测定望远镜的角放大率教学提纲
望远镜和显微镜组装和放大率的测定
望远镜和显微镜组装和放大率的测定何柱修(222010315210190)西南大学物理科学与技术学院重庆400715摘要:本论文主要从望远镜和显微镜的组装,以及其放大率的测量方向。
本实验开始讲了显微镜,开普勒望远镜以及伽利略望远镜的原理,随后陈述了实验的过程,分析了实验理论中的缺陷,并提出了一定的改进方案。
关键词:望远镜,显微镜,凸透镜,凹透镜。
引言:显微镜和望远镜是最常用的助视仪器常被组合在其他的仪器中使用。
因此,了解并掌握它们的结构原理和调节方法,了解并掌握其放大率的概念和测量方法,不仅有助于加深理解透镜成像规律,也有助于正确使用其他光学仪器。
毋庸置疑,前人已经对这些仪器研究得十分出色了,他们创造了一系列的测量仪器放大率的方法,并对其不断改进。
但是,现在测量望远镜和显微镜的放大率仍然是个十分棘手的问题。
于是,我们做了这个实验并做出了一定的改进。
实验原理人眼分辨本领和光学仪器的视觉放大率:显微镜观测微小物体以及放大镜用于观测远处的目标,他们的作用主要是把人体的眼睛的张角(即视角)加以放大。
人眼分辨率主要是描述人眼刚能区分非常靠近的两个物体你能力的物理量。
人眼瞳孔半径为1mm,人眼一般能分辨明视距离(D)处0.05-0.07mm的两点,此时人眼的张角为1’,为最小分辨率,而微小物体的对人眼的张角小于这个角时,人眼只能借助于显微镜才可以看清楚。
光学仪器的放大能力为视觉放大率Г=显微镜原理:简单的显微镜主要是由两个凸透镜组成,其中焦距(f0)较小的作为物镜(L0,焦点为F0,F0’),焦距较大的作为目镜,将长度为y的物体放在物镜焦距外且接近焦点其焦点处,则物体在目镜焦点以内成一实像,最后该像经目镜放大,在D上得到一放大的倒立的虚像,长度为y3。
其中F0到F e(目镜焦点)之间的距离为δ(光学间隔)。
当看到清晰图像时,物镜前端面到被测物体的距离称作工作距离,则:目镜放大率为:物镜放大率为:Г为显微镜的视觉放大率。
0自组望远镜或显微镜并测量其视觉放大率
自组望远镜或显微镜并测量其视觉放大率望远镜和显微镜都是助视光学仪器,是观察或测量时常用的仪器,它们有时也是其他一些光学仪器(如分光计等)的重要组件。
因此,了解它们的构造原理并掌握它们的使用方法不仅有利于加深理解透镜成像的规律,而且能为正确使用其他光学仪器打下基础。
实验目的(1)了解望远镜和显微镜的构造及其放大原理,并掌握其使用方法;(2)了解视放大率等的概念并掌握其测量方法;(3)进一步熟悉透镜成像规律。
实验原理望远镜主要用于观察远处的目标,显微镜主要用于观察近处的微小物体,它们的作用都是增大被观察物对人眼的张角,起着视角放大的作用。
两者的光学系统比较相似,都是由物镜和目镜组成,物体先通过物镜成一中间像,再通过目镜来观察。
两者对物体的放大能力都是通过视放大率来表示(在本实验中我们只关心放大率的大小,不考虑其符号)。
望远镜(telescope)基本的望远系统是由物镜和目镜组成的无焦系统,物镜的像方焦点与目镜的物方焦点重合。
无穷远物体发出的光经物镜后在物镜焦平面上成一倒立缩小的实像,再利用目镜(短焦距)将此实像成像于无穷远处,使视角增大,利于人眼观察。
为了利于对远处物体的观测,望远镜物镜的焦距一般较长。
图1 望远镜的基本光学系统图图1所示的望远镜,物镜与目镜均为会聚透镜,这种望远镜称为开普勒望远镜,其优点是可在物镜与目镜之间的中间像平面上安装分划板(其上有叉丝和刻尺)以供瞄准或测量。
实验装置中用到的望远镜(如分光计上的望远镜、光杠杆系统中的望远镜等)均为开普勒望远镜,在中间像平面上装有分划板。
实际上,为方便人眼观察,物体经望远镜后一般不是成像于无穷远,而是成虚像于人眼明视距离处;而且为实现对远近不同物体的观察,物镜与目镜的间距即镜筒长度可调,物镜的像方焦点与目镜的物方焦点可能会不重合。
使用望远镜时,观察者应先调目镜(这称为视度调节)看清分划板,使分划板成像于人眼明视距离处,再调节望远镜镜筒长度(这称为调焦),即改变物镜、目镜间距,使被观察物清晰可见并与分划板叉丝无视差(中间像落在分划板平面上)。
测定望远镜的角放大率
测定望远镜的角放大率【实验目的】1.熟悉望远镜的构造及其放大原理 2.学会一种测定望远镜放大率的方法 【实验仪器】望远镜、米尺及标尺 【实验原理】望远镜是用途极为广泛的助视光学仪器。
主要用来帮助人眼观察远处的目标。
它的作用在于增大被观察物体对人眼的张角,起着视角放大的作用。
望远镜的视角放大率定义为M =用仪器时虚像所张的视角/不用仪器时物体所张的视角 (1)望远镜的的光学系统是由物镜和目镜两部分组成的。
如图所示,实物PQ 经过物镜L 0成倒立实像P'Q ’,于目镜Le 的物方焦点F E 的内侧,再经目镜L E 成放大的虚像P ’’Q ’'于人眼的明视距离处。
理论计算可得显微镜的放大率为:(2)式中M 0是物镜的放大率,Me 是目镜的放大率,f 0',f E '分别是物镜和目镜的像方焦距,⊿是显微镜的光学间隔(=F 0'F E ,现代显微镜均有定值,通常是17或19cm),s 0=-25cm ,为正常人眼的明视距离。
一般f 0'取得很短(高倍的只有1--2mm),而f E '在几个厘米左右。
通常物镜和目镜的放大率,是标在镜头上的。
图1组成望远镜的两透镜的光学间隔近乎为零,即物镜的像方焦点与目镜的像方焦点几乎重合。
望远镜可分两类:若目镜和物镜的像方焦距均为正,即两个都是凸透镜,则为开普勒望远镜;若物镜的像方焦距为正,(凸透镜)目镜的像方焦距为负(凹透镜),则为伽利略望远镜。
如图2所示为开普勒望远镜的光路示意图。
远处物体pQ经物镜L0后在物镜像方焦平面上成一个倒立的实像P'Q',像的大小决定于物镜焦距及物体与物镜间的距离。
像P'Q'一般是缩小的,近乎位于目镜的物方焦平面上,经目镜L E放大后成虚像P’’Q’’于观察者眼睛的明视距离与无穷远之间。
图2由理论计算可得望远镜(⊿=0)的放大率为:M=-f0'/f e' (3)上式表明,物镜的焦距越长、目镜的焦距越短,望远镜的放大率越大。
测定望远镜的角放大率
测定望远镜的角放大率【实验目的】1.熟悉望远镜的构造及其放大原理 2.学会一种测定望远镜放大率的方法 【实验仪器】望远镜、米尺及标尺 【实验原理】望远镜是用途极为广泛的助视光学仪器。
主要用来帮助人眼观察远处的目标。
它的作用在于增大被观察物体对人眼的张角,起着视角放大的作用。
望远镜的视角放大率定义为M =用仪器时虚像所张的视角/不用仪器时物体所张的视角 (1)望远镜的的光学系统是由物镜和目镜两部分组成的。
如图所示,实物PQ 经过物镜L 0成倒立实像P'Q ’,于目镜Le 的物方焦点F E 的内侧,再经目镜L E 成放大的虚像P ’’Q ’'于人眼的明视距离处。
理论计算可得显微镜的放大率为:(2)式中M 0是物镜的放大率,Me 是目镜的放大率,f 0',f E '分别是物镜和目镜的像方焦距,⊿是显微镜的光学间隔(=F 0'F E ,现代显微镜均有定值,通常是17或19cm),s 0=-25cm ,为正常人眼的明视距离。
一般f 0'取得很短(高倍的只有1--2mm),而f E '在几个厘米左右。
通常物镜和目镜的放大率,是标在镜头上的。
图1组成望远镜的两透镜的光学间隔近乎为零,即物镜的像方焦点与目镜的像方焦点几乎重合。
望远镜可分两类:若目镜和物镜的像方焦距均为正,即两个都是凸透镜,则为开普勒望远镜;若物镜的像方焦距为正,(凸透镜)目镜的像方焦距为负(凹透镜),则为伽利略望远镜。
如图2所示为开普勒望远镜的光路示意图。
远处物体pQ经物镜L0后在物镜像方焦平面上成一个倒立的实像P'Q',像的大小决定于物镜焦距及物体与物镜间的距离。
像P'Q'一般是缩小的,近乎位于目镜的物方焦平面上,经目镜L E放大后成虚像P’’Q’’于观察者眼睛的明视距离与无穷远之间。
