第四章正态随机过程

合集下载

第四章 随机过程中的平稳过程

第四章  随机过程中的平稳过程

RX ( ) E[ X (t )X (t )] =E[ X (t ) X (t )] RX ( )
R(s, t ) E[ X (s)X (t )] R( )
则称{X(t),t∈T} 为宽(弱、广义)平稳过程,简称宽 平稳过程
2008年12月
陕西师范大学物理学与信息技术学院 ——— 《随机过程》
由于在许多工程技术问题中,常常仅在相关理论(一、二
阶矩)的范围内讨论问题,因此划分出广义平稳随机过程来。
而相关理论之所以重要,是因为在实际中,一、二阶矩能给出 有关平稳随机过程平均功率的几个主要指标,比如,如果随机
过程如果代表噪声电压信号,那么在相关理论范围内就可以给
出直流分量、交流分量,平均功率及功率在频域上的分布(我 们将在后面讨论功率谱密度)等。另外,在电子系统中经常遇
到最多的是正态随机过程,对于正态随机过程而言,它的任意
若令 t 2 ,得
f (t1 , t 2;x1 , x2 ) f (t1 t 2 ,0;x1 , x2 ) f (;x1 , x2 )
其中 同理
t1 t2
二维分布函数也仅与时间差 而与时间起点无关,即
t1 t2
有关,
F (t1 , t 2;x1 , x2 ) F (;x1 , x2 )
j [ l ( t ) k t ] E X X e k l k 1 l 1
bk e jk
k 1

RY ( )
所以, {Y (t ), t }具有平稳性。
2008年12月
陕西师范大学物理学与信息技术学院 ——— 《随机过程》
P


k 0

随机过程及其统计描述ppt课件.ppt

随机过程及其统计描述ppt课件.ppt

任意时刻下,观测目的是X取什么值;全程的情况下, 观测目的是X(t)的函数形式.
7
12.1 随机过程的概念
随机相位正弦波
随机过程举例
考虑: X (t) a cos(t ), t (,)
式中 a,是正常数,是 (0, 2 ) 上服从均匀分布的随机变量。
当 在(0, 2 ) 内随机的取一个值 i ,可得样本函数:
2
0 cos(t1 ) cos(t2 ) f ( )d
a2
2
2
0 cos(t1 ) cos(t2 )d
a2
4
2
0 {cos[(t1 t2 ) 2 ] cos(t1 t2 )}d
a2 2
cos (t1
t2 )
方差函数
2 X
(t)
RX
(t , t )
2 X
(t)
a2 2
18
12.2 随机过程的统计描述
随机过程举例
抛掷一枚硬币的试验,样本空间是S={H,T}, 现借此定义随机过程:
cos t,
X (t) t,
当出现H, 当出现T,
t (, )
可将此随机过程改写为
X (t) Y cost (1Y )t ,
其中
Y
1, 0,
出现H 出现T
,
t (, )
X对Y和t的依赖,决定了X是一个随机过程. 确定了 Y之后,即可确定任意时刻和全程的观测结果.
集平均(统计平均)
X (t)是随机过程的所有样本函数在时刻 t 的函数值的平均值,通常称
这种平均为集平均或统计平均。
12
12.2 随机过程的统计描述
(二) 随机过程的数字特征
均方值函数
Ψ

