计数原理课件
合集下载
计数原理课件
1 2 3 1 2 3 1 2 3 4 5
课堂小结:
弄清两个原理的区别与联系,是正确使用这两个原理的前 提和条件. 这两个原理都是指完成一件事,区别在于: (1)分类加法计数原理是“分类”,每类办法 中的每一种方法都能独立完成一件事; (2)分步乘法计数原理是“分步”;每种方法 都只能做这件事的一步, 不能独立完成这件事, 只有各个步骤都完成才算完成这件事情!
变式:
若还有C大学,其中强项专业为:新闻学、生物 学、人力资源学.那么,这名同学可能的专业选择共 有多少种? A大学 B大学 数学 会计学 信息技术学 法学 C大学 新闻学
生物学
化学 医学
生物学
人力资源学
物理学
工程学
注意:分类加法计数做到不重,不漏!
如果完成一件事有三类不同方案,在第1类方 案中有m1种不同的方法,在第2类方案中有 m2种不同的方法,在第3类方案中有m3种不 同的方法,那么完成这件事共有多少种不同 的方法? 如果完成一件事情有类不同方案,在每一类中 都有若干种不同方法,那么应当如何计数呢?
N m1 m 2 m n
N=m1×m2×…×mn
种不同的方法.
理解分步乘法计数原理: 分步计数原理针对的是“分步”问题,完成一件事要分为 若干步,各个步骤相互依存,完成任何其中的一步都不 能完成该件事,只有当各个步骤都完成后,才算完成这 件事. 理解分类加法计数原理与分步乘法计数原理异同点 ①相同点:都是完成一件事的不同方法种数的问题 ②不同点:分类加法计数原理针对的是“分类”问题,完 成一件事要分为若干类,各类的方法相互独立,各类中 的各种方法也相对独立,用任何一类中的任何一种方法 都可以单独完成这件事,是独立完成;而分步乘法计数 原理针对的是“分步”问题,完成一件事要分为若干步, 各个步骤相互依存,完成任何其中的一步都不能完成该 件事,只有当各个步骤都完成后,才算完成这件事,是 合作完成.
课堂小结:
弄清两个原理的区别与联系,是正确使用这两个原理的前 提和条件. 这两个原理都是指完成一件事,区别在于: (1)分类加法计数原理是“分类”,每类办法 中的每一种方法都能独立完成一件事; (2)分步乘法计数原理是“分步”;每种方法 都只能做这件事的一步, 不能独立完成这件事, 只有各个步骤都完成才算完成这件事情!
变式:
若还有C大学,其中强项专业为:新闻学、生物 学、人力资源学.那么,这名同学可能的专业选择共 有多少种? A大学 B大学 数学 会计学 信息技术学 法学 C大学 新闻学
生物学
化学 医学
生物学
人力资源学
物理学
工程学
注意:分类加法计数做到不重,不漏!
如果完成一件事有三类不同方案,在第1类方 案中有m1种不同的方法,在第2类方案中有 m2种不同的方法,在第3类方案中有m3种不 同的方法,那么完成这件事共有多少种不同 的方法? 如果完成一件事情有类不同方案,在每一类中 都有若干种不同方法,那么应当如何计数呢?
N m1 m 2 m n
N=m1×m2×…×mn
种不同的方法.
理解分步乘法计数原理: 分步计数原理针对的是“分步”问题,完成一件事要分为 若干步,各个步骤相互依存,完成任何其中的一步都不 能完成该件事,只有当各个步骤都完成后,才算完成这 件事. 理解分类加法计数原理与分步乘法计数原理异同点 ①相同点:都是完成一件事的不同方法种数的问题 ②不同点:分类加法计数原理针对的是“分类”问题,完 成一件事要分为若干类,各类的方法相互独立,各类中 的各种方法也相对独立,用任何一类中的任何一种方法 都可以单独完成这件事,是独立完成;而分步乘法计数 原理针对的是“分步”问题,完成一件事要分为若干步, 各个步骤相互依存,完成任何其中的一步都不能完成该 件事,只有当各个步骤都完成后,才算完成这件事,是 合作完成.
2025届高中数学一轮复习课件《计数原理》ppt
高考一轮总复习•数学
第20页
解析:(1)因为学生只能从东门或西门进入校园, 所以 3 名学生进入校园的方式共 23= 8(种).因为教师只可以从南门或北门进入校园, 所以 2 名教师进入校园的方式共有 22= 4(种).所以 2 名教师和 3 名学生进入校园的方式共有 8×4=32(种).故选 D.
A.12 种 B.24 种 C.72 种 D.216 种
高考一轮总复习•数学
第15页
(2)设 I={1,2,3,4},A 与 B 是 I 的子集,若 A∩B={1,2},则称(A,B)为一个“理想配集”.若
将(A,B)与(B,A)看成不同的“理想配集”,
按其中一个子集中元素个数分类23个个;; 4个.
即十位数字最小. 称该数为“驼峰数”.比如 102,546 为“驼峰数”,由数字 1,2,3,4 构成的无重复数字 的“驼峰数”有________个.