图2由理论计算可得望远镜(⊿=0)的放大率为:M=-f0'/f e' (3)上式表明,物镜的焦距越长、目镜的焦距越短,望远镜的放大率越大。
望远镜放大率的测定
望远镜放大率的测定望远镜和显微镜都是用途极为广泛的助视光学仪器,显微镜主要用来帮助人们观察近处的微小物体,而望远镜则主要是帮助人们观察远处的目标,它们常被组合在其他光学仪器中。
为适应不同用途和性能的要求,望远镜和显微镜的种类很多,构造也各有差异,但是它们的基本光学系统都由一个物镜和一个目镜组成。
望远镜和显微镜在天文学、电子学、生物学和医学等领域中都起着十分重要的作用。
一、实验目的1.熟悉望远镜和显微镜的构造及其放大原理。
2.掌握光学系统的共轴调节方法。
3.学会望远镜放大率的测量。
二、实验仪器:导轨、光具座,凸透镜两个;光源;三、实验原理:望远镜是观察远方物体的,物镜的作用是把远方物体成倒立实像,然后使此实像位于目镜的1倍焦距以内,从而将此实像再度放大,使之成像在明视距离,眼睛贴近目镜,可以观察到远方物体的放大像。
望远镜的放大作用以视角放大率来描写:定义为:像对眼睛的张角和不用望远镜时远处物体对眼睛的张角之比。
当观察物处于有限远距离时,可推导出角放大率公式。
S 1'L 0y 1S 1S 2y 3y 2Leφφ'∵望远镜角放大率tg N tg ϕϕ'=图观察有限距离物体时的望远镜光路其中虚像y3对人眼张角正切22y tg S ϕ'=物对人眼所张视角正切112121112()y S y tg S S S S S S S ϕ=='''++++其中1121//y S y S '=则放大率111212()S S S S N S S ''++=注意事项:1)在使用仪器时要轻拿、轻放,勿使仪器受到震动和磨损。
2)调整仪器时,应严格按各种仪器的使用规则进行,仔细地调节观察,冷静地分析思考,切勿急躁。
3)任何时候都不能用手去接触玻璃仪器的光学面,以免在光学面上留下痕迹,使成像模糊或无法成像。
四、实验记录:自组望远镜,用望远镜观察有限距离物体的视角放大率测量次数S 1物镜位置光屏位置S 1'目镜位置S 2111212()S S S S N S S ''++=123。
望远镜和显微镜放大率的测定
望远镜和显微镜放大率的测定望远镜和显微镜是最常用的助视光学仪器,常组合于其它实验装置中使用,如光杠杆、测距显微镜、分光仪等。
了解它们的构造原理并掌握它们的调节使用方法,不仅有助于加深理解透镜的成像规律,也为正确使用其它光学仪器打下基础。
Ⅰ 望远镜放大率的测定【实验目的】1、了解望远镜的构造原理并掌握其正确使用方法。
2、测定望远镜的放大率。
【实验原理】1.光学仪器的角放大率望远镜被用于观测远处的物体,显微镜被用于观测微小的物体,它们的作用都是将被观测物体对眼睛光心的张角(视角)加以放大。
显然,同一物体对眼睛所张的视角正常人的眼睛能分辨在明视距离cm 25处1′,称为最小分辨角。
当远处物体(或微小物体)对眼睛所张视角小于此最小分辨角时,眼睛将无法Φψ≈Φψ=tg tg m (1)在明正切值予以替代。
图(1) 凸透镜放大的示意图以凸透镜为例,如图(1)''B Au (2)(3)由上式可见,式(3)就表示放大镜的放大率。
由于单透镜存在像差,它的放大率一般在3倍(放大率仍由式(3)计算,式中f 代表透镜组的焦距,其放大率可达2.望远镜放大率的测定望远镜可以用来观测远处的物体。
最简单的望远镜由两个凸透镜组成,其中焦距较长的透镜为物镜。
由于被观测物体离物镜的距离远大于物镜的焦距(f u 2>),通过物镜的作用后,将在物镜的后焦面附近形成一个倒立的实像。
此实像虽然较原像小,但是与原物体相比,却大大地接近了眼睛,因而增大了视角。
然后通过目镜将它放大。
由目镜所成的像可在明视距离到无限远之间的任何位置上。
望远镜的放大率定义为最后的虚像对目镜所张视角与物体在实际位置所张视角之镜所张视角是一样的。
如图(2)∞>u )时,物镜的焦平面和目镜的焦平面重合,同时也处于目镜的前焦面上,因而通过目镜观察时,成像于无限远。
此时望远镜的放大率可由图(2)得出e o o e f f f y f y tg tg m /)//()/(//22==Φψ≈Φψ= (4)由此可见,望远镜的放大率m 等于物镜和目镜焦距之比。
(完整版)实验五显微镜望远镜放大倍数的测定
实验五显微镜与望远镜放大本领的测定望远镜和显微镜都是用途极为广泛的助视光学仪器,显微镜通过放大物所成的像,来帮助人们观察近处的微小物体,而望远镜则是通过放大远处物的视角,帮助人们观察远处的目标,它们常被组合在其他光学仪器中使用.为适应不同用途和性能的要求,望远镜和显微镜的种类很多,构造也各有差异,但是它们的基本光学系统都由物镜和目镜组成.望远镜和显微镜在天文学、电子学、生物学和医学等领域中都起着十分重要的作用.光学望远镜从诞生至今将近400年,出现了折射望远镜、反射望远镜、折反射式望远镜和空间望远镜,不断推动着天文学和物理学的发展.长久以来,人们仰望天空,看见日月星辰东升西落,有过天圆地方、地心说、日心说等宇宙模型.但过去人们只能用肉眼对星空进行观察,观测范围非常局限,所得的数据资料也就非常有限.凭借着物理学的不断发展,多种望远镜被制造出来,越来越精密,推动着天文学和物理学不断向前发展,人类的视野也变得更深更广.1.熟悉显微镜和望远镜的构造及其放大原理;2.进一步熟悉透镜成像规律及光学系统的共轴调节方法;3.学会一种测定显微镜和望远镜放大本领的方法;4.掌握显微镜、望远镜的正确使用方法.显微镜,望远镜,标尺,标准石英尺,测微目镜,照明灯.图5-1 显微镜的结构显微镜是一种复杂的光学仪器.它是医学实验常用工具之一,其作用是将观察的标本放大,以便观察和分析.一般光学显微镜包括机械装置和光学系统两大部分,如图5-1所示.一、机械装置1. 镜座:位于最底部的构造,为整个显微镜的基座,用以支持着整个镜体,起稳固作用.2. 镜柱:为垂直于镜座上的短柱,用以支持镜臂.3. 镜臂:为支持镜筒和镜台的呈弓形结构的部分,是取用显微镜时握拿的部分.镜筒直立式光镜在镜臂与其下方的镜柱之间有一倾斜关节,可使镜筒向后倾斜一定角度以方便观察,但使用时倾斜角度不应超过45°,否则显微镜由于重心偏移容易翻倒.4. 调节器:也称调焦螺旋,为调节焦距的装置,位于镜臂的上端(镜筒直立式光镜)或下端(镜筒倾斜式光镜),分粗调节器(大螺旋)和细调节器(小螺旋)两种.粗调节器可使镜筒或镜台作大幅度的升降,适于低倍镜观察时调焦.细调节器可使镜筒或镜台缓慢或较小幅度地升降,在低倍镜下用粗调节器找到物体后,在高倍镜和油镜下进行焦距的精细调节,藉以对物体不同层次、深度的结构做细致地观察.5. 镜筒:位于镜臂的前方,它是一个齿状脊板与调节器相接的圆筒状结构,上端装载目镜,下端连接物镜转换器.根据镜筒的数目,光镜可分为单筒式和双筒式.单筒光镜又分为直立式和倾斜式两种,镜筒直立式光镜的目镜与物镜的光轴在同一直线上,而镜筒倾斜式光镜的目镜与物镜的中心线互成45°角,在镜筒中装有使光线转折45°的棱镜;双筒式光镜的镜筒均为倾斜式的.6. 物镜转换器:又称旋转盘,位于镜筒下端的一个可旋转的凹形圆盘上,一般装有2~4个放大倍数不同的接物镜.旋转它就可以转换接物镜.旋转盘边缘有一定卡,当旋至物镜和镜筒成直线时,就发出“咔”的响声,这时方可观察玻片标本.7. 载物台:位于镜臂下面的平台,用以承放玻片标本.载物台中央有一圆形的通光孔,光线可以通过它由下向上反射.(二)光学系统1. 反光镜:是装在镜台下面、镜柱前方的一面可转动的圆镜,它有平凹两面.平面镜聚光力弱,适合光线较强时使用.凹面镜聚光力强,适于光线较弱时使用.转动反光镜,可将光源反射到聚光镜上,再经镜台中央圆孔照明标本.2. 聚光镜:在镜台下方,是一组透镜,用以聚集光线增强视野的亮度.镜台上方有一调节旋钮,转动它可升降聚光镜.往上升时增强反射光,下降时减弱反射光.3. 可变光栏:是在聚光镜底部的一个圆环状结构.