的认识的问题,知道钟表上的刻度把一个圆平均分成12等份是解题的关键.14.下【分析】根据二次函数的平移规律即可得出答案.【详解】解:由平移规律可得:抛物线23y x =-可以由抛物线2y x =向下平移3个单位得到.故答案为:下.【点睛】本题考查了二次函数的平移,熟记二次函数平移规律:“左加右减,上加下减”是解题的关键.15.273##233【分析】根据一元二次方程根与系数的关系,可以得到23a b +=的值,即可求得.【详解】解:∵a ,b 是一元二次方程23270x x --=的两根,∴2327a a -=,23a b +=,∴()()22223327733a ab a a a b -+=-++=+=,故答案为:273.【点睛】本题考查了一元二次方程根与系数的关系,掌握韦达定理是解题的关键.16.3722CN ££【分析】本题考查了矩形的性质,勾股定理,三角形中位线定理,点和圆的位置关系等知识点,灵活运用所学知识点得出点N 的运动轨迹是解本题的关键.连接BD ,取BD 的中点O ,连接ON ,可知ON 为DMB V 的中位线,则可得112ON BM ==,进而可知点N 在以O 为圆心,以1为半径的圆上运动,在矩形ABCD 中,根据12OC AC =进而得出答案.【详解】解:连接BD ,取BD 的中点O ,连接OC ,∵N 为MD 的中点,ON \为DMB V 的中位线,∴112ON BM ==,∴点N 在以O 为圆心,以1为半径的圆上运动,在矩形ABCD 中,1522OC AC ===,CN ∴的取值范围为551122CN -££+,即3722CN ££,72£.17.(1)1x =, 2x =(2)132x -=,21x =【分析】本题主要考查了解一元二次方程,解答本题的关键是掌握公式法、因式分解法解一元二次方程的方法步骤,此题难度不大.(1)利用公式法解方程即可;一元二次方程的求根公式是:x =(2)利用因式分解法解方程即可.【详解】(1)解:,230x x --=这里1a =,1b =-,3c =-,()()2Δ1413130\--´´-=>=,x \=1x \(2)解:()()223523x x +=+,()()2235230x x +-+=,()()232350x x ++-=,230x \+=或220x -=,132x \=-,21x =.18.(1)2-,0;2,0(2)<2x -或2x >(3)4-【分析】本题主要考查了二次函数的图象与性质,解题时要熟练掌握并能灵活运用是关键.(1)依据题意,由(2,0)A -及抛物线关于y 轴对称,进而可以求得B 点坐标;(2)依据题意,由抛物线在x 轴上方部分的图象满足0y >,进而可以判断得解;(3)依据题意,根据抛物线的顶点为(0,4)-,开口向上,即可判断得解.【详解】(1)由题意,(2,0)A -,又抛物线对称轴是y 轴,(2,0)B \.故答案为:2-,0;2,0;(2)由题意,抛物线在x 轴上方部分的图象满足0y >,2x \<-或2x >.故答案为:<2x -或2x >.(3)由题意,根据抛物线的顶点为(0,4)-,开口向上,\函数y 的最小值是4-.故答案为:4-.19.不公平【分析】游戏是否公平,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.【详解】解:此游戏不公平.理由如下:列树状图如下,由上述树状图知:所有可能出现的结果共有16种.P (小明赢)=63168= ,P (小亮赢)=105168=,故此游戏对双方不公平,小亮赢的可能性大.20.(1)见解析(2)6【分析】本题主要考查了垂径定理,圆周角定理,中位线性质,解题的关键是熟练掌握垂径定理.(1)根据垂径定理和圆周角定理进行判断即可;(2)根据垂径定理得出点E 为BC 的中点,根据点O 是BG 的中点,得出12OE CG =,即可求出结果.【详解】(1)证明:AD Q 是O e 的直径,AD BC ^,\ BDCD =,BAD CAD \Ð=Ð;(2)解:根据题意,如图所示:AD Q 是O e 的直径,AD BC ^,\点E 为BC 的中点,Q 点O 是BG 的中点,\OE 是BCG V 的中位线,即12OE CG =,3OE =Q ,6CG \=.21.(1)鸡场的长(AB )为15m ,宽(BC )为6m ;(2)不能,理由见解析.【分析】(1)设BC=xm ,则AB=(33-3x )m ,根据矩形的面积公式结合矩形养鸡场面积为90m 2,即可得出关于x 的一元二次方程,解之即可求出x 的值,分别代入(33-3x )中,取使得(33-3x )小于等于15的值即可得出结论;(2)不能,理由如下,设BC=ym ,则AB=(33-3y )m ,同(1)可得出关于y 的一元二次方程,由根的判别式△=-111<0,即可得出结论.【详解】解:(1)设BC=xm ,则AB=(33-3x )m ,依题意,得:x (33-3x )=90,解得:x 1=6,x 2=5.当x=6时,33-3x=15,符合题意,当x=5时,33-3x=18,18>15,不合题意,舍去.答:鸡场的长(AB )为15m ,宽(BC )为6m .(2)不能,理由如下:设BC=ym ,则AB=(33-3y )m ,依题意,得:y (33-3y )=100,整理,得:3y 2-33y+100=0.∵△=(-33)2-4×3×100=-111<0,∴该方程无解,即该扶贫单位不能建成一个100m 2的矩形养鸡场.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.(1)证明见解析;(2)78°【分析】(1)因为CAF BAE Ð=Ð,所以有BAC EAF Ð=Ð,又因为AE AB AC AF ==,,所以有()BAC EAF SAS △≌△,得到EF BC =;(2)利用等腰三角形ABE 内角和定理,求得∠BAE=50°,即∠FAG=50°,又因为第一问证的三角形全等,得到28F C Ð=Ð=°,从而算出∠FGC【详解】解:(1)证明:CAF BAE Ð=ÐQ ,BAC EAF \Ð=Ð,AE AB AC AF ==Q ,,()BAC EAF SAS \△≌△,EF BC \=;(2)65AB AE ABC =Ð=°Q ,,18065250BAE \Ð=°-°´=°,50FAG \Ð=°,BAC EAF Q △≌△,28F C \Ð=Ð=°,502878FGC \Ð=°+°=°.【点睛】本题主要考查全等三角形证明与性质,等腰三角形性质,旋转性质等知识点,解题的关键是掌握全等三角形证明.23.(1)400(元);(2)222205600(40)w x x x =-+->;(3)销售单价定为51元时,利润最大,最大利润是418元【分析】(1)将50x =代入一次函数解析式可得销售量,然后根据每件的利润乘以数量即为总利润即可得;(2)根据利润=销售数量×每件的利润可得()·40w y x =-,把2140y x =-+代入整理即可得w 与x 的函数关系式;(3)由每天的销售量不少于38件,可得214038y x =-+³,进而可求出51x £;根据(2)中结论整理为顶点式()2255450w x =--+,根据二次函数的基本性质可得,当55x <时,w 随x 的增大而增大,所以当51x =时,w 有最大值,代入求解即可得.【详解】(1)解:当50x =时,25014040y =-´+=,∴销售量为40件,利润为:()504040400-´=(元),故答案为:400;(2)解:由题意得:()·40w y x =-,()()214040x x =-+-,222205600x x =-+-,∴w 与x 的函数关系式为222205600(40)w x x x =-+->,故答案为:222205600(40)w x x x =-+->;(3)解:∵38y ³,∴214038x -+³,解得:51x £;()2222205600255450w x x x =-+-=--+,∵20a =-<,∴当55x <时,w 随x 的增大而增大,∵51x £,∴当51x =时,w 有最大值,最大值为:()225155450418w =--+=(元),∴销售单价定为51元时,利润最大,最大利润是418元.【点睛】本题主要考查了二次函数的应用及二次函数求最值问题的知识,根据题意列出函数关系式是解题的关键.24.(1)223y x x =-++(2)13m -<<(3)5m =-或4m =【分析】(1)用待定系数法求出抛物线的解析式即可;(2)求出点B 的坐标,根据图象写出m 的取值范围即可;(3)先求出抛物线的对称轴为直线1x =,顶点坐标为()1,4,得出二次函数223y x x =-++有最大值4,分两种情况讨论,当点P 在对称轴的左侧或对称轴上,即1m £时,当点P 在对称轴的右侧,即1m >时,分别求出m 的值即可.【详解】(1)解:把()1,0A -,()0,3C 代入抛物线2y x bx c =-++得:103b c c --+=ìí=î,解得:23b c =ìí=î,∴抛物线解析式为223y x x =-++.(2)解:把0y =代入223y x x =-++得:2230x x -++=,解得:11x =-,23x =,∴点B 的坐标为()3,0,∴当点P 在x 轴上方时,m 的取值范围是13m -<<.(3)解:∵()222314y x x x =-++=--+,∴抛物线的对称轴为直线1x =,顶点坐标为()1,4,∵10a =-<,∴二次函数223y x x =-++有最大值4,当点P 在对称轴的左侧或对称轴上,即1m £时,抛物线在点P 右侧部分图象的最高点为抛物线的顶点,∴14m --=,解得:5m =-;当点P 在对称轴的右侧,即1m >时,抛物线在点P 右侧部分图象的最高点就是点P ,∴2231m m m -++=--,解得:14m =,211m =-<(舍去);综上分析可知,5m =-或4m =.【点睛】本题主要考查了二次函数的综合应用,求抛物线的解析式,抛物线的图象和性质,求抛物线的最值,解题的关键是理解题意,数形结合,注意分类讨论.25.(1)答案见解析;(2)BD=CE,证明见解析;(3)PB【详解】试题分析:(1)根据题意画出图形即可;(2)根据“SAS”证明△ABD≌△ACE,从而可得BD=CE;(3)①根据“SAS”可证△ABD≌△ACE,从而得到∠ABD=∠ACE,再由两角对应相等的两个三角形相似可证△ACD∽△PBE,列比例方程可求出PB的长;②与①类似,先求出PD的长,再把PD和BD相加.解:(1)如图(2)BD和CE的数量是:BD=CE ;∵∠DAB+∠BAE=∠CAE+∠BAE=90°,∴∠DAB=∠CAE.∵AD=AE,AB=AC,∴△ABD≌△ACE,∴BD=CE.(3)①=.∵△ABD≌△ACE, ∴∠ABD=∠ACE,∴△ACD∽△PBE,PB BE\=,AC CE∴PB==;②∵△ABD∽△PDC,PD CD\=,AD BD∴PD==;∴PB=PD+=.∴PB。

江西省九江市2023-2024学年九年级上学期期末数学试题[答案]

江西省九江市2023-2024学年九年级上学期期末数学试题[答案]

九江市2023-2024学年度上学期期末考试九年级数学试题卷本试卷满分120分,考试时间120分钟一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项,请将这个正确的选项填在下面表格中.)1.方程2520x x +-=的二次项系数、一次项系数和常数项分别是( )A .0,5,2B .0,5,2-C .1,5,2-D .1,5,22.如图是一根空心方管,它的俯视图是( )A .B .C .D .3.在一个不透明的盒子中装有n 个除颜色外完全相同的球,其中有4个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则n 的值大约为( )A .16B .18C .20D .244.如图,已知直线////a b c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若12AB BC =,则DE EF =( )A .13B .12C .23D .15.矩形具有而菱形不具有的性质是( )A .两组对边分别平行B .对角线相等C .对角线互相垂直D .两组对角分别相等6.如图,在平面直角坐标系中,Rt ABC D 的顶点A ,B 分别在y 轴、x 轴上,2OA =,1OB =,斜边//AC x 轴.若反比例函数(0,0)k y k x x=>>的图象经过AC 的中点D ,则k 的值为( )A .4B .5C .6D .8二、填空题(本大题共有6小题,每小题3分,共18分)7.关于x 的一元二次方程22=0x x m -+的一个根为-1,则m 的值为 .8.用数字0,1,2,3组成个位数字与十位数字不同的两位数,其中是偶数的概率为 .9.如图,在菱形ABCD 中,5AB =,60ABC Ð=o ,则BD 的长为 .10.如图,在矩形ABCD 中,点E ,F 分别是AD ,BC 边的中点,连接EF ,若矩形ABFE 与矩形ABCD 相似,4AB =,则矩形ABCD 的面积为 .11.如图,是反比例函数y=1x 和y=3x在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,则S △ABC = .12.如图,ABC V 为边长为7cm 的等边三角形,6cm BD =,2cm CE =,P 为BC 上动点,以0.25cm/s 的速度从B 向C 运动,假设P 点运动时间为t 秒,当t = 秒时,BDP△与CPE △相似.三、(本大题共5小题,每小题6分,共30分)13.解一元二次方程:(1)2420x x +-=(2)()2362x x-=-14.小明和小丽在操场上玩耍,小丽突然高兴地对小明说:“我踩到你的‘脑袋’了.”如图即表示此时小明和小丽的位置.(1)请画出此时小丽在阳光下的影子;(2)若已知小明的身高为1.60 m ,小明和小丽之间的距离为2 m ,而小丽的影子长为1.75 m ,求小丽的身高.15.宋代数学家杨辉所著《杨辉算法》中有一题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何?”译文为:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?16.如图,四边形ABCD 为矩形,且有AE DE =.请用无刻度直尺完成下列作图,保留必要的画图痕迹.(1)在图1中求作BC 边的中点F ;(2)在图2中的边BC 上求作点H ,使BG CH =.17.如图,在△ABC 中,AD 平分∠BAC ,E 是AD 上一点,且BE =BD ;求证:△ABE ∽△ACD .四、(本大题共3小题,每小题8分,共24分)18.如图,在平行四边形ABCD 中,点E ,F 分别在BC ,AD 上,BE DF =,AC EF =.(1)求证:四边形AECF 是矩形;(2)若2CE BE =且AE BE =,已知2AB =,求AC 的长.19.已知A ,B ,C ,D ,E 五个红色研学基地,某地为了解中学生的意愿,随机抽取部分学生进行调查,并将统计数据整理后,绘制了不完整的条形统计图和扇形统计图.(1)请将条形统计图补充完整;(2)在扇形统计图中,D 所在的扇形的圆心角的度数为_________;若该地区有1000名中学生参加研学活动,则愿意去A 基地的大约有___________人;(3)甲、乙两所学校计划从A ,B ,C 三个基地中任选一个基地开展研学活动,请利用树状图或表格求两校恰好选取同一个基地的概率.20.如图,在平面直角坐标系xOy 中,O 为坐标原点,直线2y x =+交y 轴于点A ,交x 轴于点B ,与双曲线()0k y k x=¹在一,三象限分别交于C ,D 两点,且AB AC BD ==,连接CO ,DO .(1)求k 的值;(2)求CDO V 的面积.五、(本大题共2小题,每小题9分,共18分)21.已知关于x 的一元二次方程()()220a c x bx a c +++-=,其中a 、b 、c 分别为ABC V 三边的长.(1)如果=1x -是方程的根,试判断ABC V 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断ABC V 的形状,并说明理由;(3)如果3a =,4b =,2c =,求这个一元二次方程的根.22.如图,在Rt △ABC 中,∠C =90°,AC =10cm ,BC =8cm .点M 从点C 出发,以2cm/s 的速度沿CA 向点A 匀速运动,点N 从点B 出发,以1cm/s 的速度沿BC 向点C 匀速运动,当一个点到达终点时,另一点也随即停止运动.(1)经过几秒后,△MCN 的面积等于△ABC 面积的25?(2)经过几秒,△MCN 与△ABC 相似?六、(本题共1小题,共12分)23.[模型探究]Ð=,对角线AC、BD相交于点O.在线段AO上任取一点如图1,菱形ABCD中,ABC a=,则P(端点除外),连接PD、PB.Q为BA延长线上一点,且有PQ PBÐ=__________(用a表(1)PD_________PQ(用>、<、=填写两者的数量关系),DPQ示).[模型应用](2)如图2,当60Ð=o,其他条件不变.ABCV为等边三角形;①连接DQ,运用(1)中的结论证明PDQ②试探究AQ与CP的数量关系,并说明理由.[迁移应用]当90Ð=o,其他条件不变.探究AQ与OP的数量关系,并说明理由.ABC【分析】本题考查了一元二次方程的一般形式,注意找各项的系数时,要带着前面的符号.根据一元二次方程的一般形式得出答案即可.【详解】解:方程2520x x +-=的二次项系数、一次项系数和常数项分别是1,5,2-,故选:C .2.C【分析】根据从上面往下看得到的图形是俯视图,可得答案.【详解】解:如图所示,俯视图为:故选C .【点睛】本题考查了三视图,解题的关键是注意看到的线用实线表示,看不到的线用虚线表示.3.C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】解:由题意可得,100%=20%4n´,解得:20n =,经检验20n =是原方程的根,故C 正确.故选:C .【点睛】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.4.B【分析】直接根据平行线分线段成比例定理求解.【详解】解:∵a ∥b ∥c ,∴12DE AB EF BC ==.故选:B .【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成5.B【分析】矩形的对角线互相平分且相等,菱形的对角线互相平分,互相垂直,并且每一条对角线平分一组对角,据此解答.【详解】A 、是菱形的性质,是矩形的性质,故本选项不符合题意;B 、是矩形的性质,不是菱形的性质,故本选项符合题意;C 、是菱形的性质,不是矩形的性质,故本选项不符合题意;D 、矩形、菱形的对角都相等,故本选项不符合题意;故选:B .【点睛】此题考查矩形的性质,菱形的性质,熟记各自的性质特征是解题的关键.6.B【分析】作CE x ^轴于E ,根据作图即可得出2OA CE ==.又易证OAB CBE Ð=Ð,即证明AOB BEC D D ∽,得出BE CE OA OB=,从而求出BE 的长,即得到C 点坐标,进而得出D 点坐标.将D 点坐标代入反比例函数解析式,求出k 即可.【详解】解:作CE x ^轴于E ,//AC x Q 轴,2OA =,1OB =,2OA CE \==,90ABO CBE OAB ABO Ð+Ð=°=Ð+ÐQ ,OAB CBE \Ð=Ð,AOB BEC Ð=ÐQ ,AOB BEC \D D ∽,\BE CE OA OB=,即221BE =,4BE \=,5OE \=,Q 点D 是AC 的中点,5(2D \,2).Q 反比例函数(0,0)k y k x x=>>的图象经过点D ,5252k \=´=.故选:B .【点睛】本题考查相似三角形的判定和性质,反比例函数图象上的点的坐标特征.作出常用的辅助线是解答本题的关键.7.-3【分析】把x =-1代入原方程,解关于m 的一元一次方程即可.【详解】∵关于x 的一元二次方程22=0x x m -+的一个根为-1,∴2(1)2(1)=0m --´-+,解得m =-3,故答案为:-3.【点睛】本题考查了一元二次方程根的定义即使得一元二次方程左右两边相等的未知数的值,正确理解定义,灵活代入计算是解题的关键.8.59【分析】先列表得出所有的情况,再找到符合题意的情况,利用概率公式计算即可.【详解】解:0不能在最高位,而且个位数字与十位数字不同,列表如下:1230102030121312123231323一共有可以组成9个数字,偶数有10、12、20、30、32,∴是偶数的概率为59.故答案为:59.【点睛】本题考查了列表法求概率,注意0不能在最高位.9.【分析】本题主要考查了菱形的性质以及含特殊角的三角函数的计算.由四边形ABCD 为菱形,60ABC Ð=o ,可得出1302ABO ABC =Ð=а,AC BD ^,BO DO =,进一步可求出cos BO ABO ABÐ=,则根据特殊三角函数可求出BO 以及BD .【详解】解:设AC 与BD 交于点O ,如下图:∵四边形ABCD 为菱形,60ABC Ð=o ∴1302ABO ABC =Ð=а,AC BD ^,BO DO =,在Rt AOB V 中,cos Ð∴cos 5BO AB ABO =×Ð=,∴22BD BO ===故答案为:.10.【分析】根据相似多边形的性质列出比例式,计算即可.【详解】解:设AE =x ,则AD =2AE =2x ,∵矩形ABFE 与矩形ABCD 相似,∴AE AB AB AD=,即442x x =,解得,x 1=2x =-舍),∴AD =2x =,∴矩形ABCD 的面积为AB •AD ==,故答案为:.【点睛】考查了相似多边形的性质,解题的关键是根据相似多边形的性质列出比例式,难度不大.11.1【分析】设A 点的纵坐标是m ,则B 的纵坐标是m ,代入解析式即可求得A 、B 的横坐标,则AB 的长度即可求得,然后根据三角形的面积公式即可求解.【详解】设A 点的纵坐标是m ,则B 的纵坐标是m ,把y m =代入1y x =得:1x m =,把y m =代入3y x =得:3x m=,则312AB m m m =-=,则1212ABC S m mV =´×=.故答案为:1.【点睛】本题考查了反比例函数的比列系数的意义,正确设出A 的纵坐标,表示出AB 的长是关键.12.12或16或21【分析】本题主要考查了相似三角形的性质和判定,等边三角形的性质,先根据等边三角形的性质得60B C Ð=Ð=°,再分BD BP CP CE =和B D B P C E C P=两种情况求出答案即可.【详解】∵ABC V 是等边三角形,∴60B C Ð=Ð=°,7cm BC =,∴=0.25cm B P t ,()=-70.25cm C P t .当BD BP CP CE =时,BDP CPE ∽△△,即60.2570.252t t =-,解得12t =或16t =;当B D B PC E C P =时,P BDP CE △△∽,即60.25270.25t t=-,解得21t =.∴12t =或16或21.故答案为:12或16或21.13.(1)12x =,22x =(2)13x =,21x =【分析】(1)由配方法解方程即可得出答案;(2)根据因式分解法解一元二次方程即可求解.【详解】(1)解:2420x x +-=,242x x +=,24424x x ++=+,()226x +=,2x +=.∴12x =,22x =;(2)()2362x x -=-,()()2323x x -=-,()()23230x x -+-=,()()310x x --=,∴30x -=或 10x -=,∴13x =,21x =.【点睛】本题考查了解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键.14.(1)图形见解析;(2)1.4 m .【详解】试题分析:(1)利用阳光是平行投影进而得出小丽在阳光下的影子进而得出答案;(2)利用相同时刻身高与影子成正比进而得出即可.试题解析:(1)如图,线段CA 即为此时小丽在阳光下的影子.(2)∵小明的身高为1.60 m ,小明和小丽之间的距离为2 m ,而小丽的影子长为1.75 m ,设小丽的身高为x m ,∴1.6=2 1.75x ,解得x =1.4.答:小丽的身高为1.4 m .15.长比宽多12步.【分析】选择合适的未知数,利用矩形这个桥梁构造一元二次方程求解即可.【详解】解:设矩形的长为x 步,则宽为60x -()步,根据题意,得(60)864x x -=.解得 136x =,224x =(舍去)\当36x =时,6024x -=,362412-=.答:长比宽多12步.【点睛】本题考查了一元二次方程与几何图形的关系,熟练运用一元二次方程解决几何图形的面积是解题的关键.16.(1)见解析(2)见解析【分析】本题主要考查了矩形的性质,线段垂直平分线的性质和判定:(1)连接,AC BD ,过,AC BD 的交点与点E 作直线,交BC 于点F ,即可;(2)方法一:连接AG ,并延长AG 交EF 于点P ,连接DP 交BC 于点H ,即可;方法二:连接AH ,交EF 于点Q ,连接DQ ,并延长DQ 交BC 于点H ,即可;【详解】(1)解:如图,点P 即为所求;(2)解:如图,点H即为所求.17.见解析【分析】根据角平分线的定义可得∠BAD=∠CAD,根据BE=BD,由等边对等角可得∠BED =∠BDE,根据邻补角可得∠AEB=∠ADC,即可证明△ABE∽△ACD.【详解】证明:∵AD平分∠BAC,∴∠BAD=∠CAD,∵BE=BD,∴∠BED=∠BDE,∴∠AEB=∠ADC,∴△ABE∽△ACD.【点睛】本题考查了相似三角形的判定,掌握相似三角形的判定方法是解题的关键.18.(1)见解析=即可证明出四边形【分析】(1)首先证明四边形AECF是平行四边形,然后结合AC EFAECF 是矩形;(2)首先根据勾股定理得到AE =2CE BE ==,然后利用勾股定理求解即可.【详解】(1)证明:在ABCD Y 中AD BC \=,AD BC ∥,BE DF =Q ,AD DF BC BE \-=-,即AF EC =,\四边形AECF 是平行四边形,AC EF =Q ,\四边形AECF 是矩形;(2)∵四边形AECF 是矩形∴90AEC Ð=°∴90AEB Ð=°∵AE BE =,2AB =∴222AE BE AB +=,即2222AE =解得AE =∴BE AE ==∴2CE BE ==∵90AEC Ð=°∴AC ==【点睛】本题考查了矩形的判定与性质,平行四边形的判定、勾股定理,熟练掌握矩形的判定与性质是解题关键.19.(1)见详解(2)14.4°(3)13【分析】本题主要考查了条形统计图和扇形统计图的相关知识以及用树状图或列表法求概率.(1)先根据扇形统计图以及条形图中选择C 基地的人数以及占比求出抽取学生的总人数,然后再求出选择B 基地的人数即可补全条形统计图.(2)直接用360°乘以选择D 基地人数得占比即可求出D 所在的扇形的圆心角的度数,用总体乘以选项A 基地的占比即可推知整体.(3)列出树状图或表格然后用概率公式即可求出两校恰好选取同一个基地的概率.【详解】(1)本次抽取的学生有:1428%50¸=(人),其中选择B 的学生有:5010142816----=(人),补全的条形统计图如右图所示;(2)在扇形统计图中,D 所在的扇形的圆心角的度数为:236014.450°´=°,该市有1000名中学生参加研学活动,愿意去A 基地的大约有:10100020050´=(人),(3)树状图如下所示:由上可得,一共有9种等可能性,其中两校恰好选取同一个基地的可能性有3种,\两校恰好选取同一个基地的概率为3193=.20.(1)8k =(2)6【分析】本题考查了反比例函数与一次函数的交点问题,(1)过点C 作CH x ^轴于点H ,则OA CH ∥,先求出点A ,B 的坐标,再根据题意表示出点C 的坐标,再根据待定系数法求解即可;(2)联立两个解析式,求出点D 的坐标,再由三角形面积公式求解即可;熟练掌握知识点并添加适当的辅助线是解题的关键.【详解】(1)过点C 作CH x ^轴于点H ,则OA CH ∥,2y x =+Q 与坐标轴交于A ,B 两点,()0,2A \,()2,0B -,则2OA =,2OB =,12AB BC =Q,又OA CH ∥,12BA AO BO BC CH BH \===4BH \=,4CH =,∴2OH =,()2,4C \,Q 点C 在双曲线()0k y k x=¹上,42k \=,∴8k =;(2)令82x x =+,解得24x y =ìí=î或42x y =-ìí=-î,∴()4,2D --,()1112246222CDO AOC AOD C D S S S OA y OA y \=+=×+×=´´+=V V V .21.(1)ABC V 是等腰三角形;理由见解析(2)(3)1x =2x =【分析】(1)把=1x -代入原方程,可得到a b 、的数量关系,即可判断ABC V 的形状;(2)根据方程有两个相等的实数根得到()()()2Δ240b a c a c =-+-=,从而得到222a b c =+,由勾股定理的逆定理即可得到答案;(3)把3a =,4b =,2c =代入原方程,利用公式法解方程即可.【详解】(1)解:ABC V 是等腰三角形,理由如下:Q =1x -是方程的根,()()()()21210a c b a c \+´-+´-+-=,20a c b a c \+-+-=,0a b \-=,即a b =,ABC \V 是等腰三角形;(2)解:ABC V 是直角三角形,理由如下:Q 方程有两个相等的实数根,()()()2Δ240b a c a c \=-+-=,2224440b a c +-\=,222a b c \=+,ABC \V 是直角三角形;(3)解:将3a =,4b =,2c =代入方程得:25810x x ++=,,∴1x ==【点睛】本题考查了一元二次方程的解、勾股定理的逆定理、一元二次方程的根的判别式、等腰三角形的判定、解一元二次方程,熟练掌握以上知识点是解此题的关键.22.(1)4秒;(2)167或4013秒【分析】(1)分别表示出线段MC 和线段CN 的长后利用S △MCN =25S △ABC 列出方程求解;(2)设运动时间为t s ,△MCN 与△ABC 相似,当△MCN 与△ABC 相似时,则有MC NC BC AC =或MC NC AC BC=,分别代入可得到关于t 的方程,可求得t 的值.【详解】解:(1)设经过x 秒,△MCN 的面积等于△ABC 面积的25,则有MC =2x ,NC =8-x ,∴12×2x (8-x )=12×8×10×25,解得x 1=x 2=4,答:经过4秒后,△MCN 的面积等于△ABC 面积的25;(2)设经过t 秒,△MCN 与△ABC 相似,∵∠C =∠C ,∴可分为两种情况:①MC NC BC AC =,即28810t t -=,解得t =167;②MC NC AC BC =,即28108t t -=,解得t =4013.答:经过167或4013秒,△MCN 与△ABC 相似.【点睛】本题考查一元二次方程的应用,相似三角形的判定与性质,三角形的面积,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.(1)=;a ;(2)①证明见解析;②AQ CP =,证明见解析;(3)AQ =,证明见解析;【分析】(1)利用菱形性质,线段垂直平分线的性质、等腰三角形的性质可知PD PB =,继而得到本题答案;(2)①利用含60°的等腰三角形即为等边三角形判定即可;②利用全等三角形判定及性质可证;(3)利用相似三角形判定及性质即可求出.【详解】解:(1)∵四边形ABCD 是菱形,ABC a Ð=,∴AC BD ^,DO BO =,12ABO CBO a Ð=Ð=,∴AC 垂直平分BD ,∴PD PB =,∵PQ PB =,∴PD PQ =,∴PDB PBD PQB PBQ Ð=Ð=Ð=Ð,∴()11801802QPB PQB PBQ DPB a Ð=°-Ð+Ð=°-=Ð,∴13603602(180)2DPQ QPB DPB a a Ð=°-Ð-Ð=°-°-=,综上所述:PD PQ =,DPQ a Ð=;(2)①证明:由(1)得,PQ PD =,60DPQ Ð=°,DPQ \△为等边三角形;②AQ CP =,,证明:设1ADP Ð=Ð,60ABC Ð=°Q ,60ADC \Ð=°,601ADQ CDP \Ð=°-Ð=Ð,又DQ DP =Q ,DA DC =,()QDA PDC SAS \V V ≌,AQ CP \=;(3)AQ =,理由如下:连接DQ ,即DPQ V 、ADO △为等腰直角三角形,,证明:设2QDA Ð=Ð,3PDO Ð=Ð,由题意,四边形ABCD 是正方形,则45ADO Ð=°,由(1)知,90DPQ ABC Ð=Ð=°,PD PQ =,则45QDP Ð=°,24513\Ð=°-Ð=Ð,答案第15页,共15页又::DQ DP DA DO ==Q ,QDA PDO \△∽△,:AQ OP \=,即:AQ =.【点睛】本题考查菱形性质,正方形的判定与性质,三角形内角和定理,等腰三角形的判定与性质,等边三角形的判定及性质,全等三角形的判定及性质,相似三角形判定及性质,熟练掌握相关知识的联系与运用是解答的关键.。

