各种测井曲线的用途

合集下载

主要测井曲线及其含义

主要测井曲线及其含义

主要测井曲线及其含义一、自然电位测井:测量在地层电化学作用下产生的电位。

自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。

Rmf≈Rw 时,SP几乎是平直的;Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。

自然电位测井SP曲线的应用:①划分渗透性地层。

②判断岩性,进行地层对比。

③估计泥质含量。

④确定地层水电阻率。

⑤判断水淹层。

⑥沉积相研究。

自然电位正异常Rmf<Rw时,SP出现正异常。

淡水层Rw很大(浅部地层)自然电位曲线与自然伽马、微电极曲线具有较好的对应性。

自然电位曲线在水淹层出现基线偏移二、普通视电阻率测井(R4、R2.5)普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。

测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。

视电阻率曲线的应用:①划分岩性剖面。

②求岩层的真电阻率。

③求岩层孔隙度。

④深度校正。

⑤地层对比。

电极系测井:2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。

底部梯度电极系分层:顶:低点;底:高值。

三、微电极测井(ML)微电极测井是一种微电阻率测井方法。

其纵向分辨能力强,可直观地判断渗透层。

主要应用:①划分岩性剖面。

②确定岩层界面。

③确定含油砂岩的有效厚度。

④确定大井径井段。

⑤确定冲洗带电阻率Rxo及泥饼厚度hmc,微电极确定油层有效厚度。

微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。

四、双感应测井感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。

感应测井曲线的应用:①划分渗透层。

主要测井曲线及其含义

主要测井曲线及其含义

主要测井曲线及其含义一、自然电位测井:测量在地层电化学作用下产生的电位。

自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。

Rmf≈Rw时,SP几乎是平直的; Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。

自然电位测井SP曲线的应用:①划分渗透性地层。

②判断岩性,进行地层对比。

③估计泥质含量。

④确定地层水电阻率。

⑤判断水淹层。

⑥沉积相研究。

自然电位正异常Rmf<Rw时,SP出现正异常。

淡水层Rw很大(浅部地层)咸水泥浆(相对与地层水电阻率而言)自然电位测井自然电位曲线与自然伽马、微电极曲线具有较好的对应性。

自然电位曲线在水淹层出现基线偏移二、普通视电阻率测井(R4、R2.5)普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。

测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。

视电阻率曲线的应用:①划分岩性剖面。

②求岩层的真电阻率。

③求岩层孔隙度。

④深度校正。

⑤地层对比。

电极系测井2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。

底部梯度电极系分层:顶:低点;底:高值。

三、微电极测井(ML)微电极测井是一种微电阻率测井方法。

其纵向分辨能力强,可直观地判断渗透层。

主要应用:①划分岩性剖面。

②确定岩层界面。

③确定含油砂岩的有效厚度。

④确定大井径井段。

⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。

微电极确定油层有效厚度微电极测井微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。

四、双感应测井感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。

测井曲线解释及其含义

测井曲线解释及其含义

主要测井曲线及其含义主要测井曲线及其含义一、自然电位测井:测量在地层电化学作用下产生的电位。

自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。

Rmf≈Rw时,SP几乎是平直的; Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。

自然电位测井SP曲线的应用:①划分渗透性地层。

②判断岩性,进行地层对比。

③估计泥质含量。

④确定地层水电阻率。

⑤判断水淹层。

⑥沉积相研究。

自然电位正异常Rmf<Rw时,SP出现正异常。

淡水层Rw很大(浅部地层)咸水泥浆(相对与地层水电阻率而言)自然电位测井自然电位曲线与自然伽马、微电极曲线具有较好的对应性。

自然电位曲线在水淹层出现基线偏移二、普通视电阻率测井(R4、R2.5)普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。