它装有多片半月形的薄金属片,叠合在中央成圆孔形.在圆环外缘有一突起的小柄,拨动它可使金属片分开或合拢,用以控制光线的强弱,使物像变得更清晰.4. 目镜:装在镜筒上端,其上一般刻有放大倍数(如5×,10×).目镜内常装有一指示针,用以指示要观察的某一部分.5. 物镜:装在物镜转换器上,一般分低倍镜、高倍镜和油镜三种.低倍镜镜体较短,放大倍数小;高倍镜镜体较长,放大倍数较大;油镜镜体最长,放大倍数最大(在镜体上刻有数字,低倍镜一般有4×、10×,高倍镜一般有40×、45×,油镜一般是90×、100×,×表示放大倍数).测微目镜由目镜、分划板、读数鼓轮与连接装置等组成.目镜把叉丝和被观测的像同时放大,其放大倍数不影响测量数据大小,但可以提高测量准确程度.测微目镜的基本结构剖视图如图5-2所示.目镜镜头通过调焦螺纹固定在目镜外壳中部.外壳内有一块刻有十字丝的透明叉丝板,外壳右侧装有测距螺旋(即千分尺)系统,转动测距手轮,其螺杆将带动叉丝板移动.叉丝板的移动量可通过手轮上的千分尺测出.透明十字叉丝板后面是一个固定的玻璃标尺,标尺上刻有毫米尺,每格1mm,量程为8mm . 旋转读数鼓轮,刻有十字叉丝的可动分划板就可以左右移动.读数鼓轮每旋转一周,叉丝移动1mm ,鼓轮上有100个分格,故每一格对应的读数为0.01mm ,再估读一位.其读数方法和螺旋测微器差不多.在测量过程中,要始终沿着一个方向移动叉丝,不得回旋.测微目镜通常用来测金属丝、干涉条纹等的宽度.测量时,使双线与待测物质边缘平行,叉丝交点与待测物的边缘重合,开始计数.在测量过程中,要始终沿着一个方向移动叉丝,不得回旋.图2 测微目镜的基本结构剖视图 ·实验原理最简单的望远镜与显微镜都是由目镜和物镜两个透镜共轴所组成.物镜的像方焦点到目镜的物方焦点之间的距离(即光学间隔)为Δ.望远镜用来观察远处的物体,显微镜则是用来观察近处的微小物体,他们的放大作用都可以用放大本领M 来描述,可表示为:OE M ααtan tan = (5-1) 式中E α为像所张的视角;O α为物体直接对眼睛所张的视角.一、望远镜的构造及其放大原理望远镜由物镜和目镜组成,物镜用反射镜的称反射式望远镜,物镜用透镜的称折射式望远镜.目镜是会聚透镜的称为开普勒望远镜,目镜是发散透镜的称为伽利略望远镜.对于望远镜,两透镜的光学间隔Δ≈0,即物镜的像方焦点与目镜的物方焦点近乎重合.图5-3所示为开普勒望远镜的光路示意图.图中L 0为物镜(焦距较长),Le 为目镜(焦距较短),远处物体PQ 经物镜L O 后在物镜的像方焦点F'上成一倒立实像P'Q',像的大小决定于物镜焦距及物体与物镜间的距离.像P'Q'一般是缩小的.近乎位于目镜的物方焦面上,经目镜L E 放大后成虚像P"Q"于观察者眼睛的明视距离与无穷远之间.用望远镜观察不同位置的物体时,只需调节物镜和目镜的相对位置,使物镜成的实像落在目镜物方焦平面上,这就是望远镜的“调焦”.图5-3 开普勒望远镜的光路示意图由理论计算可得望远镜的放大本领为: ''tan tan E O OE O E O E f f f Q P f Q P M =''''=≈=αααα (5-2) 式中f o ′为物镜的焦距,f E ′为目镜的焦距,上式表明,物镜的焦距越长、目镜的焦距越短,望远镜的放大本领则越大.开普勒望远镜(f o ′>0,(f E ′>0),放大本领M 为负值,系统成倒立的像;而对伽利略望远镜(f o ′>0,(f E ′<0),放大本领M 为正值,系统成正立的像.因实际观察时,物体并不真正处于无穷远,像亦不成在无穷远,但式(5-2)仍近似适用.二、显微镜的构造及其放大原理显微镜和望远镜的光学系统十分相似,都是由物镜和目镜组成.显微镜的结构一般认为是由两个会聚透镜共轴组成,如图5-4所示,实物PQ 经物镜L 0成倒立实像P'Q'于目镜Le 的物方焦点Fe 的内侧,再经目镜Le 成放大的虚像P"Q"于人眼的明视距离处或无穷远处.理论计算可得显微镜的放大本领为: ''E O O E O f s f M M M ⋅∆-== (5-3)式中O M 为物镜的放大本领,M E 是目镜的放大本领,f o ′,f E ′ 为物镜和目镜的像方焦距,Δ是显微镜的光学间隔,S O =-25cm 为正常人眼的明视距离.由上式可知,显微镜的镜筒越长,物镜和目镜的焦距越短,放大本领就越大,通常物镜和目镜的放大本领,是标在镜头上的.图5-4 显微镜光路图用望远镜或显微镜观察物体时,一般视角均甚小,因此视角之比可用其正切之比代替,于是光学仪器的放大本领M 可近似地写成 OE O l l M ==ααtan tan 式中l 0是被测物的大小PQ ,l 是在物体所处平面上被测物的虚像的大小P"Q". ·实验内容与步骤一、显微镜放大倍数的测定1.将标准石英尺放在显微镜载物台上夹住.2.选择适当倍率的目镜,调节聚光镜、反光镜及光阑,使目镜中观察到强弱适当而均匀的视场.3.熟悉显微镜的机械结构,学会调节使用,先用低倍物镜对石英尺进行调焦,先粗调、后微调,直至目镜视场中观察到最清晰的像,如果观察物的像不在视场中间,则可调节载物台移动手轮,将其移至视场中心进行观察.4.将目镜卸下,换上测微目镜,首先对测微目镜的目镜进行调焦,看清分划板,在调节显微镜的物镜调焦手轮,至标尺的像最清晰且无视差.5.转动测微目镜使分划板上“双线”与标准石英尺的刻度(石英尺刻度部分全长lmm ,共分100小格,每格宽O .01mm)平行,然后将叉丝移至和显微镜视场中标准石英尺某一刻度重合,记下测微目镜的读数1x .转动测微目镜鼓轮,使叉丝在标准石英尺上移动5格,这时叉丝与标准石英尺上另一刻度线重合,记下测微目镜的读数2x .依此每隔5格记录一组数据,共记录10组数据.6.用逐差法处理数据,求出标尺5格对应像的大小,求其平均值,计算出物镜的放大本领.二、望远镜放大本领的测定1.将望远镜夹好,在垂直望远镜光轴方向距离目镜25cm 处放置一毫米分度的米尺A ,调节望远镜调焦手轮,把望远镜调焦到无穷远处,即望远镜能看清楚远处的物体.2.在A 尺上套上两白纸条,其间距可调,如图5-5所示.一只眼睛通过望远镜观察米尺的像B ,另一只眼睛直接看米尺A ,经过多次观察,调节眼睛使得米尺A 与望远镜中的米尺像B 重合.以B 尺为标尺,选定A 尺的上两纸带的间距为10格,记录其相当于B 尺上的格数0l ,重复3-5次,算出望远镜的放大倍数,取其平均值,并计算平均绝对偏差.3.取两纸带的间隔分别为8格和13格,重复上述步骤进行测量.1.用测微目镜测经显微镜放大的石英标尺像刻度间隔数据表测量间隔:每隔5小格标尺像刻度读一次数2.望远镜视角放大率测量数据表1.注意不要用手摸透镜、反射镜等光学元件的光学表面,,以免在光学面上留下痕迹,使成像模糊或无法成像.2.在实验过程中,注意光学仪器要轻拿轻放,勿使仪器受到震动和磨损.3.用测微目镜测量时要注意回程误差.4.测望远镜放大本领时,两只眼睛要同时观察,同时看清A、B两尺的像,并将A、B两尺的像重合在一起时,方可读数.望远镜和显微镜的发明是17世纪光学的伟大成就.显微镜的发明,使人类第一次发现了微生物和细胞生存的世界.第一架显微镜由荷铸眼镜匠詹森父子发明,后由伽利略改良而成.最初的显微镜只能放大50-200倍,到1932年德国的诺尔和鲁斯卡发明了世界第一台电子显微镜,它是利用德布罗依物质波原理制造而成的,它能放大1万倍,到20世纪90年代发展到放大率可达200万倍,由此人们发现了原子世界.1983年人们又发明了基于量子力学原理造而成的扫描隧道显微镜,开创了纳米科技的观测手段.后来人们又发明了原子力显微镜,它是根据扫描隧道显微镜的原理设计的高速拍摄三维图像的显微镜.可观察大分子在体内的活动变化.1608年荷兰的眼睛匠利佩希偶然地制造出了第一架望远镜,它的目镜为一凹透镜,被称为荷兰望远镜.发明望远镜的消息迅速在欧洲传开,1609年伽利略得悉这一消息后,立即动手制作,并把自制的望远镜第一个指向天空,首先发现了月亮上的山脉和火山口.