四川省成都市武侯区2024届九年级上学期期末考试数学试卷(含答案)

四川省成都市武侯区2024届九年级上学期期末考试数学试卷(含答案)

2023~2024学年度上期期末考试试题九年级数学注意事项:1.全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟。

2.考生使用答题卡作答。

3.在作答前,考生务必将自己的姓名、考生号和座位号填写在答题卡规定的地方。

考试结束,监考人员只将答题卡收回。

4.选择题部分请使用2B铅笔填涂;非选择题部分请使用0.5毫米黑色签字笔书写,字体工整、笔迹清楚。

5.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

6.保持答题卡清洁,不得折叠、污染、破损等。

A卷(共100分)第Ⅰ卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分)1.某几何体的三视图如图所示,则这个几何体是()A.圆锥B.正方体C.圆柱D.球2.若方程是关于的一元二次方程,则“□”中可以是()A.B.C.D.3.已知四条线段成比例,则下列结论正确的是()A.B.C.D.4.若表示平行四边形,表示矩形,表示菱形,表示正方形,它们之间的关系用下列图形来表示,正确的是()A.B.C.D.5.若关于的方程有实数根,则的取值范围是()A.B.C.D.6.如图,在平面直角坐标系中,矩形的顶点坐标分别是,.已知矩形与矩形位似,位似中心是原点,且矩形的面积等于矩形的面积的,则点的坐标是()A.B.C.或D.或7.王丽同学在一次用频率估计概率的试验中,统计了某一结果出现的频率,绘出的统计图如图所示,则该试验可能是()A.关于“从装有2张红桃和1张黑桃的扑克牌盒子中,随机摸出一张(这些扑克牌除花色外都相同),这张扑克牌是黑桃”的试验B.关于“50个同学中,有2个同学生日相同”的试验C.关于“抛一枚质地均匀的硬币,正面朝上”的试验D.关于“掷一枚质地均匀的正方体骰子,出现的点数是1”的试验8.已知反比例函数的图象如图所示,关于下列说法:①常数;②的值随值的增大而减小;③若点为轴上一点,点为反比例函数图象上一点,则;④若点在反比例函数的图象上,则点也在该反比例函数的图象上.其中说法正确的是()A.①②③B.③④C.①④D.②③④第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9.将方程化成一元二次方程的一般形式为_________.10.一个口袋中装有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有69次摸到红球,则可估计这个口袋中红球的数量是_________.11.如图,小强自制了一个小孔成像的纸筒装置,其中纸筒的长度为,他准备了一支长为的蜡烛,想要得到高度为的像,蜡烛应放在水平距离纸筒点处_________的地方.12.在平面直角坐标系中,一次函数的图象与反比例函数的图象如图所示,则当时,自变量的取值范围是_________.13.如图,先将一张正方形纸向上对折、再向左对折,然后沿着图中的虚线剪开,得到①②两部分,将①展开后得到的平面图形是_________.三、解答题(本大题共5个小题,共48分)14.解方程(本小题满分12分,每题6分)(1);(2).15.(本小题满分8分)如图,在正方形中,延长至点,使得,连接交于点.(1)试探究的形状;(2)求的度数.16.(本小题满分8分)2023年9月21日,“天宫课堂”第四课在中国空间站开讲,“太空教师”景海鹏、朱杨柱、桂海潮为广大青少年带来一场精彩的太空科普课,航天员们演示了“球形火焰”“奇妙乒乓球”“动量守恒”和“又见陀螺”四个实验.本次授课活动分别在北京、内蒙古阿拉善盟、陕西延安、安徽桐城及浙江宁波设置了5个地面课堂。

2023-2024学年贵州省贵阳市九年级上学期期末考试数学试题

2023-2024学年贵州省贵阳市九年级上学期期末考试数学试题

2023-2024学年贵州省贵阳市九年级上学期期末考试数学试题1.计算的结果是()A.2B.C.D.42.如图是一个拱形积木玩具,其主视图是()A.B.C.D.3.若,则的值是()A.-1B.C.D.14.如图,与位似,点O为位似中心.已知,,则与的面积比为()A.B.C.D.5.一元二次方程配方后可变形为,则k的值是()A.3B.2C.1D.06.下列多边形一定相似的是()A.两个菱形B.两个平行四边形C.两个矩形D.两个正方形7.已知x=1是关于x的一元二次方程x2+mx-2=0的一个根,则m的值是()A.-1B.0C.1D.0或18.如图,在矩形ABCD中,对角线AC,BD交于点O,若,,则对角线AC的长是()A .4B .3C .2D .19.已知蓄电池的电压为定值,使用蓄电池时,电流(单位:A )与电阻(单位:)是反比例函数关系.下列反映电流与电阻之间函数关系的图象大致是()A.B.C.D .10.小红拿着一块矩形木框在阳光下做投影实验,这块矩形木框在地面上的投影不可能是()A.B.C .D .11.2023年12月16日,贵阳市轨道交通三号线正式运营.某校共有1000个学生,随机调查了100个学生,其中有16个学生在三号线开通首日乘坐了地铁三号线.在该校随机问一个学生,他在三号线开通首日乘坐该地铁的概率大约是()A .0.016B .0.1C .0.116D .0.1612.国庆期间电影《志愿军:雄兵出击》上映的第一天票房约为2亿元,第二、三天单日票房持续增长,三天累计票房亿元,若第二、三天单日票房增长率相同,设平均每天票房的增长率为x ,则根据题意,下列方程正确的是()A .B .C .D .13.计算(x 3)2的结果是____________.14.方程的解是________.15.如图,在这架小提琴中,点C 是线段AB的黄金分割点().若,则______cm .16.如图,在边长为2的菱形ABCD中,,M是AB的中点,连接DM,EM,且,则CE的长是______.17.如图是一个几何体的三种视图.(1)这个几何体的名称是______;(2)由图中尺寸,计算这个几何体的侧面积.18.“双减”政策下,为了切实提高课后服务质量,某中学开展了丰富多彩的课后服务活动,设置了劳动技能、经典阅读、科普活动三大板块课程(依次记为A、B、C).若该校小红和小星两名同学随机选择一个板块课程.(1)小红选择“科普活动”板块课程的概率是______;(2)利用画树状图或列表的方法,求小红和小星同时选择“劳动技能”板块课程的概率.19.综合实践课上,小星在甲秀楼附近P处放置一面平面镜(平面镜的大小忽略不计),示意图如图所示,他站在C处通过平面镜恰好能看到甲秀楼的顶端A点,此时测得小星的脚到平面镜的距离.已知平面镜到甲秀楼底部中心的距离,小星眼睛到地面的距离,点C,P,B在同一水平直线上,且DC,AB均垂直于水平地面C B.请你用光的反射定理,帮小星计算出甲秀楼AB的高度.20.如图,在中,,,,动点P从点C出发,沿CA方向运动,动点Q同时从点B出发,沿BC方向运动,如果点P,Q的运动速度均为1cm/s.(1)运动几秒时,点P,Q相距6cm?(2)的面积能等于吗?为什么?21.如图,在中,BE平分,CE平分,,,BC,EF交于点O.(1)判断四边形BFCE的形状,并说明理由;(2)若过点E作交DC于点G,画出线段EG,判断线段EG与EF的数量关系,并说明理由.22.小星根据学习反比例函数的经验,探究函数的图象与性质.(1)下面是画函数图象的步骤:列表:x…-4-2-1124…y…12a b21…其中,______,______,描点、连线:把图象补充完整;(2)观察函数的图象,当时,直接写出自变量x的取值范围.23.如图,小红在学习了正方形相关知识后,对正方形进行了探究,在正方形ABCD的外侧作了直线DP.(1)【动手操作】点C关于直线DP的对称点为E,连接CE,AE,其中AE交直线DP于点F.依题意在图①中补全图形;(2)【问题解决】在(1)的条件下,若,求的度数;(3)【拓展延伸】如图②,若,点C关于直线DP的对称点为E,连接CE,AE,其中AE交直线DP于点F.探究线段AB,AF,EF之间的数量关系,并说明理由.。

陕西省西安市交通大学附属中学2023-2024学年九年级上学期期末数学试题(含解析)

陕西省西安市交通大学附属中学2023-2024学年九年级上学期期末数学试题(含解析)

A .B . . . 2.我们常常在建筑中看到四边形的元素.如图,墙面上砌出的菱形窗户的边长为框宽度忽略不计),其中较小的内角为A .4B .3.一元二次方程的根的情况为(A .有两个不相等的实数根D .无法确定3223210x x --=A .25.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为A .B .13A .10.点在二次函数A .最大值二.填空题(本大题共14.如图,在矩形段上移动,并与意一点,连接90︒(),A m n 4-ABCD EF EF ,AN CM三.解答题(本大题共1115.计算:(1);(2)18.已知:如图,点为对角线点,.求证:.19.为贯彻落实党的二十大精神,全面建设社会主义现代化国家、兴,某校团委举办以“无悔青春献祖国,接力奋斗新时代赛,九年级(2)班的王伟和孙莉两人文采相当,且都想代表班级参赛,于是班长制作了()0π3128-+--2cos30tan60sin45cos45︒-︒+︒O ABCD Y E F DE BF =21.西安丰庆公园是现代生态景观与历史文化景观融为一体的皇家园林,园内的最高建筑.某数学活动小组想测量怡心阁的高度心阁的高度:小明沿后退到F 恰好看到标杆顶端22.类比一次函数的研究思路,九年级“励志”行探究.下面是他们的探究过程,请补充完整:(1)列表:下表是与的几组对应值,则的值为01654210BD x y m x ⋅⋅⋅5-4-3-2-1-y ⋅⋅⋅m(3)函数的图象和直线的交点坐标是______.23.如图,四边形是的内接四边形,为直径,点为弧的中点,延长交于点,为的切线.(1)求证:;(2)若,求的长.24.如图,在平面直角坐标系中,点的坐标为,连接,将线段绕着点逆时针旋转,点的对应点为点.(1)求经过三点的抛物线的表达式;(2)将抛物线沿着轴平移到抛物线,在抛物线上是否存在点,使得以为顶点的四边形为正方形,若存在,求平移的方式.若不存在,说明理由.|1|y x =-2y =ABCD O e BD D AC AD BC 、E DF O e CDF EDF ∠=∠2DF EF ==AD A ()4,2OA OA O 90︒A B ,,B O A L L x L 'L 'D ,,,B O A D图2图3【详解】解:观察图形可得,其主视图是3.A【分析】本题考查了根的判别式,根据题意算出根的判别式即可得;掌握根的判别式即可得.【详解】解:,23210x x --=在Rt ACD中,tan C故选B.【点睛】本题考查了锐角三角比的意义.将角转化到直角三角形中是解答的关键.7.C【分析】根据二次函数的性质判断出【详解】解:∵抛物线开口向下,∴a<0,9.B【分析】本题主要考查了同弧所对的圆周角相等,∠的圆周角相等得到ADC=【点睛】本题主要考查了等边三角形的性质,每个内角都相等.13.48【分析】本题考查了反比例函数与几何的综合.1求得相似比为,利用相似比求得∵平行于轴,∴轴,∴,∵,∴,AC x BAC ∠BD x ⊥BAC BDO ∽△△2OC BC =13BC BA BO BD ==18.详见解析【分析】根据平行四边形的性质得出,再证明线段的差得出,即可得出结论.【详解】证明:∵四边形是平行四边形,OEA OFC ∠=∠AOE ≌△△AD AE BC CF -=-ABCD依题意,∴,∵,∴,∴,设,2, 1.5,EM FD MD EF MN ====3 1.5 1.5CM CD MD =-=-=CM AN ∥CME ANE V V ∽CM EM AN EN=AN x =;(3)解:把代入中得:,解得:或,∴函数的图象和直线的交点坐标是:23.(1)见详解(2)【分析】(1)由“直径所对的圆周角等于”和圆周角定理可得2y =|1|y x =-|1|2x -==1x -3x =|1|y x =-2y =390︒设与交于点,∵是等腰直角三角形,AB OD M (),D m n BOA △(2)如图所示,连接AC、(3)如图所示,过点D作DH⊥。

浙江省宁波市鄞州区2023-2024学年九年级上学期期末数学试题(含答案)

浙江省宁波市鄞州区2023-2024学年九年级上学期期末数学试题(含答案)

鄞州区2023学年第一学期九年级期末考试数学试题考生须知:1.全卷分试题卷Ⅰ、试题卷Ⅱ和答题卷.试题卷共6页,有三个大题,24个小题.满分为120分,考试时间为120分钟.2.请将姓名、准考证号分别填写在答题卷的规定位置上.3.答题时,把试题卷I 的答案在答题卷I 上对应的选项位置,用2B 铅笔涂黑、涂满。