测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。

视电阻率曲线的应用:①划分岩性剖面。

②求岩层的真电阻率。

③求岩层孔隙度。

④深度校正。

⑤地层对比。

电极系测井2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。

底部梯度电极系分层:顶:低点;底:高值。

三、微电极测井(ML)微电极测井是一种微电阻率测井方法。

其纵向分辨能力强,可直观地判断渗透层。

主要应用:①划分岩性剖面。

②确定岩层界面。

③确定含油砂岩的有效厚度。

④确定大井径井段。

⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。

微电极确定油层有效厚度微电极测井微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。

四、双感应测井感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。

测井曲线ppt课件

测井曲线ppt课件
加合理的开发方案提供了依据。
随钻测井技术
要点一
总结词
随钻测井技术能够在钻井过程中实时获取测井数据,有助 于及时调整钻井参数和优化钻井方案。
要点二
详细描述
随钻测井技术是一种将测井设备安装在钻头上的技术,能 够在钻井过程中实时获取地层的测井数据。这使得在钻井 过程中能够及时了解地层信息和调整钻井参数,提高了钻 井效率和成功率。同时,随钻测井技术还可以减少钻后测 井的时间和成本,为石油勘探和开发节省了资源。
地质构造识别
测井曲线可以反映地层的构造特征,如断层、褶皱等,有助于地质构造的识别和分类。
地质构造与油气关系
研究地质构造与油气的关系,有助于分析油气聚集的条件和规律,指导油气勘探和开发 。
05
测井曲线的发展趋势与展 望
高分辨率测井技术
总结词
高分辨率测井技术能够提供更精确的地层信息,有助于发现微小地质构造和地层变化。
类。
测井曲线解释实例
砂泥岩地层解释
针对砂泥岩地层的测井曲线,通 过分析曲线形态和参数提取,判 断地层的岩性、物性和含油性。
碳酸盐岩地层解释
针对碳酸盐岩地层的测井曲线,通 过分析曲线形态和参数提取,判断 地层的岩性、裂缝和溶洞等特征。
油气水层识别
利用测井曲线识别油气水层,结合 地质资料和生产动态信息,对油气 水层进行准确判断和评价。
沉积相分析
根据测井曲线反映出的地层结构和岩石物理性质,可以分析沉积相的类型和分布规律。
储层参数计算与流体性质分析
储层参数计算
利用测井曲线可以计算出储层的孔隙度 、渗透率等参数,为储层评价和开发方 案提供依据。
VS
流体性质分析
通过分析测井曲线特征,可以推断出地层 中流体的类型、性质和分布情况。