概率论与随机过程考点总结

概率论与随机过程考点总结

第一章 随机过程的基本概念与基本类型 一.随机变量及其分布1.随机变量X , 分布函数)()(x X P x F ≤=离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数⎰∞-=xdt t f x F )()( 2.n 维随机变量),,,(21n X X X X =其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征数学期望:离散型随机变量X ∑=k k p x EX 连续型随机变量X⎰∞∞-=dx x xf EX )(方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差两个随机变量Y X ,:EY EX XY E EY Y EX X E B XY ⋅-=--=)()])([( 相关系数两个随机变量Y X ,:DYDX B XY XY ⋅=ρ 若0=ρ,则称Y X ,不相关;独立⇒不相关⇔0=ρ4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k)( 连续 ⎰∞∞-=dx x f e t g itx )()(重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 母函数:∑∞===0)()(k kk kzp z E z g!)0()(k g p k k =)1()('g X E =2''")]1([)1()1()(g g g X D -+=5.常见随机变量的分布列或概率密度、期望、方差0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 k n k k n q p C k X P -==)( np EX = npq DX = 泊松分布 !)(k ek X P kλλ-== λ=EX λ=DX 均匀分布略正态分布),(2σa N 222)(21)(σσπa x ex f --=a EX = 2σ=DX指数分布 ⎩⎨⎧<≥=-0,00,)(x x e x f x λλ λ1=EX 21λ=DX6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N XT n a a a a ),,,(21 =,T n x x x x ),,,(21 =,n n ij b B ⨯=)(正定协方差阵3.随机向量的变换 二.随机过程的基本概念 1.随机过程的一般定义设),(P Ω是概率空间,T 是给定的参数集,若对每个T t ∈,都有一个随机变量X 与之对应,则称随机变量族{}T t e t X ∈),,(是),(P Ω上的随机过程;简记为{}T t t X ∈),(;含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规律性;另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的;当t 固定时,),(e t X 是随机变量;当e 固定时,),(e t X 时普通函数,称为随机过程的一个样本函数或轨道;分类:根据参数集T 和状态空间I 是否可列,分四类; 也可以根据)(t X 之间的概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等; 2.随机过程的分布律和数字特征用有限维分布函数族来刻划随机过程的统计规律性;随机过程{}T t t X ∈),(的一维分布,二维分布,…,n 维分布的全体称为有限维分布函数族;随机过程的有限维分布函数族是随机过程概率特征的完整描述;在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些统计特征来取代;1均值函数)()(t EX t m X = 表示随机过程{}T t t X ∈),(在时刻t 的平均值; 2方差函数2)]()([)(t m t X E t D X X -=表示随机过程在时刻t 对均值的偏离程度; 3协方差函数)()()]()([))]()())(()([(),(t m s m t X s X E t m t X s m s X E t s B X X X X X -=--= 且有)(),(t D t t B X X =4相关函数)]()([),(t X s X E t s R X = 3和4表示随机过程在时刻s ,t 时的线性相关程度;5互相关函数:{}T t t X ∈),(,{}T t t Y ∈),(是两个二阶距过程,则下式称为它们的互协方差函数;)()()]()([))]()())(()([(),(t m s m t Y s X E t m t Y s m s X E t s B Y X Y X Y X -=--=,那么)]()([),(t Y s X E t s R XY =,称为互相关函数;若)()()]()([t m s m t Y s X E Y X =,则称两个随机过程不相关; 3.复随机过程 t t t jY X Z += 均值函数tt Z jEY EX t m +=)( 方差函数]))(())([(|])([|)(2t m Z t m Z E t m Z E t D Z t Z t Z t Z --=-=协方差函数)()(][]))(())([(),(t m s m Z Z E t m Z s m Z E t s B Z Z t s Z t Z s Z -=--=相关函数][),(t s Z Z Z E t s R =4.常用的随机过程1二阶距过程:实或复随机过程{}T t t X ∈),(,若对每一个T t ∈,都有∞<2)(t X E 二阶距存在,则称该随机过程为二阶距过程;2正交增量过程:设{}T t t X ∈),(是零均值的二阶距过程,对任意的T t t t t ∈<<<4321,有0]))()(())()([(3412=--t X t X t X t X E ,则称该随机过程为正交增量过程;其协方差函数)),(m in(),(),(2t s t s R t s B XX X σ== 3独立增量过程:随机过程{}T t t X ∈),(,若对任意正整数2≥n ,以及任意的T t t t n ∈<<< 21,随机变量)()(,),()(),()(13412----n n t X t X t X t X t X t X 是相互独立的,则称{}T t t X ∈),(是独立增量过程; 进一步,如{}T t t X ∈),(是独立增量过程,对任意t s <,随机变量)()(s X t X -的分布仅依赖于s t -,则称{}T t t X ∈),(是平稳独立增量过程;4马尔可夫过程:如果随机过程{}T t t X ∈),(具有马尔可夫性,即对任意正整数n 及T t t t n ∈<<< 21,0))(,,)((1111>==--n n x t X x t X P ,都有{}{}111111)()()(,,)()(----=≤===≤n n n n n n n n x t X x t X P x t X x t X x t X P ,则则称{}T t t X ∈),(是马尔可夫过程;5正态过程:随机过程{}T t t X ∈),(,若对任意正整数n 及T t t t n ∈,,,21 ,)()(),(21n t X t X t X 是n 维正态随机变量,其联合分布函数是n 维正态分布函数,则称{}T t t X ∈),(是正态过程或高斯过程; 6维纳过程:是正态过程的一种特殊情形;设{}∞<<-∞t t W ),(为实随机过程,如果,①0)0(=W ;②是平稳独立增量过程;③对任意t s ,增量)()(s W t W -服从正态分布,即0),0(~)()(22>--σσs t N s W t W ;则称{}∞<<-∞t t W ),(为维纳过程,或布朗运动过程;另外:①它是一个Markov 过程;因此该过程的当前值就是做出其未来预测中所需的全部信息;②维纳过程具有独立增量;该过程在任一时间区间上变化的概率分布独立于其在任一的其他时间区间上变化的概率;③它在任何有限时间上的变化服从正态分布,其方差随时间区间的长度呈线性增加; 7平稳过程:严狭义平稳过程:{}T t t X ∈),(,如果对任意常数τ和正整数n 及Tt t t n ∈,,,21 ,Tt t t n ∈+++τττ,,,21 ,)()(),(21n t X t X t X 与)()(),(21τττ+++n t X t X t X 有相同的联合分布,则称{}T t t X ∈),(是严狭义平稳过程;广义平稳过程:随机过程{}T t t X ∈),(,如果①{}T t t X ∈),(是二阶距过程;②对任意的T t ∈, 常数==)()(t EX t m X ;③对任意T t s ∈,,)()]()([),(s t R t X s X E t s R X X -==,或仅与时间差s t -有关;则满足这三个条件的随机过程就称为广义平稳过程,或宽平稳过程,简称平稳过程;第三章 泊松过程一.泊松过程的定义两种定义方法1,设随机计数过程{}(),0X t t ≥,其状态仅取非负整数值,若满足以下三个条件,则称:{}T t t X ∈),(是具有参数λ的泊松过程;①(0)0X =;②独立增量过程,对任意正整数n ,以及任意的T t t t n ∈<<< 21)()(,),()(),()(12312----n n t X t X t X t X t X t X 相互独立,即不同时间间隔的计数相互独立;③在任一长度为t 的区间中,事件A发生的次数服从参数0t λ>的的泊松分布,即对任意,0t s >,有{}()()()0,1,!ntt P X t s X s n en n λλ-+-===[()]E X t t λ=,[()]E X t tλ=,表示单位时间内时间A发生的平均个数,也称速率或强度;2,设随机计数过程{}(),0X t t ≥,其状态仅取非负整数值,若满足以下三个条件,则称:{}(),0X t t ≥是具有参数λ的泊松过程;①(0)0X =;②独立、平稳增量过程;③{}{}()()1()()()2()P X t h X t h o h P X t h X t o h λ+-==+⎧⎪⎨+-≥=⎪⎩; 第三个条件说明,在充分小的时间间隔内,最多有一个事件发生,而不可能有两个或两个以上事件同时发生,也称为单跳性; 二.基本性质1,数字特征 ()[()][()]X m t E X t t D X t λ=== (1)(,)(1)X s t s t R s t t s s tλλλλ+<⎧=⎨+≥⎩(,)(,)()()min(,)X X X X B s t R s t m s m t s t λ=-= 推导过程要非常熟悉2,n T 表示第1n -事件A发生到第n 次事件发生的时间间隔,{},1n T n ≥是时间序列,随机变量n T 服从参数为λ的指数分布;概率密度为,0()0,0t e t f t t λλ-⎧≥=⎨<⎩,分布函数1,0()0,0n t T e t F t t λ-⎧-≥=⎨<⎩均值为1n ET λ=证明过程也要很熟悉 到达时间的分布 略 三.非齐次泊松过程 到达强度是t 的函数①(0)0X =;②独立增量过程;③{}{}()()1()()()()2()P X t h X t t h o h P X t h X t o h λ+-==+⎧⎪⎨+-≥=⎪⎩; 不具有平稳增量性;均值函数0()[()]()tX m t E X t s ds λ==⎰定理:{}(),0X t t ≥是具有均值为0()()tX m t s ds λ=⎰的非齐次泊松过程,则有 四.复合泊松过程设{}(),0N t t ≥是强度为λ的泊松过程,{},1,2,k Y k =是一列独立同分布的随机变量,且与{}(),0N t t ≥独立,令()1()N t kk X t Y==∑ 则称{}(),0X t t ≥为复合泊松过程;重要结论:{}(),0X t t ≥是独立增量过程;若21()E Y <∞,则1[()]()E X t tE Y λ=,21[()]()D X t tE Y λ=第四章 马尔可夫链泊松过程是时间连续状态离散的马氏过程,维纳过程是时间状态都连续的马氏过程;时间和状态都离散的马尔可夫过程称为马尔可夫链;马尔可夫过程的特性:马尔可夫性或无后效性;即:在过程时刻0t 所处的状态为已知的条件下,过程在时刻0t t >所处状态的条件分布与过程在时刻0t 之前所处的状态无关;也就是说,将来只与现在有关,而与过去无关;表示为{}{}111111)()()(,,)()(----=≤===≤n n n n n n n n x t X x t X P x t X x t X x t X P一.马尔可夫链的概念及转移概率1.定义:设随机过程{},∈n X n T ,对任意的整数∈n T 和任意的011,,,n i i i I +∈,条件概率满足{}{}11001111,,,n n n n n n n n P X i X i X i X i P X i X i ++++=======,则称{},∈n X n T 为马尔可夫链;马尔可夫链的统计特性完全由条件概率{}11n n n n P X i X i ++==所决定;2.转移概率 {}1n n P X j X i +==相当于随机游动的质点在时刻n 处于状态i 的条件下,下一步转移到j 的概率;记为()ij p n ;则()ij p n {}1n n P X j X i +===称为马尔可夫链在时刻n 的一步转移概率;若齐次马尔可夫链,则()ij p n 与n 无关,记为ij p ;[],1,2,ij P p i j II =∈= 称为系统的一步转移矩阵;性质:每个元素0ij p ≥,每行的和为1;3.n 步转移概率()n ij p ={}m n m P X j X i +== ;()()[],1,2,n n ij P p i j II =∈=称为n步转移矩阵;重要性质:①()()()n l n l ij ik kj k Ip p p -∈=∑ 称为C K -方程,证明中用到条件概率的乘法公式、马尔可夫性、齐次性;掌握证明方法:{}{}{}{}{}{}{}{}{}()()()()(),,,,,,,()()m m n n ijm nm m m m l m n k Tm m m l m n m m l k Tm m l m n l l l n l kj ik ik kj k Ik IP X i X j p P X j X i P X i P X i X k X j P X i P X i X k X j P X i X k P X i X k P X i p m l p m p p ++++∈+++∈+--∈∈==================⋅====+⋅=⋅∑∑∑∑②()n n P P = 说明n 步转移概率矩阵是一步转移概率矩阵的n 次乘方;4.{},∈n X n T 是马尔可夫链,称{}0j p P X j ==为初始概率,即0时刻状态为j 的概率;称{}()j n p n P X j ==为绝对概率,即n 时刻状态为j 的概率;{}12(0),,T P p p =为初始概率向量,{}12()(),(),T P n p n p n =为绝对概率向量;定理:①()()n j i ij i Ip n p p ∈=∑矩阵形式:()()(0)T T n P n P P =②()(1)j i ij i Ip n p n p ∈=-∑定理:{}111122,,,n n n n i iii i i IP X i X i X i p p p -∈====∑ 说明马氏链的有限维分布完全由它的初始概率和一步转移概率所决定; 二.马尔可夫链的状态分类1.周期:自某状态出发,再返回某状态的所有可能步数最大公约数,即{}():0n ii d GC D n p ⋅⋅=>;若1d >,则称该状态是周期的;若1d =,则称该状态是非周期的;2.首中概率:()n ij f 表示由i 出发经n 步首次到达j 的概率; 3.()1n ij ij n f f ∞==∑表示由i 出发经终于迟早要到达j 的概率;4.