高考一轮总复习•数学
第22页
解析:(1)由分步乘法计数原理知,用 0,1,…,9 十个数字组成三位数(可有重复数字) 的个数为 9×10×10=900,组成没有重复数字的三位数的个数为 9×9×8=648,则组成有 重复数字的三位数的个数为 900-648=252.故选 B.
(2)根据题意知,a,b,c 的取值范围都是区间[7,14]中的 8 个整数,故公差 d 的范围是区 间[-3,3]中的整数.①当公差 d=0 时,有 C18=8(种);②当公差 d=±1 时,b 不取 7 和 14, 有 2×C16=12(种);③当公差 d=±2 时,b 不取 7,8,13,14,有 2×C14=8(种);④当公差 d=±3 时,b 只能取 10 或 11,有 2×C12=4(种).综上,共有 8+12+8+4=32(种)不同的分珠计数 法.
课件12:1.1 基本计数原理(二)
法二:分两类:第一类,操场与教学区用同一种颜色, 有 6×5×4=120 种着色方法;第二类,操场与教学区不 同色,有 6×5×4×3=360 种着色方法.根据分类加法计 数原理,共有 120+360=480 种不同的着色方法. 【答案】480
考点三 两个计数原理的综合应用
例 3 有一项活动,需在 3 名老师、8 名男同学和 5 名女 同学中选部分人员参加. (1)若只需一人参加,有多少种不同选法? (2)若需老师、男同学、女同学各一人参加,有多少种不 同的选法? (3)若需一名老师、一名同学参加,有多少种不同选法?
2.由数字 0,1,2,3,4,5 组成没有重复数字的四位数中,且 能被 5 整除的数共有________个.
【解析】能被 5 整除的数个位为 5 或 0,若个位为 0, 千位有 5 种排法,百位有 4 种排法,十位有 3 种排法, 共有 5×4×3=60 个;若个位为 5,千位有 4 种排法, 百位有 4 种排法,十位有 3 种排法,共有 4×4×3=48 个.故能被 5 整除的且没有重复数字的四位数共有 60+48=108 个. 【答案】108
1.1 基本计数原理(二)
考点一 组数问题
例 1 (1)从 0,1,2,3,4,5 这六个数字中任取三个不同数字组
成三位数,则三位数的个数为( )
A.120
B.80
C.90
D.100
(2)用数字 2,3 组成四位数,且数字 2,3 至少都出现一次,
这样的四位数共有________个.(用数字作答)
(3)可分两类,每一类又分两步. 第一类,选一名老师再选一名男同学,有 3×8=24 种选法; 第二类,选一名老师再选一名女同学,共有 3×5=15 种选法. 由分类加法计数原理,共有 24+15=39 种选法.
新教材北师大版高中数学选择性必修第一册第五章计数原理 精品教学课件
类型 2 分步乘法计数原理 【例 2】 某大学食堂备有 6 种荤菜,5 种素菜,3 种汤.现要 配成一荤一素一汤的套餐,问可以配制成多少种不同的品种?
[思路点拨]
[解] 完成这件事是配制套餐,选一个荤菜,选一个素菜,选一 个汤,因此需分三步完成此事,由分步乘法计数原理可得:配制成不 同的套餐品种共有 6×5×3=90 种.
20
55
(1)从三个班中选 1 名学生任学生会主席,有多少种不同的选法?
(2)从高三(1)班、(2)班男生中或从高三(3)班女生中选 1 名学生任
学生会生活部部长,有多少种不同的选法?
[解] (1)从每个班选 1 名学生任学生会主席,共有 3 类不同的方 案:
第 1 类,从高三(1)班中选出 1 名学生,有 50 种不同的选法; 第 2 类,从高三(2)班中选出 1 名学生,有 60 种不同的选法; 第 3 类,从高三(3)班中选出 1 名学生,有 55 种不同的选法. 根据分类加法计数原理知,从三个班中选 1 名学生任学生会主 席,共有 50+60+55=165(种)不同的选法.
(2)分三步: 第一步,选 1 名医生,有 3 种选法; 第二步,选 1 名护士,有 5 种选法; 第三步,选 1 名麻醉师,有 2 种选法. 根据分步乘法计数原理知,共有 3×5×2=30(种)选法.
当堂达标·夯基础
1.加法计数原理针对的是“分类”问题,完成一件事要分为若 干类,各类中的各种方法相互独立,用任何一类中的任何一种方法都 可以单独完成这件事.
1.分类加法计数原理 (1)定义:完成一件事,可以有 n 类办法,在第 1 类办法中有 _m__1种__方__法__,在第 2 类办法中有_m_2_种__方__法__,……在第 n 类办法中有 _m__n种__方__法__,那么,完成这件事共有 N=_m_1_+__m_2_+__…__+__m_n_种方法.(也 称“加法原理”)
计数原理-完整版课件
解析: ∵C06+C16+C26+C36+C46+C56+C66=26=64, ∴C16+C26+C36+C46+C56=64-2=62. 答案: 62
• 7.某校高中部,高一有6个班,高二有7个班,高三有8个班,学 校利用星期六组织学生到某厂进行社会实践活动.