伽利略设计了由两个凸透镜构成的开普勒望远镜,第一架开普勒望远镜由天文学家沙伊纳制成.1668年,牛顿(Newton,I.1642~1727)用2.5 厘米直径的金属,磨制成一块凹面反射镜,并在主镜的焦点前面放置了一个与主镜成45°角的反射镜,使经主镜反射后的会聚光经反射镜以90°角反射出镜筒后到达目镜,制成了反射望远镜.1672年牛顿有制造了第二架反射望远镜,全长1.2m,口径为2m,并把它献给了英国皇家学会.往后的几百年间,人们提出了反射镜的多种设计方案.1918年末,口径为254厘米的胡克望远镜(Hooker telescope)投入使用,它第一次揭示了银河系的真实大小和我们在其中所处的位置,更为重要的是,哈勃(Hubble,E.P.1889~1953)的宇宙膨胀理论就是用胡克望远镜观测的结果.相对于折射镜,反射镜没有色差,容易制作;但它也存在固有的不足:如口径越大,视场越小,物镜需要定期镀膜等.随后又出现了能兼顾折射和反射两种望远镜优点的折反射式望远镜,非常适合业余的天文观测和天文摄影,并且得到了广大天文爱好者的喜爱.它的特点是相对口径很大(甚至可大于1),光力强,视场广阔,像质优良.适于巡天摄影和观测星云、彗星、流星等天体.自1970年代以来,在望远镜的制造方面有了许多新技术,涉及光学、力学、计算机、自动控制和精密机械等领域,使望远镜的制造突破了镜面口径的局限.然而,由于地球大气对电磁波的吸收作用,地面观测具有严重的局限性.物理学在不断地发展,直到人造卫星上天,航天技术逐渐成熟,空间天文学才兴起.1990年4月24日,由美国国家航空与航天局(NASA)和欧洲空间局(ESRO)联合研制的哈勃空间望远镜(HST)的发射成功,是天文学走向空间时代的一个里程碑.空间观测与地面观测相比,有极大的优势:没有了大气层的干扰,恒星不再闪烁.分辨率比起地面的大型望远镜提高了几十倍.灵敏度的提高,使可观测的天体迅速增加.空间没有重力,仪器就不会因自重而变形.频率覆盖范围也大大地变宽,全波段天文观测成为可能,对于光学望远镜,可以接收到宽得多的波段.就哈勃空间望远镜(现已退役)而言,主望远镜是口径为2.4米的反射望远镜,还携带了广角行星照相机,暗弱天体照相机,暗弱天体光谱仪,高分辨率光谱仪,高速光度计,成象光谱仪,近红外照相机,多目标摄谱仪,高级普查摄像仪,高新巡天照相机等精密仪器,观测范围早已突破了可见光波段,向红外和紫外两端延伸.其功能之强大,在天文学的许多领域中作出了巨大的贡献,如:银河系中心、双星系统、近邻星系、宇宙早期星系、黑洞研究等等.在望远镜的庞大家族里,除了以上介绍的光学望远镜以外,还有射电望远镜(radio telescope)、红外望远镜(infrared telescope)、紫外望远镜(ultraviolet telescope)、X 射线望远镜(X-ray telescope)和γ射线望远镜(gamma ray telescope).随着新型显微镜、望远镜的发展和应用,使人类的视野变得更深更广.中学物理课标对望远镜、显微镜及相关内容的要求是:1.知道显微镜、望远镜的原理.2.用两个不同焦距的凸透镜制作望远镜.3.了解开普勒望远镜和伽利略望远镜的结构.4.通过望远镜原理的及调节要求的学习,可进一步掌握凸透镜呈像的特点及规律1.显微镜和望远镜有何异同?2.显微镜和望远镜的调焦方式有何不同?为什么?3.测量标准石英尺时所获得的放大本领为什么不等于物镜的标称放大本领?4、用同一个望远镜观察不同距离的目标时,其视觉放大本领是否不同?5、在光具座上自组装的望远镜(或显微镜),如何调节焦距以获得清晰的像?6.已知什么量?哪个是待测量?如何控制变量?按要求处理实验数据,完成实验报告.尝试在光具座上设计并组装望远镜或显微镜,写出实验方案,并完成实验.。
显微镜与望远镜放大本领的测定(精)
合)。则人眼观察的微小物体 被大大地放大成 了。
可以通过改变分划板与物镜之间的距离,可以获得显微镜
的不同放大率。
显微镜光路图
2.望远镜
望远镜的光路如图所示。无穷远处的物屏上 的一点(图中 未画出)发出的光(平行光)经物镜成实像于的焦平面处(处于 目镜的焦点内),分划板也处于的焦平面处,则 与分划板重合。 如物不处于无穷远处,则 与 位于 之外。人眼通过目镜看的 过程与显微镜的观察过程相同。由此可见,人眼通过望远镜观察 物体,相当于将远处的物体拉到了近处观察,实质上起到了视角 放大的作用。
二、实验室可提供的主要器材
凸透镜、凹透镜、物屏、像屏、分辨率测试板 直尺、光具座、支架等
图1 实验装置照片
镜头是凸透 镜
镜头是: 或是:
镜头是凸透 镜
近视眼镜是凹透 镜
三、实验原理
1.显微镜
பைடு நூலகம்
显微镜是观察微小物体的光学仪器,其光路如图所示。物
镜 的焦距非常短(
),目镜 的焦距大于物镜的
焦距,但也不超过几个厘米。分划板 与物镜 之间的距离
显微镜与望远镜放大本领的测定
望远镜及显微镜是最常用的助视光学 仪器。在物理实验中经常使用的有读数显 微镜、测量望远镜及自准望远镜等。本实 验通过实验室给出的各种分立的光学元件, 按要求组成望远镜及显微镜,并用组成的 聚焦于无穷远的望远镜进行透镜焦距的测
定。
一、实验目的
1.进一步掌握透镜的成像规律 2.了解望远镜及显微镜的工作原理 3.学习用自组的望远镜测量透镜焦距
为 。物屏 放在物镜焦点 外一点,调节 与 之间的距离,
使其通过物镜 成一放大、倒立的实像 于分划板处。然后
通过目镜 观察像 ,先调节目镜 与分划板 之间的距离,
实验显微镜望远镜双棱镜率
实验15测量显微镜和望远镜的放大率显微镜和望远镜是最常用的助视光学仪器,常被组合在其他光学仪器中。
因此,了解并掌握它们的构造原理和调整方法,不仅有助于加深理解透镜成像规律,也有助于加强对光学仪器的调整和使用训练。
一 测量显微镜的放大率[学习重点]1.了解显微镜的构造原理,掌握其正确使用方法。
2.测量显微镜的放大率。
[实验原理]1.光学仪器的角放大率显微镜被用于观测微小的物体,望远镜被用于观测远处的物体,它们的作用都是将被观测物体对眼睛光心的张角(视角)加以放大。
显然,同一物体对眼睛所张的视角与物体离眼睛的距离有关。
在一般照明条件下,正常人的眼睛能分辨在明视距离处相距为0.05~0.07毫米的两点。
(人眼长时间地观察太近或太远的物体会感到疲劳不适,经验表明,正常人的眼睛观看物体时,最为清晰而又不易疲劳的距离为25厘米。
这个距离称为明视距离。
)此时,这两点对眼睛所张的视角约为1′,称为最小分辨角。
当微小物体(或远处物体)对眼睛所张视角小于此最小分辨角时,眼睛将无法分辨。
因而需借助光学仪器(如放大镜、显微镜、望远镜等)来增大对眼睛所张的视角。
它们的放大能力可用角放大率m 表示。
其定义为ϕψtg tg m =(4-15-1) 式中ϕ为明视距离处物体对眼睛所张的视角,ψ为通过光学仪器观察时,在明视距离处所成的像对眼睛所张的视角。
下面以凸透镜为例,讨论它的放大率。
如图4-15-1所示,当L 为凸透镜,被测物 AB 长为y 1,到眼睛的距离为D 时,y 1对眼睛 的视角为ϕ;当将物体置于透镜焦平面以内的 位置时,可得到放大的虚像A 'B ',像长为y 2。
调整物距u ,使像到眼睛的距离为明视距离D , 对眼睛所张视角为ψ,则此凸透镜的放大率为uDD y u y D y D y tg tg m ====1112ϕψ (4-15-2) 当透镜焦距较小时,u ≈f ,则fcm f D m )(25=≈(4-15-3) 图 4 -15-1 凸透镜放大示意图由上式可见,减小凸透镜焦距,可以增大它的放大率。
显微镜与望远镜实验指导书_全重点讲义资料
一、实验目的1.通过实验掌握显微镜、望远镜的基本原理;2.通过实际测量,了解显微镜、望远镜的主要光学参数;3.根据指示书提供的参考材料自己选择2套方案,测出水准仪的放大率并比较与实验结果是否相符。