如果1ii f =,则状态i 是常返态;如果1ii f <,状态i 是非常返滑过态;5.()1n i ii n nf μ∞==∑表示由i 出发再返回到i 的平均返回时间;若i μ<∞,则称i 是正常返态;若i μ=∞,则称i 是零常返态;非周期的正常返态是遍历状态; 6.状态i 是常返充要条件是()0iin n p∞==∞∑;状态i 是非常返充要条件是()11iin n iip f ∞==-∑; 7.称状态i 与j 互通,,i j i j j i ↔→→即且;如果i j ↔,则他们同为常返态或非常返态,;若i ,j 同为常返态,则他们同为正常返态或零常返态,且i ,j 有相同的周期;8.状态i 是遍历状态的充要条件是()1lim 0n iin ip μ→∞=>;一个不可约的、非周期的、有限状态的马尔可夫链是遍历的;9.要求:熟悉定义定理,能由一步转移概率矩阵画出状态转移图,从而识别各状态; 三.状态空间的分解1.设C 是状态空间I 的一个闭集,如果对任意的状态i C ∈,状态j C ∉,都有0ij p =即从i 出发经一步转移不能到达j ,则称C 为闭集;如果C 的状态互通,则称C 是不可约的;如果状态空间不可约,则马尔可夫链{},∈n X n T 不可约;或者说除了C 之外没有其他闭集,则称马尔可夫链{},∈n X n T 不可约;2.C 为闭集的充要条件是:对任意的状态i C ∈,状态j C ∉,都有()0ijn p =;所以闭集的意思是自C 的内部不能到达C 的外部;意味着一旦质点进入闭集C 中,它将永远留在C 中运动;如果1ii p =,则状态i 为吸收的;等价于单点{}i 为闭集;3.马尔可夫链的分解定理:任一马尔可夫链的状态空间I ,必可唯一地分解成有限个互不相交的子集12,,,nD C C C 的和,①每一个n C 都是常返态组成的不可约闭集;②n C 中的状态同类,或全是正常返态,或全是零常返态,有相同的周期,且1ij f =;③D 是由全体非常返态组成; 分解定理说明:状态空间的状态可按常返与非常返分为两类,非常返态组成集合D ,常返态组成一个闭集C ;闭集C 又可按互通关系分为若干个互不相交的基本常返闭集12,,nC C C ; 含义:一个马尔可夫链如果从D 中某个非常返态出发,它或者一直停留在D 中,或某一时刻进入某个基本常返闭集n C ,一旦进入就永不离开;一个马尔可夫链如果从某一常返态出发,必属于某个基本常返闭集n C ,永远在该闭集n C 中运动;4.有限马尔可夫链:一个马尔可夫链的状态空间是一个有限集合;性质:①所有非常返态组成的集合不是闭集;②没有零常返态;③必有正常返态;④状态空间12n I D C C C =++++,D 是非常返集合,12,,n C C C 是正常返集合;不可约有限马尔可夫链只有正常返态;四.()n ij p 的渐近性质与平稳分布 1.为什么要研究转移概率()n ij p 的遍历性研究()n ij p 当n →∞时的极限性质,即{}0n P X j X i ==的极限分布,包含两个问题:一是()lim n ij n p →∞是否存在;二是如果存在,是否与初始状态有关;这一类问题称作遍历性定理;如果对,i j I ∈,存在不依赖于i 的极限()lim n ijn p →∞0j p =>,则称马尔可夫链具有遍历性; 一个不可约的马尔可夫链,如果它的状态是非周期的正常返态,则它就是一个遍历链; 具有遍历性的马尔可夫链,无论系统从哪个状态出发,当转移步数n 充分大时,转移到状态j 的概率都近似等于j p ,这时可以用j p 作为()n ij p 的近似值;2.研究平稳分布有什么意义判别一个不可约的、非周期的、常返态的马尔可夫链是否为遍历的,可以通过讨论()lim n ij n p →∞来解决,但求极限时困难的;所以,我们通过研究平稳分布是否存在来判别齐次马尔可夫链是否为遍历链;一个不可约非周期常返态的马尔可夫链是遍历的充要条件是存在平稳分布,且平稳分布即极限分布()lim n ij n p →∞=1,jj I μ∈;3.{},0≥n X n 是齐次马尔可夫链,状态空间为I ,一步转移概率为ij p ,概率分布{},j j I π∈称为马尔可夫链的平稳分布,满足1j i iji Ijj Ip πππ∈∈==∑∑4.定理:不可约非周期马尔可夫链是正常返的充要条件是存在平稳分布,且此平稳分布就是极限分布1,jj I μ∈; 推论:有限状态的不可约非周期马尔可夫链必存在平稳分布;5.在工程技术中,当马尔可夫链极限分布存在,它的遍历性表示一个系统经过相当长时间后达到平衡状态,此时系统各状态的概率分布不随时间而变,也不依赖于初始状态;6.对有限马尔可夫链,如果存在正整数k ,使()0k ij p >,即k 步转移矩阵中没有零元素,则该链是遍历的;第六章 平稳随机过程一.定义第一章严平稳过程:有限维分布函数沿时间轴平移时不发生变化;宽平稳过程:满足三个条件:二阶矩过程2[()]E X t <∞;均值为常数[()]E X t =常数;相关函数只与时间差有关,即(,)()()()X X R t t E X t X t R τττ⎡⎤-=-=⎣⎦;宽平稳过程不一定是严平稳过程,而严平稳过程一定是宽平稳过程; 二.联合平稳过程及相关函数的性质1.定义:设{}(),X t t T ∈和{}(),X t t T ∈是两个平稳过程,若它们的互相关函数()()E X t Y t τ⎡⎤-⎣⎦及()()E Y t X t τ⎡⎤-⎣⎦仅与时间差τ有关,而与起点t 无关,则称()X t 和()Y t 是联合平稳随机过程;即,(,)()()()XY XY R t t E X t Y t R τττ⎡⎤-=-=⎣⎦ (,)()()()YX YX R t t E Y t X t R τττ⎡⎤-=-=⎣⎦当然,当两个平稳过程联合平稳时,其和也是平稳过程;2.相关函数的性质:①(0)0X R ≥;②()()X X R R ττ≥,对于实平稳过程,()X R τ是偶函数;③()(0)X X R R τ≤④非负定;⑤若()X t 是周期的,则相关函数()X R τ也是周期的,且周期相同;⑥如果()X t 是不含周期分量的非周期过程,()X t 与()X t τ+相互独立,则||()lim X X X R m m ττ→∞=;联合平稳过程()X t 和()Y t 的互相关函数,()(0)(0)XY X Y R R R τ≤,()(0)(0)YX X Y R R R τ≤;()()XY YX R R ττ-=;()X t 和()Y t 是实联合平稳过程时,则,()()XY YX R R ττ-=;三.随机分析 略四.平稳过程的各态历经性 1.时间均值1()..()2TTT X t l i mX t dt T-→∞=⎰时间相关函数1()()..()()2TTT X t X t l i mX t X t dt Tττ-→∞-=-⎰2.如果()[()]()X X t E X t m t ==以概率1成立,则称均方连续的平稳过程的均值有各态历经性;如果()()[()()]()X X t X t E X t X t R τττ-=-= 以概率1成立,则称均方连续的平稳过程的相关函数有各态历经性;如果均方连续的平稳过程的均值和相关函数都有各态历经性,则称该平稳过程是各态历经的或遍历的;一方面表明各态历经过程各样本函数的时间平均实际上可以认为是相同的;另一方面也表明[()]E X t 与[()()]E X t X t τ-必定与t 无关,即各态历经过程必是平稳过程;3.讨论平稳过程的历经性,就是讨论能否在较宽松的条件下,用一个样本函数去近似计算平稳过程的均值、协方差函数等数字特征,即用时间平均代替统计平均; 只在一定条件下的平稳过程,才具有各态历经性;4.均值各态历经性定理:均方连续的平稳过程的均值具有各态历经的充要条件是5.相关函数各态历经性定理:均方连续的平稳过程的相关函数具有各态历经的充要条件是第七章 平稳过程的谱分析 一.平稳过程的谱密度 推导过程:随机过程{}(),X t t -∞<<∞为均方连续过程,作截尾处理(),()0,T X t t TX t t T ⎧≤⎪=⎨>⎪⎩,由于()T X t 均方可积,所以存在FT,得(,)()()Tj tj t T TF T X t edt X t e dt ωωω∞---∞-==⎰⎰,利用paserval 定理及IFT 定义得2221()()(,)2TT TX t dt X t dt F T d ωωπ∞∞-∞--∞==⎰⎰⎰该式两边都是随机变量,取平均值,这时不仅要对时间区间[,]T T -取,还要取概率意义下的统计平均,即 定义221()2lim TTT E X t dt Tψ-→∞⎡⎤=⎢⎥⎣⎦⎰为{}(),X t t -∞<<∞平均功率;21()(,)2limX T s E F T T ωω→∞⎡⎤=⎣⎦为{}(),X t t -∞<<∞功率谱密度,简称谱密度; 可以推出当{}(),X t t -∞<<∞是均方连续平稳过程时,有 21()2X s d ψωωπ∞-∞=⎰说明平稳过程的平均功率等于过程的均方值,或等于谱密度在频域上的积分;2.平稳过程的谱密度和相关函数构成FT 对;若平稳随机序列{},0,1,2,n X n =±±,则其谱密度和相关函数构成FT 对二.谱密度的性质1.①()X s ω是()X R τ的FT;()()j X X s R e d ωτωττ∞--∞=⎰如果{}(),X t t -∞<<∞是均方连续的实平稳过程,有()()X X R R ττ=-,()X s ω是也实的非负偶函数,则②()X s ω是ω的有理分式,分母无实根;2.谱密度的物理含义,()X s ω是一个频率函数,从频率域来描绘()X t 统计规律的数字特征,而()X t 是各种频率简谐波的叠加,()X s ω就反映了各种频率成分所具有的能量大小;3.计算 可以按照定义计算,也可以利用常用的变换对()1t δ↔ 12()πδω↔ 2220a ae a a τω-↔>+22τω↔-00()()j X X R e s ωττωω⋅↔- ()()j T X X R T s e ωτω+↔⋅001,sin 0,ωωωτωωπτ⎧<⎪↔⎨≥⎪⎩等 三.窄带过程及白噪声过程的功率谱密度1.窄带随机过程:随机过程的谱密度限制在很窄的一段频率范围内;2.白噪声过程:设{}(),X t t -∞<<∞为实值平稳过程,若它的均值为零,且谱密度在所有的频率范围内为非零的常数,即0()X s N ω=,则称{}(),X t t -∞<<∞为白噪声过程; 是平稳过程;其相关函数为0()()X R N τδτ=;表明在任意两个时刻1t 和2t ,1()X t 和2()X t 不相关,即白噪声随时间的变换起伏极快,而过程的功率谱极宽,对不同输入频率的信号都有可能产生干扰;四.联合平稳过程的互谱密度互谱密度没有明确的物理意义,引入它主要是为了能在频率域上描述两个平稳过程的相关性;1.互谱密度与互相关函数成FT对关系 2.性质()()XY XY s s ωω= ()XY s ω的实部是ω的偶函数,虚部是ω的奇函数,()YX s ω也是; 2()()()XY X Y s s s ωωω≤;若()X t 和()Y t 相互正交,有()0XY R τ=,则()()0XY YX s s ωω== ;五.平稳过程通过线性系统1.系统的频率响应函数()H ω也可以写成()H j ω一般是一个复值函数,是系统单位脉冲响应的FT;2.系统输入()X t 为实平稳随机过程,则输出()Y t 也是实平稳随机过程;即输出过程的均值为常数,相关函数是时间差的函数;且有()()()()()()Y XY X R R h R h h ττττττ=*-=**-说明输出过程的相关函数可以通过两次卷积产生;()()()XY X R R h τττ=*的应用:给系统一个白噪声过程()X t ,可以从实测的互相关资料估计线性系统的未知脉冲响应;因为0()()X R N τδτ=,00()()()()()()XY X R R h N u h u du N h τττδττ∞-∞=*=-=⎰,从而3.输入输出谱密度之间的关系 2()()()Y X s H s ωωω=2()()()H H H ωωω=称为系统的频率增益因子或频率传输函数;有时,采用时域卷积的方法计算输出的相关函数比较烦琐,可以先计算输出过程的谱密度,然后反FT 计算出相关函数;2()()()()()X Y X Y R s H s R τωωωτ→=→另外()()()XY X R R h τττ=*,所以()()()XY X s H s ωωω= ,()()()YX X s H s ωωω= 补充:排队轮平均间隔时间=总时间/到达顾客总数 平均服务时间=服务时间总和/顾客总数平均到达率=到达顾客总数/总时间 平均服务率=顾客总数/服务时间总和一.当顾客到达符合泊松过程时,顾客相继到达的间隔时间T 必服从负指数分布;对于泊松分布,λ表示单位时间平均到达的顾客数,所以1λ表示顾客相继到达的平均间隔时间;服务时间符合负指数分布时,设它的概率密度函数和分布函数分别为()(){}[]1tttt t tf t e F t P T t e dt d e e μμμμμμ----==≤==-=-⎰⎰ 其中μ表示单位时间能够服务完的顾客数,为服务率;而1μ表示一个顾客的平均服务时间; 二.排队模型的求解把系统中的顾客数称为系统的状态;若系统中有n 个顾客,则称系统的状态是n ;瞬态和稳态:考虑在t 时刻系统的状态为n 的概率,它是随时刻t 而变化的,用()n P t 表示,称为系统的瞬态;求瞬态解是很不容易的,求出也很难利用;因此我们常用稳态概率n P ,表示系统中有n 个顾客的概率; 各运行指标:1队长:把系统中的顾客数称为队长,它的期望值记作s L ,也叫平均队长,即系统中的平均顾客数;而把系统中排队等待服务的顾客数称为排队长队列长,它的期望值记作q L ,也叫平均排队长,即系统中的排队的平均顾客数; 显然有 队长=排队长+正被服务的顾客数;2逗留时间:一个顾客从到达排队系统到服务完毕离去的总停留时间称为逗留时间,它的期望值记作s W ;一个顾客在系统中排队等待的时间称为等待时间,它的期望值记作q W ;逗留时间=等待时间+服务时间;3忙期:从顾客到达空闲服务机构起,到服务台再次变为空闲为止; 4顾客损失率:由于服务能力不足而造成顾客损失的比率;5服务强度服务机构利用率:指服务设备工作时间占总时间的比例; 三.几种典型的排队模型1.//1//M M ∞∞:单服务台,系统容量无限,顾客源无限;λ到达率,μ服务率,λρμ=服务强度; 状态转移图 , 稳态概率方程 得 系统中无顾客的01P ρ=- 系统中有n 个顾客的概率0(1)n n n P P ρρρ=-=且必有s q L L uλ=+qq L W λ=1s q W W μ=+2.//1//M M N ∞:单服务台,系统容量为N 说明若到了系统最大容量,顾客将不能进入系统,顾客源无限;λ到达率,μ服务率,λρμ=服务强度;☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆状态转移图 , 稳态概率方程 得 系统中无顾客的0111N P ρρ+-=- 系统中有n 个顾客的概率0n n P P ρ= 3.//1//M M m ∞:单服务台,系统容量无限,顾客源m;λ到达率,μ服务率;状态转移图 , 稳态概率方程 得 系统中无顾☆客的001!()!()mii P m m i λμ==-∑系统中有n 个顾客的概率0!()()!n n m P P m n λμ=-1n m ≤≤0(1)s L m P μλ=--;00()(1)(1)q s P L m L P λμλ+-=-=--01(1)s m W P μλ=--1q s W W μ=-4. ////M M c ∞∞:多服务台,系统容量无限,顾客源无限;λ到达率,μ服务率,c λρμ=服务强度; 状态转移图 , 稳态概率方程 得☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆系统中无顾客的110011!!1k c c k P k c λλμμρ--=⎡⎤⎛⎫⎛⎫=+⎢⎥ ⎪ ⎪-⎝⎭⎝⎭⎢⎥⎣⎦∑系统中有n 个顾客的概率001()!1()!nn n n c P n c n P P n c c cλμλμ-⎧≤⎪⎪=⎨⎪>⎪⎩。