• 1.书架上有不同的语文书10本,不同的英语书7本,不同的数学 书5本,现从中任选一本阅读,不同的选法有( )
• A.22种 B.350种
• C.32种 D.20种
• 解析: 由分类加法计数原理得,不同的选法有10+7+5=22 种.
• 答案: A
• 2.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的 坐法种数为( )
两通项相乘得:C6r x3r Ck10x-4k=C6r C1k0x3r -4k,
令
r 3
-
k 4
=0,得4r=3k,这样一来,(r,k)只有三组:
(0,0),(3,4),(6,8)满足要求.
故常数项为:1+C36C410+C66C810=4 246.
答案: 4 246
6.C16+C26+C36+C46+C56的值为________.
• A.3×3! B.3×(3!)3
• C.(3!)4 D.9!
• 解析: 把一家三口看作一个排列,然后再排列这3家,所以有 (3!)4种.
• 答案: C
• 3.(2013·山东卷)用0,1,…,9十个数字,可以组成有重复数字的 三位数的个数为( )
• A.243 B.252
• C.261 D.279
• 解析: 能够组成三位数的个数是9×10×10=900,能够组成无 重复数字的三位数的个数是9×9×8=648,故能够组成有重复数字的三 位数的个数是900-648=252.
• 7.某校高中部,高一有6个班,高二有7个班,高三有8个班,学 校利用星期六组织学生到某厂进行社会实践活动.
• 1.书架上有不同的语文书10本,不同的英语书7本,不同的数学 书5本,现从中任选一本阅读,不同的选法有( )
• A.22种 B.350种
• C.32种 D.20种
• 解析: 由分类加法计数原理得,不同的选法有10+7+5=22 种.
• 答案: A
• 2.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的 坐法种数为( )
两通项相乘得:C6r x3r Ck10x-4k=C6r C1k0x3r -4k,
令
r 3
-
k 4
=0,得4r=3k,这样一来,(r,k)只有三组:
(0,0),(3,4),(6,8)满足要求.
故常数项为:1+C36C410+C66C810=4 246.
答案: 4 246
6.C16+C26+C36+C46+C56的值为________.
• A.3×3! B.3×(3!)3
• C.(3!)4 D.9!
• 解析: 把一家三口看作一个排列,然后再排列这3家,所以有 (3!)4种.
• 答案: C
• 3.(2013·山东卷)用0,1,…,9十个数字,可以组成有重复数字的 三位数的个数为( )
• A.243 B.252
• C.261 D.279
• 解析: 能够组成三位数的个数是9×10×10=900,能够组成无 重复数字的三位数的个数是9×9×8=648,故能够组成有重复数字的三 位数的个数是900-648=252.
6.1分类加法计数原理与分步乘法计数原理课件(人教版)
第六章 计数原理
6.1 分类加法计数原理 与分步乘法计数原理
1.理解分类加法计数原理与分步乘法 计数原理.(重点) 2.会用这两个原理分析和解决一些简 单的实际计数问题.(难点)
1.核糖核酸(RNA)分子有碱基按一定顺序排列而成。 已知碱基有4种,但由成百上千个碱基组成的RNA分 子的种数非常巨大。为什么?
B 果将这 2 个新节目插人节目单中,那么不同的插法种数为( )
A.12
B.20
C.36
D.120
解析:利用分步计数原理,第一步插入第一个新节目,有 4 种方法,第二步插 入第二个新节目,此时有 5 个空,故有 5 种方法.因此不同的插法共有 45 20 种.故选 B.
2.如图,用 4 种不同的颜色对 A,B,C,D 四个区域涂色,要求相邻的两个区
工程学
如果这名同学只能选一个专业,那么他共有多少种选择?
解:这名同学可以选择 A,B 两所大学中的一所. 在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法. 因为没有一个强项专业是两所大学共有的, 所以根据分类加法计数原理, 这名同学可能的专业选择种数为 N 5 4 9 .
完成一件事需要两个步骤,做第 1 步有 m 种不同的方
法,做第 2 步有 n 种不同的方法,那么完成这件事共有 N
=m×n种不同的方法.
例 1 在填写高考志愿表时,一名高中毕业生了解到,A,B
两所大学各有一些自己感兴趣的强项专业,如下表.
A 大学
B 大学
生物学
数学
化学
会计学
医学
信息技术学
物理学
法学Biblioteka 例5 给程序模块命名,需要用3个字符,其中首字符要求用字母 A~G或U~Z,后两个字符要求用数字1~9,最多可以给多少个程 序模块命名?
6.1 分类加法计数原理 与分步乘法计数原理
1.理解分类加法计数原理与分步乘法 计数原理.(重点) 2.会用这两个原理分析和解决一些简 单的实际计数问题.(难点)
1.核糖核酸(RNA)分子有碱基按一定顺序排列而成。 已知碱基有4种,但由成百上千个碱基组成的RNA分 子的种数非常巨大。为什么?