测井曲线及意义

测井曲线及意义

主要测井曲线及其含义一、自然电位测井:测量在地层电化学作用下产生的电位;自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致;Rmf≈Rw时,SP几乎是平直的; Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常;自然电位测井SP曲线的应用:①划分渗透性地层;②判断岩性,进行地层对比;③估计泥质含量;④确定地层水电阻率;⑤判断水淹层;⑥沉积相研究;自然电位正异常Rmf<Rw时,SP出现正异常;淡水层Rw很大浅部地层咸水泥浆相对与地层水电阻率而言自然电位测井自然电位曲线与自然伽马、微电极曲线具有较好的对应性;自然电位曲线在水淹层出现基线偏移二、普通视电阻率测井R4、普通视电阻率测井是研究各种介质中的电场分布的一种测井方法;测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率;视电阻率曲线的应用:①划分岩性剖面;②求岩层的真电阻率;③求岩层孔隙度;④深度校正;⑤地层对比;电极系测井2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可;底部梯度电极系分层:顶:低点;底:高值;三、微电极测井ML微电极测井是一种微电阻率测井方法;其纵向分辨能力强,可直观地判断渗透层; 主要应用:①划分岩性剖面;②确定岩层界面;③确定含油砂岩的有效厚度;④确定大井径井段;⑤确定冲洗带电阻率Rxo及泥饼厚度hmc;微电极确定油层有效厚度微电极测井微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小;四、双感应测井感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线;感应测井曲线的应用:①划分渗透层;②确定岩层真电阻率;③快速、直观地判断油、水层;油层:RILD>RILM>RFOC水层:RILD< RILM< RFOC纯泥层: RILD、RILM基本重合五、双侧向测井双侧向测井是采用电流屏蔽方法,迫使主电极的电流经聚焦后成水平状电流束垂直于井轴侧向流入地层,使井的分流作用和低阻层对电流的影响减至最小程度,因而减少了井眼和围岩的影响,较真实地反映地层电阻率的变化,并能解决普通电极系测井所不能解决的问题;双侧向测井资料的应用:①确定地层的真电阻率;②划分岩性剖面;③快速、直观地判断油、水层;六、八侧向测井和微球形聚焦测井.⑴、八侧向是一种浅探测的聚焦测井,电极距较小,纵向分层能力强,主要用来反映井壁附近介质的电阻率变化;⑵、微球形聚焦测井是一种中等探测深度的微聚焦电法测井,是确定冲洗带电阻率测井中较好的一种方法主要应用:①划分薄层;②确定Rxo;七、井径测井主要用途:计算固井水泥量;测井解释环境影响校正;提供钻井工程所需数据;渗透层井径数值略小于钻头直径值;致密层一般应接近钻头直径值;泥岩段,一般大于钻头直径值;八、声波时差测井根据岩石的声学物理特性发展起来的一种测井方法,它测量地层声波速度;主要用途:①判断气层;②确定岩石孔隙度;③计算矿物含量含气层,声波时差出现周波跳跃现象,或者测井值变大;▲在大井眼处大于0.4米,也会出现声波时差变大或跳跃九、补偿声波测井声波时差曲线数值不得低于岩石的骨架值,不得大于流体时差值;补偿声波测井声波时差数值应符合地区规律如孤东地区上馆陶,利用声波时差计算的地层孔隙度值与补偿中子、补偿密度或岩性密度计算的地层孔隙度值基本一致;渗透层不得出现与地层无关的跳动,如有周波跳跃,测速应降至1200m/h以下重复测量;十、自然伽马测井自然伽马测井是在井内测量岩层中自然存在的放射性核素衰变过程中放射出来的γ射线的强度来研究地质问题的一种测井方法;GR的用途:①判断岩性;②地层对比;③估算泥质含量;大井眼处,自然伽马低值显示十一、补偿中子测井CNL,Φ%补偿中子测井是采用双源距比值法的热中子测井,它沿井剖面测量由中子源所造成的热中子通量即能量为—的热中子空间分布密度;补偿中子测井直接给出石灰岩孔隙度值曲线;如果岩石骨架为其它岩性,则为视石灰岩孔隙度;主要应用:①确定地层孔隙度;②计算矿物含量③ΦD—ΦN曲线重叠直观确定岩性;④与补偿密度曲线重叠判断气层;补偿中子测井致密层测井值应与岩石骨架值相吻合;十二、补偿密度测井DEN,g/cm3利用同位素伽马射线源向地层辐射伽马射线,再用与伽马源相隔一定距离的探测器来测量经地层散射、吸收之后到达探测器的伽马射线强度;由于被探测器接收到的散射伽马射线强度与地层的岩石体积密度有关,故称为密度测井;主要应用:①识别岩性;②确定岩层的孔隙度;③计算矿物含量;测井曲线与补偿中子、补偿声波、自然伽马曲线有相关性;十三、高频等参数感应测井高频感应是一个五线圈系探测系统,每个线圈系由一个发射线圈和两个接收线圈组成;五个线圈系的长度分别为、、、、2.0m,工作频率分别为、、、、;直接测量结果为五条相位差曲线,通过相位差与电阻率之间的对应关系,计算后得到五条电阻率曲线;主要应用:①划分薄层;②计算地层电阻率、侵入带电阻率及侵入半径;③评价储集层流体饱和类型;④划分油气水界面;⑤评价储集层径向非均质性,进而研究储集层内可动油的分布;⑥评价储集层的渗流能力较高的纵向分辨率高频感应图中的油/水分界面高频感应与双感应的比较裸眼井测井系列的选择砂泥岩剖面