第四章正态随机过程

第四章正态随机过程

输出的均值为零
GY (ω ) = G X (ω ) H (ω )
2
输出的功率谱
输出的自相关函数 输出的方差
1 RY (τ ) = 2π
2 Y

+∞
−∞
G X (ω ) H (ω ) e jωτ dω
2
1 σ = RY (0) = 2π

+∞
−∞
G X (ω ) H (ω ) dω
2
2 1 y exp− fY ( y) = 2πRY (0) 2RY (0)
1 2 2 2 exp − [(π2 − 4)(x1 + x3 ) +π2 x2 − 4π(x1x2 + x2 x3 ) + 8x1x3 ] 2 ) 2 2π(π2 −8) 2(π −8
例4.2 正态随机信号通过线性系统 输入是一个零均值正态随机过程
X(t) H(ω) Y(t)
i =1 N
性质4 性质4 正态随机过程与确定信号之和是正态随机过程
X (t) = N(t) + S(t)
[ x − S(t)]2 1 f X (x, t) = exp − 2 1/2 2 ( πσ ) 2 2σ
性质5 性质5 正态随机过程通过线性系统的输出是 正态随机过程
sin(πτ) RX (τ) = πτ
1 求 t1 = 0, t2 = , t3 = 1 的三维概率密度 2
K(t1 − t2 ) K(t1 − t3 ) K(0) K = K(t2 − t1) K(0) K(t2 − t3 ) K(t3 − t1) K(t3 − t2 ) K(0) 1 sin(π / 2)/(π / 2) sin π / π = sin(π / 2)/(π / 2) 1 sin(π / 2)/(π / 2) sin π / π sin(π / 2)/(π / 2) 1 1 = 2/ π 0 2/ π 1 2/ π 0 2/ π 1

随机过程-正态马尔可夫过程

随机过程-正态马尔可夫过程

所以, 是马尔可夫过程。 所以, ξ(t) 是马尔可夫过程。
例3.6
图示电路,输入为零均值平稳正态白噪声, 图示电路, 输入为零均值平稳正态白噪声,求
输出过程的特性。 输出过程的特性。
R
ξ(t)
C
η(t)
解:系统传递函数的模平方为
α2 H( jf ) = 2 α + (2π f )2
2
1 α 其中, 输入平稳正态白噪声, 1。 其中, = 。输入平稳正态白噪声,即Sξ ( f ) = 1。于 RC
2 n
设 a= C(1)/C(0),由于 C(1) ≤C(0),故|a|≤1 ,因此 , ,
C(n) = anC(0)(n ≥ 0)
充分性:如果 C(n)/C(0)=an,设n=n1+n2,则 充分性:
C(n1) C(n2 ) C(n1)C(n2 ) C(n) = an1 an2 = ⇒ C(n) = C(0) C(0) C(0) C(0)
C(τ ) = eaτ C(0)
因为|C(τ)|<C(0),故τ >0 时,a<0 , 因为 充分性:如果 充分性:如果C(τ)=eaτC(0) ,则
C(τ + s) C(τ ) C(s) = ea(τ +s) = eaτ eas = C(0) C(0) C(0)

C(τ )C(s) C(τ + s) = C(0)
是输出为
α2 Sη ( f ) = H( jf ) Sξ ( f ) = 2 α + (2π f )2
2
由此可得
Rη (τ ) =
α
2
e
−α τ
由E{ξ(t)}=0得E{η(t)}=0 ,因此 得

随机过程课后题答案

随机过程课后题答案

第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===。

求X 的特征函数,EX 及DX 。

其中01,1p q p <<=-是已知参数。

解()()jtxjtkk X k f t E eepq ∞===∑()k jtkk p q e∞==∑ =0()1jt kjtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰202201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。

解 (1)设X 服从(,)p b Γ分布,则10()()p jtxp bxX b f t ex e dx p ∞--=Γ⎰ 1()0()p p jt b x b x e dx p ∞--=Γ⎰101()()()()(1)p u p p p p p b e u b u jt b x du jt p b jt b jt b∞----==Γ---⎰ 10(())x p p e x dx ∞--Γ=⎰ (2)'1()(0)X p E X f j b∴== 2''221(1)()(0)X p p E X f j b +== 222()()()PD XE X E X b∴===(4) 若(,)i i X p b Γ 1,2i = 则121212()()()()(1)P P X X X X jt f t f t f t b-++==-1212(,)Y X X P P b ∴=+Γ+同理可得:()()iiP X b f t b jt∑=∑-3、设X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。