B 果将这 2 个新节目插人节目单中,那么不同的插法种数为( )
A.12
B.20
C.36
D.120
解析:利用分步计数原理,第一步插入第一个新节目,有 4 种方法,第二步插 入第二个新节目,此时有 5 个空,故有 5 种方法.因此不同的插法共有 45 20 种.故选 B.
2.如图,用 4 种不同的颜色对 A,B,C,D 四个区域涂色,要求相邻的两个区
工程学
如果这名同学只能选一个专业,那么他共有多少种选择?
解:这名同学可以选择 A,B 两所大学中的一所. 在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法. 因为没有一个强项专业是两所大学共有的, 所以根据分类加法计数原理, 这名同学可能的专业选择种数为 N 5 4 9 .
完成一件事需要两个步骤,做第 1 步有 m 种不同的方
法,做第 2 步有 n 种不同的方法,那么完成这件事共有 N
=m×n种不同的方法.
例 1 在填写高考志愿表时,一名高中毕业生了解到,A,B
两所大学各有一些自己感兴趣的强项专业,如下表.
A 大学
B 大学
生物学
数学
化学
会计学
医学
信息技术学
物理学
法学Biblioteka 例5 给程序模块命名,需要用3个字符,其中首字符要求用字母 A~G或U~Z,后两个字符要求用数字1~9,最多可以给多少个程 序模块命名?
基本计数原理PPT课件
第7页/共40页
学案P46-1
练习 要从甲、乙、丙3幅不同的画中选出2 幅,分别挂在左、右两边墙上的指定位置,问共 有多少种不同的挂法?
分 左边
两 步
甲
完
成乙
右边 乙 丙 甲 丙
第一步 第二步 3×2
甲
丙
乙
第8页/共40页
例 2.解下列各题: (1) 要从甲、乙、丙 3 名工人中选出 2 名分别上
第一步, m1 = 10; 第二步, m2 = 10; 第三步, m3 = 10. 根据乘法原理, 共可以设置
N = 10×10×10 = 103 种三位数的密码。
首位数字不为0的密码数?首位数字是0的密码数?
第35页/共40页
练习 一个三位密码锁,各位上数字由0,1,2,3,4,5,
6,7,8,9十个数字组成,可以设置多少种三位数的密码( 各位上的数字允许重复)?首位数字不为0的密码数是多 少?首位数字是0的密码数又是多少?
说明 N= m1+m2+… + mn 种不同的方法
1)各类办法之间相互独立,都能独立的完成这件事,要 计算方法种数,只需将各类方法数相加,因此分类计数原 理又称加法原理 2)首先要根据具体的问题确定一个分类标准,在分 类标准下进行分类,然后对每类方法计数.
第4页/共40页
问题2:从甲地到乙地,有3条道路,从乙地到丙 地有2条道路,那么从甲地经乙地到丙地共有多少 种不同的走法 ?
日班和晚班,有多少种不同的选法?
(2) 有 4 名学生报名参加数学、物理、化学竞赛, 每人限报一科,有多少种不同的报名方法?
(3) 有 4 名学生争夺数学、物理、化学竞赛的冠军, 你有多少种不同的结果?(每个科目冠军只有 一人)
计数原理优秀ppt课件
解 从3幅画中选2幅 取分别挂在左、右 边墙,上 可以分两步: 完成 第1步 ,从 3幅画中 1幅选 挂在左 ,有 边 3种墙上 方;法 第2步,从剩下 2幅 的画中 1幅 选画挂在右 上,有2种方. 法
根据分步乘法,不 计同 数挂 原法 理种数是 N326.
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
用两个计数
原理解决计
数问题时
,最
重要的是
在
开始 计算 之
前要进 行仔
细分析
需
要分类还
是
需要分步
.
分 类 要"不 做重 到不 ".分漏 类后再分别 对 每 一 类 进,行 最计 后数 用 分 类 加 数 原 理 求 ,得和 到 总. 数
分 步 要"步 做骤 到完 ". 整完成了所有 步 骤,恰 好 完 成 任,当务然 步 与 步 之 间 要 相 互 独立.分 步 后 再 计 算 每 一方步法的 数,最 后 根 据 分 步 乘 法原计理,数把 完 成 每 一 步 方 法 数 相 ,得乘到 总 .数
新课
分类记数原理: 做一件事情,完成它可以有
n类办法,在第一类办法中有m1种不同的方法,在 第二类办法中有m2种不同的方法,……,在第 n类办法中有mn种不同的方法。那么完成这件 事共有
N=m1+m2+…+mn 种不同的方法。
分步记数原理:做一件事情,完成它需要分
成n个步骤,做第一步有m1种不同的方法,做第 二步有m2种不同的方法,……,做第n步有mn 种不同的方法,那么完成这件事有
问题3:用前6个大写英文字母和1~9个阿拉伯
根据分步乘法,不 计同 数挂 原法 理种数是 N326.