二、实验器材1.显微镜实验:测量显微镜、分辨率板、分辨率板放大图、透明刻线板、台灯,高倍(40×、45×)、中倍(8×或10×)、低倍(2.5×、3×或4×)显微物镜各一个,目镜若干(4×、5×、10×、15×等)。
2.望远镜实验:25×水准仪、平行光管、1×长工作距测量显微镜、视场仪、白炽灯、钢板尺、升降台、光学导轨、玻罗板、分辨率板。
三、实验原理(1)显微镜原理:显微镜是用来观察近处微小物体细节的重要目视光学仪器。
它对被观察物进行了两次放大:第一次是通过物镜将被观察物成像放大于目镜的分划板上,在很靠近物镜焦点的位置上成倒立放大实像;第二次是经过目镜将第一次所成实像再次放大为虚像供眼睛观察,目镜的作用相当于一个放大镜。
由于经过物镜和目镜的两次放大,显微镜总的放大率Γ应是物镜放大率β和目镜放大率Γ1的乘积。
Γ=β×Γ 1绝大多数的显微镜,其物镜和目镜各有数个,组成一套,以便通过调换获得各种放大率。
显微镜取下物镜和目镜后,所剩下的镜筒长度,即物镜支承面到目镜支承面之间的距离称为机械筒长。
我国标准规定机械筒长为160毫米。
显微镜的视场以在物平面上所能看到的圆直径来表示,其视场受安置在物镜像平面上的专设视场光阑所限制。
显微镜的分辨率即它所能分辨的两点间最小距离:nSinUλδ61.0= 式中:λ为观测时所用光线的波长;nSinU 为物镜数值孔径(NA )。
从上式可见,在一定的波长下,显微镜的分辨率由物镜的数值孔径所决定,光学显微镜的分辨率,基本上与所使用光的波长是一个数量级。
实验五 显微镜望远镜放大倍数的测定
实验五显微镜与望远镜放大本领的测定望远镜和显微镜都是用途极为广泛的助视光学仪器,显微镜通过放大物所成的像,来帮助人们观察近处的微小物体,而望远镜则是通过放大远处物的视角,帮助人们观察远处的目标,它们常被组合在其他光学仪器中使用.为适应不同用途和性能的要求,望远镜和显微镜的种类很多,构造也各有差异,但是它们的基本光学系统都由物镜和目镜组成.望远镜和显微镜在天文学、电子学、生物学和医学等领域中都起着十分重要的作用.光学望远镜从诞生至今将近400年,出现了折射望远镜、反射望远镜、折反射式望远镜和空间望远镜,不断推动着天文学和物理学的发展.长久以来,人们仰望天空,看见日月星辰东升西落,有过天圆地方、地心说、日心说等宇宙模型.但过去人们只能用肉眼对星空进行观察,观测范围非常局限,所得的数据资料也就非常有限.凭借着物理学的不断发展,多种望远镜被制造出来,越来越精密,推动着天文学和物理学不断向前发展,人类的视野也变得更深更广.·实验目的1.熟悉显微镜和望远镜的构造及其放大原理;2.进一步熟悉透镜成像规律及光学系统的共轴调节方法;3.学会一种测定显微镜和望远镜放大本领的方法;4.掌握显微镜、望远镜的正确使用方法.·实验仪器显微镜,望远镜,标尺,标准石英尺,测微目镜,照明灯.图5-1 显微镜的结构显微镜是一种复杂的光学仪器.它是医学实验常用工具之一,其作用是将观察的标本放大,以便观察和分析.一般光学显微镜包括机械装置和光学系统两大部分,如图5-1所示.一、机械装置1. 镜座:位于最底部的构造,为整个显微镜的基座,用以支持着整个镜体,起稳固作用.2. 镜柱:为垂直于镜座上的短柱,用以支持镜臂.3. 镜臂:为支持镜筒和镜台的呈弓形结构的部分,是取用显微镜时握拿的部分.镜筒直立式光镜在镜臂与其下方的镜柱之间有一倾斜关节,可使镜筒向后倾斜一定角度以方便观察,但使用时倾斜角度不应超过45°,否则显微镜由于重心偏移容易翻倒.4. 调节器:也称调焦螺旋,为调节焦距的装置,位于镜臂的上端(镜筒直立式光镜)或下端(镜筒倾斜式光镜),分粗调节器(大螺旋)和细调节器(小螺旋)两种.粗调节器可使镜筒或镜台作大幅度的升降,适于低倍镜观察时调焦.细调节器可使镜筒或镜台缓慢或较小幅度地升降,在低倍镜下用粗调节器找到物体后,在高倍镜和油镜下进行焦距的精细调节,藉以对物体不同层次、深度的结构做细致地观察.5. 镜筒:位于镜臂的前方,它是一个齿状脊板与调节器相接的圆筒状结构,上端装载目镜,下端连接物镜转换器.根据镜筒的数目,光镜可分为单筒式和双筒式.单筒光镜又分为直立式和倾斜式两种,镜筒直立式光镜的目镜与物镜的光轴在同一直线上,而镜筒倾斜式光镜的目镜与物镜的中心线互成45°角,在镜筒中装有使光线转折45°的棱镜;双筒式光镜的镜筒均为倾斜式的.6. 物镜转换器:又称旋转盘,位于镜筒下端的一个可旋转的凹形圆盘上,一般装有2~4个放大倍数不同的接物镜.旋转它就可以转换接物镜.旋转盘边缘有一定卡,当旋至物镜和镜筒成直线时,就发出“咔”的响声,这时方可观察玻片标本.7. 载物台:位于镜臂下面的平台,用以承放玻片标本.载物台中央有一圆形的通光孔,光线可以通过它由下向上反射.(二)光学系统1. 反光镜:是装在镜台下面、镜柱前方的一面可转动的圆镜,它有平凹两面.平面镜聚光力弱,适合光线较强时使用.凹面镜聚光力强,适于光线较弱时使用.转动反光镜,可将光源反射到聚光镜上,再经镜台中央圆孔照明标本.2. 聚光镜:在镜台下方,是一组透镜,用以聚集光线增强视野的亮度.镜台上方有一调节旋钮,转动它可升降聚光镜.往上升时增强反射光,下降时减弱反射光.3. 可变光栏:是在聚光镜底部的一个圆环状结构.它装有多片半月形的薄金属片,叠合在中央成圆孔形.在圆环外缘有一突起的小柄,拨动它可使金属片分开或合拢,用以控制光线的强弱,使物像变得更清晰.4. 目镜:装在镜筒上端,其上一般刻有放大倍数(如5×,10×).目镜内常装有一指示针,用以指示要观察的某一部分.5. 物镜:装在物镜转换器上,一般分低倍镜、高倍镜和油镜三种.低倍镜镜体较短,放大倍数小;高倍镜镜体较长,放大倍数较大;油镜镜体最长,放大倍数最大(在镜体上刻有数字,低倍镜一般有4×、10×,高倍镜一般有40×、45×,油镜一般是90×、100×,×表示放大倍数).测微目镜由目镜、分划板、读数鼓轮与连接装置等组成.目镜把叉丝和被观测的像同时放大,其放大倍数不影响测量数据大小,但可以提高测量准确程度.测微目镜的基本结构剖视图如图5-2所示.目镜镜头通过调焦螺纹固定在目镜外壳中部.外壳内有一块刻有十字丝的透明叉丝板,外壳右侧装有测距螺旋(即千分尺)系统,转动测距手轮,其螺杆将带动叉丝板移动.叉丝板的移动量可通过手轮上的千分尺测出.透明十字叉丝板后面是一个固定的玻璃标尺,标尺上刻有毫米尺,每格1mm,量程为8mm . 旋转读数鼓轮,刻有十字叉丝的可动分划板就可以左右移动.读数鼓轮每旋转一周,叉丝移动1mm ,鼓轮上有100个分格,故每一格对应的读数为0.01mm ,再估读一位.其读数方法和螺旋测微器差不多.在测量过程中,要始终沿着一个方向移动叉丝,不得回旋.测微目镜通常用来测金属丝、干涉条纹等的宽度.测量时,使双线与待测物质边缘平行,叉丝交点与待测物的边缘重合,开始计数.在测量过程中,要始终沿着一个方向移动叉丝,不得回旋.图2 测微目镜的基本结构剖视图 ·实验原理最简单的望远镜与显微镜都是由目镜和物镜两个透镜共轴所组成.物镜的像方焦点到目镜的物方焦点之间的距离(即光学间隔)为Δ.望远镜用来观察远处的物体,显微镜则是用来观察近处的微小物体,他们的放大作用都可以用放大本领M 来描述,可表示为:OE M ααt a n t a n = (5-1) 式中E α为像所张的视角;O α为物体直接对眼睛所张的视角.一、望远镜的构造及其放大原理望远镜由物镜和目镜组成,物镜用反射镜的称反射式望远镜,物镜用透镜的称折射式望远镜.目镜是会聚透镜的称为开普勒望远镜,目镜是发散透镜的称为伽利略望远镜.对于望远镜,两透镜的光学间隔Δ≈0,即物镜的像方焦点与目镜的物方焦点近乎重合.图5-3所示为开普勒望远镜的光路示意图.图中L 0为物镜(焦距较长),Le 为目镜(焦距较短),远处物体PQ 经物镜L O 后在物镜的像方焦点F'上成一倒立实像P'Q',像的大小决定于物镜焦距及物体与物镜间的距离.像P'Q'一般是缩小的.