随机过程知识点

随机过程知识点

第一章:预备知识§1.1 概率空间随机试验;样本空间记为Ω..定义1.1 设Ω是一个集合;F 是Ω的某些子集组成的集合族..如果 1∈ΩF ;2∈A 若F ;∈Ω=A A \则F ; 3若∈n A F ; ,,21=n ;则∞=∈1n nAF ;则称F 为-σ代数Borel 域..Ω;F 称为可测空间;F 中的元素称为事件.. 由定义易知:定义1.2 设Ω;F 是可测空间;P ·是定义在F 上的实值函数..如果 则称P 是()F ,Ω上的概率;P F ,,Ω称为概率空间;PA 为事件A 的概率..定义1.3 设P F ,,Ω是概率空间;F G ⊂;如果对任意G A A A n ∈,,,21 ; ,2,1=n 有: (),11∏===⎪⎪⎭⎫⎝⎛ni i n i i A P A P则称G 为独立事件族..§1.2 随机变量及其分布随机变量X ;分布函数)(x F ;n 维随机变量或n 维随机向量;联合分布函数;{}T t X t ∈,是独立的..§1.3随机变量的数字特征定义1.7 设随机变量X 的分布函数为)(x F ;若⎰∞∞-∞<)(||x dF x ;则称)(X E =⎰∞∞-)(x xdF为X 的数学期望或均值..上式右边的积分称为Lebesgue-Stieltjes 积分..方差;()()[]EY Y EX X E B XY --=为X 、Y 的协方差;而 为X 、Y 的相关系数..若,0=XY ρ则称X 、Y 不相关..Schwarz 不等式若,,22∞<∞<EY EX则§ 1.4 特征函数、母函数和拉氏变换定义1. 10 设随机变量的分布函数为Fx;称为X 的特征函数随机变量的特征函数具有下列性质: 1(0)1,()1,()()g g t g t g t =≤-= 1 2 g t 在()∞∞-, 上一致连续..3()(0)()k k k g i E X =4若12,,,n X X X 是相互独立的随机变量;则12n X X X X =+++的特征函数12()()()()n g t g t g t g t =;其中()i g t 是随机变量X i 的特征函数;1,2,,i n =.定义1 . 11 设 12(,,,)n X X X X =是n 维随机变量;t = 12,,,n t t t ,R ∈ 则称121()(,,,)()[exp()]nitX n k k k g t g t t t E eE i t X '====∑;为X 的特征函数..定义1.12 设X 是非负整数值随机变量;分布列 则称)()(Xdef s E s P ==k k k s P ∑∞=0为X 的母函数..§ 1.5 n 维正态分布定义1.13 若n 维随机变量),,,(21n X X X X =的联合概率密度为 式中;),,,(21n a a a a =是常向量;n n ij b B ⨯=)(是正定矩阵;则称X 为n 维正态随机变量或服从n 维正态分布;记作),(~B a N X ..可以证明;若),(~B a N X ;则X 的特征函数为为了应用的方便;下面;我们不加证明地给出常用的几个结论..性质1 若),(~B a N X 则n l b B a X E kl X X k k l k ,,2,1,,)( ===..性质2 设),(~B a N X ;XA Y =;若BA A '正定;则),(~BA A aA N Y '..即正态随机变量的线性变换仍为正态随机变量..性质3 设),,,(4321X X X X X =是四维正态随机变量;4,3,2,1,0)(==k X E k ;则§ 1.6 条件期望给定Y=y 时;X 的条件期望定义为由此可见除了概率是关于事件{Y=y }的条件概率以外;现在的定义与无条件的情况完全一样..EX|Y=y 是y 的函数;y 是Y 的一个可能值..若在已知Y 的条件下;全面地考虑X 的均值;需要以Y 代替y;EX|Y 是随机变量Y 的函数;也是随机变量;称为 X 在 Y 下的条件期望.. 条件期望在概率论、数理统计和随机过程中是一个十分重要的概念;下面我们介绍一个极其有用的性质..性质 若随机变量X 与Y 的期望存在;则⎰===)()|()]|([)(y dF y Y X E Y X E E X E Y --------1如果Y 是离散型随机变量;则上式为如果Y 是连续型;具有概率密度fx;则1式为第二章 随机过程的概念与基本类型§2.1 随机过程的基本概念定义2.1 设P F ,,Ω是概率空间;T 是给定的参数集;若对每个t ∈T ;有一个随机变量Xt ;e 与之对应;则称随机变量族}),,({T t e t X ∈是P F ,,Ω的随机过程;简记为随机过程}),({T t t X ∈..T 称为参数集;通常表示时间..通常将随机过程}),,({T t e t X ∈解释为一个物理系统..Xt 表示在时刻t 所处的状态..Xt 的所有可能状态所构成的集合称为状态空间或相空间;记为I ..从数学的观点来说;随机过程}),,({T t e t X ∈是定义在T ×Ω上的二元函数..对固定的t;Xt ;e 是定义在T 上的普通函数;称为随机过程}),,({T t e t X ∈的一个样本函数或轨道;样本函数的全体称为样本函数的空间..§ 2.2 随机过程的函数特征t X ={Xt ;t ∈T }的有限维分布函数族..有限维特征函数族: 其中:定义2.3 设t X ={Xt ;t ∈T }的均值函数def t m X )()]([t X E ;T t ∈.. 二阶矩过程;协方差函数:T ,)]()([),()(2∈-=t t m t X E def t t B t D X X X相关函数: =),(t s R X )]()([t X s X E定义2.4 设{Xt ;t ∈T };{Yt ;t ∈T }是两个二阶矩过程;互协方差函数;互相关函数..§ 2.3 复随机过程定义 2.5 设},{T t X t ∈;},{T t Y t ∈是取实数值的两个随机过程;若对任意T t ∈ t t t iY X Z +=; 其中 1-=i ;则称},{T t Z t ∈为复随机过程.定理 2.2 复随机过程},{T t X t ∈的协方差函数 ),(t s B 具有性质 1对称性:),(),(s t B t s B =;2非负定性§2.4 几种重要的随机过程一、正交增量过程定义2.6 设(){}T ∈X t t ,是零均值的二阶矩过程;若对任意的,4321T ∈<≤<t t t t 有公式()()[]()()[]03412=X -X X -X E t t t t ;则称()t X 正交增量过程..二、独立增量过程定义2.7 设(){}T ∈X t t ,是随机过程;若对任意的正整数n 和,21T ∈<<<n t t t 随机变量()()()()()()12312,,,-X -X X -X X -X n n t t t t t t 是互相独立的;则称(){}T ∈X t t ,是独立增量过程;又称可加过程..定义 2.8 设(){}T ∈X t t ,是平稳独立增量过程;若对任意,t s <随机变量()()s t X -X 的分布仅依赖于s t -;则称(){}T ∈X t t ,是平稳独立增量过程..三、马尔可夫过程定义2.9设(){}T t t X ∈,为随机过程;若对任意正整数n 及n t t t << ,21;()()0,,)(1111>==--n n x t X x t X P ;且其条件分布()(){}1111,,|)(--===n n n n x t X x t X x t X P =(){}11|)(--==n n n n x t X x t X P ;2.6则称(){}T t t X ∈,为马尔可夫过程..四、正态过程和维纳过程定义 2.10设(){}T t t X ∈,是随机过程;若对任意正整数n 和T t t t ∈∈ ,,21;()() ,,21t X t X ;()n t X 是n 维正态随机变量;则称(){}T t t X ∈,是正态过程或高斯过程..定义 2.11设{}∞<<-∞t t W ),(为随机过程;如果 10)0(=W ;2它是独立、平稳增量过程; 3对t s ,∀;增量()0,||,0~)()(22>--σσs t N s W t W ;则称{}∞<<-∞t t W ),(为维纳过程;也称布朗运动过程..定理 2.3 设{}∞<<-∞t t W ),(是参数为2σ的维纳过程;则 (1) 任意t ),(∞-∞∈;()||,0~)(2t N t W σ; (2) 对任意∞<<<∞-t s a ,;[]),m in())()())(()((2a t a s a W t W a W s W E --=--σ;特别: ()()t s t s Rw ,m in ,2σ=..五、平稳过程定义 2.12 设(){}T t t X ∈,是随机过程;如果对任意常数τ和正整数,n 当T ∈++T ∈ττn n t t t t ,,,,,11 时;()()()()n t t t X X X ,,21与()()()()τττ+X +X +X n t t t ,,,21 有相同的联合分布;则称(){}T t t X ∈,为严平稳过程;也称狭义平稳过程..定义 2.13 设(){}T t t X ∈,是随机过程;如果 1(){}T t t X ∈,是二阶矩过程;2对于任意()()[]=X E =T ∈X t t m t ,常数;3对任意的()()s t R t s R t s -=T ∈X X ,,,;则称(){}T t t X ∈,为广义平稳过程;简称为平稳过程..若T 为离散集;则称平稳过程(){}T t t X ∈,为平稳序列..第三章 泊松过程§3.1 泊松过程的定义和例子定义3.1 计数过程定义3.2 称计数过程}0),({≥t t X 为具有参数λ>0的泊松过程;若它满足下列条件 1 X0= 0;2 Xt 是独立增量过程;3 在任一长度为t 的区间中;事件A 发生的次数服从参数λt >0的泊松分布;即对任意s;t >0;有注意;从条件3知泊松过程是平稳增量过程且t t X E λ=)]([..由于;tt X E )]([=λ表示单位时间内事件A 发生的平均个数;故称λ为此过程的速率或强度..定义3.3 称计数过程}0),({≥t t X 为具有参数λ>0的泊松过程;若它满足下列条件 1 X0= 0;2 Xt 是独立、平稳增量过程;3 Xt 满足下列两式:)(}2)()({),(}1)()({h o t X h t X P h o h t X h t X P =≥-++==-+λ 3.2定理3.1 定义3.2与定义3.3是等价的..3.2 泊松过程的基本性质一、数字特征设}0),({≥t t X 是泊松过程;一般泊松过程的有),m in(),(t s t s B X λ=..有特征函数定义;可得泊松过程的特征函数为二、时间间隔与等待时间的分布n W 为第n 次事件A 出现的时刻或第n 次事件A 的等待时间;n T 是第n 个时间间隔;它们都是随机变量..定理3.2 设}0),({≥t t X 是具有参数λ的泊松分布;)1(≥n T n 是对应的时间间隔序列;则随机变量),2,1( =n T n 是独立同分布的均值为λ/1的指数分布..定理3.3 设}1,{≥n W n 是与泊松过程}0),({≥t t X 对应的一个等待时间序列;则n W 服从参数为n 与λ的Γ分布;其概率密度为三、到达时间的条件分布定理3.4 设}0),({≥t t X 是泊松过程;已知在0;t 内事件A 发生n 次;则这n 次到达时间n W W W <<< 21与相应于n 个0;t 上均匀分布的独立随机变量的顺序统计量有相同的分布..§3.3 非齐次泊松过程定义 3.4 称计数过程{(),0}X t t ≥为具有跳跃强度函数()t λ的非齐次泊松过程;若它满足下列条件:1 (0)0X =;2 ()X t 是独立增量过程;3{()()1}()(){()()2}()P X t h X t t h o h P X t h X t o h λ+-==++-≥=非齐次泊松过程的均值函数为:定理 3.5 设{(),0}X t t ≥是具有均值函数0()()tX m t s ds λ=⎰的非齐次泊松过程;则有 或上式表明{()()}P X t s X t n +-=不仅是t 的函数;也是s 的函数..3.4 复合泊松过程定义3.5 设}0),({≥t t N 是强度为λ的泊松过程;,...