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
用两个计数
原理解决计
数问题时
,最
重要的是
在
开始 计算 之
前要进 行仔
细分析
需
要分类还
是
需要分步
.
分 类 要"不 做重 到不 ".分漏 类后再分别 对 每 一 类 进,行 最计 后数 用 分 类 加 数 原 理 求 ,得和 到 总. 数
分 步 要"步 做骤 到完 ". 整完成了所有 步 骤,恰 好 完 成 任,当务然 步 与 步 之 间 要 相 互 独立.分 步 后 再 计 算 每 一方步法的 数,最 后 根 据 分 步 乘 法原计理,数把 完 成 每 一 步 方 法 数 相 ,得乘到 总 .数
新课
分类记数原理: 做一件事情,完成它可以有
n类办法,在第一类办法中有m1种不同的方法,在 第二类办法中有m2种不同的方法,……,在第 n类办法中有mn种不同的方法。那么完成这件 事共有
N=m1+m2+…+mn 种不同的方法。
分步记数原理:做一件事情,完成它需要分
成n个步骤,做第一步有m1种不同的方法,做第 二步有m2种不同的方法,……,做第n步有mn 种不同的方法,那么完成这件事有
问题3:用前6个大写英文字母和1~9个阿拉伯
《计数原理》课件
探讨抽屉原理及其在计 数问题中的实际应用。
错排问题与公式推 导
讲解错排问题的概念, 并推导出错排公式。
具体应用
可重集排列组合问题
讨论可重集的排列组合问题,例如将不同颜色的积木 排列成不同的形状。
球与盒子问题
考虑将球放在盒子中的不同方式,包括球的数量和盒 子的数量。
字母重排列问题
通过重新排列字母来创建不同的单词或短语,并讨论
钞票找零问题
解决找零时的计数问题,包括使用不同面额的钞票和
拓展应用
1
Fibonacci数列及其应用
介绍Fibonacci数列的定义和它在自然界和科学中的应用。
2
卡特兰数与其特殊应用
探讨卡特兰数及其在计数问题中的特殊应用,如括号匹配问题。
总结与展望
重要性
总结计数原理在实际问题中的重要性和应用。
新方法探究
《计数原理》PPT课件
计数原理是一门关于计数和组合的数学学科,它在计算机科学、密码学和信 息论等领域中有着广泛的应用。
引言
定义与作用Байду номын сангаас
介绍计数原理的定义和它在问题求解中的作用。
应用场景
简述计数原理在实际生活和科学研究中的应用场景。
基本概念
1
排列组合
介绍排列组合的定义和它们之间的区别。
2
排列、重排列、循环排列
讲解排列、重排列和循环排列的概念及其应用。
3
组合、二项式系数、帕斯卡三角形
探讨组合、二项式系数和帕斯卡三角形在计数原理中的重要性。
基本定理与公式
乘法原理与加法原 理
解释乘法原理和加法原 理,并探讨它们在计数 问题中的应用。
容斥原理与推广
介绍容斥原理以及它在 解决重叠计数问题中的 应用。
错排问题与公式推 导
讲解错排问题的概念, 并推导出错排公式。
具体应用
可重集排列组合问题
讨论可重集的排列组合问题,例如将不同颜色的积木 排列成不同的形状。
球与盒子问题
考虑将球放在盒子中的不同方式,包括球的数量和盒 子的数量。
字母重排列问题
通过重新排列字母来创建不同的单词或短语,并讨论
钞票找零问题
解决找零时的计数问题,包括使用不同面额的钞票和
拓展应用
1
Fibonacci数列及其应用
介绍Fibonacci数列的定义和它在自然界和科学中的应用。
2
卡特兰数与其特殊应用
探讨卡特兰数及其在计数问题中的特殊应用,如括号匹配问题。
总结与展望
重要性
总结计数原理在实际问题中的重要性和应用。
新方法探究
《计数原理》PPT课件
计数原理是一门关于计数和组合的数学学科,它在计算机科学、密码学和信 息论等领域中有着广泛的应用。
引言
定义与作用Байду номын сангаас
介绍计数原理的定义和它在问题求解中的作用。
应用场景
简述计数原理在实际生活和科学研究中的应用场景。
基本概念
1
排列组合
介绍排列组合的定义和它们之间的区别。
2
排列、重排列、循环排列
讲解排列、重排列和循环排列的概念及其应用。
3
组合、二项式系数、帕斯卡三角形
探讨组合、二项式系数和帕斯卡三角形在计数原理中的重要性。
基本定理与公式
乘法原理与加法原 理
解释乘法原理和加法原 理,并探讨它们在计数 问题中的应用。
容斥原理与推广
介绍容斥原理以及它在 解决重叠计数问题中的 应用。
计数原理(优秀课件)
THANKS
感谢观看
在社会科学中,分类计数原理可以应用于 社会调查和统计分析等方面,例如调查问 卷的数据分析和人口统计等。
03
分步计数原理
定义与解释
定义
分步计数原理,也称为分治法,是计数原理中的一种基本方法。它基于将一个复杂问题分解为若干个 简单子问题,然后分别对每个子问题进行计数,最后将各个子问题的计数结果相乘得到总计数。
同样地,我们考虑第一个学 生有5门课程可以选择,第 二个学生也有5门课程可以 选择,依此类推,直到最后 一个学生。根据分步计数原 理,总的不同选课方案为 $5 times 5 times 5 times ... times 5 = 5^{30}$。
应用场景
应用场景1
在组合数学中,分步计数原理常被用于解决排列组合问题。例如,在求解排列数、组合数 或概率分布时,可以通过将问题分解为若干个子问题,然后利用分步计数原理进行计算。
首先,我们考虑第一个学生 有5门课程可以选择,第二 个学生也有5门课程可以选 择,依此类推,直到最后一 个学生。根据分步计数原理 ,总的不同选课方案为 $5 times 5 times 5 times ... times 5 = 5^{30}$。
一个班有30名学生,每个学 生需要从5门课程中选1门课 程。问有多少种不同的选课 方案?