将试题卷的答案用黑色字迹钢笔或签字笔书写,答案必须按照题号顺序在答题卷Ⅱ各题目规定区域内作答,做在试题卷上或超出答题卷区域书写的答案无效.4.不允许使用计算器,没有近似计算要求的试题,结果都不能用近似数表示.试题卷I一、选择题(每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求)1.已知的半径为4,P 为内一点,则OP 的长度可能是( )A .3B .4C .5D .92.下列事件中,属于必然事件的是( )A .射击运动员射击一次恰好命中靶心B .从一副完整的扑克牌中任抽一张,出现红桃AC .抛掷骰子两次,出现数字之和为13D .观察正常的交通信号灯变化10分钟,看到绿灯3.已知线段,点C 是线段AB 的黄金分割点,且,则线段AC 的长是( )ABCD4.四边形ABCD 内接于,,则的度数是( )A .B .C .D .5.如图,是的内切圆,AB ,AC 分别与相切于D ,E 两点,已知,,则的周长为()A .14B .C .16D .186.已知,,三点都在抛物线上,则、、的大小关系为()A .B .C .D .7.如图,的半径为5,弦,点C 在弦AB 上,延长CO 交于点D ,则CD 的取值范围是( )O O 1AB =AC BC >O 100B ∠=︒D ∠60︒80︒100︒120︒O ABC △O 1AD =7BC =ABC△()11,A y -()21,B y ()33,C y 23y x x m =-+1y 2y 3y 123y y y <<231y y y <<213y y y <<321y y y <<O 6AB =OA .B .C .D .8.如图,点G 是的重心,过点G 作分别交AB ,AC 于点M ,N ,过点N 作交BC 于点D ,则四边形BDNM 与的面积之比是()A .B .C .D .9.如图是由边长为1的小正方形组成的网格,的顶点及点M ,N 都是格点,AB 与格线CN 相交于点D ,AC 与MN 相交于点E ,则以下说法错误的是()A .B .C .D .10.如图,正的边长为1,点P 从点B 出发,沿方向运动,于点H ,下面是的面积随着点P 的运动形成的函数图象(拐点左右两段都是抛物线的一部分),以下判断正确的是( )A .函数图象的横轴表示PB 的长B .当点P 为BC 中点时,点H 为线段AB 的三等分点C .两段抛物线的形状不同D.图象上点的横坐标为试题卷Ⅱ二、填空题(每小题4分,共24分)11.在平面直角坐标系中,抛物线的开口方向是______.12.一个布袋里装有3个红球、3个黄球和4个绿球,除颜色外其它都相同,搅匀后,随机摸出一个球是红球的概率为______.13.的两个锐角和满足,则的度数是______.14.如图,矩形ABCD 被分割为3个面积相等的小矩形,已知矩形AFED 与原矩形ABCD 相似,则原矩形的较长边与较短边的比值是______.68CD ≤≤810CD ≤≤910CD <<910CD ≤≤ABC △MN BC ∥ND AB ∥ABC △1:22:34:97:953⨯ABC △AB =2CE AE =ADE C ∠=∠45ACB ∠=︒ABC △B C A →→PH AB ⊥PHB △34231y x x =-+-ABC △A ∠B ∠()21sin tan 102A B -+-=C ∠15.如图1是杭州第19届亚运会会徽一“潮涌”,其主体为图2中的扇环.延长CA ,DB 交于点O ,,若,,则图2中扇环的面积为______(结果保留)16.如图,中,,,,CE 是斜边AB 上的中线,在直线AB 上方作,DE ,FE 分别与AC 边交于点M ,N ,当与相似时,线段CN 长度为______.三、解答题(17~19题各6分,20~21题各8分,22~23题各10分,24题12分,共66分)17.(1)计算:;(2)已知,求的值.18.某校团委决定组织部分学生参加主题研学活动,全校每班可推选2名代表参加,901班根据各方面考核,决定从甲、乙、丙、丁四名学生中随机抽取两名参与研学活动.(1)若甲已抽中,求从剩余3名学生中抽中乙参与研学的概率;(2)用画树状图或列表等适当的方法求甲和乙同时参与研学的概率.19.在如图所示的平面直角坐标系中,的顶点都在格点上,以原点O 为位似中心,将放大到2倍得到.(1)在现有网格图中画出;(2)记线段BC 的中点为M ,求放大后点M 的对应点的坐标.20.如图1,沙滩排球比赛中,裁判垂直站在记录台上.如图2是从正面看到的示意图,记录台底部O 与垂直地面的球网支架底座E ,F 在同一水平线上,记录台与左侧球网距离OE 为0.5m ,裁判观察矩形球网ABCD 上点A 的俯角为42°,已知球网高度AE 为2.4m .120AOB ∠=︒AB =4AC cm =2cm πRt ABC △90ACB ∠=︒8AC =6BC =DEF ABC △△EMN △BEC △22cos 45tan 602sin 30︒+︒-︒1224a b ++=2a b a b-+ABC △ABC △DEF △DEF △GPA ∠(1)求裁判员眼睛距离地面的高度PO ;(2)某次运动员扣球后,球恰好从球网上边缘AD 的点Q 处穿过,此时裁判员的视线PQ 正好看不到球网边界C 处(即P ,Q ,C 共线),若球网长度,球网下边缘离地面的距离CF 为1.5m ,求排球落点处Q 离球网边界CD 的距离.(结果精确到0.1m )(本题参考数值,,.)21.如图,AB 为的直径,点P 为BA 延长线上一点,以点P 为圆心,PO 为半径画弧,以点O 为圆心,AB 为半径画弧,两弧相交于点C ,连结OC 交于点D ,连结PD .(1)求证:PD 与相切;(2)若,,求的半径.22.根据以下材料,探索完成任务:智能浇灌系统使用方案材料如图1是一款智能浇灌系统,水管OP 垂直于地面并可以随意调节高度(OP 最大高度不超过2.4m ),浇灌花木时,喷头P 处会向四周喷射水流形成固定形状的抛物线,水流落地点M 与点O 的距离即为最大浇灌距离,各方向水流落地点形成一个以点O 为圆心,OM 为半径的圆形浇灌区域.当喷头P 位于地面与点O 重合时,某一方向的水流上边缘形成了如图2的抛物线,经测量,,水流最高时距离地面0.1m .如图3,农科院将该智能浇灌系统应用于一个长8m ,宽6m 的矩形试验田中,水管放置在矩形中心O 处.8AD m =sin 420.67︒≈cos 420.74︒≈tan 420.90︒≈O O O PD =1cos 3POC ∠=O 2OM m =问题解决任务1确定水流形状在图2中建立合适的平面直角坐标系,求抛物线的函数表达式.任务2探究浇灌最大区域当调节水管OP 的高度时,浇灌的圆形区域面积会发生变化,请你求出最大浇灌圆形区域面积.(结果保留)任务3解决具体问题若要保证浇灌区域能完全覆盖矩形试验田,则水管OP 至少需要调节到什么高度?23.已知二次函数的解析式为.(1)求证:该二次函数图象与x 轴一定有2个交点;(2)若,点,都在该二次函数的图象上,且,求n 的取值范围;(3)当时,函数最大值与最小值的差为8,求m 的值.24.如图1,内接于,直径,弦CD 与AB 相交于点E .(1)如图1,若,求的度数;(2)如图2,若,求CD 的长;(3)如图3,过点A 作CD 的平行线交于点M ,连结BD ,MC ,若,求的面积.鄞州区2023学年第一学期九年级期末考试数学参考答案及评分标准一、选择题(每小题3分,共30分)题号12345678910答案ADABCBDCDD二、填空题(每小题4分,共24分)三、解答题(17~19题各6分,20~21题各8分,22~23题各10分,24题12分,共66分)注:1.阅卷时应按步计分,每步只设整分;π2224y x mx m =-+-+2m =()1,M n y ()22,N n y +120y y <35m x -≤≤ABC △O 12AB =BC =AE AC =ACD ∠4AE =O 1tan 3ACM ∠=BCD △2.如有其它解法,只要正确,各步相应给分17.(1)原式(2)∵,∴,∴.18.(1)乙同学参加研学的概率是.(2)画树状图如下∴甲和乙同时参与研学的概率为.19.(1)按要求作如图:21.(1)由题意得,,,∴BC 中点M 的坐标为,∵放大到2倍得到,∴点M 在上对应点的坐标为.(也可以由图像直接获得坐标)(2)∵,,∴,,∵,∴,∴,即,21222=⨯+⨯11==1224a b ++=2b a =2412a b a aa b a a--==-++1316DEF △PC PO =OC AB =()2,1.5ABC △DEF △DEF △()4,38AD m = 1.5CF m =80.58.5DH m =+= 2.4 1.50.9CD m =-=PQH CQD ∠=∠tan tan PQH CQD ∠=∠PH CDQH QD=0.450.98.5QD QD =-∴.(1)由题意得,,,∴,∴.∵点D 在上,PD 与OO 相切.(2)设的半径为r ,由(1)得:,又:,∴,即,∵,,∴,解得(舍去),∴的半径为2.22.(1)如图,以点O 为坐标原点,OM 方向为x 轴正方向建立平面直角坐标系,此时,,顶点坐标为,设抛物线的函数表达为,将代入得,,∴抛物线的函数表达式为.(其他建系方式均可,按步给分)(2)当时,即将抛物线向上平移2.4个单位,得.令,则,解得:,(舍去),∴浇灌最大圆形区域面积为.(3)连结AC ,由题意知AC 过点O ,,∴,∴要保证浇灌区域能完全覆盖矩形试验田,浇灌半径至少为5m .设,此时抛物线函数表达式为,将代入,得,解得,∴OP 至少调节到1.5m .23.(1)∵,175.73QD m =≈PC PO =OC AB =CD OC OD AB OD OD =-=-=PD OC ⊥O O PD OC ⊥1cos 3POC =13OD PO =33PO OD r ==222PD OD PO +=PD =(()2223r r +=2r =2-O ()0,0O ()2,0M ()1,0.1()2y ax x =-()1,0.1()2y ax x =-110a =-211105y x x =-+2.4OP m =211105y x x =-+2112.4105y x x =-++0y =2110 2.4105x x =-++16x =24x =-236m π10AC m ==5OA m =OP h =211105y x x h =-++()5,0211055105h =-⨯+⨯+ 1.5h =()()()222414160m m =-⨯-⨯-+=>△∴的函数图象与x 轴一定有2个交点.(2)∵,∴.令,则,即,,∴函数图像与x 轴交点为和两点.∵点,都在该二次函数的图象上,且,①,即,②,即.综上所述,或.(3)∵,∴抛物线的对称轴为直线.①若,即,则当时,,当时,,∴,∴,.②若,则当时,,当时,,∵,不符合题意,舍去.③若时,则当时,,当时,,∴,∴,(舍去).综上所述,或.24.(1)∵AB 是的直径,∴.∵,,∴,∴,∵,∴.(2)连结OC ,BD ,∵,,∴.∵,∴,∴,2224y x mx m =-+-+2m =24y x x =-+0y =240x x -+=10x =24x =()0,0()4, 0()1,M n y ()22,N n y +120y y <020n n <⎧⎨+>⎩20n-<<424n n <⎧⎨+>⎩24n <<20n -<<24n <<()222244y x mx m x m =-+-+=--+x m =352m m -+<2m <x m =max 4y =5x =()2min 54y m =--+()24548m ⎡⎤---+=⎣⎦15m =+25m =-25m ≤≤x m =max 4y =3x m =-min 5y =-()4598--=≠58m <≤5x =()2max 54y m =--+3x m =-min 5y =-()()25458m --+--=16m =24m =5m =-6m =O 90ACB ∠=︒12AB =BC =sin BC A AB ∠==45A ∠=︒AE AC =67.5ACD ∠=︒90ACB ∠=︒45A ∠=︒45ABC ∠=︒OB OC =45BCO ∠=︒90BOC ∠=︒∵,∴,∴.∵,又∵,,∴,∴(3)①当E 在线段OB 上时,连结OC ,连结BM 交CD 于点N ,∵,∴,∵,∴,又∵,,∴,∵,∴,∴,,∴.由(2)得,∴,∴.②当点E 在线段OA 上时,同理,∴,∴,∴.∵,∴,∴.4AE =642OE =-=EC ==1452BDC BOC EBC ∠=∠=︒=∠BCD ECB ∠=∠BCD ECB ~△△BC CD EC BC =2BC CD EC ==CD AM ∥90BNE BMA ∠=∠=︒90BOC ∠=︒BNE BOC ∠=∠BEN CEO ∠=∠ECO ABM ACM ∠=∠=∠1tan tan 3ECO ACM ∠=∠=6OC =·tan 2OE OC ECO ==EC ==624BE =-=1122ECB S BE OC =⋅=△BCD ECB △△295BCD ECB S BC S EC ⎛⎫== ⎪⎝⎭△△910855BCD ECB S S ==△△1tan tan 3ECO ACM ∠=∠=tan 2OE OC ECO =⋅∠=CE ==628BE =+=1242ECB S BE OC =⋅=△BCD ECB △△ 295BCD ECB S BC S EC ⎛⎫== ⎪⎝⎭△△921655BCD ECB S S ==△△。

2023-2024学年北京市九年级数学第一学期期末达标测试试题(含解析)

2023-2024学年北京市九年级数学第一学期期末达标测试试题(含解析)

2023-2024学年北京市九年级数学第一学期期末达标测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每题4分,共48分)1.如图,已知抛物线和直线.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M= y 1=y 2.下列判断: ①当x >2时,M=y 2;②当x <0时,x 值越大,M 值越大;③使得M 大于4的x 值不存在;④若M=2,则x=" 1" .其中正确的有A .1个B .2个C .3个D .4个2.教育局组织学生篮球赛,有x 支球队参加,每两队赛一场时,共需安排45场比赛,则符合题意的方程为( )A.B .C .D .3.下列说法正确的是( )A .随机抛掷一枚均匀的硬币,落地后反面一定朝上。