:泥岩、砂岩为主的地层;碳酸盐岩剖面:灰岩、白云岩为主的地层;复杂岩性剖面:火成岩、变质岩、砾岩及其它复杂碎屑岩地层;测井系列选择原则能体现其先进性、有效性及可行性;能有效地划分储层;具有不同径向探测能力,能有效地求解地层真电阻率;能定量计算储层孔隙度、渗透率、含水饱和度及其它地质参数;能有效地判断油、气、水层;能进行地层对比;裸眼井测井系列分类侧向和感应的选择方法测井资料质量检查测井曲线的准确性是保证测井解释结果可靠的前提,然而,由于测井环境中各种随机因素的影响,测井曲线的幅度不可避免地受到许多非地层因素的影响,因此,为了保证测井解释与数据处理的精度,要对测井资料进行质量检验;通过测井资料质量检查过程,保证了测井曲线的质量;测井曲线深度和幅度偏差的校正利用专门的处理程序,交会图是一种常用的检查测井质量的技术方法;用中子—密度交会图检查测井曲线质量用中子—密度的GR-Z值图识别岩性,检查测井曲线质量;测井资料的解释测井资料解释:利用测井资料分析地层的岩性,判断油、气、水层,计算孔隙度、饱和度、渗透率等地质参数,评价油气层的质量等;定性解释人工定性地判断油气水层一般采用比较分析的方法,是一项地区性、经验性很强的工作;⑴首先划分渗透层;⑵再对储集层的物性孔隙性、渗透性等进行分析;⑶最后分段解释油气水层:在地层水电阻率基本相同的井段内,对地层的岩性、物性、含油性进行比较,然后逐层作出结论;用SPGR曲线异常确定储层位置用微电极曲线确定分层界面分层时环顾左右,考虑各曲线的合理性扣除夹层泥层和致密层,厚层细分★划分界面:SP、GR、微电极、声波、感应、CNL、DEN半幅点; R4、极值★储层特征: SP幅度异常,GR低值,微电极有幅度差,AC、CNL、DEN 数值符合地区规律,CAL等于或略小于钻头值平直油层的电性特征:①电阻率高,在岩性相同的情况下,一般深探测电阻率是邻近水层的3-5倍以上;岩性越粗,含油饱和度越高,电阻率数值也越高;②自然电位异常幅度略小于邻近水层;③浅探测电阻率小于或等于深探测电阻率数值,即侵入性质为低侵或无侵;④计算的含油饱和度大于50%,好油层可达60-80%;水层的电性特征:①自然电位异常幅度大,一般大于油层;②深探测电阻率数值低;砂泥岩剖面水层电阻率一般为2-3欧姆米;③明显高侵;即浅探测电阻率数值大于深探测电阻率数值;④计算的含油饱和度数值接近0,或小于30%;定性解释的方法①油层最小电阻率法;②标准水层对比法;③邻井资料对比法;④径向电阻率法;径向电阻率法--泥浆侵入剖面冲洗带:岩石孔隙受到泥浆滤液的强烈冲洗,原始流体被挤走,孔隙中为泥浆滤液和残余地层水或残余油气;过渡带:距井壁有一定的距离,泥浆滤液减少,原始流体增加;未侵入带:未受泥浆侵入的原状地层;高侵剖面泥浆高侵:Rxo>>Rt;用淡水泥浆钻井的水层一般形成典型的高侵剖面,部分具有高矿化度地层水的油气层,也可能形成高侵剖面,但Rxo和Rt的差别比相应的水层小;低侵剖面一般是油气层具有典型的低侵剖面 Rxo明显低于Rt,部分水层Rmf<Rw也可能出现低侵剖面,但Rxo和Rt的差别比相应的油气层小;定量解释的基础—阿尔奇公式定量解释基础资料的了解:包括油田的构造特点和油气藏类型、各时代地层的分布规律、各主要含油层系的岩电变化规律;钻井过程中的油气显示、钻井取心、井壁取心、岩屑录井、气测资料、试油试水资料深度校正:在测井解释前,必须进行测井曲线校深,使所有测井曲线有完全一致的对应关系;环境校正:对井眼、钻井液、围岩等因素造成的偏差进行校正;地层水电阻率的确定地层水有时也称作原生水或孔隙水,是饱和在多孔地层岩石中未被钻井泥浆污染的水;地层水电阻率Rw是重要的解释参数,因为利用电阻率测井资料计算含水饱和度或含油饱和度时,Rw是必不可少的;有以下几种方法得到Rw数值:水分析资料自然电位曲线水层 SSP=KlgRmf/Rt电阻率--孔隙度资料水层F=Rt/Rw=a/φm根据地区统计规律储层参数计算—孔隙度AC计算:Φ=Δt-Δtma/Δtmf-Δtma/ CpCp为地层压实校正系数,约为地层深度HΔtma为岩石骨架值,砂岩一般取180Δtmf为流体声波时差,一般取水的时差值620Δt为岩石声波时差读数;DEN计算:Φ=ρ-ρma/ρf -ρmaρf为为孔隙流体密度,ρma为岩石骨架密度,砂岩一般为,石灰岩为,白云岩为;ρ为岩石密度读数;CNL:直接读出储层参数计算—饱和度根据阿尔奇公式:F=Ro/Rw=a/φmI=Rt/Ro=b/Swn有Sw=abRw/φmRt1/n一般取a=,b=1,n=2, m=,得出:储层参数计算—渗透率lgK=D1++Ф其中D1为经验系数,取值范围为7~lgMd=C0+C1ΔGRC0、C1为经验系数C0=lgMd0,Md0一般取;C1= lgMd0ΔGR=GR-GRmin/GRmax-GRmin储层参数计算—泥质含量泥质含量Vsh:Vsh= 2cSH –1/2c-1C为经验系数新生界地层C=,老地层C=2;SH=Gi-GMINi/GMAXi- GMINi,i可以取1-8的任意自然数,具体是1-GR,2-CNL,3-SP,4-NLL,5-RT,6-AC,7-RXO,8-CAL定量解释—饱和度参数判别法储集层孔隙中充满流体,一般为油和水,含水饱和度Sw与含油饱和度So之和为100%,即So+Sw=100%=1 Sw≤10% So≥90%为油层Sw=11%~90%为油水同层Sw>90% ,Sw<100%,含油水层Sw=100%为水层。