应用场景2
在计算机科学中,分步计数原理被广泛应用于算法设计和数据结构。例如,在求解图论中 的路径、遍历等问题时,可以利用分步计数原理来计算不同路径的数量。
应用场景3
在实际生活中,分步计数原理也被广泛应用于各种场景。例如,在制定计划或决策时,可 以将整个过程分解为若干个子步骤或子任务,然后利用分步计数原理来计算完成整个任务 所需的总时间或总成本。
《计数原理》公开课课件
(2)每一步都不能独 立完成这件事情,各个 步骤相互依存,只有每
个步骤完成了,这件事
情才能完成。
1、 2、
课堂小结: 1.解决计数问题的基本方法:
分类加法计数原理、分布乘法计数原理 2.选择两个原理解题的关键是:
根据题目,弄清完成一件事的要求至关重要, 只有这样才能正确区分“分类”和“分步”.
两大原理妙无穷,
2、尝试区分分类加法计数原理与分步乘法计 数原理的区别和联系?
分类加法计数原理与分步乘法计数原理的区别和联系:
分类(加法)原理
分步(乘法)原理
联系 都是关于统计完成一件事情的不同方法数
(1)完成一件事情共 有n类办法,关键词是 “分类”
(1)完成一件事情,共 分n个步骤,关键词是 “分步”
区 别
(2)每类办法都能独立 完成这件事情。
常州到杭州火车时刻表
常州到杭州汽车时刻表
由题意,画图得知 常州
火车 1 火车 2 火车3 火车 4 火车 5 火车 6
汽车1 汽车2
Ⅰ.乘火车,6种方法; Ⅱ.乘汽车,2种方法;
杭州
定义
做一件事情,完成它可以有2类方案,在 第一类方案中有m1种不同方法,在第二类方 案中有m2种不同方法,无论通过哪类方案的 哪种方法,都可以独立完成这件事,那么完 成这件事共有
解 选择一人去领奖,有2个方案 第一类方案:选男生有2+3=5种方法
2、分步乘法计数原理
某班级三好学生中男生有2人,女生有3人。从中 各选一人去参加座谈会, 有多少种不同的选法?
男生
女生
男1
女1
男2
女2 23=6
女3
某班级三好学生中男生有2人,女生有3人。从中 各选一人去参加座谈会, 有多少种不同的选法?
中职数学课件8.1计数原理
种;第2步选择汽车颜色,有5个.共有k2=4×5=20种款式; 第3类:从丙厂生产的汽车中选择,分两步:第1步选择汽车型号,有5种;
第2步选择汽车颜色,有3个.共有k3=5×3=15 种款式. 解 根据分类计数原理和分步计数原理,不同的选择方法共有
3×4+4×5+5×3=47(种).
8.1.3 计数原理的应用
第1类:乘坐高铁,从46个班次中任意选择一个,有k1 =46种选择; 第2类:乘坐汽车,从62个班次中任意选择一个,有k2=62种选择; 第3类:乘坐轮船,从4个班次中任意选择一个,有k3=4种选择. 解 根据分类计数原理,不同的选择共有 N=46+62+4=112(种).
8.1.1 分类计数原理
8.1.3 计数原理的应用
情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
学校开展“我和我的祖国”书面展,要从8幅学生作品 中选出4幅分别挂在1—4号四个不同的展位上,一共有多少 种不同的挂法?
8.1.3 计数原理的应用
情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
分析 解决这个问题需要四个步骤:第一步,从8幅作品中选择1幅作 品挂在1号展位,有k1=8种不同的选择;第二步,从剩下的7幅作 品 中选择一幅挂在 2号展位上,有k2=7种不同的选择,以此类推,我们 可以用下图来表示.
练习
情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
1. 书架上有9本数学书 、6本语文书、4本英语书.从书架上任取一 本,共有多少种不同的取法?