B .从1,2,3,4,5中随机取一个数,取得奇数的可能性较大。

C .某彩票中奖率为,说明买100张彩票,有36张中奖。

D .打开电视,中央一套正在播放新闻联播。

4.如图是我们学过的反比例函数图象,它的表达式可能是( )21y x 4x =-+2y 2x =()11452x x -=()11452x x +=()145x x -=()145x x +=36%A .B .C .D .5.下列图案中,是中心对称图形的是( )A .B .C .D .6.⊙O 的半径为5cm ,弦AB//CD ,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为()A .1 cmB .7cmC .3 cm 或4 cmD .1cm 或7cm 7.已知关于的一元二次方程有两个相等的实数根,则锐角等于( )A .B .C .D .8.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为( )A.B .C .D .9.下列关系式中,y 是x 的反比例函数的是( )A .y =4xB .=3C .y =﹣D .y =x 2﹣110.如图,⊙O 的直径长10,弦AB=8,M 是弦AB 上的动点,则OM 的长的取值范围是( )A .3≤OM≤5B .4≤OM≤5C .3<OM <5D .4<OM <511.如图所示的工件的主视图是( )22y x =4y x =3y x =-3y x=-x 2cos 0x α+=α15 30 45 601325122542512y x 1xA .B .C .D .12.若△ABC ~△A ′B 'C ′,相似比为1:2,则△ABC 与△A 'B ′C '的周长的比为( )A .2:1B .1:2C .4:1D .1:4二、填空题(每题4分,共24分)13.若弧长为4π的扇形的圆心角为直角,则该扇形的半径为 .14.因式分解:_______;15.如图,在平面直角坐标系中,已知经过点,且点O 为坐标原点,点C 在y 轴上,点E 在x 轴上,A (-3,2),则__________.16.矩形ABCD 中,AB=6,BC=8.点P 在矩形ABCD 的内部,点E 在边BC 上,满足△PBE ∽△DBC ,若△APD 是等腰三角形,则PE 的长为数___________.17.已知关于的方程的一个根为-2,则方程另一个根为__________.18.在中,,,在外有一点,且,则的度数是__________.三、解答题(共78分)19.(8分)如图,有一个斜坡,坡顶离地面的高度为20米,坡面的坡度为,求坡面的长度.20.(8分)如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”.()()2a b b a ---=A E B O C 、、、tan OBC ∠=x 230x mx m ++=ABC ∆AC BC =90C ∠=︒ABC ∆M MA MB ⊥AMC ∠AB B BC AB 25AB(1)如图①,在Rt △ABC 中,∠C =90°,AC >BC ,若Rt △ABC 是“匀称三角形”.①请判断“匀称中线”是哪条边上的中线,②求BC :AC :AB 的值.(2)如图②,△ABC 是⊙O 的内接三角形,AB >AC ,∠BAC =45°,S △ABC =,将△ABC 绕点A 逆时针旋转45°得到△ADE ,点B 的对应点为D ,AD 与⊙O 交于点M ,若△ACD 是“匀称三角形”,求CD 的长,并判断CM 是否为△ACD的“匀称中线”.21.(8分)某班为推荐选手参加学校举办的“祖国在我心中”演讲比赛活动,先在班级中进行预赛,班主任根据学生的成绩从高到低划分为A ,B ,C ,D 四个等级,并绘制了不完整的两种统计图表.请根据图中提供的信息,回答下列问题:(1)a 的值为 ;(2)求C 等级对应扇形的圆心角的度数;(3)获得A 等级的4名学生中恰好有1男3女,该班将从中随机选取2人,参加学校举办的演讲比赛,请利用列表法或画树状图法,求恰好选中一男一女参加比赛的概率.22.(10分)如图,在中,,,,将线段绕点按逆时针方向旋转到线段.由沿方向平移得到,且直线过点.ABC 90C ∠=︒10AB =8AC =AB A 90︒AD EFG ABC CB EF D(1)求的大小;(2)求的长.23.(10分)如图,把Rt △ABC 绕点A .逆时针旋转40°,得到在Rt △ABʹCʹ,点Cʹ恰好落在边AB 上,连接BBʹ,求∠BBʹCʹ的度数.24.(10分)只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是:每个大于2的偶数都可以表示为两个素数的和,如16=3+ 1.(1)若从7, 11, 19, 23中随机抽取1个素数,则抽到的素数是7的概率是_______;(2)若从7, 11, 19, 23中随机抽取1个素数,再从余下的3个数字中随机抽取1个素数,用面树状图或列表的方法求抽到的两个素数之和大于等于30的概率,25.(12分)(1)计算: (2)化简:26.已知抛物线的顶点坐标为(1,2),且经过点(3,10)求这条抛物线的解析式.参考答案一、选择题(每题4分,共48分)1、B【解析】试题分析:∵当y 1=y 2时,即时,解得:x=0或x=2,1∠AE 201224((18--+-⨯--2291(1)693x x x x -⋅+-++2x 4x 2x -+=∴由函数图象可以得出当x >2时, y 2>y 1;当0<x <2时,y 1>y 2;当x <0时, y 2>y 1.∴①错误.∵当x <0时, -直线的值都随x 的增大而增大,∴当x <0时,x 值越大,M 值越大.∴②正确.∵抛物线的最大值为4,∴M 大于4的x 值不存在.∴③正确;∵当0<x <2时,y 1>y 2,∴当M=2时,2x=2,x=1;∵当x >2时,y 2>y 1,∴当M=2时,,解得.∴使得M=2的x 值是1或.∴④错误.综上所述,正确的有②③2个.故选B .2、A 【分析】先列出x 支篮球队,每两队之间都比赛一场,共可以比赛x (x-1)场,再根据题意列出方程为.【详解】解:∵有x 支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为,故选:A .本题是由实际问题抽象出一元二次方程,主要考查了从实际问题中抽象出相等关系.3、B【解析】A 、掷一枚硬币的试验中,着地时反面向上的概率为,则正面向上的概率也为,不一定就反面朝上,故此选项错误;B 、从1,2,3,4,5中随机取一个数,因为奇数多,所以取得奇数的可能性较大,故此选项正确;C 、某彩票中奖率为36%,说明买100张彩票,有36张中奖,不一定,概率是针对数据非常多时,趋近的一个数并不能说买100张该种彩票就一定能中36张奖,故此选项错误;D 、中央一套电视节目有很多,打开电视有可能正在播放中央新闻也有可能播放其它节目,故本选项错误.故选B .4、B【分析】根据反比例函数图象可知,经过第一三象限,,从而得出答案.【详解】解:A 、为二次函数表达式,故A 选项错误;B 、为反比例函数表达式,且,经过第一三象限,符合图象,故B 选项正确;21y x 4x =-+2y 2x =()221y x 4x x 24=-+=--+2x 4x 2-+=12x 2x 2=+=-2+()11452x x -=()11452x x -=12120k >22y x =4y x=0k >C 、为反比例函数表达式,且,经过第二四象限,不符合图象,故C 选项错误;D 、为一次函数表达式,故D 选项错误.故答案为B .本题考查了反比例函数的图象的识别,掌握反比例函数的图象与性质是解题的关键.5、C【解析】根据中心对称图形的概念即可得出答案.【详解】A 选项中,不是中心对称图形,故该选项错误;B 选项中,是轴对称图形,不是中心对称图形,故该选项错误;C 选项中,是中心对称图形,故该选项正确;D 选项中,不是中心对称图形,故该选项错误.故选C本题主要考查中心对称图形,掌握中心对称图形的概念是解题的关键.6、D【分析】分AB 、CD 在圆心的同侧和异侧两种情况求得AB 与CD 的距离.构造直角三角形利用勾股定理求出即可.【详解】当弦AB 和CD 在圆心同侧时,如图①,过点O 作OF ⊥CD ,垂足为F ,交AB 于点E ,连接OA ,OC ,∵AB ∥CD ,∴OE ⊥AB ,∵AB=8cm ,CD=6cm ,∴AE=4cm ,CF=3cm ,∵OA=OC=5cm ,∴EO=3cm ,OF=4cm ,∴EF=OF-OE=1cm ;当弦AB 和CD 在圆心异侧时,如图②,过点O 作OE ⊥AB 于点E ,反向延长OE 交AD 于点F ,连接OA ,OC ,∵AB ∥CD,3y x=-0k <3y x =-∴OF ⊥CD ,∵AB=8cm ,CD=6cm ,∴AE=4cm ,CF=3cm ,∵OA=OC=5cm ,∴EO=3cm ,OF=4cm ,∴EF=OF+OE=7cm .故选D .本题考查了垂径定理、勾股定理;熟练掌握垂径定理和勾股定理,根据题意画出图形是解题的关键,要注意有两种情况.7、D【分析】根据一元二次方程根的判别式等于零,求出的值,进而即可得到答案.【详解】∵关于的一元二次方程有两个相等的实数根,∴∆=,解得:,∴=.故选D .本题主要考查一元二次方程根的判别式以及特殊角三角函数,掌握一元二次方程根的判别式与根的关系,是解题的关键.8、A【分析】画出树状图,共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个,即可得出答案.【详解】解:画树状图如图:共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个,∴小李获胜的概率为;故选A .cos αx 2cos 0x α-+=2(41cos 0α-⨯⨯=1cos 2α=α60 1325本题考查了列表法与树状图法以及概率公式;根据题意画出树状图是解题的关键.9、C【分析】根据反比例函数的定义逐一判断即可.【详解】A 、y =4x 是正比例函数;B 、=3,可以化为y =3x ,是正比例函数;C 、y =﹣是反比例函数;D 、y =x 2﹣1是二次函数;故选:C .本题考查反比例函数的定义,掌握反比例函数的定义是解题的关键.10、A【详解】解:的直径为10,半径为5,当时,最小,根据勾股定理可得,与重合时,最大,此时,所以线段的的长的取值范围为,故选A .本题考查垂径定理,掌握定理内容正确计算是本题的解题关键.11、B【解析】从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形.故选B .12、B【分析】根据相似三角形的周长比等于相似比即可得出结论.【详解】解:∵∽,相似比为1:1,∴与的周长的比为1:1.故选:B .此题考查的是相似三角形的性质,掌握相似三角形的周长比等于相似比是解决此题的关键.二、填空题(每题4分,共24分)13、1.【分析】根据扇形的弧长公式计算即可,【详解】∵扇形的圆心角为90°,弧长为4π,∴,即4π=,则扇形的半径r=1.y x1x O OM AB ⊥OM 3OM =OM OA OM 5OM =OM 35OM ≤≤ABC A B C '''V ABC A B C '''V r l 180n π=90•180r π故答案为1考点:弧长的计算.14、(a-b )(a-b+1)【解析】原式变形后,提取公因式即可得到结果.【详解】解:原式=(a -b )2+(a -b )=(a -b )(a -b +1),故答案为:(a -b )(a -b +1)此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.15、【解析】分别过A 点作x 轴和y 轴的垂线,连接EC ,由∠COE =90°,根据圆周角定理可得:EC 是⊙A 的直径、,由A 点坐标及垂径定理可求出OE 和OC ,解直角三角形即可求得.【详解】解:如图,过A 作AM ⊥x 轴于M ,AN ⊥y 轴于N ,连接EC ,∵∠COE =90°,∴EC 是⊙A 的直径,∵A (−3,2),∴OM =3,ON =2,∵AM ⊥x 轴,AN ⊥y 轴,∴M 为OE 中点,N 为OC 中点,∴OE =2OM =6,OC =2ON =4,∴=.本题主要考查了同弧所对的圆周角相等、垂径定理和锐角三角函数定义,熟练掌握定理是解本题的关键.16、3或1.2【分析】由△PBE ∽△DBC ,可得∠PBE=∠DBC ,继而可确定点P 在BD 上,然后再根据△APD 是等腰三角形,分DP=DA 、AP=DP 两种情况进行讨论即可得.【详解】∵四边形ABCD 是矩形,∴∠BAD=∠C=90°,CD=AB=6,BC=8,∴BD=10,23∠=∠OBC CEO tan OBC ∠tan OBC ∠42tan 63∠===OC CEO OE∵△PBE ∽△DBC ,∴∠PBE=∠DBC ,∴点P 在BD 上,如图1,当DP=DA=8时,BP=2,∵△PBE ∽△DBC ,∴PE :CD=PB :DB=2:10,∴PE :6=2:10,∴PE=1.2;如图2,当AP=DP 时,此时P 为BD 中点,∵△PBE ∽△DBC ,∴PE :CD=PB :DB=1:2,∴PE :6=1:2,∴PE=3;综上,PE 的长为1.2或3,故答案为1.2或3.本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P 在线段BD 上是解题的关键.17、1【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:1.本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.24120x x --=122,6x x =-=18、、【分析】由,可知A 、C 、B 、M 四点共圆,AB 为圆的直径,则是弦AC 所对的圆周角,此时需要对M 点的位置进行分类讨论,点M 分别在直线AC 的两侧时,根据同弧所对的圆周角相等和圆内接四边形对角互补可得两种结果.【详解】解:∵在中,,,∴∠BAC =∠ACB =45°,∵点在外,且,即∠AMB =90°∵∴A 、C 、B 、M 四点共圆,①如图,当点M 在直线AC 的左侧时,,∴;②如图,当点M 在直线AC 的右侧时,∵,∴,故答案为:135°或45°.本题考查了圆内接四边形对角互补和同弧所对的角相等,但解题的关键是要先根据题意判断出A 、C 、B 、M 四点共圆.三、解答题(共78分)19、米【分析】根据坡度的定义可得,求出AB ,再根据勾股定理求135︒45︒90C ∠=︒MA MB ⊥AMC ∠ABC ∆AC BC =90C ∠=︒M ABC ∆MA MB ⊥180∠+∠=︒AMB C 180∠+∠=︒AMC ABC 180********∠=︒-∠=︒-︒=︒AMC ABC AC AC =45∠=∠=︒AMC ABC 25BC AC =AB =【详解】∵坡顶离地面的高度为20米,坡面的坡度为即, ∴米由勾股定理得答:坡面的长度为米.考核知识点:解直角三角形应用.把问题转化为解直角三角形是关键.20、(1)① “匀称中线”是BE ,它是AC 边上的中线,②BC :AC :AB;(2)CDa ,CM 不是△ACD 的“匀称中线”.理由见解析.【分析】(1)①先作出Rt △ABC 的三条中线AD 、BE 、CF ,然后利用匀称中线的定义分别验证即可得出答案;②设AC =2a ,利用勾股定理分别把BC,AB 的长度求出来即可得出答案.(2)由②知:AC :AD :CD ,设AC ,则AD =2a ,CD ,过点C 作CH ⊥AB ,垂足为H,利用的面积建立一个关于a 的方程,解方程即可求出CD 的长度;假设CM 是△ACD 的“匀称中线”,看能否与已知的定理和推论相矛盾,如果能,则说明假设不成立,如果不能推出矛盾,说明假设成立.【详解】(1)①如图①,作Rt△ABC 的三条中线AD、BE 、CF ,∵∠ACB =90°,∴CF =,即CF 不是“匀称中线”.又在Rt △ACD 中,AD >AC >BC ,即AD 不是“匀称中线”.∴“匀称中线”是BE ,它是AC 边上的中线,②设AC =2a ,则CE =a ,BE =2a ,在Rt △BCE 中∠BCE =90°,∴BC ,在Rt △ABC 中,AB ,∴BC :AC :AB (2)由旋转可知,∠DAE =∠BAC =45°.AD =AB >AC ,B BC AB 2525BC AC =2025AC =50AC =AB ==AB :2:7:2ABC 12AB AB ≠==:2:2a =∴∠DAC =∠DAE +∠BAC =90°,AD >AC ,∵Rt △ACD 是“匀称三角形”.由②知:AC :AD :CD设AC,则AD =2a ,CD ,如图②,过点C 作CH⊥AB ,垂足为H ,则∠AHC =90°,∵∠BAC =45°,∴ ∵解得a =2,a =﹣2(舍去),∴判断:CM 不是△ACD 的“匀称中线”.理由:假设CM 是△ACD 的“匀称中线”.则CM =AD =2AM =4,AM =2,∴又在Rt △CBH 中,∠CHB =90°,CH ,BH =4,∴即这与∠AMC =∠B相矛盾,∴假设不成立,2CH AH ===11222ABC S AB CH a ==⨯= CD ==tan AC AMC AM ∠===tan tan CH B AMC BH ===≠∠B AMC∠≠∠∴CM 不是△ACD 的“匀称中线”.本题主要为材料理解题,掌握匀称三角形和匀称中线的意义是解题的关键.21、(1)8 ;(2);(3)【分析】(1)根据D 等级的人数除以其百分比得到班级总人数,再乘以B 等级的百分比即可得a 的值;(2)用C 等级的人数除以班级总人数即可得到其百分比,用360°乘以其百分比得到其扇形圆心角度数;(3)画树状图可知,共有12种均等可能结果,恰好选中一男一女的有6种.然后根据概率公式求解即可【详解】解:(1)班级总人数为 人,B 等级的人数为 人,故a 的值为8;(2)∴C 等级对应扇形的圆心角的度数为.(3)画树状图如图:(画图正确)由树状图可知,共有12种均等可能结果,恰好选中一男一女的有6种.∴P (一男一女) 答:恰好选中一男一女参加比赛的概率为.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 的结果数目m ,然后利用概率公式计算事件A的概率为.也考查了统计图.22、(1);(2)【分析】(1)根据旋转的性质可求得,AD=AB=10,∠ABD=45°,再由平移的性质即可得出结论;(2)根据平移的性质及同角的余角相等证得∠DAE=∠CAB ,进而证得△ADE ∽△ACB ,利用相似的性质求出AE 即可.【详解】解:(1)∵线段AD 是由线段AB 绕点A 按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB ,∴∠ABD=∠ADB=45°,∵△EFG 是由△ABC 沿CB 方向平移得到,∴AB ∥EF ,∴∠1=∠ABD=45°;(2)由平移的性质得,AE ∥CG ,∴∠EAC=180°-∠C=90°,144︒121230%40÷=4020%8⨯=16360144 40⨯︒=︒ 144︒61122==12m n45︒12.5AE =∴∠EAB+∠BAC=90°,由(1)知∠DAB=90°,∴∠DAE+∠EAB=90°,∴∠DAE=∠CAB ,又∵∠ADE=∠ADB+∠1=90°,∠ACB=90°,∴∠ADE=∠ACB ,∴△ADE ∽△ACB ,∴,∵AC=8,AB=AD=10,∴AE=12.5.本题为平移的性质,旋转的性质,相似三角形的判定与性质的综合考查,熟练掌握基础的性质与判定是解题的关键.23、20°【分析】利用旋转的性质及等腰三角形的性质可得∠ABBʹ,再根据直角三角形两锐角互余可得解.【详解】解:由旋转可知:∠BABʹ=40°,AB=ABʹ.∴∠ABBʹ=∠ABʹB .∴∠ABBʹ==70°.∴∠BBʹCʹ=90°-70°=20°.本题考查了三角形的旋转,灵活利用旋转对应边相等,对应角相等且等于旋转角的性质是解题的关键.24、(1);(2)【分析】(1)直接根据概率公式计算可得;(2)画树状图得出所有等可能结果,再从中找到符合条件的结果数,利用概率公式计算可得.【详解】解: (1) 因为7, 11, 19, 23共有4个数,其中素数7只有1个,所以从7, 11, 19, 23中随机抽取1个素数,则抽到的素数是7的概率是,故答案为. (2)由题意画树状图如下:AD AE AC AB=00180402-14231414由树状图可知,共有12种等可能的结果,其中抽到的两个素数之和大于等于30的结果有8种,故所求概率本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.25、(1)1;(2)【分析】(1)根据实数的混合运算法则计算即可;(2)根据分式的运算法则计算即可.【详解】解:(1)原式=2+ =1; (2).本题考查了实数的混合运算,以及分式的混合运算,熟练掌握运算法则是解答本题的关键.26、y =1(x ﹣1)1+1.【分析】根据题意设抛物线解析式为y =a (x ﹣1)1+1,代入(3,10)求解即可.【详解】解:根据题意设抛物线解析式为y =a (x ﹣1)1+1,把(3,10)代入得a (3﹣1)1+1=10,解得a =1,所以抛物线解析式为y =1(x ﹣1)1+1.本题考查了抛物线的问题,掌握抛物线的性质以及解析法、待定系数法是解题的关键.82123P ==43x x +-201222()(18--++⨯--11--1442291(1)693x x x x -⋅+-++()()()2334•33x x x x x +-+=+-43x x +=-。

2023—-2024学年上学期九年级期末考试数学试卷

2023—-2024学年上学期九年级期末考试数学试卷

准考证号:__________________姓名:_________(在此卷上答题无效)2023-2024学年第一学期初中毕业班期末考试数学一、选择题(本大题有8小题,每小题4分,共32分.每小题都有四个选项,其中有且只有一个选项正确)1.掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件中,是确定性事件的是A.向上一面的点数是2B.向上一面的点数是奇数C.向上一面的点数小于3D.向上一面的点数小于72.下列方程中,有两个不相等的实数根的是A.x2=0B.x2-3x-1=0C.x2-2x+5=0D.x2+1=03.如图1,△ABC内接于⊙O,直径AD交BC于点P,连接OB.下列角中,等于12∠AOB的是A.∠OABB.∠ACBC.∠CADD.∠OPB4.关于y=(x-2)2-1(x为任意实数)的函数值,下列说法正确的是A.最小值是-1B.最小值是2C.最大值是-1D.最大值是25.某学校图书馆2023年年底有图书5万册,预计到2025年年底增加到8万册,设图书数量的年平均增长率为x,可列方程A.5(1+x)=8B.5(1+2x)=8C.5(1+x)2=8D.5(1+2x)2=86.如图2,直线l是正方形ABCD的一条对称轴,l与AB,CD分别交于点M,N.AN,BC的延长线相交于点P,连接BN.下列三角形中,与△NCP成中心对称的是A.△NCBB.△BMNC.△AMND.△NDA数学试题第1页(共6页)7.某个正六边形螺帽需要拧4圈才能拧紧,小梧用扳手的卡口卡住螺帽,通过转动扳手的手柄来转动螺帽(如图3所示).以此方式把这个螺帽拧紧,他一共需要转动扳手的次数是A.4B.16C.24D.328.某航空公司对某型号飞机进行着陆后的滑行测试.飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是=−32t2+60t,则t的取值范围是A.0≤t≤600B.20≤t≤40C.0≤t≤40D.0≤t≤20二、填空题(本大题有8小题,每小题4分,共32分)9.不透明袋子中只装有2个红球和1个黄球,这些球除颜色外无其他差别.从袋子中随机摸出1个球,摸出红球的概率是_________.10.抛物线y=3(x-1)2+4的对称轴是__________.11.已知x=1是方程x2+mx-3=0的根,则m的值为____________.12.四边形ABCD内接于⊙O,E为CD延长线上一点,如图4所示,则图中与∠ADE相等的角是_________.13.如图5,在△ABC中,AB=AC=5,BC=6,AD是△ABC的角平分线.把△ABD绕点A逆时针旋转90°得到△AEF,点B的对应点是点E,则点D与点F之间的距离是___________.14.在平面直角坐标系xOy中,ABCD的对角线交于点O.若点A的坐标为(-2,3),则点C的坐标为_________.15.为了改良某种农作物的基因,培育更加优良的品种,某研究团队开展试验,对该种农作物的种子进行辐射,使其基因发生某种变异.表一记录了截至目前的试验数据.表一累计获得试验成功的种子数(单位:粒)1468101214累计试验种子数(单位:千粒)15810.512.514.516.5该团队共需要30粒基因发生该种变异的种子,请根据表一的数据,合理估计他们还需要准备用以辐射的种子数(单位:千粒):_________.16.有四组一元二次方程:①x2-4x+3=0和3x2-4x+1=0;②x2-x-6=0和6x2+x-1=0;③x2-4=0和4x2-1=0;④4x2-13x+3=0和3x2-13x+4=0.这四组方程具有共同特征,我们把具有这种特征的一组一元二次方程中的一个称为另一个的“相关方程”.请写出一个有两个不相等实数根但没有“相关方程”的一元二次方程:______________.数学试题第2页(共6页)三、解答题(本大题有9小题,共86分)17.(本题满分8分)解方程x2-5x+2=0.18.(本题满分8分)如图6,四边形ABCD是平行四边形,AC=AD,AE⊥BC,DF⊥AC,垂足分别为E,F.证明AE=DF.19.(本题满分8分)先化简,再求值:(−1)÷2−2m+1,其中=2+1.20.(本题满分8分)如图7,AB与⊙O相切于点A,OB交⊙O于点C,OC=8,AC的长为2π,求BC 的长.数学试题第3页(共6页)某公交公司有一栋4层的立体停车场,第一层供车辆进出使用,第二至四层停车.每层的层高为6m,横向排列30个车位,每个车位宽为3m,各车位有相应号码,如:201表示二层第1个车位.第二至四层每层各有一个升降台,分别在211,316,421,为便于升降台垂直升降,升降台正下方各层对应的车位都留空.每个升降台前方有可在轨道上滑行的转运板(以第三层为例,如图9所示).该系统取车的工作流程如下(以取停在311的车子为例):①转运板接收指令,从升降台316前空载滑行至311前;②转运板进311,托起车,载车出311;③转运板载车滑行至316前;④转运板进316,放车,空载出316,停在316前;⑤升降台垂直送车至一层,系统完成取车.停车位301…停车位311…升降台316…留空321…停车位330转运板滑行区转运板滑行区图9停车场第三层平面示意图升降台升与降的速度相同,转运板空载时的滑行速度为1m/s,载车时的滑行速度是升降台升降速度的2倍.(1)若第四层升降台送车下降的同时,转运板接收指令从421前往401取车,升降台回到第四层40s后转运板恰好载着401的车滑行至升降台前,求转运板载车时的滑行速度;(说明:送至一层的车驶离升降台的时间、转运板进出车位所用的时间均忽略不计)(2)在(1)的条件下,若该系统显示目前第三层没有车辆停放,现该系统将某辆车随机停放在第三层的停车位上,取该车时,升降台已在316待命,求系统按上述工作流程在1分钟内完成取该车的概率.【22题得分情况】正方形的顶点T在某抛物线上,称该正方形为该抛物线的“T悬正方形”.若直线l:y =x+t与“T”是正方形“以T为端点的一边相交,且点T到直线l的距离为2(2-t),则称直线l为该正方形的“T悬割线”.已知抛物线M:y=-(x-1)2+m2-2m+4,其中12≤m<1,A(m,3),B(4-3m,3),以AB为边作正方形ABCD(点D在点A的下方).(1)证明:正方形ABCD是抛物线M的“A悬正方形”;(2)判断正方形ABCD是否还可能是抛物线M的“B悬正方形”,并说明理由;(3)若直线l是正方形ABCD的“A悬割线”,现将抛物线M及正方形ABCD进行相同的平移,是否存在直线l为平移后正方形的“C悬割线”的情形?若存在,请探究抛物线M经过了怎样的平移;若不存在,请说明理由.【23题得分情况】24.(本题满分12分)四边形ABCD是菱形,点O为对角线交点,AD边的垂直平分线交线段OD于点P (P不与O重合),连接PC,以点P为圆心,PC长为半径的圆交直线BC于点E,直线AE与直线CD交于点F,如图10所示.(1)当∠ABC=60°时,求证:直线AB与⊙P相切;(2)当AO=2,AF2+EF2=16时,求∠ABC的度数;(3)在菱形ABCD的边长与内角发生变化的过程中,若点C与E不重合,请探究∠AFC与∠CAF的数量关系.25.(本题满分14分)请阅读下面关于运用跨学科类比进行的一次研究活动的材料:[背景]小梧跟同学提到他家附近在规划开一个超市,有同学问道:“你家附近不是已经有一个A超市了吗?再开一个能吸引顾客吗?“这个问题引起了大家对超市的吸引力展开研究的兴趣. [过程]为了简化问题,同学们首先以“在楼层数相同、同样商品的品质和价格相同、售货服务的品质也大致相同的情况下,影响超市吸引力的主要因素“为主题对该市居民展开随机调查.结果显示:超市的占地面积、住处与超市的距离这两个因素的影响程度显著大于其他因素.大家根据调查进行了总结:①可以把“平均每周到超市购物次数p”作为超市吸引力指标;②占地面积越大吸引力越大;③距离越大吸引力越小.在此次调查所收集到的居民平均每周到各超市购物次数的基础上,同学们进一步调查了相应超市的占地面积s(单位:m2)及其与居民住处的距离r(单位:m),并对p,s,r之间的关系进行研究.一开始,同学们猜想p可能是的正比例函数,但经过检验,发现与实际数据相差较大.这时,小梧提出:“我联想到牛顿万有引力定律,这个定律揭示了两个物体之间的引力大小与各个物体的质量成正比,而与它们之间距离的平方成反比,可以表示为F=B122(G是引力常数),我们是不是可以作个类比,试一下看p与2的关系如何?”.按他的建议,同学们利用调查所得的数据在平面直角坐标系中绘制了p与2对应关系的散点图,如图11所示.根据阅读材料思考:(1)观察图11中散点的分布规律,请用一种函数来合理估计p与2的对应关系,直接写出它的一般形式;(2)为了清晰表示位置,同学们选A超市为原点,分别以正东、正北方向为x轴、y轴正方向建立平面直角坐标系,规定一个单位长度代表1m长,则小悟家的坐标为(400,200).A超市的占地面积为2000m2,规划中的B超市在A超市的正东方向.根据(1)中的对应关系,解决下列问题:①若B超市与A超市距离600m~800m,且对小悟家的吸引力与A超市相同,求B超市占地面积的范围;②小梧家在东西向的百花巷,百花巷横向排列着较为密集的居民楼.现规划B超市开在距A超市300m处,且占地面积最大为490m2,要想与A超市竞争百花巷的居民,该规划是否合适?请说明理由.【25题得分情况】。

江苏省盐城市盐都区2023-2024学年九年级上学期期末数学试题(含答案)

江苏省盐城市盐都区2023-2024学年九年级上学期期末数学试题(含答案)

2023/2024学年度第一学期期末学业质量检测九年级数学试卷注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分。

3.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分)1.下列方程属于一元二次方程的是()A. B. C. D.2.二次函数的顶点坐标是( )A. B. C. D.3.已知的半径为4,点到圆心的距离为4.5,则点与的位置关系是( )A.在圆内B.在圆上C.在圆外D.无法确定4.学校组织才艺表演比赛,前5名获奖.有11位同学参加比赛且他们所得的分数互不相同.某同学知道自己的比赛分数后,要判断自己能否获奖,在这11名同学成绩的统计量中只需知道一个量,它是( )A.众数B.方差C.中位数D.平均数5.已知与分别为方程的两根,则的值等于( )A. B.2C.D.6.如图,点、、在上,,则的度数是( )A. B. C. D.7.如图,下列条件中不能判定的是()A.B. C. D.321x x+=210x x +-=30x -=140x x+-=2(2)3y x =+-(2,3)-(2,3)--(2,3)(2,3)-O P O P O P P P 1x 2x 2230x x +-=12x x +2-32-32A B C O 30ACB ︒∠=AOB ∠30︒40︒60︒65︒ACD ABC △∽△AB ADBC CD=ADC ACB ∠=∠ACD B ∠=∠2AC AD AB=⋅8.设,,是抛物线上的三点,,,的大小关系为( )A. B. C. D.二、填空题(本大题共8小题,每小题3分,共24分)9.在比例尺为的扬州旅游地图上,某条道路的长为,则这条道路实际长________.10.转盘中6个扇形的面积相等,任意转动转盘一次,当转盘停止转动,指针落在扇形中的数小于5的概率是________.11.如图,四边形是的内接四边形,的半径为2,,则的长为________.12.如图,在中,中线、相交于点,,则的长为________.13.科学家发现,蝴蝶的身体长度与它展开的双翅的长度之比是黄金比,已知蝴蝶展开的双翅的长度是,则蝴蝶身体的长度为________(结果保留根号)。

辽宁省沈阳市皇姑区2023-2024学年九年级上学期期末数学试题(含解析)

辽宁省沈阳市皇姑区2023-2024学年九年级上学期期末数学试题(含解析)