测井曲线的用途

测井曲线的用途

二、测井资料的概括使用一、区分岩层界里二、决定天层的电阻率三、决定天层的孔隙度四、决定天层传声速度五、决定天层的含泥量六、决定天层的含H量七、决定天层的稀度八、概括推断天层的岩性九、概括推断油气火层1、⑴渗透层.⑵油气层皆是下阻层,其电阻率相称于尺度火层2-3倍,油层Ωm.⑶尺度火层其电阻率交近于共井段的泥岩.正在所钻研井段不砂岩,可近似天以泥岩电阻率去代替尺度火层的电阻率.2、⑴油层:下阻渗透层,电阻直线幅度下,特天是正在4m直线必须有鼓包,4m幅度越下,油层越佳,自然电位非常十分常常小于火层,声波为中值.⑵气层:下阻渗透层,电阻直线幅度下,4m直线有鼓包.声波时好大,以至比泥岩还要大,而且有周波跳跃的局里,中子伽马常常幅度下.⑶火层:矮阻渗透层(浓火层例中为下阻层),当天层矿化度比较下时,中子伽马幅度比较下,常常情况较矮,自然电位常常比较大(取油层做比较).十、油气火界里的化分1、油火界里的区分:⑴电阻直线上有明隐幅度变更,含油部分幅度下,含火部分幅度矮.⑵感触直线上正在油火界里上幅度变更特天明隐.⑶自然电位直线正在油火界里上有一个不很明隐的台阶,含油部分非常十分小,含火部分非常十分大.⑷稀度直线正在油火界里上有微小的台阶,含油部分稀度小,含火部分稀度较大.⑸声波正在油火界里含油部分时好大,含火部分时好小,油层正在4m直线上一定有鼓包.2、油气界里的区分:⑴声波时好正在油气界里有明隐的幅度变更,气层时好大,油层时好小,气层周波跳跃,正在油气界里有不太明隐的幅度变更.⑵中子伽马正在油气界里上有不太明隐的变更,少源距气层的幅度下,油层的幅度小.3、气火界里的区分:⑴声波时好正在气火界里上明隐的幅变更,含火部分时好小,含气部分时好大,含气部分有周波跳跃.⑵稀度直线正在气火界里上有明隐的幅度变更,气层部分稀度小,含火部分稀度大.⑶中子伽马直线正在气火界里上有不明隐的变更,短源距气层部分幅度下,火层部分幅度矮,(但是有例中,当火层矿化度比较下,直线幅度变更不明隐).。