}2,1{,=k Y k 是一列独立同分布随机变量;且与}0),({≥t t N 独立;令 则称}0),({≥t t X 为复合泊松过程..定理3.6 设,0)()(1≥∑==t k t x Y t N k 是复合泊松过程;则1..}0),({≥t t X 是独立增量过程;2Xt 的特征函数]}1)([ex p{)()(-=u g t u g Y t X λ;其中)(u g Y 是随机变量1Y 的特征函数;λ是事件的到达率..3若,)(21∞<Y E 则].[)]([],[)]([211Y tE t X D Y tE t X E λλ==第4章 马尔可夫链§4.1 马尔可夫链的概念及转移概率一、马尔可夫键的定义定义1 设有随机过程},{T n X n ∈;若对于任意的整数T n ∈和任意的I i i i n ∈+110,,, ;条件概率满足则称},{T n X n ∈为马尔可夫链;简称马氏链..二、转移概率定义2 称条件概率为马尔可夫链},{T n X n ∈在时刻n 的一步转移概率;其中I j i ∈,;简称为转移概率..定义 3 若对任意的I j i ∈,;马尔可夫链},{T n X n ∈的转移概率)(n p ij 与n 无关;则称马尔可夫链是齐次的;并记)(n p ij 为ij p ..定义4 称条件概率为马尔可夫链},{T n X n ∈的n 步转移概率;定理 1 设},{T n X n ∈为马尔可夫链;则对任意整数n l n <≤≥0,0和I j i ∈,;n 步转移概率)(n ij p 具有下列性质:定义5 设},{T n X n ∈为马尔可夫链;称为},{T n X n ∈的初始概率和绝对概率;并分别称},{I j p j ∈和}),({I j n p j ∈为},{T n X n ∈的初始分布和绝对分布;简记为}{j p 和)}({n p j ..定理2 设},{T n X n ∈为马尔可夫链;则对任意I j ∈和1≥n ;绝对概率)(n p j 具有下列性质:定理3 设},{T n X n ∈为马尔可夫链;则对任意I i i i n ∈,,,21 和1≥n ;有§4.2 马尔可夫链的状态分类一、状态分类假设{,0}n X n ≥是齐次马尔可夫链;其状态空间{0,1,2,}I =;转移概率是,,ij p i j I ∈; 初始分布为{,,}j p i j I ∈ ..定义 4.6 如集合(){:1,0}n ii n n p ≥>非空;则称该集合的最大公约数()()..{:0}n ii d d i G C D n p ==>为状态i 的周期..如1>d 就称i 为周期的;如1=d 就称i 为非周期的..若对每一个不可被d 整除的n ;有()n ii p =0;且d 是具有此性质的最大正整数;则称d为状态i 的周期..引理4.1 如i 的周期为d;则存在正整数M;对一切M n ≥;有()0nd ii p >..定义 对,,S j i ∈记()0{,,1,2,,1|},2n ij n k f P X j X j k n X i n ==≠=-=≥ 4.15称()n ij f 是系统在0时从i 出发经过n 步转移后首次到达状态j 的概率;而()ij f ∞则是在0时从i出发;系统在有限步转移内不可能到达状态j 的概率..我们将()n ij f 和ij f 统称为首达概率又称首中概率..引理1 ()0n ij ij f f ≤≤ n j i ,,∀(2) 首达概率可以用一步转移概率来表示:定义4.7 若ii f =1;则称状态i 为常返的;若ii f <1;则称状态i 为非常返的.. 定义4.8 如∞<i μ;则称常返态i 为正常返的;如∞=i μ;则称常返态i 为零常返的;非周期的正常返态称为遍历状态..从状态是否常返;如常返的话是否正常返;如正常返的话是否非周期等三层次上将状态区分为以下的类型:)(n ij f 与)(n ijp 有如下关系: 定理4.4 对任意状态,i j ;及∞<≤n 1;有()()()()()1.nnn k n k n k k ijijjjij jj k k pfpf p --====∑∑ 4.16引理4.2 }.0,1:{..}0,1:{..)()(>≥=>≥n ii n iif n n D C G p n n D C G二、常返态的性质及其性质定理4.5 状态i 常返的充要条件为∞=∑∞=0n iip4.18如i 非常返;则定理4.7 设i 常返且有周期d;则ind iin d p μ=∞→)(lim . 4.26其中i μ为i 的平均返回时间..当∞=i μ时;0=idμ.推论 设i 常返;则(1) i 零常返0lim )(=⇔∞→n iin p ;2i 遍历()1lim 0n ii n ip μ←∞⇔=>..定理4.8 可达关系与互通关系都具有传递性;即如果j i →;k j →;则k i →; 如果i k ↔;k j ↔;则k i ↔..定理4.9 如i j ↔;则(1) i 与j 同为常返或非常返;若为常返;则它们同为正常返或零常返; (2) i 与j 有相同的周期..§4.3 状态空间的分解定义4.9 状态空间I 的子集C 称为随机闭集;如对任意i C ∈及k C ∉都有0ik p =..闭集C 称为不可约的;如C 的状态互通..马氏链{}n X 称为不可约的;如其状态空间不可约..引理4.4 C 是闭集的充要条件为对任意i C ∈及k ∉C 都有()n ik p =0;n ≥1.. 称状态i 为吸收的;如ii p =1..显然状态i 吸收等价于单点集{}i 为闭集.. 定理4.10 任一马氏链的状态空间I;可唯一地分解成有限个或可列个互不相交的子集12,,,D C C 之和;使得① 每一n C 是常返态组成的不可约闭集..② n C 中的状态同类;或全是正常返;或全是零常返..它们有相同的周期且1jk f =; ,n i k C ∈..③ D 由全体非常返状态组成..自n C 中的状态不能到达D 中的状态.. 定义4.10 称矩阵ij a 为随机矩阵;如其元素非负且每i 有∑jij a =1..显然k 步转移矩阵)(k P =)(k ij p 为随机矩阵..引理4.5 设C 为闭集;又G =)(k ij p ; i ;j ∈C;是C 上所得的即与C 相应的k 步转移子矩阵;则G 仍是随机矩阵..定理4.11 周期为d 的不可约马氏链;其状态空间C 可唯一地分解为d 个互不相交地子集之和;即1,,,d r r S r C G G G r s φ-===≠ 4.31且使得自r G 中任一状态出发;经一步转移必进入1+r G 中其中0G G d =..定理4.12 设{,0}n X n ≥是周期为d 的不可约马氏链;则在定理4.11的结论下有1如只在时刻0,,2,d d 上考虑{}n X ;即得一新马氏链;其转移阵()()()d d ij P p =;对此新链;每一r G 是不可约闭集;且r G 中的状态是非周期的..2如原马氏链 {}n X 常返;{}nd X 也常返..§4.4 )(n ij p 的渐近性质与平稳分布一、)(n ij p 的渐近性质定理4.13 如j 非常返或零常返;则)(lim n ij n p ∞→=0;I i ∈∀ 4.33推论1 有限状态的马氏链;不可能全是非常返状态;也不可能含有零常返状态;从而不可约的有限马氏链必为正常返的..推论2 如马氏链有一个零常返状态;则必有无限多个零常返状态..定理4.14 如j 正常返;周期为d;则对任意i 及10-≤≤d r 有()lim ()nd r ijij n jd p f r μ+→∞= 4.37 推论 设不可约、正常返、周期d 的马氏链;其状态空间为C;则对一切C j i ∈,;有,(),lim 0,s nd j ijn di j G p μ→∞⎧⎪=⎨⎪⎩如与同属于子集否则, 4.38 其中s d s G C 1-==U 为定理4.11中所给出..特别;如d=1;则对一切,i j 有.1lim )(jn ijn p μ=→∞4.39定理 4.15 对任意状态,,j i 有推论 如{}n X 不可约;常返;则对任意,i j ;有()111lim n k ij n k j p n μ→∞==∑ j μ=∞时;理解j1μ=0 定义4.11 称概率分布{,}j j I π∈为马尔可夫链的平稳分布;若它满足⎪⎪⎩⎪⎪⎨⎧≥==∑∑∈∈.0,1,j I j i ij I i i j p ππππ 4.41值得注意的是;对平稳分布{,}j j I π∈;有()n j i ij i Ip ππ∈=∑ 4.42定理 4.16 不可约非周期马尔可夫链是正常返的充要条件是存在平稳分布;且此平稳分布就是极限分布1{,}j j I u ∈..推论1 有限状态的不可约非周期马尔可夫链必存在平稳分布..推论 2 若不可约马尔可夫链的所有状态是非常返或零常返的;则不存在平稳分布.推论3 若{,}j j I π∈是马尔可夫链的平稳分布;则第五章 连续时间的马尔可夫链§5.1连续时间的马尔可夫链定义 5.1 设随机过程{X t;t ≥0};状态空间{,0}n I i n =≥;若对于任意1210n t t t +≤<<<及121,,,n i i i I +∈有= 11{()|()}n n n n P X t i X t i ++== 5.1 则称{X t;t ≥0}为连续时间的马尔可夫链..记5.1式条件概率的一般形式为(,){()|()}ij p s t P X s t j X s i =+== 5.2定义 5.2 若5.2式的转移概率与s 无关;则称连续时间马尔可夫链具有平稳的或齐次的转移概率;此时转移概率简记为(,)()ij ij p s t p t = 5.3其转移概率矩阵简记为()(()),(,,0)ij P t p t i j I t =∈≥..以下的讨论均假定我们所考虑的连续时间马尔柯夫链都具有齐次转移概率..为方便起见;简称为齐次马尔可夫过程..定理5.1.1 齐次马尔可夫过程的转移概率具有以下性质:其中3式为马尔可夫过程的Chapman-Kolmogorov 简称C-K 方程..1;2由概率定义及()ij p t 的定义易知;下面只证明3..定义5.1.3对于任一t ≥0;记分别称{(),}j p t j I ∈和{,}j p j I ∈为齐次马尔可夫过程的绝对概率分布和初始概率分布..性质5.1.1 齐次马尔可夫过程的绝对概率及有限维概率分布具有以下性质:§5.2 柯尔莫哥洛夫微分方程引理 5.2.1 设齐次马尔可夫过程满足正则性条件;则对于任意固定的)(,,t p I j i ij ∈是t 的一致连续函数..定理5.3 设)(t p ij 是齐次马尔可夫过程的转移概率;则下列极限存在我们称ij q 为齐次马尔可夫过程从状态i 到状态j 的转移速率或跳跃强度.. 推论 对有限齐次马尔可夫过程;有定理5.4 柯尔莫哥洛夫向后方程假设ik ii k iq q ≠=∑;则对一切,i j 及t 0;有()()()ijik kj ii ij k ip t q p t q p t ≠'=-∑ 5.2.4 定理5.2.3 柯尔莫哥洛夫向前方程在适当的正则条件下定理5.2.4 齐次马尔可夫链过程在t 时刻处于状态j ∈I 的绝对概率()j p t 满足如下方程:定理5.2.5 设马尔可夫过程是不可约的;则有下列性质:1若它是正常返的;则极限lim ()ij t p t →∞存在且等于0,j j I π>∈;这里j π是方程组的唯一非负解;此时称{,j j I π∈}是该过程的平稳分布;并且有2若它是零常返的或非常返的;则§5.3 生灭过程定义 设齐次马尔可夫过程{(),0}X t t ≥的状态空间为{0,1,2,}I =;转移概率为()ij p t ;如果则称{(),0}X t t ≥为生灭过程..其中;i λ称为出生率;i μ称为死亡率..1若,i i i i λλμμ==λ;μ为正常数;则称{(),0}X t t ≥为线性生灭过程;2若0i μ≡;则称{(),0}X t t ≥为纯生过程; 3若0i λ≡;则称{(),0}X t t ≥为纯灭过程..