....A .2B .45.若x =﹣1是方程x 2+x +m =A .﹣1B .06.如图,反比例函数的图象经过A .120mm B .30mmC .75k y x=A .C .9.如图,正方形ABCD 的对角线作ON ⊥OM ,交CD 于点N A .C .2150216x ⨯=2150150216x +=0c <<0a b c -+12.如图,E是正方形ABCD的边BCABCD AD AB,:三、解答题(本题共8小题,共过程)16.计算(1)计算:0(3)2cos30π--︒(1)请在图中画出路灯灯泡出画法);(2)经测量米,度的长.20.数学活动小组欲测量山坡上一棵大树得大树底端C 的仰角为,测得山坡坡角2OB =BF OP 53︒CBM ∠(1)设点的坐标为,求反比例函数的解析式;(2)若,求直线的解析式.22.问题情境数学活动课上,学习小组进行探究活动,老师给出如下问题:在中,,垂足为,且,点是边上一动点(点不与点连接,过点作交线段于点.各小组在探究过程中提出了以下问题:(1)“智慧小组”提出问题:M (),m n 92AN =MN ABC V CD AB ⊥D AD BD >E AC E DE C CF DE ⊥AD F四边形是正方形,是射线上的动点,点在线段的延长线上,且,连接,将线段绕点顺时针旋转得到,连接,设,四边形的面积为(可等于0).(1)如图①,当点由点运动到点过程中,发现是关于的二次函数,并绘制成如图②所示的图象,抛物线经过原点且顶点为,请根据图象信息,回答下列问题:①正方形的边长为___________(直接填空);②求关于的函数关系式;(2)如图③,当点在线段的延长线上运动时,求关于的函数关系式;(3)若在射线上从下至上依次存在不同位置的两个点,对应的四边形的面积与四边形的面积相等,当时,求四边形的面积.参考答案与解析1.B 【分析】根据左视图是从左边得到的图形进行解答即可.【详解】从左边看,为一个长方形,中间有两条横线,如下图所示:,故选B .【点睛】本题考查了三视图的知识,左视图是从左边看到的视图,要注意长方形被横向分成ABCD E AB F DA AF AE =ED ED E 90︒EG EF BF BG 、、AE x =EFBG y x y ,E A B y x ()24,ABCD y x E AB y x AB 12E E ,1E FBG 2E FBG 122BE BE -=1E FBG【详解】∴,DF AD =∵,,,,,,()4,2A -2AE ∴=4OE =AE CF ∥ AOE COF ∴∽△△C AE OE O CF OF OA ∴==42由折叠与对应易知:∵∴,即又∵x=时,可获得利润最大A A '90EAO AEO ∠+∠=AEO AGD ∠=∠ADG FHE ∠=∠=当∠MDE=90°时,如图2,∴,∵∠DBC=∠C=∠E ,∠BMF=∠∴∠BFM=∠MDE=90°,【点睛】本题考查了勾股定理、直角三角形的性质、折叠的性质、三角形的内角和定理以及155544BM =-=(2)∵∴,∴,∴,MO OE AB OE ⊥⊥AB OP ∥POF ABF V V ∽13AB BF BF OP OF BF OB ===+由(1)知;,,,DCE FBC △∽△∴BF CF CD DE=BF CF = 2CD DE ∴==此时,,,,,,EF CD ∥3BD = 4CD =CD AB ⊥225BC BD CD ∴=+=90B BCD ACD ∠=︒-∠=∠ BDC ∠,,,,,,CF DE ⊥ CD AB ⊥90CDG GDF DFG ∴∠=︒-∠=∠EFG DFG ∴∠=∠90DGF EGF ∠=︒=∠ GF GF =,,,90DEG ∠=︒ 90DEA GEH ∴∠+∠=90DEA EDA ∠+∠= EDA GEH ∴∠=∠EG ED = DAE ∠=,,,,,,设,则,,,90DEG ∠=︒ 90DEA GEH ∴∠+∠=︒90DEA EDA ∠+∠=︒ EDA GEH ∴∠=∠EG ED = DAE GHE ∠=∠=()AAS DAE GEH ∴V V ≌1AE m =14BE m =-122BE BE -= 22BE m ∴=-设,则,,,,在中,令得:在中,令得:1AE n =14BE n =-122BE BE -= 22BE n ∴=-224(2)6AE AB BE n n ∴=+=+-=-24(04)y x x x =-+≤≤x n =y 四边形24(4)y x x x =->6x n =-y 四边形。

河南省南阳市淅川县2023-2024学年九年级上学期期末考试数学试题[答案]

河南省南阳市淅川县2023-2024学年九年级上学期期末考试数学试题[答案]

2023年秋期九年级期终质量评估数学试卷注意事项:1.本试卷分试题卷和答题卡两部分.试题卷共8页,三个大题,满分120分,考试时间100分钟.2.试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题卷上的答案无效.3.答题前,考生务必将本人姓名、考号、考场、座位号填写在答题卡第一面的指定位置上.一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.下列计算正确的是( )A .0=B .+=CD )26-=-2.下列说法错误的是( )A .“水涨船高”是必然事件B .“水中捞月”是不可能事件C .“了解一批节能灯管的使用寿命” 最适合用全面调查D .“调查将发射的气象卫星的零部件质量”最适合用全面调查3.关于x 的一元二次方程232302x x -+=根的情况,下列说法中正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定4.在平面直角坐标系中,将二次函数221y x x =+-的图象向右平移2个单位长度,再向上平移1个单位长度,所得函数的解析式为( )A .()233y x =+-B .()211y x =--C .()231y x -=+D .()213y x =--5.如图,点A 、B 、C 在O e 上,BC OA ∥,连接BO 并延长,交O e 于点D ,连接AC 、DC 、若18A Ð=°,则D Ð的大小为.( )A .18°B .36°C .54°D .68°6.班长邀请A ,B ,C ,D 四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A ,B 两位同学座位相邻的概率是( )A .14B .13C .12D .237.如图,ABC V 与DEF V 是位似图形,点O 是位似中心.若()2,1A -,()3,3B -,DE D 的坐标为( )A .33,2æö-ç÷èøB .33,2æöç÷èøC .3,32æöç÷èøD .3,32æö-ç÷èø8.如图,四边形ABCD 是一张矩形纸片.将其按如图所示的方式折叠:使DA 边落在DC 边上,点A 落在点H 处,折痕为DE ;使CB 边落在CD 边上,点B 落在点G 处,折痕为CF .若矩形HEFG 与原矩形ABCD 相似,1AD =,则CD 的长为( )A 1B 1-C 1D 19.如图,在Rt ABC △中,90ACB Ð=°,10AB =,6BC =.点F 是AB 中点,连接CF ,把线段CF 沿射线BC 方向平移到DE ,点D 在AC 上.则线段CF 在平移过程中扫过区域形成的四边形CFDE 的周长和面积分别是( )A .16,6B .18,18C .16.12D .12,1610.如图,抛物线2y ax bx c =++与x 轴相交于点()()2,0,6,0A B -,与y 轴相交于点C ,小红同学得出了以下结论:①240b ac ->;②40a b +=;③当0y >时,26x -<<;④0a b c ++<.其中正确的个数为( )A .4B .3C .2D .13分,共15分)11x 的取值范围是 .12.如图,在4×4正方形网格中,点A ,B ,C 为网格交点,AD BC ^,垂足为D ,则tan BAD Ð的值为 .13.如图,在ABC V 中,O 是AB 边上的点,以O 为圆心,OB 为半径的O e 与AC 相切于点D ,BD 平分ABC Ð,AD =,12AB =,CD 的长是 .14.如图,在扇形AOB 中,∠AOB=90°,OA=4,以OB 为直径作半圆,圆心为点C ,过点C 作OA 的平行线分别交两弧点D 、E ,则阴影部分的面积为 .15.如图,在直角△ABC 中,∠C =90°,AC =6,BC =8,P 、Q 分别为边BC 、AB 上的两个动点,若要使△APQ 是等腰三角形且△BPQ 是直角三角形,则AQ = .三、解答题(共75分)16(1)(2)()1tan 60sin 451-°-°--(3)解方程:2-+=.x x251017.学校组织七、八年级学生参加了“国家安全知识”测试(满分100分).已知七、八年级各有200人,现从两个年级分别随机抽取10名学生的测试成绩x(单位:分)进行统计:七年级86947984719076839087八年级88769078879375878779整理如下:年级平均数中位数众数方差七年级84a9044.4八年级8487b36.6根据以上信息,回答下列问题:a_______,b=________.(1)填空:=A同学说:“这次测试我得了86分,位于年级中等偏上水平”,由此可判断他是________年级的学生;(2)学校规定测试成绩不低于85分为“优秀”,估计该校这两个年级测试成绩达到“优秀”的学生总人数;(3)你认为哪个年级的学生掌握国家安全知识的总体水平较好?请给出一条理由.18.为建设美好公园社区,增强民众生活幸福感,某社区服务中心在文化活动室墙外安装避阳篷,便于社区居民休憩.如图,在侧面示意图中,遮阳篷AB长为5米,与水平面的夹角为16°,且靠墙端离地高BC为4米,当太阳光线AD与地面CE的夹角为45°时,求阴影CD°»°»°»)的长.(结果精确到0.1米;参考数据:sin160.28,cos160.96,tan160.2919.掷实心球是丰都中考体育考试项目之一,如图1是一名男生投实心球情境,实心球行进路线是一条抛物线,行进高度y(m)与水平距离x(m)之间的函数关系如图2所示、掷出时,起点处高度为1.9m,当水平距离为4m时,实心球行进至最高点3. 5m处.(1)求y 关于x 的函数表达式:(2)根据中考体育考试评分标准(男生版),投掷过程中,实心球从起点到落地点的水平距离大于等于9.7m 时,即可得满分10分,该男生在此项考试中能否得满分,请说明理由.20.如图,锐角ABC V 内接于O e ,射线BE 经过圆心O 并交O e 于点D ,连结AD ,CD ,BC 与AD 的延长线交于点F ,DF 平分CDE Ð.(1)求证:AB AC =.(2)若1tan 2ABD Ð=,O e DF 的长.21.某超市以每件10元的价格购进一种文具,销售时该文具的销售单价不低于进价且不高于19元.经过市场调查发现,该文具的每天销售数量y (件)与销售单价x (元)之间满足一次函数关系,部分数据如下表所示:销售单价x /元…121314…每天销售数量y /件…363432…(1)直接写出y 与x 之间的函数关系式;(2)若该超市每天销售这种文具获利192元,则销售单价为多少元?(3)设销售这种文具每天获利w (元),当销售单价为多少元时,每天获利最大?最大利润是多少元?22.如图,已知抛物线2y x bx c =-++与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点(0,3)C ,且3OC OB =,点M 是抛物线上一点,且位于抛物线对称轴的左侧,过点M 作MN x ∥轴交抛物线于点N .(1)求抛物线的函数关系式;(2)若点M 沿抛物线向下移动,使得89MN ££,求点M 的纵坐标M y 的取值范围;(3)若点P 是抛物线上对称轴右侧任意一点,点P 与点A 的纵坐标的差的绝对值不超过3,请直接写出点P 的横坐标P x 的取值范围.23.我们在没有量角器或三角尺的情况下,用折叠特殊矩形纸片的方法进行如下操作也可以得到几个相似的含有30°角的直角三角形.实践操作第一步:如图①,矩形纸片ABCD 的边AB =ABCD 对折,使点D 与点A 重合,点C 与点B 重合,折痕为EF ,然后展开,EF 与CA 交于点H .第二步:如图②,将矩形纸片ABCD 沿过点C 的直线再次折叠,使CD 落在对角线CA 上,点D 的对应点D ¢恰好与点H 重合,折痕为CG ,将矩形纸片展平,连接GH .问题解决(1)在图②中,sin ACB Ð=______,EG CG=______.(2)在图②中,2CH CG =×______,从图②中选择一条线段填在空白处,并证明你的结论;拓展延伸(3)将上面的矩形纸片ABCD 沿过点C 的直线折叠,点D 的对应点D ¢落在矩形的内部或一边上.设DCD a ¢Ð=,若090a °<£°,连接D A ¢,D A ¢的长度为m ,则m 的取值范围是______.1.D【分析】根据零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算进行计算即可求解.【详解】解:A. )1=,故该选项不正确,不符合题意;B. +=C.=D. )26-=-,故该选项正确,符合题意;故选:D .【点睛】本题考查了零指数幂,二次根式的加法以及二次根式的性质,二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.2.C【分析】本题考查了必然事件的定义,全面调查与抽样调查的意义.一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.直接利用必然事件的定义以及全面调查与抽样调查的意义判断各项即可.【详解】解:A .“水涨船高”是必然事件,故A 选项不符合题意;B .“水中捞月”是不可能事件,故B 选项不符合题意;C .“了解一批节能灯管的使用寿命” 最适合用抽样调查,原说法错误,故C 选项符合题意;D .“调查将发射的气象卫星的零部件质量”最适合用全面调查,故D 选项不符合题意;故选:C .3.C【分析】直接利用一元二次方程根的判别式即可得.【详解】解:232302x x -+=,其中2a =,3b =-,32c =,∴()23Δ342302=--´´=-<,∴方程没有实数根.故选:C .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=¹,若240b ac D =->,则方程有两个不相等的实数根,若240b ac D =-=,则方程有两个相等的实数根,若24<0b ac D =-,则方程没有实数根.4.B【分析】主要考查了函数图象的平移,先将二次函数解析式化为顶点式,再直接运用平移规律“左加右减,上加下减”解答.【详解】将221y x x =+-化为顶点式为:()=+-2y x 12,将二次函数()=+-2y x 12的图象向右平移2个单位长度,再向上平移1个单位长度,所得函数的解析式为()21221y x =+--+,即()211y x =--.故选:B .5.C【分析】本题考查圆周角定理,平行线的性质.利用平行线的性质求出18ACB Ð=°,再利用圆周角定理求出36AOB Ð=°,利用平行线的性质可得36B Ð=°,再证明90DCB Ð=°,进而可得结论.【详解】解:AO BC Q ∥,18A Ð=°,18ACB OAC \Ð=Ð=°,CBO AOB Ð=Ð,236AOB ACB \Ð=Ð=°,36CBO AOB \Ð=Ð=°,BD Q 是直径,90DCB \Ð=°,903654D \Ð=°-°=°,故选:C .6.C【分析】采用树状图法,确定所有可能情况数和满足题意的情况数,最后运用概率公式解答即可.【详解】解:根据题意列树状图如下:由上表可知共有12中可能,满足题意的情况数为6种则A ,B 两位同学座位相邻的概率是61122= .故选C.【点睛】本题主要考查了画树状图求概率,正确画出树状图成为解答本题的关键.7.A【分析】本题主要考查了位似三角形,勾股定理.先求出AB ==据ABC V 与DEF V 是位似图形,点O 为位似中心,可得相似比为3:2DE AB ==,再根据点()2,1A -与点D 为对应点,且两个点在原点的两侧,即可作答.【详解】∵()2,1A -,()3,3B -,∴AB ==∵ABC V 与DEF V 是位似图形,点O 为位似中心,∴ABC DEF ∽△△,点()2,1A -与点D 为对应点,∴相似比为:3:2DE AB ==,∵()2,1A -,点()2,1A -与点D 为对应点,且两个点在原点的两侧,即3232æö-´-=ç÷èø,21332æö´=ç÷ø-è-,∴点D 的坐标为33,2æö-ç÷èø.故选:A .8.C【分析】先根据折叠的性质与矩形性质,求得1DH CG ==,设CD 的长为x ,则2HG x =-,再根据相似多边形性质得出EH HG CD AD =,即121x x -=,求解即可.【详解】解:,由折叠可得:DH AD =,CG BC =,∵矩形ABCD ,∴1AD BC ==,∴1DH CG ==,设CD 的长为x ,则2HG x =-,∵矩形HEFG ,∴1EH =,∵矩形HEFG 与原矩形ABCD 相似,∴EH HG CD AD =,即121x x -=,解得:1x =(负值不符合题意,舍去)∴1CD =,故选:C .【点睛】本题考查矩形的折叠问题,相似多边形的性质,熟练掌握矩形的性质和相似多边形的性质是解题的关键.9.C【分析】先论证四边形CFDE 是平行四边形,再分别求出CF 、CD 、DF ,继而用平行四边形的周长公式和面积公式求解即可.【详解】由平移的性质可知:,DF CE DF CE ∥=,∴四边形CFDE 是平行四边形,在Rt ABC △中,90ACB Ð=°,10AB =,6BC =,∴AC 8===在Rt ABC △中,90ACB Ð=°,10AB =,点F 是AB 中点∴152CF AB ==∵DF CE ∥,点F 是AB 中点∴12AD AF AC AB ==,18090CDF ABC Ð=°-Ð=°,∴点D 是AC 的中点,∴142==CD AC ∵D 是AC 的中点,点F 是AB 中点,∴DF 是Rt ABC △的中位线,∴132DF BC ==∴四边形CFDE 的周长为:()()221356DF CF +=´+=,四边形CFDE 的面积为:3412DF CD ´=´=.故选:C .【点睛】本题考查平移的性质,平行四边形的判定与性质,直角三角形斜边上的中线等于斜边的一半,平行线分线段成比例,三角形中位线定理等知识,推导四边形CFDE 是平行四边形和DF 是Rt ABC △的中位线是解题的关键.10.B【分析】根据二次函数的图像与性质,逐一判断即可.【详解】解:∵抛物线2y ax bx c =++与x 轴交于点A ()2,0-、B ()6,0,∴抛物线对应的一元二次方程20ax bx c ++=有两个不相等的实数根,即24b ac =-△>0,故①正确;对称轴为6222b x a -=-=,整理得4a +b =0,故②正确;由图像可知,当y >0时,即图像在x 轴上方时,x <-2或x >6,故③错误,由图像可知,当x =1时,0y a b c =++<,故④正确.∴正确的有①②④,故选:B .【点睛】本题考查二次函数的性质与一元二次方程的关系,熟练掌握相关知识是解题的关键.11.5x ³-且0x ¹##0x ¹且5x ³-【分析】根据分母不为零,二次根式的被开方数是非负数,列出不等式计算即可.【详解】∵有意义,∴50x +³且0x ¹,∴5x ³-且0x ¹,故答案为:5x ³-且0x ¹.【点睛】本题考查了分母不为零,二次根式的被开方数是非负数,熟练掌握二次根式和分式有意义的条件是解题的关键.12.34【分析】本题考查了锐角三角函数的定义以及勾股定理,解题的关键熟记三角函数的定义并灵活运用.先求出BAD CBE Ð=Ð,然后利用利用tan tan CE BAD CBE BEÐÐ==解题即可.【详解】解:如图,∵AD BC ^,∴90BAD ABC Ð+Ð=°,又∵90CBE ABC Ð+Ð=°,∴BAD CBE Ð=Ð,∴3tan tan 4CE BAD CBE BE ÐÐ===,故答案为:34.13.【分析】本题考查了切线的性质,解直角三角形,平行线的判定与性质等知识,根据相切可得90ADO Ð=°,再根据特殊角的正切值可得30A Ð=°,即可得60AOD Ð=°,再证明OD BC ∥,即可得90C ADO Ð=Ð=°,1302CBD ABC Ð=Ð=°,问题随之得解.【详解】O Qe 与AC 相切于点D ,\^AC OD ,90ADO \Ð=°,AD =Q ,tan OD A AD \==,30A \Ð=°,即60AOD Ð=°,BD Q 平分ABC Ð,OBD CBD \Ð=Ð,OB OD =Q ,OBD ODB \Ð=Ð,ODB CBD \Ð=Ð,OD BC \∥,90C ADO \Ð=Ð=°,60ABC \Ð=°,即1302CBD ABC Ð=Ð=°,∵30A Ð=°\162BC AB ==,∵30CBD Ð=°,tan 306CD BC \=×°==14.53π﹣【分析】根据题意和图形,作出合适的辅助线,即可求得阴影部分的面积.【详解】解:连接OE ,如图,∵CE ∥OA ,∴∠BCE=90°,∵OE=4,OC=2,∴∴∠CEO=30°,∠BOE=60°,∴S 阴影部分=S 扇形BOE ﹣S △OCE ﹣S 扇形BCD =2604360p ´´ ﹣12 ﹣2902360p ´´=53π﹣故答案为53π﹣【点睛】本题考查扇形面积的计算、等边三角形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.15.154或307【分析】分两种情形分别求解:①如图1中,当AQ=PQ,∠QPB=90°时,②当AQ=PQ,∠PQB=90°时;由相似三角形的性质列比例式求解即可.【详解】解:∵∠C=90°,AC=6,BC=8,∴10AB==,①如图1中,当AQ=PQ,∠QPB=90°时,设AQ=PQ=x,∵PQ∥AC,∴△BPQ∽△BCA,∴BQ PQ BA AC=,∴10106x x-=,∴x=154,∴AQ=154.②当AQ=PQ,∠PQB=90°时,如图2,设AQ=PQ=y.∵∠PQB=∠C=90°,∠B=∠B,∴△BQP∽△BCA,∴PQ BQ AC BC=,∴1068y y-=,∴y =307.综上所述,满足条件的AQ 的值为154或307.【点睛】本题考查勾股定理、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.16.(1)(2)(3),2x =【分析】本题考查了二次根式的乘除运算,含三角函数的运算,解一元二次方程等知识,(1)根据二次根式的乘除运算法则计算即可;(2)代入特殊角的三角函数值,再计算即可;(3【详解】(1==(2()1tan 60sin 451-°-°--)11-=+--1=1=+;(3)22510x x -+=,∵2a =,=5b -,1c =,∴()22Δ4542117b ac =-=--´´=,∴x =∴1x 17.(1)85,87,七;(2)220(3)八年级,理由见解析【分析】(1)根据中位数和众数的定义即可求出答案;(2)分别求出七、八年级优秀的比例,再乘以总人数即可;(3)两组数据的平均数相同,通过方差的大小直接比较即可.【详解】(1)解:把七年级10名学生的测试成绩排好顺序为:71,76,79,83,84,86,87,90,90,94,根据中位数的定义可知,该组数据的中位数为8486852a +==,八年级10名学生的成绩中87分的最多有3人,所以众数87b =,A 同学得了86分大于85分,位于年级中等偏上水平,由此可判断他是七年级的学生;故答案为:85,87,七;(2)562002002201010´+´=(人),答:该校这两个年级测试成绩达到“优秀”的学生总人数为220人;(3)我认为八年级的学生掌握国家安全知识的总体水平较好,理由:因为七、八年级测试成绩的平均数相等,八年级测试成绩的方差小于七年级测试成绩的方差,所以八年级的学生掌握防震减灾科普知识的总体水平较好.【点睛】本题考查中位数、众数、方差的意义和计算方法以及用样本估计总体,理解各个概念的内涵和计算方法是解题的关键.18.2.2米【分析】过点A 作AG BC ^于点G ,AF CE ^于点F ,则四边形AFCG 是矩形,在Rt ABG △中,求得,BG AG ,进而求得,,CG AF DF ,根据CD CF DF =-,即可求解.【详解】解:如图所示,过点A 作AG BC ^于点G ,AF CE ^于点F ,则四边形AFCG 是矩形,依题意, 16BAG Ð=°,5AB =(米)在Rt ABG △中,sin 5sin1650.28 1.4GB AB BAG =´Ð=´°»´=(米),cos1650.96 4.8AG AB =´°»´=(米),则 4.8CF AG ==(米)∵4BC =(米)∴4 1.4 2.6AF CG BC BG ==-=-=(米)∵45ADF Ð=°,∴ 2.6DF AF ==(米)∴ 4.8 2.6 2.2CD CF DF =-=-=(米).【点睛】本题考查了解直角三角形的应用,添加辅助线构造直角三角形是解题的关键.19.(1)2010819...y x x =-++(2)该男生在此项考试中能得满分.【分析】(1)已知顶点坐标为(4,3.5),设成顶点式2435().y a x =-+,将(0,1.9)代入求出a 的值,即可求出函数表达式.(2)根据(1)中的表达式,求出0y =时x 的值,即D 点的坐标,则可知OD 的长,再与9.7作比较,即可判断是否得满分.【详解】(1)设2435().y a x =-+将(0,1.9)代入得163519..a +=解得0.1a =-201435.().y x \=--+2010819...x x =-++(2)当0y =时,20108190...x x -++=2x4x ===14240x x ==<(舍去)257324935..,=<Q57.>497.\+>∴该男生在此项考试中能得满分.【点睛】本题主要考查了求二次函数表达式,及二次函数的实际应用,熟练掌握求二次函数表达式式是解题的关键.20.(1)见解析(2)6【分析】(1)根据圆内接四边形的性质可得CDF ABC Ð=Ð,再结合圆周角定理以及角平分线的性质可得A ABC CB =Ð∠,问题即可得证;(2)先得出90BAD Ð=°,再结合1tan 2AD ABD ABÐ==,勾股定理可得2AD =,4AB =;结合(1)证明BAD FAB V V ∽,即可求出8AF =,问题随之得解.【详解】(1)证明:Q 四边形ABCD 为O e 的内接四边形,CDF ABC \Ð=Ð,EDF ADB Ð=ÐQ ,ADB ACB Ð=Ð,EDF ACB \Ð=Ð,DF Q 平分CDE Ð,CDF EDF \Ð=Ð,ABC ACB \Ð=Ð,AB AC \=;(2)由题意可得,BD 是O e 的直径,90BAD \Ð=°,1tan 2AD ABD AB \Ð==,即12AD AB =,又O QeBD \=又∵222BD AD BA =+,2AD \=,4AB =,由 (1)可知,ADB ACB ABC Ð=Ð=Ð,BAD FAB Ð=Ð,BAD FAB \V V ∽,\AB AD AF AB =,\424AF =,8AF \=,826DF AF AD \=-=-=,DF \的长为6.【点睛】本题主要考查了圆内接四边形的性质,三角函数,圆周角定理,相似三角形的判定与性质,等角对等边,勾股定理等知识,熟练掌握圆内接四边形的性质,相似三角形的判定与性质是解答本题的关键.21.(1)260y x =-+(2)18元(3)19元,198元【分析】(1)利用待定系数法求解即可;(2)根据题意可列出关于x 的一元二次方程,解出x 的值,结合x 的取值范围求解即可;(3)根据题意可列出w 与x 的函数关系式,再根据二次函数的性质求解即可.【详解】(1)解:设y 与x 之间的函数关系式为()0y kx b k =+¹,由所给表格可知:36123613k b k b=+ìí=+î,解得:260k b =-ìí=î,故y 与x 的函数关系式为260y x =-+;(2)解:根据题意得:()()10260192x x --+=,解得:x x 121822==,.又∵1019x ££,∴18x =,答:销售单价应为18元.(3)解:()()()210260220200w x x x =--+=--+,∵20a =-<,∴抛物线开口向下.∵对称轴为直线20x =,∴当1019x ££时,w 随x 的增大而增大,∴当19x =时,w 有最大值,max 198W =.答:当销售单价为19元时,每天获利最大,最大利润是198元.【点睛】本题考查一次函数、二次函数的实际应用,一元二次方程的实际应用.理解题意,找出等量关系,列出等式是解题关键.22.(1)223y x x =--+(2)65124M y -££-(3)01p x ££-【分析】本题考查二次函数的图象及性质、待定系数法求二次函数解析式,熟练掌握二次函数的图象及性质,数形结合以及分类讨论思想是解题的关键.(1)用待定系数法求函数的解析式即可;(2)由抛物线的对称轴为直线=1x -,89MN ££,可得点N 的横坐标的取值范围为94112N x -££-,即732N x ££,由于当732N x ££时,y 随x 的增大而减小,求出72x =时,27765()23224y =--´+=-,当3x =时,2323312y =--´+=-.最后求解即可;(3)将3y =代入223y x x =--+得:2323x x =--+,解得:10x =,22x =-,将=3y -代入223y x x =--+得:2323x x -=--+,解得:1211x x =--=-+P x 的取值即可.【详解】(1)解: (0,3)C Q ,3OC \=.又3OC OB =Q ,1OB =∴,(1,0)B \.(1,0)B Q ,(0,3)C 为抛物线2y x bx c =-++上的点,\将(1,0)B ,(0,3)C 代入,得103b c c -++=ìí=î,解得23b c =-ìí=î,\抛物线的解析式为223y x x =--+.(2)Q 抛物线的对称轴为直线=1x -,89MN ££,\点N 的横坐标的取值范围为94112N x -££-,即732N x ££,当732N x ££时,y 随x 的增大而减小,当72x =时,27765()23224y =--´+=-,当3x =时,2323312y =--´+=-.\点N 的纵坐标N y 的取值范围为65124N y -££-.M N y y =Q ,\点M 的纵坐标M y 的取值范围为65124M y -££-.(3)Q 点P 与点A 的纵坐标的差的绝对值不超过3,\将3y =代入223y x x =--+得:2323x x =--+,解得:10x =,22x =-,将=3y -代入223y x x =--+得:2323x x -=--+,解得:1211x x =-=-P \点横坐标P x 的取值范围是:12P x -££-或01P x ££-+Q 点P 是抛物线上对称轴右侧任意一点,P \点横坐标P x 的取值范围是: 01P x ££-23.(1)12,14;(2)AE (答案不唯一),证明见解析;(33m £<【分析】(1)根据矩形的性质,结合折叠知识,得出HC DC ==AEH CFH V V ≌,得出AH CH ==,得出AC =sin ACB Ð;设DG GH x ==,则32GE x =-,在Rt GEH V 中,根据勾股定理,列出关于x 的方程,解方程得出x 的值,求出,GE CG ,即可得出答案;(2)根据1sin 2ACB Ð=,得出30ACB Ð=°,根据90DCB Ð=°,得出60DCA Ð=°,根据折叠得出1302DCG GCH DCH Ð=Ð=Ð=°,即可得出GCH HCF Ð=Ð,从而可以证明GCH HCF V V ∽,根据相似三角形的性质,即可得出结论;(3)先根据折叠确定点D ¢的轨迹,然后根据其轨迹找出D A ¢的最大值和最小值,即可确定m 的取值范围.【详解】解:(1)∵四边形ABCD 为矩形,∴DC AB ==,90ADC Ð=°,∵点D 的对应点D ¢恰好与点H 重合,∴HC DC ==∵矩形纸片ABCD 对折,使点D 与点A 重合,点C 与点B 重合,折痕为EF ,然后展开,EF 与CA 交于点H ,∴AE CF =,90AEH CFH Ð=Ð=°,AHE CHF Ð=Ð,∴AEH CFH V V ≌,∴AH CH ==,12EH HF EF ===即AC =∴1sin 2AB ACB AC Ð===;在Rt ACD △中,3AD ===,根据折叠可知,DG GH =,1322DE AE AD ===,设DG GH x ==,32GE x =-,在Rt GEH V 中,222GH GE EH =+,即22232x x æö=-+ç÷èø,解得:1x =,∴31122GE =-=,2CG ===,∴11224EG CG ==;故答案为:12;14.(2)∵1sin 2ACB Ð=,∴30ACB Ð=°,∵90DCB Ð=°,∴903060DCA Ð=°-°=°,根据折叠可知,1302DCG GCH DCH Ð=Ð=Ð=°,∴GCH HCF Ð=Ð,∵90GHC HFC Ð=Ð=°,∴GCH HCF V V ∽,∴CG CH CH CF=,即2CH CG CF =×,∵CF BF AE DE ===,∴空白处可以填AE 或CF 或BF 或DE .故答案为:AE 或CF 或BF 或DE (填其中任意一条即可).(3)∵在将上面的矩形纸片ABCD 沿过点C 的直线折叠,点D 的对应点D ¢在以点C 为圆心,以CD 为半径的圆上,∴当点D ¢在AC 上时,D A ¢最小,即D A ¢的最小值为AH ,∴m ³,∵点D ¢落在矩形的内部或一边上,∴当点D ¢在点D 时,D A ¢最大,∵090a °<£°,∴D A ¢最大无法取到最大值3,m<,∴3综上分析可知,m3£<.m3£<.m【点睛】本题主要考查了矩形的折叠问题,熟练掌握矩形的性质、三角函数的定义、三角形全等的判定和性质,三角形相似的判定和性质,勾股定理的应用,根据折叠得出D¢的轨迹,是解题的关键.。