测井曲线代码大全

测井曲线代码大全

测井曲线代码RD、RS—深、浅侧向电阻率RDC、RSC—环境校正后的深、浅侧向电阻率VRD、VRS—垂直校正后的深、浅侧向电阻率DEN—密度DENC—环境校正后的密度VDEN—垂直校正后的密度CNL—补偿中子CNC—环境校正后的补偿中子VCNL—垂直校正后的补偿中子GR—自然伽马GRC—环境校正后的自然伽马VGR—垂直校正后的自然伽马AC—声波VAC—垂直校正后声波PE—有效光电吸收截面指数VPE—垂直校正后的有效光电吸收截面指数SP—自然电位VSP—垂直校正后的自然电位CAL—井径VCAL—垂直校正后井径KTh—无铀伽马GRSL—能谱自然伽马U—铀Th—钍K—钾WCCL—磁性定位TGCN—套管中子TGGR—套管伽马R25—2.5米底部梯度电阻率VR25—环境校正后的2.5米底部梯度电阻率DEV—井斜角AZIM—井斜方位角TEM—井温RM—井筒钻井液电阻率POR2—次生孔隙度POR—孔隙度PORW—含水孔隙度PORF—冲洗带含水孔隙度PORT—总孔隙度PERM—渗透率SW-含水饱和度SXO—冲洗带含水饱和度SH—泥质含量CAL0—井径差值HF—累计烃米数PF—累计孔隙米数DGA—视颗粒密度SAND,LIME,DOLM,OTHR—分别为砂岩,石灰岩,白云岩,硬石膏含量VPO2—垂直校正次生孔隙度VPOR—垂直校正孔隙度VPOW—垂直校正含水孔隙度VPOF—垂直校正冲洗带含水孔隙度VPOT—垂直校正总孔隙度VPEM—垂直校正渗透率VSW-垂直校正含水饱和度VSXO—垂直校正冲洗带含水饱和度VSH—垂直校正泥质含量VCAO—垂直校正井径差值VDGA—垂直校正视颗粒密度VSAN,VLIM,VDOL,VOTH—分别为垂直校正砂岩,石灰岩,白云岩,硬石膏含量岩石力学参数PFD1—破裂压力梯度POFG—上覆压力梯度PORG—地层压力梯度POIS—泊松比TOUR—固有剪切强度UR—单轴抗压强度YMOD—氏模量SMOD—切变模量BMOD—体积弹性模量CB—体积压缩系数BULK—出砂指数MACMAC—偶极子阵列声波XMAC-Ⅱ—穿插偶极子阵列声波DTC1—纵波时差DTS1—横波时差DTST1—斯通利波时差DTSDTC-纵横波速度比TFWV10-单极子全波列波形TXXWV10-XX偶极子波形TXYWV10- XY偶极子波形TYXWV10- YX偶极子波形TYYWV10- YY偶极子波形WDST-计算各向异性开窗时间WEND-计算各向异性关窗时间DTSF-计算的快横波时差DTSS-计算的慢横波时差固井CCL—磁性定位CBL—声幅VDL—声波变密度〔二维〕AC—声波CAL—裸眼井径GR—自然伽马主要测井曲线与其含义一、自然电位测井:测量在地层电化学作用下产生的电位。