第六章 平稳随机过程§6.1 平稳过程的概念与例子一、平稳过程的定义1.平稳过程定义§6.2 联合平稳过程及相关函数的性质一、联合平稳过程定义 设{(),}X t t T ∈和{(),}Y t t T ∈是两个平稳过程;若它们的互相关函数[()()]E X t Y t τ-及[()()]E Y t X t τ-仅与τ有关;而与t 无关;则称()X t 和()Y t 是联合平稳随机过程..定理6.1 设{(),}X t t T ∈为平稳过程;则其相关函数具下列性质:1 ;0)0(≥X R2 );()(ττ-=X X R R3 );0()(X X R R ≤τ4 )(τX R 是非负定的;即对任意实数12,,,n t t t 及复数12,,,n a a a ;有5 若()X t 是周期为T 的周期函数;即()()X t X t T =+;则)()(t R R X X +=ττ;6 若()X t 是不含周期分量的非周期过程;当∞→τ时;()X t 与()X t τ+相互独立;则 1 );0()0()(),0()0()(22Y X XY Y X XY R R R R R R ≤≤ττ 2 ()()XY YX R R ττ-=§ 6.3 随机分析一、收敛性概念1、处处收敛对于概率空间(,,)P Ω℘上的随机序列{}n X ;每个试验结果e 都对应一序列..12(),(),,(),n X e X e X e 6.2故随机序列{}n X 实际上代表一族6.2式的序列;故不能用普通极限形式来定义随机序列的收敛性..若6.2式对每个e 都收敛;则称随机序列{}n X 处处收敛;即满足 其中X 为随机变量..2、以概率1收敛若使随机序列{()}n X e 满足的e 的集合的概率为1;即我们称二阶矩随机序列{()}n X e 以概率1收敛于二阶矩随机变量Xe;或称{()}n X e 几乎处处收敛于Xe;记作XX ea n −→−...3、依概率收敛若对于任给的ε>0; 若有0}|)()({|lim =≥-∞→εe X e X P n n ;则称二阶矩随机序列{()}n X e 依概率收敛于二阶矩随机变量Xe;记作X X Pn −→−.. 4、均方收敛设有二阶矩随机序列{}n X 和二阶矩随机变量X;若有0]|[|lim 2=-∞→X X E n n 6.3成立;则称{}n X 均方收敛;记作X X sm n −−→−... 注:6.3式一般记为l.i.m n x X X →∞=或..n l i mX X =.. 5、依分布收敛设有二阶矩随机序列{}n X 和二阶矩随机变量X;若{}n X 相应的分布函数列{()}n F x ;在X 的分布函数Fx 的每一个连续点处;有则称二阶矩随机序列{}n X 依分布收敛于二阶矩随机变量X;记作X X dn −→−对于以上四种收敛定义进行比较;有下列关系:1 若X X s m n −−→−.;则X X Pn −→− 2 若XX ea n −→−.;则X X Pn −→−3 若X X Pn −→−;则X X dn −→− 定理2 二阶矩随机序列{}n X 收敛于二阶矩随机变量X 的充要条件为定理3 设{},{},{}n n n X Y Z 都是二阶矩随机序列;U 为二阶矩随机变量;{n c }为常数序列;a;b;c 为常数..令X mX i l n =..;Y mY i l n =..;Z mZ i l n =..;c mc i l n =....则1 c c mc i l n n n ==∞→lim ..;2 U mU i l =..;3 cU U c m i l n =)(..;4 bY aX bY aX m i l n n +=+)(..;5 ]..[][][lim n n n mX i l E X E X E ==∞→;6 )]..)(..[(][][lim ,m n m n m n Y m i l mX i l E Y X E Y X E ==∞→;特别有]|..[|]|[|]|[|lim 222n n n mX i l E X E X E ==∞→..定理4 设{}n X 为二阶矩随机序列;则{}n X 均方收敛的充要条件为下列极限存在][lim ,m n m n X X E ∞→..二、均方连续定义 设有二阶矩过程}),({T t t X ∈;若对0t T ∈;有2000lim [|()()|]0h E X t h X t →+-=;则称()X t 在0t 点均方连续;记作000..()()h l i m X t h X t →+=..若对T 中一切点都均方连续;则称()X t 在T 上均方连续..定理均方连续准则二阶矩过程}),({T t t X ∈在t 点均方连续的充要条件为相关函数处连续在点),(),(21t t t t R X ..推论 若相关函数),(21t t R X 在}),,{(T t t t ∈上连续;则它在T ×T 上连续三、均方导数定义7 设}),({T t t X ∈是二阶矩过程;若存在一个随机过程)(t X ';满足类似的有22)(dtXd t X 或'' 称为),(21t t R X 在12(,)t t 的广义二阶导数;记为定理6 均方可微准则 二阶矩过程}),({T t t X ∈在t 点均方可微的充要条件为相关函数),(),(21t t t t R X 在点的广义二阶导数存在..推论1 二阶矩过程}),({T t t X ∈在T 上均方可微的充要条件为相关函数),(21t t R X 在}),,{(T t t t ∈上每一点广义二阶可微..推论2 若),(21t t R X 在}),,{(T t t t ∈上每一点广义二阶可微;则()X dm t dt在T 上以及在T T ⨯上存在;且有四、均方积分定义8 如果0n ∆→时;n S 均方收敛于S ;即2lim ||0n n E S S ∆→-=;则称()()f t X t 在[,]a b 上均方可积;并记为定理7 均方可积准则()()f t X t 在区间[,]a b 上均方可积的充要条件为存在..特别的;二阶矩过程()X t 在[,]a b 上均方可积的充要条件为12(,)X R t t 在[,][,]a b a b ⨯上可积..定理8 设()()f t X t 在区间[,]a b 上均方可积;则有 1 [()()]()[()]bbaaE f t X t dt f t E X t dt =⎰⎰特别有 [()][()]bbaaE X t dt E X t dt =⎰⎰2 111222121212[()()()()]()()(,)bb bbX aaaaE f t X t dt f t X t dt f t f t R t t dt dt =⎰⎰⎰⎰特别的有 21212|()|(,)bbbX aaaE X t dt R t t dt dt =⎰⎰⎰..定理9 设二阶矩过程}),({T t t X ∈在[,]a b 上均方连续;则在均方意义下存在;且随机过程}),({T t t X ∈在[,]a b 上均方可微;且有()()Y t X t '=.. 推论 设()X t 均方可微;且()X t '均方连续;则 特别有§4 平稳过程的各态历经性定义9 设{(),}X t t -∞<<∞为均方连续的平稳过程;则分别称为该过程的时间均值和时间相关函数..定义10 设{(),}X t t -∞<<∞是均方连续的平稳过程;若()Pr.1(())X t E X t <>;即 以概率1成立;则称该平稳过程的均值具有各态历经性..若()()Pr.1(()())X t X t E X t X t ττ<->-;即以概率1成立;则称该平稳过程的相关函数具有各态历经性..定义11 如果均方连续的平稳过程{(),}X t t T ∈的均值和相关函数都具有各态历经性;则称该平稳过程为具有各态历经性或遍历性..定理 10 设{(),}X t t -∞<<∞是均方连续的平稳过程;则它的均值具有各态历经性的充要条件为2221lim 1[()]022T X X T T R m d T T τττ-→∞⎛⎫--= ⎪⎝⎭⎰ 6.9 定理6.11 设{(),}X t t -∞<<∞为均方连续的平稳过程;则其相关函数具有各态历经性的充要条件为2211121lim1()()022TX T T B R d T T ττττ-→∞⎛⎫⎡⎤--= ⎪⎣⎦⎝⎭⎰ 6.15 其中111()()()()()B E X t X t X t X t τττττ⎡⎤=----⎢⎥⎣⎦6.16 定理6.12 对于均方连续平稳过程{(),0}X t t ≤<∞;等式以概率1成立的充要条件为若()X t 为实平稳过程;则上式变为定理 6.13 对于均方连续平稳过程{(),0}X t t ≤<∞;等式 以概率1成立的充要条件为 其中1()B τ与6.16式相同..若()X t 为实平稳过程;则上式变为第七章 平稳过程的谱分析§7.1 平稳过程的谱密度设)(t X 是均方连续随机过程;作截尾随机过程因为()t X T 均方可积;故存在傅式变换(,)()()i ti t x T T T F T X t e dt X t e dt Tωωω--∞==-∞-⎰⎰…………..7.4利用帕塞伐公式及傅式反变换;可得定义7.1 设 {}∞<<-∞t t X ),( 为均方连续随机过程;称 为 )(t X 的平均功率;称为 )(t X 的功率谱密度;简称谱密度..当 )(t X 是平稳均方连续函数时;由于[])(2t X E 是与t 无关的常数;利用均方积分的性质可以将7.5式简化得()221()()02limx T T E X t dt E X t R T T →∞⎡⎤⎡⎤===⎣⎦⎣⎦-⎰ ……….. 7.8 由7.8式和7.5式看出;平稳过程的平均功率等于该过程的均方值;或等于它的谱密度在频域上的积分;即()212X S d ψωωπ∞=-∞⎰ ………………. 7.9定义7.2 设{,0,1,2,}n X n =±±是平稳随机序列;若相关函数满足()X n R n ∞=-∞<∞∑则称为{,0,1,2,}n X n =±±的谱密度..§7.2谱密度的分析设 {}∞<<-∞t t X ),( 为均方连续平稳过程;)(τX R 为它的相关函数;()ωX S 为它的频率谱密度;()ωX S 具有下列性质: (1) 若()∞<∞-∞⎰ττd R X ;则()ωX S 是)(τX R 的傅式变换;即()()i t X X S R e d ωωττ-∞=-∞⎰ ………. 7.122 ()ωX S 是ω的实的;非负的偶函数..3 当 ()ωX S 是ω有理函数时;其形式必为其中22,(0,2,,2;2,4,,2)n i m j a b i n j m --==为常数;且20n a >;m n >;分母无实根..§7.3 窄带过程及白噪声过程的功率谱密度定义 1 设 (){},X t t -∞<<∞为实值平稳过程;若它的均值为零;且谱密度在所有频率范围内为非零的常数;即()()0X s N ωω=-∞<<∞则称()X t 为白噪声过程..具有下列性质的函数称为δ函数:δ函数有一个非常重要的运算性质;即抽样性质..对任何连续函数()f x ;有()()()0,f x x dx f δ∞-∞=⎰7.15或()()().f x x T dx f T δ∞-∞-=⎰§7.4 联合平稳过程的互谱密度定义7.4 设()X t 和()Y t 是两个平稳过程;且它们是联合平稳的平稳相关的;若它们的互相关函数()XY R τ满足()XY R d ττ∞-∞<∞⎰;则称()XY R τ的傅氏变换 ()()i XY XY s R ed ωτωττ∞--∞=⎰ ………………….7.21 是()X t 与()Y t 的互功率谱密度;简称互谱密度.. 因此互谱密度()YX s ω与互相关函数()YX R τ的关系如下:()()i YXYXs R e d ωτωττ∞--∞=⎰; 互谱密度具有下列性质:⑴ ()()XY YX s s ωω=;即()XY s ω与()YX s ω互为共轭;⑵ ()Re XY s ω⎡⎤⎣⎦和()Re YX s ω⎡⎤⎣⎦是ω的偶函数;而()Im XY s ω⎡⎤⎣⎦和()Im YX s ω⎡⎤⎣⎦是ω的奇函数;⑶ ()XY s ω与()X s ω和()Y s ω满足下列关系式: ⑷若()X t 和()Y t 相互正交;则()()0XY YX s s ωω==。