近乎位于目镜的物方焦面上,经目镜L E 放大后成虚像P"Q"于观察者眼睛的明视距离与无穷远之间.用望远镜观察不同位置的物体时,只需调节物镜和目镜的相对位置,使物镜成的实像落在目镜物方焦平面上,这就是望远镜的“调焦”.图5-3 开普勒望远镜的光路示意图由理论计算可得望远镜的放大本领为: ''t a n t a n E O OE O E O E f f f Q P f Q P M =''''=≈=αααα (5-2) 式中f o ′为物镜的焦距,f E ′为目镜的焦距,上式表明,物镜的焦距越长、目镜的焦距越短,望远镜的放大本领则越大.开普勒望远镜(f o ′>0,(f E ′>0),放大本领M 为负值,系统成倒立的像;而对伽利略望远镜(f o ′>0,(f E ′<0),放大本领M 为正值,系统成正立的像.因实际观察时,物体并不真正处于无穷远,像亦不成在无穷远,但式(5-2)仍近似适用.二、显微镜的构造及其放大原理显微镜和望远镜的光学系统十分相似,都是由物镜和目镜组成.显微镜的结构一般认为是由两个会聚透镜共轴组成,如图5-4所示,实物PQ 经物镜L 0成倒立实像P'Q'于目镜Le 的物方焦点Fe 的内侧,再经目镜Le 成放大的虚像P"Q"于人眼的明视距离处或无穷远处.理论计算可得显微镜的放大本领为: ''E O O E O f s f M M M ⋅∆-== (5-3)式中O M 为物镜的放大本领,M E 是目镜的放大本领,f o ′,f E ′ 为物镜和目镜的像方焦距,Δ是显微镜的光学间隔,S O =-25cm 为正常人眼的明视距离.由上式可知,显微镜的镜筒越长,物镜和目镜的焦距越短,放大本领就越大,通常物镜和目镜的放大本领,是标在镜头上的.图5-4 显微镜光路图用望远镜或显微镜观察物体时,一般视角均甚小,因此视角之比可用其正切之比代替,于是光学仪器的放大本领M 可近似地写成 OE O l l M ==ααtan tan 式中l 0是被测物的大小PQ ,l 是在物体所处平面上被测物的虚像的大小P"Q". ·实验内容与步骤一、显微镜放大倍数的测定1.将标准石英尺放在显微镜载物台上夹住.2.选择适当倍率的目镜,调节聚光镜、反光镜及光阑,使目镜中观察到强弱适当而均匀的视场.3.熟悉显微镜的机械结构,学会调节使用,先用低倍物镜对石英尺进行调焦,先粗调、后微调,直至目镜视场中观察到最清晰的像,如果观察物的像不在视场中间,则可调节载物台移动手轮,将其移至视场中心进行观察.4.将目镜卸下,换上测微目镜,首先对测微目镜的目镜进行调焦,看清分划板,在调节显微镜的物镜调焦手轮,至标尺的像最清晰且无视差.5.转动测微目镜使分划板上“双线”与标准石英尺的刻度(石英尺刻度部分全长lmm ,共分100小格,每格宽O .01mm)平行,然后将叉丝移至和显微镜视场中标准石英尺某一刻度重合,记下测微目镜的读数1x .转动测微目镜鼓轮,使叉丝在标准石英尺上移动5格,这时叉丝与标准石英尺上另一刻度线重合,记下测微目镜的读数2x .依此每隔5格记录一组数据,共记录10组数据.6.用逐差法处理数据,求出标尺5格对应像的大小,求其平均值,计算出物镜的放大本领.二、望远镜放大本领的测定1.将望远镜夹好,在垂直望远镜光轴方向距离目镜25cm 处放置一毫米分度的米尺A ,调节望远镜调焦手轮,把望远镜调焦到无穷远处,即望远镜能看清楚远处的物体.2.在A 尺上套上两白纸条,其间距可调,如图5-5所示.一只眼睛通过望远镜观察米尺的像B ,另一只眼睛直接看米尺A ,经过多次观察,调节眼睛使得米尺A 与望远镜中的米尺像B 重合.以B 尺为标尺,选定A 尺的上两纸带的间距为10格,记录其相当于B 尺上的格数0l ,重复3-5次,算出望远镜的放大倍数,取其平均值,并计算平均绝对偏差.3.取两纸带的间隔分别为8格和13格,重复上述步骤进行测量.图5-5 望远镜放大倍数测定原理·实验数据测量1.用测微目镜测经显微镜放大的石英标尺像刻度间隔数据表测量间隔:每隔5小格标尺像刻度读一次数序号i1 2 3 4 5 6 7 8 9 10 x i (mm)2.望远镜视角放大率测量数据表标记实际长度l 0 (mm)80 100 130 重复测量序号1 2 3 1 2 3 1 2 3 上缘对应镜内刻度Y u (mm)下缘对应镜内刻度Y l (mm)镜内对应长度 l =Y l -Y u (mm)望远镜放大率M = l 0/ l5 4 8 3 7 26 548372 6l 0l 标尺A 标尺B·实验注意事项1.注意不要用手摸透镜、反射镜等光学元件的光学表面,,以免在光学面上留下痕迹,使成像模糊或无法成像.2.在实验过程中,注意光学仪器要轻拿轻放,勿使仪器受到震动和磨损.3.用测微目镜测量时要注意回程误差.4.测望远镜放大本领时,两只眼睛要同时观察,同时看清A、B两尺的像,并将A、B两尺的像重合在一起时,方可读数.·历史渊源与应用前景望远镜和显微镜的发明是17世纪光学的伟大成就.显微镜的发明,使人类第一次发现了微生物和细胞生存的世界.第一架显微镜由荷铸眼镜匠詹森父子发明,后由伽利略改良而成.最初的显微镜只能放大50-200倍,到1932年德国的诺尔和鲁斯卡发明了世界第一台电子显微镜,它是利用德布罗依物质波原理制造而成的,它能放大1万倍,到20世纪90年代发展到放大率可达200万倍,由此人们发现了原子世界.1983年人们又发明了基于量子力学原理造而成的扫描隧道显微镜,开创了纳米科技的观测手段.后来人们又发明了原子力显微镜,它是根据扫描隧道显微镜的原理设计的高速拍摄三维图像的显微镜.可观察大分子在体内的活动变化.1608年荷兰的眼睛匠利佩希偶然地制造出了第一架望远镜,它的目镜为一凹透镜,被称为荷兰望远镜.发明望远镜的消息迅速在欧洲传开,1609年伽利略得悉这一消息后,立即动手制作,并把自制的望远镜第一个指向天空,首先发现了月亮上的山脉和火山口.伽利略设计了由两个凸透镜构成的开普勒望远镜,第一架开普勒望远镜由天文学家沙伊纳制成.1668年,牛顿(Newton,I.1642~1727)用2.5 厘米直径的金属,磨制成一块凹面反射镜,并在主镜的焦点前面放置了一个与主镜成45°角的反射镜,使经主镜反射后的会聚光经反射镜以90°角反射出镜筒后到达目镜,制成了反射望远镜.1672年牛顿有制造了第二架反射望远镜,全长1.2m,口径为2m,并把它献给了英国皇家学会.往后的几百年间,人们提出了反射镜的多种设计方案.1918年末,口径为254厘米的胡克望远镜(Hooker telescope)投入使用,它第一次揭示了银河系的真实大小和我们在其中所处的位置,更为重要的是,哈勃(Hubble,E.P.1889~1953)的宇宙膨胀理论就是用胡克望远镜观测的结果.相对于折射镜,反射镜没有色差,容易制作;但它也存在固有的不足:如口径越大,视场越小,物镜需要定期镀膜等.随后又出现了能兼顾折射和反射两种望远镜优点的折反射式望远镜,非常适合业余的天文观测和天文摄影,并且得到了广大天文爱好者的喜爱.它的特点是相对口径很大(甚至可大于1),光力强,视场广阔,像质优良.适于巡天摄影和观测星云、彗星、流星等天体.自1970年代以来,在望远镜的制造方面有了许多新技术,涉及光学、力学、计算机、自动控制和精密机械等领域,使望远镜的制造突破了镜面口径的局限.然而,由于地球大气对电磁波的吸收作用,地面观测具有严重的局限性.物理学在不断地发展,直到人造卫星上天,航天技术逐渐成熟,空间天文学才兴起.1990年4月24日,由美国国家航空与航天局(NASA)和欧洲空间局(ESRO)联合研制的哈勃空间望远镜(HST)的发射成功,是天文学走向空间时代的一个里程碑.空间观测与地面观测相比,有极大的优势:没有了大气层的干扰,恒星不再闪烁.分辨率比起地面的大型望远镜提高了几十倍.灵敏度的提高,使可观测的天体迅速增加.空间没有重力,仪器就不会因自重而变形.频率覆盖范围也大大地变宽,全波段天文观测成为可能,对于光学望远镜,可以接收到宽得多的波段.