黑龙江哈尔滨市香坊区2023-2024学年九年级上学期期末数学试题(含答案)

黑龙江哈尔滨市香坊区2023-2024学年九年级上学期期末数学试题(含答案)

香坊区2023—2024学年度上学期教育质量综合评价学业发展水平监测九年级数学学科试卷考生须知:1.本试卷满分为120分,考试时间为120分钟。

2.答题前,考生先将自己的“姓名”、“考场”、“座位号”在答题卡上填写清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸上、试题纸上答题无效。

4.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工吴波、字迹清楚。

5.保证卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀。

第Ⅰ卷选择题(共30分)(涂卡)一、选择题(每题3分,共计30分)1.若点是反比例函数图象上一点,则常数的值为()A.3B.C. D.2.下列图形中,只是中心对称图形的是()A.B. C. D.3.将抛物线向右平移3个单位,再向上平移4个单位,得到的抛物线是()A. B.C. D.4.如图是用5个相同的立方体搭成的几何体,其俯视图是()A. B. C. D.5.在中,,,,则的值是()A.5C.46.在一个不透明的袋子中有2个红球,3个绿球和4个蓝球,它们只有颜色上的区别,若从袋子里随机取出一()1,3A ()0ky k x=≠k 3-3232-2y x =()234y x =-+()234y x =++()234y x =+-()234y x =--Rt ABC △90C ∠=︒2BC =3sin 4A =AC球,则取出这个球是绿球的概率为()A.B.C.D.7.如图,为钝角三角形,将绕点按逆时针方向旋转得到,连接,若,则的度数为()A. B. C. D.8.如图,四边形内接于,、为对角线,经过圆心,若,则的度数为()A. B. C. D.9.如图,已知,,则下列比例中错误的是()A.B.C.D.10.如图,抛物线与轴交于点,其对称轴为直线,结合图象给出下列结论:①;②;③;④其中正确的结论有()25151349ABC △ABC △A 120︒AB C ''△BB 'AC BB ''P CAB '∠45︒60︒70︒90︒ABCD O e AC BD BD O 40BAC ∠=︒DBC ∠40︒50︒60︒70︒DEBC P EF AB P EF CEAB CA=CE CFCA CB=DE AEBC EC=AD BFAB BC=()20y ax bx c a =++≠x ()4,01x =0abc <240b ac ->20a b +=420a b c -+=A.1个B.2个C.3个D.4个第Ⅱ卷非选择题(共90分)二、填空题(每题3分,共计30分)11.在平面直角坐标系中,点关于原点对称的点的坐标为________.12.已知二次函数的顶点坐标为________.13.若点,在反比例函数的图象上,则,的大小关系用“<”连接的结果为________.14.如图,设在小孔口前处有一支长的蜡烛,经小孔形成的像,恰好照在距小孔后面处的屏幕上,则像的长________.15.如图,是的切线,切点为,的延长线交于点,若,则的度数为________.16.如图,是操场上直立的一个旗杆,旗杆上有一点,用测角仪(测角仪的高度忽略不计)测得地面上的点到点的仰角,到点的仰角,若米,则旗杆的高度________米.17.某学习小组由1名男生和3名女生组成,在一次合作学习中,若随机抽取2保同学汇报展示,则抽到1名()2,3A -B ()224y x =-+()1,A a -()2,B b ()0ky k x=<a b O 24cm 21cm AB AB O A B ''O 16cm A B ''cm PA O e A PO O e B 40P ∠=︒B ∠AC AC B D B 45BDC ∠=︒A 60ADC ∠=︒3BC =AC =男生和1名女生的概率为________.18.一个扇形的圆心角为,弧长为,则此扇形的面积是________.19.在矩形中,点在直线上,,若,,则的正切值为________.20.如图1,在中,,是上一点,过点作交于,将绕点顺时针旋转到图2的位置,若,,则线段的长为________.图1图2三、解答题(共计60分)21.(本题7分)先化简,再求代数式的值,其中.22.(本题7分)如图所示,在平面直角坐标系中,为坐标原点,的各顶点坐标分别为,,.(1)画出关于原点中心对称的图形;(2)将绕点顺时针旋转得到,请画出;120︒4cm πABCD E BC 2BE CE =2AB =3AD =DAE ∠Rt ABC △90ABC ∠=︒D AB D DEBC P AC E ADE△A 54BD CE =8AB =BC 2242x x x x x ⎛⎫++÷- ⎪⎝⎭tan 602tan 45x =︒+︒O ABC △()1,1A -()2,3B -()3,2C -ABC △111A B C △ABC △C 90︒22A B C △22A B C △(3)连接并直接写出线段的长.23.(本题8分)如图,某座山的主峰观景平台高450米,登山者需由山底处先步行300米到达处,再由处乘坐登山缆车到达观景平台处.已知点,,,,,在同一平面内,,于,山坡的坡角为,缆车行驶路线与水平面的夹角为(换乘登山缆车的时间忽略不计).(1)求登山缆车上升的高度;(2)若小明步行速度为,登山缆车的速度为,求小明从山底处到达山顶处大约需要多少分钟(结果精确到).(参考数据:,,)24.(本题8分)如图,、、都是的半径,.(1)求证:;(2)若,,求的半径.25.(本题10分)把边长为的正方形硬纸板(如图1),在四个顶点处分别剪掉一个小正方形,折成一个长方体形的无盖盒子(如图2),折纸厚度忽略不计.21B A 21B A A B B D A B C D E F 90DFA ∠=︒BE DF ⊥E AB 30︒BD 53︒DE 30m /min 60m /min A D 0.1min sin 530.80︒≈cos530.60︒≈tan 53 1.33︒≈OA OB OC O e 2ACB BAC ∠=∠2AOB BOC ∠=∠8AB=BC =O e 44cm图1图2(1)要使折成的盒子的底面积为,剪掉的正方形边长应是多少厘米?(2)折成的长方体盒子侧面积(四个侧面的面积之和)有没有最大值?如果没有,说明理由:如果有,求出这个最大值,并求出此时剪掉的正方形边长.26.(本题10分)菱形中,对角线、相交于点,,点为上一点,点为上一点,连接,将线段绕点顺时针旋转得到对应线段,连接.图1图2图3图4(1)当点与点重合时:①如图1,点落在对角线上,则线段、之间的数量关系为________;②如图2,点不落在对角线上,则①问中结论是否成立,为什么?(2)当点与点不重合时:①如图3,点不落在对角线上,则(1)问中结论,________;(填“成立”或“不成立”)②如图4,在①的条件下,延长交于点,交于点,若,,,求线段的长.27.(本题10分)如图,在平面直角坐标系中,点为坐标原点,抛物线交轴负半轴于点,交轴正半轴于点,交轴于点,直线经过点,并抛物线于点.2576cm ABCD AC BD O 60ABC ∠=︒F BO E AD EF FE F 60︒FG DG A E G BD GF GD G BD A E G BD FG CD M OC N 2DF BF =1ON =:5:8CM DE =MN O 23y ax bx =+-x A x ()3,0B y C 112y x =+A D图1图2图3(1)如图1,求抛物线解析式;(2)如图2,为抛物线第四象限上一点,连接、,设点的横坐标为,的面积为,求与之间的函数关系式,并直接写出自变量的取值范围;(3)如图3,在(2)的条件下,过点作交轴于点,垂足为点,为抛物线第二象限上一点,连接,,过点作轴交于点,若,求的值及点坐标.P PA PB P PAB △S S P PH AD ⊥y F H G FG 135PAB GFO ∠+∠=︒P PE x ⊥AD E :4:5HE DE =S G香坊区2023-2024学年度九年级数学参考答案一、选择题:序号12345678910答案ADABDCDBCC二、填空题:三、解答题:21.解:原式………………………………………………1分…………………………………………1分……………………………………………………………………1分∵……………………2分∴原式………………………………2分22.(1)画图3分(2)画图3分(3)分2222422x x x x x x ⎛⎫++=÷- ⎪⎝⎭2242x x x x +-=÷22(2)(2)x x x x x +=⋅+-22x =-tan 602tan 45212x =+=+⨯=︒︒22x ====-21B A =23.(1)解:如图,过点作于,∴∵,∴,∵,∴四边形是矩形,…………………………1分在中,,,,∴,……………………………………1分∵∴………………………………1分答:登山缆车上升的高度;………………………………1分(2)解:在中,,,,………………………………1分∴从山底处到达山顶处大约需要:………………………………2分答:从山底处到达山顶处大约需要.…………………………1分24.(1)证明:∵,B BC AF ⊥C 90BCF ∠=︒BE DF ⊥90BEF ∠=︒90DFA ∠=︒BEFC Rt ABC △90ACB ∠=︒30A ∠=︒300m AB =1150m 2EF BC AB ===450mDF =450150300m DE DF EF =-=-=300m DE =Rt BDE △90DEB ∠=︒53DBE ∠=︒300DE =300375m sin 530.8DE BD ===︒A D 30037516.2516.3min 3060+=≈A D 16.3min »»AB AB =∴……………………1分∵,∴,………………………………1分∵∴……………………………………1分∴………………………………1分(2)解:∵,作半径于,交圆于点,连接,∴弧弧,,∴,∴,∵,∴,∵,………………………………1分∴中,……………………1分设圆的半径,∴,∴中,,∴,…………………………1分解得,∴的半径为5………………………………………………1分2AOB ACB ∠=∠»»BCBC =2BOC BAC ∠=∠2ACB BAC∠=∠BOC ACB ∠=∠AOB BOC ∠=∠8AB =OM AB ⊥D O M BM AM =BM 4AD BD ==AOM BOM ∠=∠2AOB BOM ∠=∠2AOB BOC ∠=∠BOM BOC ∠=∠BC =BM BC ==Rt BDM △2DM ===O OM OB r ==2OD OM DM r =-=-Rt BOD △222OB OD BD =+()22224r r =-+5r =O e25.解:(1)设剪掉的正方形的边长为.则,……………………………………2分即,解得(不合题意,舍去),…………………………1分.…………………………………………1分∴剪掉的正方形的边长为;………………………………1分(2)侧面积有最大值.设剪掉的小正方形的边长为,盒子的侧面积为,则与的函数关系为:,即,……………………1分即,………………………………1分∵二次项系数为,自变量的取值范围为:…………………………1分∴当时,有最大值,.………………………………1分即当剪掉的正方形的边长为时,长方形盒子的侧面积最大为.……………………1分26.答案:(1)①………………………………2分②仍成立,理由如下:如图连接、,∵为菱形,∴,,∴为等边三角形,∴,∴,,∵,,∴为等边三角形,…………………………1分∴,,∴,∴,…………1分∴,∵为菱形,∴,平分,∴,∴,∴,又∵,,∴,∴,又∵,∴……1分(2)①成立………………1分②连接,,过点作于点,过做于点,∴,,∵,,∴为等边三角形,∵菱形,∴,,,,,∴,设,,,,,在中,,∴,在中,,∴,∴,∴,,cm x ()2442576x -=2212x -=±134x =210x =10cm cmt 2cm y y ()4442y t t =-28176y t t =-+()2811968y t =--+80-<022t <<11t =y 968y =最大11cm 2968cm GF GD =GF GD =CG AG ABCD AB BC AD CD ===60ABC ∠=︒ABC △AB AC =AC CD =60BAC ∠=︒AF FG =60AFG ∠=︒AFG △60FAG ∠=︒AF AG FG ==BAF CAG ∠=∠ABF ACG ≅△△30ABO ACG ∠=∠=︒ABCD AB CD P AC BCD ∠60ACD BAC ∠=∠=︒603030GCD ACD ACG ∠=∠-∠=︒-︒=︒ACG DCG ∠=∠AC CD =CG CG =ACG DCG ≅△△GD GA =AG GF =GF GD =AF EG G GT OD ⊥T M MH OC ⊥H 90FTG ∠=︒90MHC OHM ∠=∠=︒AF FG =60AFG ∠=︒AFG △ABCD OB OD =OA OC =30ABO CBO ∠=∠=︒30ADO CDO ∠=∠=︒AC BD ⊥90BOC BOA ∠=∠=︒2BF a =24DF BF a ==6BD a =3OB OD a ==OF a =ABO △tan 30AO OB︒=tan 30AO OB =⨯︒=AOF △tan AO AFO OF ∠===60AFO ∠=︒EFG AFO ∠=∠AFE DFG ∠=∠18090FAD AFD ADF ∠=︒-∠-∠=︒∴,,∴,……………………1分∴,,,∴,∴,∴,,∴,∴,∴,∴,∴,………………………………1分设,则,,,∴,,,,,在中,,,在中,.…………1分在中,,∴分27.(1)∵直线经过点,当时,,∴∵抛物线经过点、两点∴……………………1分解得:∴抛物线解析式为………………………………1分(2)过点作轴,垂足为点90FAD FTG ∠=∠=︒FE FG =FAE FTG ≅△△FA FT =AE TG =9030FAO AFO ∠=︒-∠=︒22AF FO a ==2FT a =OF OT a ==90BOC BTG ∠=∠=︒OC GT P FON FTG :△△12FO ON FT TG ==2TG =2AE TG ==5CM k =8DE k =82AD k =+41AO k CO =+=4CN k =)41FO k =+1522CH CM k ==32HN k =MH =NMH △tan 32HNM ∠==HNM FNO ∠=∠FNO △tan OF FNO ON∠==1k =NMH △MN ==MN =112y x =+A 0y =2x =-()2,0A -23y ax bx =+-()2,0A -()3,0B 04230933a b a b =--⎧⎨=+-⎩1212a b ⎧=⎪⎪⎨⎪=-⎪⎩211322y x x =--P PK x ⊥K∵,∴∵,∴,∴…………………………1分∵点在为抛物线第四象限上,∴设,∴∴即:………………………………1分………………………………1分(3)∵在抛物线上,设∵在直线上,∴解得:,(舍),∴…………………………1分()2,0A -2AO =()3,0B 3BO =235AB =+=P P 211,322P t t t ⎛⎫-- ⎪⎝⎭211322PK t t =-++21111532222S AB PK t t ⎛⎫=⋅=⨯⨯-++ ⎪⎝⎭25515442S t t =-++()03t <<D 211322y x x =--211,322D m m m ⎛⎫-- ⎪⎝⎭D 112y x =+211131222m m m --=+14m =22m =-()4,3D∵直线交轴于点,当时,,∴,∴过点作,过点作,垂足分别为、∴∵,∴设,∴,∴∴设,∴,,∴,∵轴,在直线上,∴∴∴∵,,∴∴,∴解得:,(舍)………………………………1分∴……………………………………1分112y x =+y L 0x =1y =1LO =1tan 2LAO ∠=H HM PE ⊥D DN PE ⊥M N 90HME N ∠=∠=︒PH AD ⊥90PHE ∠=︒EHM α∠=90MHP α∠=︒-HPM LAO α∠=∠=1tan tan tan 2LAO EHM HPM ∠=∠=∠=EM k =2HM k =4PM k =25HM PE =PE y P E AD 1,12E t t ⎛⎫+ ⎪⎝⎭2211111342222PE t t t t t ⎛⎫=+---=-++ ⎪⎝⎭221285555HM PE t t ==-++4DN t=-HEM NED ∠=∠HME N ∠=∠HEM DEN:△△HE HM DE DN=2128455554t t t -++=-12t =24t =255155442S t t =-++=∴∴,,∴∴,∵,∴∵∴,∴延长交轴于点,过点作∴∵∴∴,∴过点作轴,∴,,∴在中,在中,设,∴,∴,∴∴,∴,∴…………………………1分∵,∴解析式为:∵在抛物线上,设∵在上,∴解得:,(舍)∴…………………………………………1分(不同解法请按相应标准给分)()2,2P -2PK =()224AK =--=1tan tan 2PK PAB LAO AK ∠===∠PAB LAO ∠=∠LAO LFH ∠=∠PAB LFH ∠=∠135PAB GFO ∠+∠=︒135LFH GFO ∠+∠=︒135GFP ∠=︒GF x T T TQ FP⊥45TFQ ∠=︒90LOA FHL ∠=∠=︒LAO LFH∠=∠1tan tan 2LAO LFH ∠=∠=tan 2tan FRO TRQ ∠==∠P PJ y ⊥2PJ =2OJ =4JF =422FO =-=Rt FOR △FR =Rt RQT △RQ a =2TQ FQ a ==RT =2RF a a a =-=a =5RT ==156OT =+=()6,0T ()0,2F FT 123y x =-+G 211,322G n n n ⎛⎫-- ⎪⎝⎭G FT 211132223n n n --=-+13n =-2103n =()3,3G -。