2.某地区山川秀美,3A 级景区有7个,4A 级景区有5个.某旅行团计 划从中任选一处景区游玩,有多少种不同的选法?
3.用一个大写的英文字母或0~9中的一个数字给新植的树苗进行编号, 一共能编出多少个不同的号码?
第2步选择汽车颜色,有3个.共有k3=5×3=15 种款式. 解 根据分类计数原理和分步计数原理,不同的选择方法共有
3×4+4×5+5×3=47(种).
8.1.3 计数原理的应用
第1类:乘坐高铁,从46个班次中任意选择一个,有k1 =46种选择; 第2类:乘坐汽车,从62个班次中任意选择一个,有k2=62种选择; 第3类:乘坐轮船,从4个班次中任意选择一个,有k3=4种选择. 解 根据分类计数原理,不同的选择共有 N=46+62+4=112(种).
8.1.1 分类计数原理
8.1.3 计数原理的应用
情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
学校开展“我和我的祖国”书面展,要从8幅学生作品 中选出4幅分别挂在1—4号四个不同的展位上,一共有多少 种不同的挂法?
8.1.3 计数原理的应用
情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
分析 解决这个问题需要四个步骤:第一步,从8幅作品中选择1幅作 品挂在1号展位,有k1=8种不同的选择;第二步,从剩下的7幅作 品 中选择一幅挂在 2号展位上,有k2=7种不同的选择,以此类推,我们 可以用下图来表示.
练习
情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
1. 书架上有9本数学书 、6本语文书、4本英语书.从书架上任取一 本,共有多少种不同的取法?
2.某地区山川秀美,3A 级景区有7个,4A 级景区有5个.某旅行团计 划从中任选一处景区游玩,有多少种不同的选法?
3.用一个大写的英文字母或0~9中的一个数字给新植的树苗进行编号, 一共能编出多少个不同的号码?
计数原理课件-2024届高三数学一轮复习
由分步乘法计数原理得到不同的涂色方案有5×4 ×3×3×3=540(种), 所以,由分类加法计数原理得不同的涂色方案共 有180+540=720(种).
两个计数原理的综合应用
有5个不同的棱柱、3个不同的棱锥、4个不同的圆台、2个不同的球,若
从中取出2个几何体,使多面体和旋转体各一个,则不同的取法种数是
A.14
B.23
C.48
D.120
√
分两步:第1步,取多面体,有5+3=8(种)不同的取法; 第2步,取旋转体,有4+2=6(种)不同的取法.所以不同的取法种数是 8×6=48.
对于A,A,B,C三名同学到甲、乙、丙、丁四个工厂进行社会实践, 每个学生有4种选法,则三个学生有4×4×4=43(种)选法,故A正确; 对于B,三人到4个工厂,有43=64(种)情况,其中甲工厂没有人去, 即三人全部到乙、丙、丁三个工厂的情况有33=27(种), 则甲工厂必须有同学去的安排方法有64-27=37(种),故B正确; 对于C,若同学A必须去甲工厂,剩下2名同学安排到4个工厂即可, 有42=16(种)安排方法,故C错误; 对于D,若三名同学所选工厂各不相同,有4×3×2=24(种)安排方法, 故D正确.
1.已知某公园有4个门,从一个门进,另一个门出,则不同的走法的种
数为
A.16
B.13
√C.12
D.10
将4个门编号为1,2,3,4,从1号门进入后,有3种出门的方式,共3种走 法,从2,3,4号门进入,同样各有3种走法,不同走法共有4×3=12(种).
2.有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要
设 I = {1,2,3,4} , A 与 B 是 I 的 子 集 , 若 A∩B = {1,2} , 则 称 (A , B) 为 一 个 “理想配集”.若将(A,B)与(B,A)看成不同的“理想配集”,则符合此 条件的“理想配集”有__9___个.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.1 计数原理 LOGO
练习1 练习 1
由石家庄去北京可以乘火车,也可 乘汽车,还可以乘飞机.如果一天 之内火车有4个班次,汽车有17个 班次,飞机有6个班次,那么,每 天由石家庄去北京有多少种不同的 方法? 完成什么事 一步到位
4 17 6 27 (种)
说明:分步计数原理也叫乘法原则 注意:1 完成什么事
2 一步不到位
分 步 计 数 原 理
10.1 计数原理 LOGO
巩固知识
典型例题
例2 某校电子八班有男生26人,女生20人, 若要选男、女生各1人作为学生代表参加学校 伙食管理委员会,共有多少种选法? 完成什么事?
解 这件事可以分成两个步骤完成: 第一步:从26名男生中选出1人,有 k1 26 种选法;
10.1 计数原理 LOGO
创设情境
兴趣导入
从唐华、张凤、薛贵3个候选人中, 选出2个人分别担任班长和团支部书记,会 有多少种选举结果呢? 完成哪件事? 是否可以“一步到位”不能
解决这个问题需要分步骤进行研究.第一步选 出班长,第二步选出团支部书记.每一步并不 能完成选举工作,只有各步骤都完成,才能完 成选举这件事.