就哈勃空间望远镜(现已退役)而言,主望远镜是口径为2.4米的反射望远镜,还携带了广角行星照相机,暗弱天体照相机,暗弱天体光谱仪,高分辨率光谱仪,高速光度计,成象光谱仪,近红外照相机,多目标摄谱仪,高级普查摄像仪,高新巡天照相机等精密仪器,观测范围早已突破了可见光波段,向红外和紫外两端延伸.其功能之强大,在天文学的许多领域中作出了巨大的贡献,如:银河系中心、双星系统、近邻星系、宇宙早期星系、黑洞研究等等.在望远镜的庞大家族里,除了以上介绍的光学望远镜以外,还有射电望远镜(radio telescope)、红外望远镜(infrared telescope)、紫外望远镜(ultraviolet telescope)、X 射线望远镜(X-ray telescope)和γ射线望远镜(gamma ray telescope).随着新型显微镜、望远镜的发展和应用,使人类的视野变得更深更广.·与中学物理的衔接中学物理课标对望远镜、显微镜及相关内容的要求是:1.知道显微镜、望远镜的原理.2.用两个不同焦距的凸透镜制作望远镜.3.了解开普勒望远镜和伽利略望远镜的结构.4.通过望远镜原理的及调节要求的学习,可进一步掌握凸透镜呈像的特点及规律·自主学习1.显微镜和望远镜有何异同?2.显微镜和望远镜的调焦方式有何不同?为什么?3.测量标准石英尺时所获得的放大本领为什么不等于物镜的标称放大本领?4、用同一个望远镜观察不同距离的目标时,其视觉放大本领是否不同?5、在光具座上自组装的望远镜(或显微镜),如何调节焦距以获得清晰的像?6.已知什么量?哪个是待测量?如何控制变量?按要求处理实验数据,完成实验报告.·实验探究与设计尝试在光具座上设计并组装望远镜或显微镜,写出实验方案,并完成实验.。
测望远镜放大率
式中β是物镜的横向放大率,ME是目镜的放大率,fo′,fE′ 为物镜和目镜的像方焦距,Δ是显微镜的光学间隔,SO=25cm为正常人眼的明视距离。由上式可知,显微镜的镜筒越长,物镜和目镜的焦距越短,放大率就越大,通常物镜和目镜的放大率,是标在镜头上的。
图3
用望远镜或显微镜观察物体时,一般视角均甚小,因此视角之比可用其正切之比代替,于是光学仪器的放大率M可近似地写成
横向放大率为:
像距改变量:
被测透镜焦距: (1)
2.望远镜的构造及其放大原理。
望远镜通常是由两个共轴光学系统组成,我们把它简化为两个凸透镜,其中长焦距的凸透镜作为物镜,短焦距的凸透镜作为目镜。物镜的作用是将远处物体发出的光经会聚后在目镜物方焦平面上生成一倒立的实像,而目镜起一放大镜作用,把其物方焦平面上的倒立实像再放大成一虚像,供人眼观察。图2所示为开普勒望远镜的光路示意图,图中L0为物镜,Le为目镜。用望远镜观察不同位置的物体时,只需调节物镜和目镜的相对位置,使物镜成的实像落在目镜物方焦平面上,这就是望远镜的“调焦”。
由理论计算可得望远镜(Δ=0)的放大率为:
(3)
式中fo′,fE为物镜和目镜的焦距,上式表明,物镜的焦距越长、目镜的焦距越短,望远镜的放大率则越大.。开普勒望远镜(fo′>o,(fE′>0),放大率Γ为负值,系统成倒立的像;而对伽利略望远镜(fo′>0,(fE′<0),放大率Γ为正值,系统成正立的像。因实际观察时.物体并不真正处于无穷远,像亦不成在无穷远,但式(3)仍近似适用。
显微镜和望过镜的光学系统十分相似、都是由物镜和目镜两部分组成.
对于望远镜,两透镜的光学问隔近乎为零,即物镜的像方焦点与目镜的物方焦点近乎重合。望远镜可分为两类:若物镜和目镜的像方焦距均为正(即两个都是会聚透镜),则为开普勒望远镜;苦物镜的像方焦距为正(会聚透镜).目镜的像方焦距为负(发散透镜),则为伽利略望远镜.图2所示为开普勒望远镜的光路示意图.远处物体PQ经物镜LO后在物镜的像方焦点F’上成一倒立实像P’Q’,像的大小决定于物镜焦距及物体与物镜间的距离. 像P’Q’一般是缩小的.近乎位于目镜的物方焦面上,经目镜LE放大后成虚像P’’Q’’于观察者眼睛的明视距离与无穷远之间。
大学物理实验望远镜放大本领的测定课件
实验三十五:望远镜放大本领的测定一、实验目的:1.了解望远镜的结构和原理,掌握其正确使用方法2.学会望远镜的组装方法和测量它们的放大本领 二、仪器与用具: 光学平台及附件、物镜mm f o 225=、目镜mm f e 45=三、实验原理:(图和公式) 望远镜放大率: 理论方法:e o o f f M ==αα 测量方法:12d d M o ==αα视角:像E '字e f h '=α放大像E ''字L d 2=α物E 字0f h o '=α 物E 字L d 10=α四、实验步骤:1.物镜目镜共轴调节后,拉开目镜物镜间距270mm 组成望远镜。
物镜标尺距离约3m ,且目镜物镜标尺在一直线上2.粗调望远镜:用一只眼看望远镜,并稍稍前后移动物镜使像尺子上的像E '最清晰最亮。
此时E '在物镜目镜焦点处。
3. 细调望远镜:用一只眼看望远镜内、另一只眼看望远镜外。
视觉效果:像尺子上焦点处的像E '会跑到真实尺子处变成大的像E ''。
此时会同时看到真实尺子和像尺子。
并稍稍左右移动真实尺子,使像尺子与真实尺子比对在一起。
4.用真实尺子上的黄色上下指标卡住像尺子上的E ''上下端,读出上下指标读数22d 21d ,算出E ''的长度21222d d d i -=,重复测5次。
(物E 的长度cm d 51=) 5. 求出望远镜放大率的测量平均值12d d M =及误差 并与望远镜放大率的理论值e f f M 0='作比较算出相对误差''M M M E r -=五、数据记录表格: 单位:mm mm 5.0=∆仪六、数据处理: *操作提醒:1.坐矮凳子且端正,脸与透镜平面平行,眼睛与目镜靠近2.像尺子上看像E '',真实尺子上看黄色指标。
实验5 望远镜放大率的测定
[实验五] 望远镜放大率的测定[实验目的] 1.掌握望远镜的构造及其放大原理;2.学会测定望远镜放大率的方法;[实验仪器] 望远镜 (编号: )石英刻度尺(300mm 、500mm )[实验原理]望远镜式用途极为广泛的助视仪器,主要是帮助人眼观察远处的目标,其作用在于增大被观察物体对人眼的视角,起视角放大作用,其视角放大率定义为:ea a M 视角不用仪器时物体所张的角用仪器时虚物所张的视0=(5-1)望远镜的光学系统是由物镜和目镜组成,两透镜的光学间隔几乎为零,即物镜的像方焦点和目镜的物方焦点几乎重合。
望远镜分两类,若物镜和目镜的像方焦距均为正,称为开普勒望远镜,若物镜的像方焦距为正,目镜的像方焦距为负,则称为伽利略望远镜。
图5-1为开普勒望远镜的原理光路图,图5-2为伽利略望远镜原理光路图。
由理论计算,望远镜的放大率M 为: ''eo f f M =-(5-2)1、投影法测放大率由于望远镜的视角很小,故视角之比可以用视角的正切之比来代替,故5-1式可用5-3式来表达: 0l ltga tga M e o ==(5-3) 上式中的l 和0l 分别为物AB 的长度和像B A ''投影到物屏上的投影B A ''''的长度。
2、光阑法测放大率当望远镜对无穷远调焦时,望远镜筒的长度可以认为是'+'e o f f ,这时将望远镜的物镜卸下,在他的原来位置放一长度为1l 的目的物(十字叉丝光阑),则在离目镜d 处得到该物所成的实像,设像长为2l -,如图5-3所示,根据透镜成像原理可得df f l l e '+'=-021(5-4) '='+'+e ef f f d 1110 (5-5) 从(5-4)和(5-5)两式消取d 得到:21l l f f M eo =''-= (5-6) [实验内容及步骤]1、 把望远镜调焦到无穷远处,也就是使望远镜能清楚地看到远处的景物。
显微镜与望远镜的组装及放大率的测定
显微镜与望远镜的组装及放大率的测定成员:章先发(32)张忠健(13)杨柳(35)彭发勇(17)罗明书(3)一、实验目的:1、组装简单的望远镜和显微镜,熟悉其机构及放大原理;2、学会望远镜、显微镜放大率的测量。