江苏省徐州市2023-2024学年九年级上学期期末数学试题(含答案)

江苏省徐州市2023-2024学年九年级上学期期末数学试题(含答案)

2023-2024学年度第一学期期末抽测九年级数学试题一、选择题(每题3分,共24分)1.若⊙O的半径为8cm,点P到圆心的距离为7cm,则点P与⊙O的位置关系()A.P在⊙O内B.P在⊙O上C.P在⊙O外D.无法确定2.若△ABC∽△A’B’C’,且相似比为1:2,则△ABC与△A’B’C’的面积比为()A.1:2 B.1:4 C.2:1 D.4:13.已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据为A样本的每个数据都加2,则A,B两个样本具有相同的()A.平均数B.众数C.中位数D.方差4.若关于x的一元二次方程x²-3x+c=0有两个相等的实数根,则实数c的值为()A.―94B.94C.-9 D.95.在Rt△ABC中,∠C=90°,AC=4,BC=5,那么sinB的值是()A.43B.34C.45D.356.将函数y=x²的图象向右平移1个单位长度,所得抛物线对应的函数表达式为()A.y=(x-1)² B.y=x²-1 C.y=(x+1)² D.y=x²+17.二次函数y=ax²+bx+c的图象如图所示,下列结论错误的是()A.y有最小值B.当-1<x<2时,y<0 C.a+b+c>0 D.当x<-1时,y随x的增大而减小8.如图,A,B,C为圆形纸片圆周上的点,AC为直径,将该纸片沿AB折叠,使AB与AC交于点D,若BC 的度数为35°,则AD的度数为()A.108° B.110° C.120° D.145°二、填空题:(每题4分,共32分)9.若x2=y3,则xy=.10.两次抛掷同一枚质地均匀的硬币,均出现正面向上的概率是.11.二次函数y=(x-2)²+1的图象的顶点坐标是.12.《周髀算经》中记载了“偃矩以望高”的方法.“矩”指两条边呈直角的曲尺ABC,“偃矩以望高”的意思是用仰立放的“矩”可测量物体的高度,如图点A,B,Q在同一水平线上,∠ABC和∠AQP均为直角,AP与BC交于点D,若AB=40cm,BD=20cm,AQ=12m,则树高PQ= m.13.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若母线长l为3cm,扇形的圆心角θ为120°,则圆锥的底面半径r为cm.14.某招聘考试分笔试和面试两种,小明笔试成绩90分,面试成绩为80分,若笔试成绩、面试成绩按3:2计算,则小明的平均成绩为分.15.如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE-∠COD= °.16.如图,点E在正方形ABCD的对角线AC上,EF⊥AB于点F,连接DE并延长,交边BC于点M,交边AB 的延长线于点G,若AF=2,FB=1,则MG= .三、解答题:(本大题共9小题,共84分)17.(10分)(1)计算:20230―(―1)2024+12―tan60°(2)解方程:3x2―2x―1=0 18.(8分)如图,将下列4张扑克牌洗匀后数字朝下放在桌面上.(1)从中随机抽取1张,抽得扑克牌上的数字为2的概率为;(2)从中随机抽取2张,用列表或画树状图的方法,求抽得2张扑克牌上的数字相同的概率.19.(8分)某校舞蹈队共16名学生,将其身高(单位:cm)数据统计如下:A.16名学生身高:162,163,163,165,166,166,166,167,167,168,169,169,171,173,173,176;B.16名学生身高的平均数、中位数、众数:平均数中位数众数167.75m n(1)m= ,n= ;(2)对于不同组的学生,如果一组学生身高的方差越小,则认为改组舞台呈现效果越好,据此推断,下列两组学生中,舞台呈现效果更好的是;(填“甲组”后“乙组”)甲组身高163166166167167乙组身高162163165166176(3)该舞蹈队计划选五名学生参加比赛,已确定三名学生参赛,他们的身高分别为169,169,173,他们身高的方差为32.在选另外两名学生时,首先要求所选的两名学生与已确定的三名学生所组成的五名学生身高的方差9,其次要求所选的两名学生与已确定的三名学生所组成的五名学生身高的平均数尽可能大,则选出的另小于329外两名学生身高分别为和.20.(10分)已知函数y=―x2+bx+c的图象经过点A(-1,0),B(0,3).(1)求该函数的表达式;(2)在所给的方格纸中,画该函数的图象;(3)该函数图象上到x轴距离等于3的点,共有个.21.(10分)如图,学校计划围一个矩形花园,它的一边是墙(长度大于10m),其余三边利用长为10m的围栏,试确定其余三边的长度,使其分别满足下列条件:(1)花园的面积为12㎡;(2)花园的面积最大.22.(8分)如图,在△ABC中,AC=4,∠B=66°,以AC为直径的⊙O与BC交于点D,E为ACD上一点,且∠EDC=40°.(1)求CE的长;(2)若∠DCE=74°,判断直线AB与⊙O的位置关系,并说明理由.23.(10分)如图,位于大同街的钟鼓楼曾是民国时期徐州的最高建筑,某校综合实践小组利用测角仪测量钟鼓楼的高度AO,测角仪的目镜距离地面1m,他们在地面B处测得钟鼓楼顶部A的仰角为30°,然后沿地面前进28m至点D处,测得点A的仰角为75°,已知BC=DE=OH=1m.(1)求AC的长(结果保留根号);(2)求钟鼓楼的高度AO(结果精确到1m).(参考数据:2≈1.41,3≈1.73)24.(8分)如图,P是⊙O外一点,用两种不同的方法过P作⊙O的一条切线.要求:(1)用无刻度的直尺和圆规作图;(2)保留作图痕迹,不写作法.25.(12分)如图,在平面直角坐标系中,抛物线y=ax²+bx经过点A(3,-3),对称轴是直线x=2.(1)求a,b的值;(2)已知点B,C在抛物线上,点B的横坐标为t,点C的横坐标为t+1,过点B作x轴的垂线交直线OA于点D,过点C作x轴的垂线交直线OA于点E,在抛物线对称轴右侧,是否存在点B,使以B,C,D,E为顶点的四边形面积为3若存在,求出t的值;若不存在,请说明理由.22023~2024学年度第一学期期末抽测九年级数学参考答案题号12345678答案A B D B C A C B 9. 10. 11. 12.613.1 14.86 15.36 1617.(1)原式(4分). 5分(2)法一:..6分(7分)(8分).即. 10分法二:,(7分)或,(8分).10分18.(1); 3分(2)列表或画树状图(略). 6分共有12种等可能的结果(7分),其中2种符合题意.. 8分19.(1)167,166;(4分)(2)甲组;(6分)(3)171,173. 8分20.(1)将和代入,得 2分解得.(3分)∴函数表达式为. 4分(2)列表(略),(6分) 函数图象如图; 8分(3)4. 10分21.(1)设其余三边的长度分别为. 1分2314(2,1)11=-+-=3,2,1a b c ==-=-224(2)43(1)16b ac -=--⨯⨯-=x =246±==1211,3x x ==-(1)(31)0x x -+=(1)0x -=(31)0x +=1211,3x x ==-1221126P ∴==()1,0-()0,32y x bx c =-++10,3.b c c --+=⎧⎨=⎩2b =223y x x =-++m,m,(102)m x x x -由题意,得.3分解得. 4分答:其余三边的长度分别为或. 5分(2)设其余三边的长度分别为.花园的面积为. 6分由题意,得. 7分整理,得. 8分∴当时,y有最大值. 9分答:其余三边的长度分别为时,花园的面积最大. 10分22.(1)连接.. 1分∵直径,∴半径. 2分∴弧的长为. 3分(2)与相切. 4分.,. 5分,. 6分,. 7分,即.与相切. 8分23.(1)如图,过点E 作于点F . 1分在中,,..(102)12x x -=121,3x x ==2m,2m,6m 3m,3m,4m m,m,(102)m x x x -2m y (102)y x x =-2525222y x ⎛⎫=--+ ⎪⎝⎭52x =25255m,m,5m 22OE 280COE EDC ∠=∠=︒4AC =2OC OE ==CE 808223609ππ⨯⨯=AB O ,OC OE OCE OEC =∴∠=∠ 80COE ∠=︒ 50OCE ∴∠=︒74DCE ∠=︒ 24ACB DCE OCE ∴∠=∠-∠=︒66B ∠=︒ 90B ACB ∴∠+∠=︒90BAC ∴∠=︒OA AB ⊥AB ∴O EF AC ⊥Rt CFE △30FCE ∠=︒28CE BD ==sin 30,cos30EFCFCE CE ︒=︒=(2分),.3分在中,. 4分. 5分. 6分(2)在中,.. 7分(8分).9分答:钟鼓楼的高度为.10分24.(两种方法,各4分)参考解法:法一:如图①,利用“直径所对的圆周角等于”法二:如图②,利用“三角形全等的性质”法三:如图③,利用“三角形中位线的性质” 图① 图② 图③25.(1)由题意,得(2分) 解得 4分(2)由(1)得抛物线为.当时,;当时,.∴点. 5分设对应的函数表达式为,把代入得;对应的函数表达式为,∴点. 6分①当时,如图①,过点D 作于点F ,则.此时. 8分sin 3014EF CE ∴=⋅︒=cos30CF CE =⋅︒=Rt AFE △753045FAE AEH ACE ∠=∠-∠=︒-︒=︒45,14ACB DCE AF EF ∴∠=∠=︒∴==14AC CF AF ∴=+=Rt ACH△30,14ACH AC ∠=︒=sin 30,sin 307AH AH AC AC︒=∴=⋅︒=+8AO AH OH ∴=+=20≈20m 90︒933,2.2a b b a+=-⎧⎪⎨-=⎪⎩1,4.a b =⎧⎨=-⎩24y x x =-x t =24y t t =-1x t =+22(1)4(1)23y t t t t =+-+=--()()22,4,1,23B t t t C t t t -+--OA y kx =(3,3)-33,1k k -=∴=-OA ∴y x =-(,),(1,1)D t t E t t -+--23t <<DF CE ⊥1DF =()()2222()43,23[(1)]2BD t t t t t CE t t t t t =---=-+=----+=--由.解得. 9分②当时,点B 与D 重合,四点B 、C 、D 、E 不构成四边形.③当时,如图②,过点D 作于点H ,则.此时.. 10分解得(舍),(舍). 11分综上所述,. 12分 图① 图②注:以上各题如有另解,请参照本评分标准给分.()22113()321222DBEC S BD CE DF t t t t =+⋅=-++--⋅=四边形52t =3t =3t >DH CE ⊥1DH =()()22224()3,23[(1)]2BD t t t t t CE t t t t t =---=-=----+=--()22113()321222BDEC S BD CE DH t t t t =+⋅=-+--⋅=四边形113t =+<213t =<52t =。

2024届吉林省数学九年级第一学期期末经典试题含解析

2024届吉林省数学九年级第一学期期末经典试题含解析

2024届吉林省数学九年级第一学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(每小题3分,共30分)1.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是A.B.C.D.2.已知点A、B、C、D、E、F是半径为r的⊙O的六等分点,分别以A、D为圆心,AE和DF长为半径画圆弧交于点P.以下说法正确的是( )①∠PAD=∠PDA=60º;②△PAO≌△ADE;③PO=2r;④AO∶OP∶PA=1∶2∶3.A.①④B.②③C.③④D.①③④3.一个不透明的袋子中有3个白球,4个黄球和5个红球,这些球除颜色不同外,其他完全相同.从袋子中随机摸出一个球,则它是黄球的概率是()A.14B.13C.512D.124.下列命题错误..的是( )A.经过三个点一定可以作圆B.经过切点且垂直于切线的直线必经过圆心C.同圆或等圆中,相等的圆心角所对的弧相等D.三角形的外心到三角形各顶点的距离相等5.sin60tan45︒+︒的值等于()A .2B .322+ C .3D .16.如图所示,在ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则ABE ∆与ABCD 的面积比值为( )A .1:8B .1:4C .3:8D .3:47.下列事件是必然事件的是( ) A .打开电视机,正在播放篮球比赛 B .守株待兔C .明天是晴天D .在只装有5个红球的袋中摸出1球,是红球.8.抛物线y =2 x 2+3与两坐标轴....的公共点个数为( ) A .0个B .1个C .2个D .3个9.已知在Rt △ABC 中,∠C =90°,BC =5,那么AB 的长为( ) A .5sin AB .5cos AC .D .10.下列方程中,没有实数根的是( ) A .x 2﹣2x ﹣3=0 B .(x ﹣5)(x +2)=0 C .x 2﹣x +1=0D .x 2=1二、填空题(每小题3分,共24分)11.在二次函数中2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表: x ...... -1 0 1 2 3 4 ...... y......-7-2mn-2-7......则m 、n 的大小关系为m _______n .(填“>”,“=”或“<”) 12.正五边形的中心角的度数是_____.13.一只不透明的布袋中有三种珠子(除颜色以外没有任何区别),分别是3个红珠子,4个白珠子和5个黑珠子,每次只摸出一个珠子,观察后均放回搅匀,在连续9次摸出的都是红珠子的情况下,第10次摸出红珠子的概率是_____. 14.若3是关于x 的方程x 2-x +c =0的一个根,则方程的另一个根等于____.15.在一个不透明的袋子中装有3个白球和若干个红球,这些球除颜色外都相同.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有___个.16.计算:2sin30°+tan45°=_____.17.已知x =1是一元二次方程x 2+mx +n =0的一个根,则m 2+2mn +n 2的值为_____. 18.已知方程x 2﹣3x ﹣5=0的两根为x 1,x 2,则x 12+x 22=_________. 三、解答题(共66分)19.(10分)如图,在ABC 中,90C ∠=︒,BAC ∠的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC ,AB 于点E ,F (1)试判断直线BC 与O 的位置关系,并说明理由.(2)若3BD =,1BF =,求阴影部分的面积(结果保留π)20.(6分)如图,抛物线y =x 2+bx+c 与x 轴交于点A 和B (3,0),与y 轴交于点C (0,3). (1)求抛物线的解析式;(2)若点M 是抛物线上在x 轴下方的动点,过M 作MN ∥y 轴交直线BC 于点N ,求线段MN 的最大值;(3)E 是抛物线对称轴上一点,F 是抛物线上一点,是否存在以A ,B ,E ,F 为顶点的四边形是平行四边形?若存在,请直接写出点F 的坐标;若不存在,请说明理由.21.(6分)如图,已知二次函数23y x ax =++的图象经过点()2,3P -.(1)求a 的值和图象的顶点坐标。

江苏省苏州市2023-2024学年九年级上学期期末考试数学试题

江苏省苏州市2023-2024学年九年级上学期期末考试数学试题

江苏省苏州市2023-2024学年九年级上学期期末考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列数学经典图形中,是中心对称图形的是( )A .B .C .D .2.下列几何图形中,不一定相似的是( ) A .两个正方形B .两个圆C .两个等边三角形D .两个矩形3.关于x 的一元二次方程210x mx +-=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根D .没有实数根4.已知二次函数2y ax bx c =++的图象如图所示,若点P 在二次函数的图象上,则点P 不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限5.如图,ABC V 内接于O e ,CD 是O e 的直径,连接BD ,42DCA ∠=︒,则ABC ∠的度数是( )A.B.C.D.二、填空题9.在1:50000000的地图上,量得我国台湾省与上海市的距离约为2cm,则台湾省与上海CEBP三、解答题示意23.如图,在ABC V 和ADE V 中,BAD CAE ∠=∠,90D B ∠=∠=︒.(1)求证ABC ADE ∽△△;(2)已知2BC DE =,2AD =,求AB 的长.24.如图,在平面直角坐标系中,抛物线23y ax bx =++交x 轴于A 、B 两点(点A 在点B 的左侧),交y 轴于点C ,连接AC ,45BAC ∠=︒,3OC OB =.(1)求抛物线的解析式;(2)当0y ≥时,x 的取值范围______; (3)当40x -<<时,y 的取值范围______.25.如图,在AEC △中,90E ∠=︒,AD 平分CAE ∠交CE 于点D ,点B 为边AC 上一点,以AB 为直径的圆恰好经过点D .(1)试判断直线CE 与O e 的位置关系,并说明理由; (2)若4OB =,2BC =,求DE 的长.26.为了加强劳动教育,落实五育并举.某校建成了一处劳动实践基地.2024年计划将其中500平方米的一块土地用于种植A 、B 两种水果.经调查发现:A 水果种植成本。

最新九年级数学上学期期末考试试卷含答案

最新九年级数学上学期期末考试试卷含答案
九年级数学试卷参考答案
(考试时间120分钟,试卷满分120分)
一、选择题(本大题共10个小题,每小题3分,共30分,给出的四个选项中,只有一项是符合题目要求的)
题号
1
2
3
4
5
6
78910 Nhomakorabea选项
A
B
D
C
B
B
D
D
C
A
二、填空题(每题3分,共18分)
11. 或 12. 13.
14. 15. 16.
三、解答题(本大题共9个小题,共72分,解答时应写出演算步骤、证明过程或文字说明)
由题意得: …………………1分
解得:
∴ 与 的函数解析式为 …………………3分
(2) …………………4分
或 ,或用公式均可
∵ ,
∴当 时, 随 的增大而增大
∴当 时, 最大,最大利润为 元………………7分
答:
当销售价为32元时,每天的销售利润最大,最大利润为176元. …………………8分
24.(8分)
∴设点E的坐标为

∵ ,当 时, 的面积最大,

此时点D的坐标为 …………………7分
(3)存在
, , , …………………11分
∴∠BOC=135°…………………6分
∴ =
答: 的长为 . …………………8分
25.(11分)
解:(1)∵抛物线 经过点 , 两点

解得:
∴抛物线的解析式为 …………………3分
(2) 的面积存在最大值
设点D的坐标为 …………………4分
过点D作 轴的平行线交BC于点E
设直线BC的解析式为
∵ ,

山东省临沂市沂水县2023-2024学年九年级上学期期末考试数学试题[答案]

山东省临沂市沂水县2023-2024学年九年级上学期期末考试数学试题[答案]