10.1 计数原理 LOGO
继续探索
读书 部分
活动探究
阅读教材
书面 作业
教材习题10.1 A组(必做) 10.1 B组(选做)
作 业
实践 调查
用分类或者分步计数原理解释 生活中的实例
10.1 计数原理 LOGO
LOGO
LOGO
10.1 计数原理—— 分步计数原理 石家庄市第七中学 李瑞霞
一般地,完成一件事,有n类方式.第1 类方式有种k1方法,第2类方式k2有种方 法,……,第n类方式有kn种方法,那么 完成这件事的方法共有 N=k1+k2+……kn (种) 这个计数原理 叫做分类计数原理
说明:分类计数原理也叫加法原则 注意:1 完成哪件事 2 一步到位
10.1 计数原理 LOGO
练习 2 2 练习
A 图1
B
如图1,该电路从A到B共有多 少种方法使一盏灯发光?
完成什么事? 能否一步到位?
10.1 计数原理 LOGO
3种
A 图1 第一种方法
B
10.1 计数原理 LOGO
分析:分两类,第一类 由甲地经过乙地到丙地 有2×3=6种方法,第二 类由甲地经过丁地到丙 地有4×2=8种方法。所 以共有6+8=14种方法
甲地 乙地
丁地
丙地
LOGO
课堂小结
分步计数原理 说明:分步计数原理也叫乘法原则 注意:完成什么事 特点:一步不到位 分类计数原理 说明:分类计数原理也叫加法原则 注意:完成什么事 特点:一步到位
10.1 计数原理 LOGO
唐华 张凤
第一步选班长
3种方法
薛贵
第二步选团支书
2种方法
张凤
唐华
薛贵
唐华 薛贵
张凤
薛贵
唐华
张凤
3×2=6(种)
思考
第一步选团支书
第二步选班长
10.1 计数原理 LOGO
动脑思考
探索新知
完成一件事,需要分成n个步骤,做第 一步有k1种不同的方法,做第二步有k2种 不同的方法,……,做第n步有kn种不同 的方法,那么完成这件事有 N=k1×k2×…×kn 种不同的方法。上面的计数原理叫做分 步计数原理
LOGO
注意
有些较复杂的问题往往不是单纯的 “分类”“分步”可以解决的,而要 将“分类”“分步”结合起来运 用.一般是先“分类”,然后再在每 一类中“分步”, 综合应用分类计数 原理和分步计数原理.请看下面的例 题:
10.1 计数原理 LOGO
如图,从甲地到乙地有2条路可通,从乙地 到丙地有3条路可通;从甲地到丁地有4条 路可通, 从丁地到丙地有2条路可通。从 甲地到丙地共有多少种不同的走法?
A 图1 第二种方法
B
10.1 计数原理 LOGO
A 图1 第三种方法
B
10.1 计数原理 LOGO
创设情境
兴趣导入
有时候“完成一件事情”不能 “一步到位”,又该怎样解决呢?
从唐华、张凤、薛贵3个候选人中,选出2 个人分别担任班长和团支部书记,会有多 少种选举结果呢?
4 4 4 64 (种).
完成什么事? 三封信逐一投入 邮箱
能否一步完成?
否
LOGO
练习
有不同颜色的上衣5件,裤子3条 1 从中选一样送给某人,共有 5+3=8 -------------------- 种不同的选法
2 从中选一件上衣和一条裤子 送给某人,共有 -------------------5*3=15 种 不同的选法
男、女生各一人
能否一步完成?
第二步:从20名男生中选出1人,有 k2 20 种选法.
由分步计数原理有
N 26 20 520 (种).
否
即共有520种选法.
LOGO
巩固知识
典型例题
例3 邮政大厅有4个邮筒,现将三封信逐 一投入邮筒,共有多少种投法?
解 分成三个步骤,每个步骤投一封信,分别均有4种方法. 应用分步计数原理,投法共有
10.1 计数原理 LOGO
运用知识
强化练习
1.两个袋子中分别装有10个红色球和6个白色球. 从中取出一个红色球和一个白色球,共有多少种 方法?
10×6=60
2. 王平同学有若干本课外参考书,其中外语5本, 数学4本,物理3本,化学2本,他欲带参考书到图 书馆看书: (1)若从这些参考书中带一本去图书馆,有多少 种不同的选法? 5+4+3+2=14 (2)若外语、数学、物理和化学参考书各带一本, 有多少种不同的选法? 5×4×3×2=120
LOGO
1
2个与3个的问题
2 石家庄可以安装多少部有线电话?
10.1 计数原理 LOGO
和分步计数原理的联系与区别?
联系:都是涉及“完成一件事的不 同方法的种数”的问题 。 分类计数原理的特点:各类办法间相互独立,各类办法中 的每种办法都能独立完成这件事(一步到位). 分步计数原理的特点:一步不能完成,依次完成各步才能 完成这件事(一步不到位). 确定适用分类计数原理还是分步计数原理的关键是判断 能否一次完成 .