二、实验仪器及用具凸透镜(四个)、标尺、光具座、光源等三、实验原理(设计思路)显微镜和望远镜是常用的助视光学仪器,显微镜主要用来帮助人眼观察近处的微小物体,望远镜主要是帮助人眼观察远处的目标。
它们在天文学、电子学、生物学和医学等诸多领域都起着十分重要的作用。
它们都是增大被观察物体对人眼的张角,起着视角放大的作用。
但是它们的基本光学系统都由一个物镜和一个目镜组成。
1、显微镜(1)结构:显微镜由两组凸透镜组成,一组为焦距相对较短的凸透镜作为物镜,另一组为稍微大些凸透镜作为目镜。
(2)显微镜的放大本领:显微镜的放大本领即放大率:M=-25cm×△/(f1'×f2'),其中△是物镜像方焦点F1'到目镜物方焦点F2之间的距离即光学间隔,如图a图a(3)放大率的测量:(1)按图b所示,组装好实验装置。
(2)保持物镜距标尺比较近的前提下前后移动目镜,使通过显微镜能清晰的看到短尺的像。
(3)一只眼睛通过显微镜观察标尺的像,一只眼睛直接看标尺上的游标,读出标尺上两游标之间在标尺像上的距离l0,然后再读出实际两游标之间的距离l。
得放大率M=l1/l0,重复几次,取平均值。
2、望远镜(1)结构:望远镜根据目镜的不同分为开普勒望远镜与伽利略望远镜。
现选择两块凸透镜组装开普勒式望远镜。
目镜物镜标尺图b游标(2)望远镜的放大本领:M=f1'/f2=-(f1'/f2')欲得到一个放大本领大的望远镜所选择的物镜的焦距f1'应较大,目镜的焦距f2'应较小。
(3)望远镜放大率的测定:(1)按图所示,组装实验装置。
(2)保持目镜与标尺之间的距离比较大的前提下移动目镜使通过望远镜能清晰的看到标尺的像。
(3)一只眼睛通过望远镜观察标尺的像,一只眼睛直接观察标尺,读出标尺上两游标在标尺像上之间的距离l0,然后再读出实际两游标之间的距离l。
2020八年级物理上册 5.5显微镜和望远镜导学提纲(无答案)(新版)新人教版
《显微镜和望远镜》【学习目标】1.知道显微镜由两个凸透镜构成,两块透镜分别成的像。
2.知道望远镜由两个凸透镜构成,两块透镜分别成的像。
3.知道人眼看到物体的大小与眼睛的视角的关系【重点难点】显微镜和望远镜的基本结构. 利用两组凸透镜成像规律理解显微镜和望远镜的原理.【导学流程】一:基础感知(课本P103—P105)1、显微镜(1)基本构造:由两个________镜组合,靠近眼睛的叫________,靠近被观察物体的叫________,反光镜是一个___ _____镜,作用______ __。
(2)作用:观察动植物细胞等非常小的物体。
(3)原理:物镜相当于的镜头,被观察的物体通过物镜成,,像目镜相当于,通过目镜成,,像通过2次放大,物体成,,像。
(4)物镜放大倍数10 目镜放大倍数20,那么显微镜的放大倍数。
2、望远镜:(1)基本构造:由两个________镜组合,一个叫________,另一个叫________。
(2)作用:观察远处的物体。
(3)原理:物镜相当于照相机的镜头,远处的物体经物镜成,,像,目镜相当于,成______,,像,望远镜使远处的物体成,,像。
(4)实质是拉近被观察的远处物体,扩大,从而看到远处物体。
3、视角:科学家研究发现,眼睛感觉物体的大小与眼睛观察物体的_______有关。
看近处的人视角大,感觉人就比较。
看远处的人视角小,感觉人就比较。
视角的大小除了与物体自身的_______有关外,还与物体到眼睛的________有关,所以眼睛感觉物体的大小与物体本身的_______和距离物体的_______都有关系。
4、宇宙拥有千亿个星系,我们所在的是其中的一个,是银河系中千亿个恒星的一员,太阳周围有,,,,,,等等绕着它运行。
5、光年的意思是。
(课本P-71)二:深入学习取两个焦距不同的放大镜,一只手握住一个,通过两个透镜看前面的物体(图 5.5-5)调整两个放大镜间的距离,直到看得最清楚为止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测定望远镜的角放大率
【实验目的】
1.熟悉望远镜的构造及其放大原理 2.学会一种测定望远镜放大率的方法 【实验仪器】
望远镜、米尺及标尺 【实验原理】
望远镜是用途极为广泛的助视光学仪器。
主要用来帮助人眼观察远处的目标。
它的作用在于增大被观察物体对人眼的张角,起着视角放大的作用。
望远镜的视角放大率定义为
M =用仪器时虚像所张的视角/不用仪器时物体所张的视角 (1)
望远镜的的光学系统是由物镜和目镜两部分组成的。
如图所示,实物PQ 经过物镜L 0成倒立实像P'Q ’,于目镜Le 的物方焦点F E 的内侧,再经目镜L E 成放大的虚像P ’’Q ’'于人眼的明视距离处。
理论计算可得显微镜的放大率为:
2)
式中M 0是物镜的放大率,Me 是目镜的放大率,f 0',f E '分别是物镜和目镜的像方焦距,⊿是显微镜的光学间隔(=F 0'F E ,现代显微镜均有定值,通常是17或19cm),s 0=-25cm ,为正常人眼的明视距离。
一般f 0'取得很短(高倍的只有1--2mm),而f E '在几个厘米左右。
通常物镜和目镜的放大率,是标在镜头上的。
图1
组成望远镜的两透镜的光学间隔近乎为零,即物镜的像方焦点与目镜的像方焦点几乎重合。
望远镜可分两类:若目镜和物镜的像方焦距均为正,即两个都是凸透镜,则为开普勒望远镜;若物镜的像方焦距为正,(凸透镜)目镜的像方焦距为负(凹透镜),则为伽利略望远镜。
如图2所示为开普勒望远镜的光路示意图。
远处物体pQ经物镜L0后在物镜像方焦平面上成一个倒立的实像P'Q',像的大小决定于物镜焦距及物体与物镜间的距离。
像P'Q'一般是缩小的,近乎位于目镜的物方焦平面上,经目镜L E放大后成虚像P’’Q’’于观察者眼睛的明视距离与无穷远之间。
图2
由理论计算可得望远镜(⊿=0)的放大率为:
M=-f0'/f e' (3)上式表明,物镜的焦距越长、目镜的焦距越短,望远镜的放大率越大。
对开普勒望远镜(f0'>0,f E'>0),放大率M为负值,系统成倒立的像;而对伽利略望远镜(f0'>0,f E'<0),放大率M 为正值,系统成正立的像。
因为实际观察时,物体并不真正位于无穷远,像也不无穷远,但(3)式仍然近似适用。
用望远镜观察物体时,一般视角都非常小,因此视角之比可用其正切值之比代替,于
是光学仪器的放大率M可以近似的写成
M = tgα0/tgαE(4)测定望远镜放大率的最简便的方法如图3所示。
设长度为l0的目的物PQ直接置于观察者的明视距离处,其视角为αE,从显微镜中最后看到的虚像P’’Q’’亦在明视距离处,其长度为-l,视角为-α0,于是
M = tgα0/tgαE=l/l0(5)
因此,如果用一个刻度尺作为目的物,取其一段分度长为l 0 ,把观察到的尺的像投影到尺面上,设被投影像在刻度尺上的长度是l ,则由(5)式就可求得望远镜的放大率。
【实验内容与步骤】
1.在离望远镜适当远处(1-2米)立一根直尺,在直尺上取一小段l 0 作为物,在它的上下两端作上标记,使其形如一个箭头12,调节望远镜的镜筒,使一只眼睛(比如右眼)通过望远镜能清楚地看到l 0的像,如图b 、c 、d 中所示的箭头1’2’,同时用另一只眼睛在望远镜外直接看实物l 0,此时调节看望远镜的右眼(调焦),使看到的像l 落到直尺所在的平面上,这样一来,两只眼睛同时看到在直尺处实物l 0以及它的像l 在直尺平面上的影l ’,两眼同时看到的情况共有以下三种可能:
2.调节望远镜的倾斜度,使眼睛所看到的l’与实物l 0下端对齐
3.在直尺的l’上端作标记“3”,同组同学合作,一位同学通过望远镜观察找出像应在标尺上投影的位置,另一位同学在直尺处听指挥作好标记
4.记下l 0的长度以及l’的长度,按照公式M=l’/l 0求出望远镜的角放大率 5.改变物的长度再作一次实验 6.求前后两次M 的平均值
图3
图4。