主要测井曲线及其含义

主要测井曲线及其含义

主要测井曲线及其含义主要测井曲线及其含义一、自然电位测井:测量在地层电化学作用下产生的电位。

自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。

Rmf≈Rw时,SP几乎是平直的;Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。

自然电位测井SP曲线的应用:①划分渗透性地层。

②判断岩性,进行地层对比。

③估计泥质含量。

④确定地层水电阻率。

⑤判断水淹层。

⑥沉积相研究。

自然电位正异常Rmf<Rw时,SP出现正异常。

淡水层Rw很大(浅部地层)咸水泥浆(相对与地层水电阻率而言)自然电位测井自然电位曲线与自然伽马、微电极曲线具有较好的对应性。

自然电位曲线在水淹层出现基线偏移二、普通视电阻率测井(R4、R2.5)普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。

测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。

视电阻率曲线的应用:①划分岩性剖面。

②求岩层的真电阻率。

③求岩层孔隙度。

④深度校正。

⑤地层对比。

电极系测井2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。

底部梯度电极系分层:顶:低点;底:高值。

三、微电极测井(ML)微电极测井是一种微电阻率测井方法。

其纵向分辨能力强,可直观地判断渗透层。

主要应用:①划分岩性剖面。

②确定岩层界面。

③确定含油砂岩的有效厚度。

④确定大井径井段。

⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。

微电极确定油层有效厚度微电极测井微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。

四、双感应测井感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

声波时差
主要用来判断渗透层,声波时差越大,说明岩石中间的空隙越大,也就说明绝对孔隙度越好.在油层区域范围内,声波时差非常小时,可以判定该层位为干层.
自然伽玛
主要用来判断泥质含量,伽玛值越高,说明泥质含量越高,也就是这段的物性不好.
自然电位
主要用来判断岩性,在沙泥岩区域,当自然电位高时,可以判定为泥岩,低为砂岩.
电阻率
电阻率一般分为三条曲线:深感应,中感应,八侧向三条.
三者之间的间隔距离说明含水情况,间隔距离越大,说明含水越高.
另外还有两条4M和2.5M的电阻曲线,仅仅作为参考,一般情况下不太用得到的.
另外,还有一个微电位和微梯度,他们之间的间隔距离说明渗透率和孔隙度.
间隔距离越大,说明渗透率越好.两条平行的情况说明该层的渗透率比较稳定.
几条曲线综合运用:
假设为低自然电位,低自然伽玛,高声波时差:
高电阻且三条曲线分开距离小,可以基本判定为油层.
高电阻且分开距离大,可以基本判定为油水同层活底水油层.
低电阻且分开距离大,可以基本判定为水层.
lld Deep Investigation Log 是深侧向测井
lls Shallow Investigation Log 是浅侧向测井
msfl Microspherical Focused Log 是微球形聚焦测井
ild 是深感应测井
ils 是浅感应测井
ilm 是中感应测井
上述这三个最后一个字母分别是d代表deep,就是深;s代表shallow,就是浅;m代表middle,就是中的意思。

il是是induction log ,就是感应测井的意思
sflu 是球形聚焦电阻率测井
pef 是光电吸收截面指数
rhob 是岩性密度测井
nphi?这个不知道,是不是phin,这个是中子孔隙度测井,呵呵!
cali 这个是井径测井
bs 这个也不是很清楚。

其实我倒是觉得写成大写大家更好认一点,因为这些本来就是英文缩写的大写字母,在表头里往往出现的是小写,所以让人很费解.。

相关文档
最新文档