九年级数学单元作业注意事项:1.本试卷分第I 卷(选择题)和第I 工卷(非选择题),共6页,满分120分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试卷和答题卡的规定位置.考试结束后,将本试卷和答题卡一并交回.2.答题注意事项见答题卡,答在本试卷上不得分.第I 卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.tan 30°的值等于(A B C .1D .23.如图,在ABC V 中,点D 在边AB 上,过点D 作DE BC ∥,交AC 于点E .若23AD BD ==,,则AEAC的值是( )A .25B .12C .35D .234.关于x 的一元二次方程232302x x -+=根的情况,下列说法中正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定5.如图,正五边形ABCDE 内接于O e ,连接,OC OD ,则BAE COD Ð-Ð=( )A .60°B .54°C .48°D .36°6.有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上,若从中随机抽取一张,则抽到的花色可能性最大的是( )A . (黑桃)B . (红心)C . (梅花)D . (方块)7.在Rt ABC △中,90C Ð=°,4AB =,3AC =,则cos BA .35B .45C .34D 8.已知反比例函数y =kx(k ≠0),且在各自象限内,y 随x 的增大而增大,则下列点可能在这个函数图象上的为( )A .(2,3)B .(-2,3)C .(3,0)D .(-3,0)9.如图,已知点A B C 、、在O e 上,C 为 AB 的中点.若35BAC Ð=°,则AOB Ð等于( )A .140°B .120°C .110°D .70°10.以下说法合理的是( )A .小明做了3次掷均匀硬币的实验,其中有一次正面朝上,2次正面朝下,但他还是认为再掷一次,正面朝上的概率是12B .某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C .小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是23D .某射击运动员射击一次只有两种可能的结果:中靶与不中靶,故他击中靶的概率是1211.已知点()()1122,,,A x y B x y 在反比例函数2y x=-的图像上,且120x x <<,则下列结论一定正确的是( )A .120y y +<B .120y y +>C .120y y -<D .120y y ->12.在平面直角坐标系中,二次函数22y x mx m m =++-(m 为常数)的图像经过点(06),,其对称轴在y 轴左侧,则该二次函数有( )A .最大值5B .最大值154C .最小值5D .最小值154第Ⅱ卷(非选择题 共84分)二、填空题(本大题共4小题,每小题3分,共12分)13.反比例函数()0ky k x=¹与一次函数1y x =-交于点()3,A n ,则k 的值为 .14.圆锥的底面半径是3cm ,母线长10cm ,则它的侧面展开图的圆心角的度数为 .15.如图,在Rt ABC △中,90A Ð=°,点D 在边AB 上,连接CD .若BD CD =,13AD BD =,则tan B = .16.如图是一张长12cm ,宽10cm 的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积224cm 是的有盖的长方体铁盒.则剪去的正方形的边长为cm .三、解答题(本大题共7小题,共72分)17.解方程(1)()()222123x x -=-(2)2230x x --=18.小华、小玲一起到淮安西游乐园游玩,他们决定在三个热门项目(A :智取芭蕉扇、B :三打白骨精、C :盘丝洞)中各自随机选择一个项目游玩.(1)小华选择C 项目的概率是_________;(2)用画树状图或列表等方法求小华、小玲选择不同游玩项目的概率.19.如图.要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角a 一般要满足6075a °°……,现有一架长5.5m 的梯子.(1)使用这架梯子最高可以安全攀上多高的墙(结果保留小数点后一位)?(2)当梯子底端距离墙面2.2m 时,a 等于多少度(结果保留小数点后一位)?此时人是否能够安全使用这架梯子?(参考数据:sin 750.97°=,cos750.26°=,tan 75 3.73°=,sin 23.60.40°=,cos 66.40.40°=,tan 21.80.40°=)20.如图,四边形ABCD 为菱形,点E 在AC 的延长线上,ACD ABE Ð=Ð.(1)求证:ABC AEB V V ∽;(2)当6,4AB AC ==时,求AE 的长.21.小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米.(杠杆定律:若两物体与支点的距离与其重量成反比,则杠杆平衡,即:动力×动力臂=阻力×阻力臂)(1)动力F 与动力臂有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?(2)若想使动力F 不超过题(1)中所用力的一半,则动力臂至少要加长多少?22.如图,四边形ABCD 中,AD BC ∥,90BAD Ð=°,AD BC CD +=,以AB 为直径作O e ,连接OD ,交O e 于点E .(1)试判断CD 与O e 的位置关系,并说明理由;(2)若AB =60BCD Ð=°,求图中由AD ,DE , AE 围成的图形面积.23.嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出,并运动路线为抛物线21:(3)2C y a x =-+的一部分,淇淇恰在点(0)B c ,处接住,然后跳起将沙包回传,其运动路线为抛物线221:188nC y x x c =-+++的一部分.(1)写出1C的最高点坐标,并求a,c的值;(2)若嘉嘉在x轴上方1m的高度上,且到点A水平距离不超过1m的范围内可以接到沙包,求符合条件的n的整数值.1.A【分析】根据轴对称与中心对称的概念,即可求解,本题考查了轴对称图形和中心对称图形的定义,解题的关键是:找到对称轴和对称中心.【详解】A 、是轴对称图形,也是中心对称图形,符合题意,B 、不是轴对称图形,是中心对称图形,不符合题意,C 、是轴对称图形,不是中心对称图形,不符合题意,D 、是轴对称图形,不是中心对称图形,不符合题意,故选:A .2.A【分析】根据30°的正切值直接求解即可.【详解】解:由题意可知,tan 30°=故选:A .【点睛】本题考查30°的三角函数,属于基础题,熟记其正切值即可.3.A【分析】利用平行线分线段成比例定理的推论得出AE ADAC AB=,即可求解.【详解】解:∵ABC V 中,DE BC ∥,∴AE ADAC AB=,∵23AD BD ==,∴22235AE AD AC AD BD ===++,故选:A .【点睛】本题考查平行线分线段成比例定理的推论,解题关键是牢记“平行于三角形一边的直线截其它两边(或两边的延长线)所得对应线段成比例”.4.C【分析】直接利用一元二次方程根的判别式即可得.【详解】解:232302x x -+=,其中2a =,3b =-,32c =,∴()23Δ342302=--´´=-<,∴方程没有实数根.故选:C .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=¹,若240b ac D =->,则方程有两个不相等的实数根,若240b ac D =-=,则方程有两个相等的实数根,若24<0b ac D =-,则方程没有实数根.5.D【分析】先计算正五边形的内角,再计算正五边形的中心角,作差即可.【详解】∵360360180,55BAE COD °°Ð=°-Ð=,∴3603601803655BAE COD °°Ð-Ð=°--=°,故选D .【点睛】本题考查了正五边形的外角,内角,中心角的计算,熟练掌握计算公式是解题的关键.6.B【分析】根据概率公式分别求出各花色的概率判断即可【详解】解:∵抽到黑桃的概率为17,抽到红心的概率为37,抽到梅花的概率为17,抽到方块的概率为27,∴抽到的花色可能性最大的是红心,故选:B .【点睛】本题考查了可能性的大小,熟练掌握概率公式是解题的关键7.D【分析】根据勾股定理计算出BC 长,再根据余弦定义可得答案.【详解】解:∵4AB =,3AC =,∴BC ===∴cos CB B AB ==故选:D .【点睛】此题主要考查了锐角三角函数,关键是掌握余弦:锐角A 的邻边b 与斜边c 的比叫做A Ð的余弦,记作cos A .8.B【分析】根据反比例函数性质求出k <0,再根据k =xy ,逐项判定即可.【详解】解:∵反比例函数y =kx(k ≠0),且在各自象限内,y 随x 的增大而增大,,∴k =xy <0,A 、∵2×3>0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意;B 、∵-2×3<0,∴点(2,3)可能在这个函数图象上,故此选项符合题意;C 、∵3×0=0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意;D 、∵-3×0=0,∴点(2,3)不可能在这个函数图象上,故此选项不符合题意;故选:B .【点睛】本题考查反比例函数的性质,反比例函数图象上点的坐标特征,熟练掌握反比例函数的性质是解题的关键.9.A【分析】连接OC ,如图所示,根据圆周角定理,找到各个角之间的关系即可得到答案.【详解】解:连接OC ,如图所示:Q 点A B C 、、在O e 上,C 为 AB 的中点,BC AC \=,12BOC AOC AOB \Ð=Ð=Ð,Q 35BAC Ð=°,根据圆周角定理可知270BOC BAC Ð=Ð=°,2140AOB BOC \Ð=Ð=°,故选:A .【点睛】本题考查圆中求角度问题,涉及圆周角定理,找准各个角之间的和差倍分关系是解决问题的关键.10.A【分析】此题主要考查了概率的意义,直接利用概率的意义分别分析得出答案.【详解】解:A 、小明做了3次掷均匀硬币的实验,其中有一次正面朝上,2次正面朝下,他认为再掷一次,正面朝上的可能性是12,故选项A 正确,符合题意B 、某彩票的中奖概率是5%,那么买100张彩票可能有5张中奖,但不一定有5张中奖,故选项B 错误,不符合题意;C 、小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是23是错误的,3次试验不能总结出概率,故选项C 错误,不符合题意;D 、某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是12不正确,中靶与不中靶不是等可能事件,故选项D 错误,不符合题意.故选:A .11.D【分析】把点A 和点B 的坐标代入解析式,根据条件可判断出1y 、2y 的大小关系.【详解】解:∵点()11,A x y ,()22,B x y )是反比例函数2y x=-的图像上的两点,∴11222x y x y ==-,∵120x x <<,∴210y y <<,即120y y ->,故D 正确.故选:D .【点睛】本题主要考查反比例函数图像上点的坐标特征,掌握图像上点的坐标满足函数解析式是解题的关键.12.D【分析】将(06),代入二次函数解析式,进而得出m 的值,再利用对称轴在y 轴左侧,得出3m =,再利用二次函数的顶点式即可求出二次函数最值.【详解】解:将(06),代入二次函数解析式22y x mx m m =++-得:26m m =-,解得:13m =,22m =-,∵二次函数22y x mx m m =++-,对称轴在y 轴左侧,即022b m x a =-=-<,∴0m >,∴3m =,∴223153624y x x x æö=++=++ç÷èø,∴当23x =-时,二次函数有最小值,最小值为154,故选:D .【点睛】此题主要考查了二次函数的性质以及二次函数的最值,正确得出m 的值是解题关键.13.6【分析】将点()3,A n ,代入1y x =-,求得n ,进而即可求解.【详解】解:将点()3,A n ,代入1y x =-,即312n =-=,()3,2A \,326k \=´=,故答案为:6.【点睛】本题考查了一次函数与反比例函数综合,求得点A 的坐标是解题的关键.14.108°【分析】设圆锥的侧面展开图的圆心角为n °,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到1023180n p p ´×=,然后解关于n 的方程即可.【详解】解:设圆锥的侧面展开图的圆心角为n °,根据题意得1023180n p p ´×=解得108n =,即圆锥的侧面展开图的圆心角为108°.故答案为:108°.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15【分析】由题意可设AD x =,则3CD x =,4AB x =,在Rt ADC V中求得AC =,在Rt ABC △中求出答案即可.【详解】解: BD CD =Q ,13AD BD =,设AD x =,则3BD CD x ==,4AB x =,在Rt ADC V 中,由勾股定理得:,在Rt ABC △中,tan AC B AB ===【点睛】本题考查的是求锐角三角函数,解题关键是根据比值设未知数,表示出边长从而求出锐角三角函数值.16.2【分析】根据题意设出未知数,列出三组等式解出即可.【详解】设底面长为a,宽为b,正方形边长为x,由题意得:2()1221024x b a x ab +=ìï+=íï=î,解得a =10-2x ,b =6-x ,代入ab =24中得: (10-2x )(6-x )=24,整理得:2x 2-11x +18=0.解得x =2或x =9(舍去).故答案为2.【点睛】本题考查一元二次方程的应用,关键在于不怕设多个未知数,利用代数表示列出方程.17.(1)1231,5x x ==(2)123,12x x ==-【分析】(1)先移项,然后因式分解法解一元二次方程即可;(2)根据因式分解法解一元二次方程即可求解.【详解】(1)解:()()222123x x -=-,∴()()2221230x x ---=,∴()()212321230x x x x -+---+=,即()()1530x x --=,∴10x -=或530x -=,解得:1231,5x x == ;(2)解:2230x x --=,∴()()2310x x -+=,∴230x -=或10x +=,解得:123,12x x ==-.【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.18.(1)13(2)23【分析】(1)直接由概率公式求解即可;(2)列表法求概率即可求解.【详解】(1)解:共有三个热门项目,小华选择C 项目的概率是13;故答案为:13.(2)解:列表法如图,华小丽A B CA AA AB ACB BC BB BCC CA CB CC共有9种等可能结果,其中小华、小玲选择不同游玩项目,有6种,∴小华、小玲选择不同游玩项目的概率62 93 =.【点睛】本题考查的是根据概率公式求概率,用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.19.(1)5.3m;(2)66.4°,不能【分析】(1)若使AC最长,且在安全使用的范围内,则∠ABC的度数最大,即∠ABC=75°;可通过解直角三角形求出此时AC的长.(2)当BC=2.2m时,可在Rt△BAC中,求出∠ABC的余弦值,进而可得出∠ABC的度数,然后判断这个角度是否在安全使用的范围内即可.【详解】解:(1)当∠ABC=75°时,梯子能安全使用且它的顶端最高;在Rt△ABC中,有sin∠ABC=AC AB∴AC=AB•sin∠ABC=5.5×sin75°≈5.3;答:安全使用这个梯子时,梯子的顶端距离地面的最大高度AC约为5.3m(2)在Rt△ABC中,有cos∠ABC=BCAB=2.25.5=0.4由题目给的参考数据cos66.40.40°=,可知∠ABC=66.4°∵56.4°<60°,不在安全角度内;∴这时人不能安全使用这个梯子,答:人不能够安全使用这个梯子.【点睛】此题考查的是解直角三角形的实际应用,熟练掌握并能灵活运用各锐角三角函数是解答此类题的关键.20.(1)见解析(2)AE=9【分析】(1)根据四边形ABCD 是菱形,得出CD AB ∥,AB CB =,根据平行线的性质和等边对等角,结合ACD ABE Ð=Ð,得出ACD ABE CAB ACB Ð=Ð=Ð=Ð,即可证明结论;(2)根据ABC AEB D D ∽,得出AB AC AE AB=,代入数据进行计算,即可得出AE 的值.【详解】(1)证明:∵四边形ABCD 为菱形,∴CD AB ∥,AB CB =,ACD CAB \Ð=Ð,CAB ACB Ð=Ð,∵ACD ABE Ð=Ð,∴ACD ABE CAB ACB Ð=Ð=Ð=Ð,∴ABC AEB D D ∽.(2)∵ABC AEB D D ∽,∴AB AC AE AB=,即646AE =,解得:9AE =.【点睛】本题主要考查了菱形的性质,平行线的性质,等腰三角形的性质,三角形相似的判定和性质,根据题意得出ACD ABE CAB ACB Ð=Ð=Ð=Ð,是解题关键.21.(1)600F l=,撬动石头至少需要400牛顿的力(2)1.5m 【分析】此题主要考查了反比例函数的应用,正确得出F 与l 之间的关系是解题关键.(1)直接利用:阻力×阻力臂=动力×动力臂,进而得出F 与l 之间的关系;(2)直接利用动力F 不超过题(1)中所用力的一半,进而得出l 的值.【详解】(1)解:由题意可得:12000.5Fl ´=,则600F l=, 当动力臂为1.5米时,则撬动石头至少需要:6004001.5F ==(牛顿),答:动力臂为1.5米时,撬动石头至少需要400牛顿的力;(2)当动力F 不超过题(1)中所用力的一半,即200F £,则600200l=, 解得:3l =,即动力臂至少要加长3 1.5 1.5(m)-=,答:动力臂至少要加长1.5m22CD 与O e 相切,理由见解析π4【分析】(1)延长DO ,CB 交于点F ,过点O 作OG CD ^于点G ,先证明F AOD BO ≌V V ,得到AD BF =,进一步推理得到CF CD =,然后证明OD 平分ADG Ð,再根据角平分线定理,证明OG OA =,最后根据切线的判定定理,证得答案;(2)先计算1AD =,圆心角30AOD Ð=°,再根据围成图形的面积AOD AOE S S =-V 扇形,计算即得答案.【详解】(1)CD 与O e 相切,理由:如图,延长DO ,CB 交于点F ,过点O 作OG CD ^于点G ,AD BC ∥Q ,OAD OBF \Ð=Ð,ADO BFO Ð=Ð,OA OB=Q (AAS)B A D OF O \≌V V ,AD BF\=CD CB AD =+Q ,CF CD \=,CFD CDF \Ð=Ð,ADO CDO \Ð=Ð,∵90BAD Ð=°,OG CD ^,OG OA \=,CD \与O e 相切;(2)AD BC ∥Q ,60BCD Ð=°,180120ADG BCD \Ð=°-Ð=°,1602ADO ADG \Ð=Ð=°,9030AOD ADO \Ð=°-Ð=°,AB =Q ,OA \=tan301AD OA \=×°=,\围成图形的面积AOD AOES S =-扇形=【点睛】本题考查了切线的判定定理,全等三角形的判定与性质,角平分线定理,解直角三角形,扇形的面积等知识,熟练掌握相关知识是解答本题的关键.23.(1)1C 的最高点坐标为()32,,19a =-,1c =;(2)符合条件的n 的整数值为4和5.【分析】(1)利用顶点式即可得到最高点坐标;点(6,1)A 在抛物线上,利用待定系数法即可求得a 的值;令0x =,即可求得c 的值;(2)求得点A 的坐标范围为()()5171:,,,求得n 的取值范围,即可求解.【详解】(1)解:∵抛物线21:(3)2C y a x =-+,∴1C 的最高点坐标为()32,,∵点(6,1)A 在抛物线21:(3)2C y a x =-+上,∴21(63)2a =-+,解得:19a =-,∴抛物线1C 的解析式为21(3)29y x =--+,令0x =,则21(03)219c =--+=;(2)解:∵到点A 水平距离不超过1m 的范围内可以接到沙包,∴点A 的坐标范围为()()5171:,,,当经过()51,时,211551188n =-´+´++,解得175n =;当经过()71,时,211771188n =-´+´++,解得417n =;∴174157n ££∴符合条件的n 的整数值为4和5.【点睛】本题考查了二次函数的应用,联系实际,读懂题意,熟练掌握二次函数图象上点的坐标特征是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学
注意事项:
1.请在答题卡上作答,在试卷上作答无效。

2.本试卷共五大题,26小题,满分150分.考试时间120分钟。

一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确)
1.下列图案是中心对称图形的是
2.一元二次方程0
3
2=
+kx
x的一个根是,
-
x则k的值是
=
1
A.3-
B.0
C.1
D.2
3.如图,在⊙O中,弦AB长6cm,圆心O到AB的距离是3cm,⊙O的半径是
A.cm
4 D.cm33
3 B.cm
3 C.cm
2
4.如图,Rt△ABC中,∠C=90°,若BC=3,AB=5,则sinA的值是
A.53
B.54
C.43
D.3
4 5.抛物线()3422++=x y 的顶点坐标是
A.(0,1)
B.(1,5)
C.(4,3)
D.(-4,3)
6.用配方法解方程,0142=+-x x 变形后的方程是
A.()322=-x
B.()322=+x
C.()522=-x
D.()522=+x
7.如图,△ABC 中,点D 、E 分别是AB 、AC 上两点,且DE ∥BC,若
AD=2,BD=3,BC=10,则DE 的长是
A.3
B.4
C.5
D.
3
20 8.正六边形的边长是2,该正六边形的边心距是 A.23
B.1
C.2
D.
3
9.如图,AB 是⊙O 直径,点C 在AB 的延长线上,CD 与⊙O 相切于点
D,若∠A=25°,则∠C 的度数是
A.40°
B.50°
C.65°
D.25°
10.如图,Rt △ABC 中,∠ACB=90°,线段BC 绕点B 逆时针旋转
()1800<<αα︒得到线段BD,过点A 作AE ⊥射线CD 于点E,则∠CAE 的
度数是
A.α-90
B.α
C.2
90α- D.2α
二、填空题(本题共6小题,每小题3分,共18分)
11.一元二次方程022=-x x 的根是__________.
12.点P 和点Q 关于原点对称,若点P 的坐标是(2,-1),则点Q 的坐标是_________.
13.一个圆锥的母线长为3,底面圆的半径为4,它的侧面积是________.
14.如图,正方形网格中每个小正方形的边长都是1,若点A 、B 、C 都在格点上,则tan ∠BAC 的值是_________.
15.据传说,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,
来测量金字塔的高度.
如图,木杆EF长2米,它的影长FD为3米,测得OA为201米,金字塔的高度BO是___米.
16.如图,抛物线y=a c
y+
=2与x轴相交于A、B两点,点A在点B
+
bx
ax
左侧,顶点在折线M-P-N上移动,它们的坐标分别为M(1,4)、P(3,4)、N(3,1).若在抛物线移动过程中,点A横坐标的最小值为-3,则c
-的
b
a+
最小值是_______.
三、解答题(本题共4小题,其中17、18、19题各9分,20题12分,共39分)
17.计算:()48
40+
sin
60
1
3
1

-
+
-
-
18.在Rt△ABC中,∠C=90°,AB=8,∠A=60°,解这个直角三角形.
19.如图,点B、C、D在同一条直线上且BC=CD,点A和点E在BD 的同侧且∠ACE=∠B=∠D.
(1)求证:△ABC≌△CDE;
(2)若BC=2,AB=3,求DE的长度。

20.如图,某校一次足球比赛中,一名运动员将球沿着与地面成一定角度的方向踢出,足球的飞行路线将是一条抛物线.不考虑空气阻力,足球的飞行高度h (单位:米)与飞行时间t (单位:秒)之间具有函数关系
.2
5412t t h +-= (1)足球飞行的最大高度是多少米?
(2)足球从踢出到落地要用多长时间?
四、解答题(本题共3小题,其中21、2题各9分,23题10分,共38分)
21.如图,一艘渔船以16海里/小时的速度由西向东航行,上年10点在A 处测得海中小岛C 在北偏东60°方向上,10点30分航行到B 处,在B 处测得小岛C 在东北方向上。

(1)求小岛C 到航线的距离(结果保留到整数,参考数据:7.134.12≈≈,);
(2)小岛C 周围10海里内有暗礁,如果渔船不改变航线继续向东航行,那么它有没有触礁的危险?判断并说明理由。

22.如图,抛物线42
12++-=mx x y 与x 轴交于A 、B 两点,点B 在x 轴的右侧且点A 在点B 的左侧,与y 轴交于点C,OB=OC ;
(1)求m 的值;
(2)点A 绕点C 逆时针旋转90°得到点,'A 直线C A '交抛物线的另一个交点为P ,求点P 的坐标.
23.如图,四边形ABCD 内接于⊙O,∠BAD=90°,AD 、BC 的延长线交于点F,点E 在CF 上,且∠DEC=∠BAC,,
(1)求证:DE 是⊙O 的切线;
(2)当AB=AC时,若CE=2,EF=3,求⊙O的半径.
五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)
24.如图1,△ABC中,∠C=90°,点D在AC上,过点D作DE⊥AB于点E,过点D作直线l⊥AC,点E和'E关于l对称,射线'DE与三角形的另一边交于点F.设AD的长度为x,△ABC在线段DF右侧部分的面积为y,y 与x的函数图象如图2所示(其中8
m
,时,函数的解析式不
x<
≤x
0≤

m
同).
(1)填空:AC的长度为_________,BC长度为___________;
(2)求m的值;
(3)求y关于x的函数关系式,并写出x的取值范围。

25.△ABC中,∠A=45°,∠ABC=30°,AC=,2点D在AB上,点E是CD
的中点.
(1)填空:如图1,当CD ⊥AB 时,线段BE 的长度是_______;
(2)将∠BED 记为∠α:
①如图2,当∠α=30°时,判断BD 和DE 的数量关系并说明理由; ②如图3,当∠α=45°时,求BD 的长度。

26.在如图的平面直角坐标系中,抛物线()01222<a am amx ax y ++-=与x 轴交于点A 和点B,点A 在点B 的左侧,与y 轴交于点C,顶点是D,且∠DAB=45°.
(1)填空:点C 的纵坐标是________(用含m a 、的式子表示);
(2)求a 的值;
(3)点C 绕O 逆时针旋转90°得到点,'C 当2521≤≤-m 时,求'BC 的长度范围。

相关文档
最新文档