《随机过程及其在金融领域中的应用》习题四答案

《随机过程及其在金融领域中的应用》习题四答案

第四章 习题41、对泊松过程{},0t N t ≥(1)证明:当s t <时,{}1,0,1,,kn ks t n s s P N k N n k n k t t -⎛⎫⎛⎫⎛⎫===-= ⎪⎪⎪⎝⎭⎝⎭⎝⎭(2)当2λ=时,试求:()()()112112;1,3;21P N P N N P N N ≤==≥≥(3)设顾客到达某商店是泊松事件,平均每小时以30人的速度到达。

求下列事件的概率:相继到达的两顾客的时间间隔为大于2分钟、小于2分钟、在1分钟到3分钟之间。

答:(1)证明:{}()()()()()()()()()()()()()()()()()()(),,!!!!!!!1!!s t s t s s t s s t t t t n kkt s sk n kn k nk n ktn kk n kk nP N k N n P N k N n k P N k P N n k P N k N n P N n P N n P N n t s s e ek n k s t s n k n k t t t e n n s t s n s s k t k n k t t λλλλλλλλλλ------------====-==-========-⎡⎤⎣⎦--==--⎛⎫⎛⎫⎛⎫==- ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭(2)()()()()()()()()11110121112222201211120!1!2!225P N P N N N e e e e e e e λλλλλλλ-------≤==+=+==++-=++=()()()()12121224111,31,3112224P N N P N N P N P N ee e----=====-=====()()()()()()()()()()111111121112112,122111121011311101P N N P N P N N P N P N P N P N P N e P N P N e --≥≥≥≥≥==≥≥-<-=-=-===-<-=-(3) 解法一:顾客到达事件间隔服从参数为λ的指数分布:()()()30,03030,0x x Z Z f t e x f t e x λλλ--=≥=⇒=≥①()30301111303023030106030x x P Z e dx e e e ∞∞----⎧⎫>===--=⎨⎬-⎩⎭⎰②()11303011303000230301116030x x P Z e dx e e e ----⎧⎫<===--=-⎨⎬-⎩⎭⎰ ③1131133030202022221160601330301606030x x P Z e dx e e e e e ------⎛⎫⎧⎫<<===--=-⎨⎬ ⎪-⎩⎭⎝⎭⎰解法二:()3030==0.560λ∴平均每小时有人到达人/分钟根据齐次Poisson 过程的到达时间间隔{},1,2,n X n =是独立同分布于均值为1λ的指数分布的,故可有: 相继到达的顾客的时间间隔大于2分钟的概率为:()12t n P X e e λ-->== 相继到达的顾客的时间间隔小于2分钟的概率为:()1211t n P X e e λ--<=-=-相继到达的顾客的时间间隔在1分钟到3分钟之间的概率为:()()()()1.50.50.5 1.5133111n n n P X P X P X e e e e ----<<=<-<=---=-2、{},0t N t ≥是强度为λ的泊松过程。

数理统计与随机过程ch

数理统计与随机过程ch
图10-3中画出了这个随机过程的两条样本曲线。
图10-3
例3 在测量运动目标的距离时,存在随机误差。若 以ε (t)表示在时刻 t 的测量误差,则它是一个随机变 量。当目标随时间 t 按一定规律运动时,测量误差 ε (t) 也随时间 t 而变化。换句话说, ε (t)是依赖于 t 的 一族随机变量,亦即{ε (t), t≥0}是一随机过程,状 态空间是(-∞, +∞)。
T表示随机过程。在上下文不致混淆的情形下,一
般略去记号中的参数集 T。
例1 抛一枚硬币试验,样本空间是 S={H,T},定义
cosπt,
X (t)
t,
出现 H, 出现 T,
t (, ).
其中 P(H) = P(T)=1/2。对任意 固定的 t, X(t)是一定义在S上的 随机变量;对不同的 t, X(t)是 不同的随机变量(见图10-2),所 以 {X(t), t ∈ (-∞, +∞) } 是一 族随机变量,即是随机过程。
有时,为了适应数字化的需要,实际中也常 将连续参数随机过程转化为随机序列处理。例如, 我们只在时间集T={△t, 2△t, …, n△t, …}上观察
电阻的热噪声电压V(t),这时就得到一个随机序
列{V1, V2, …,Vn, …},其中Vn=V(n△t)。 显然,当△t充分小时,这个随机序列能够近
例2液面上质点的运动:我观测液面上一个做布 朗运动的质点A,若用{X(t),Y(t)}表示在时刻t该质点在 液面上的坐标位置。当t固定时, {X(t),Y(t)} 是一对 二维随机变量。而t是一个连续变量,因此{X(t),Y(t)} 又是一个过程。
例3 热噪声电压: 电子元件或器件由于内部微观粒子 (如电子)的随机运动所引起的端电压称为热噪声电压, 它在任一确定时刻 t 的值都是一随机变量, 记为V(t)。 不同时刻对应不同的随机变量。当时间在某个区间, 如[0, ∞)上变化时,热噪声电压表现为一族随机变量, 记为 {V(t), t≥0}。

第六讲 正态随机过程

第六讲 正态随机过程

2012-8-20
信息科学与工程学院
1
2 概率密度函数
f X ( x1 , x 2 , , x n ; t1 , t 2 , , t n ) (2 ) 1
n 2 1
K
2
( X m X )T K 1 ( X m X exp 2
)
上式中,mX是n维均值向量,K是n维协方差矩阵
x1 x 2 X xn
mX
m X ( t1 ) m X (t2 ) m X (tn )
2012-8-20
信息科学与工程学院
2
K 11 K K 21 K n1
K 12 K 22 K n2
则正态随机过程在n个不同时刻的取值不相关。 (2) 如果Xn(n=1,2,…,)两两之间互不相关,则
0 K X ( t i , t j ) E [( X i m i )( X j m j )] 2 i
2012-8-20
i j i j
9
信息科学与工程学院
12 所以 K 0
K ij K X ( t i , t j ) E [( X i m i )( X j m j )] rij i
j
rij
K X (ti , t j )
i
j
2012-8-20
信息科学与工程学院
3
3 性质
正态随机过程的n维概率密度函数只取决于均值和 协方差和相关系数。
2
... ...
2
0 2 n
2

K
1
1- 2 0
... ...

几类重要的随机过程

几类重要的随机过程

C
C(t1, C (t2 ,
t1) t1)
C(t1,t2 ) C(t2,t2 )
2
2 cos(t2
t1)
2
cos(t2 2
t1
)
f
( x1 ,
x2 , t1, t2 )
2
1 |C
|1
2
exp
1 2
x1
x2
C1
x1 x2
4.2 独立过程
定义:如果随机过程{X(t), t∊T},对应于任意n个时刻t1, t2,…, tn ∊T的n个随机变量X(t1), X(t2),…, X(tn)相互独立,则称该
4 几种重要的随机过程
正态过程(高斯过程) 独立过程 独立增量过程 维纳过程 泊松过程 马尔可夫过程 生灭过程
4.1 正态过程(高斯过程)
4.1.1 正态分布(高斯分布)
定义1:如果随机变量X的概率密度为
f (x)
1
e ,
(
x )2 2 2
2
x
则称X为服从参数的正态分布,记为 X N (, 2,)
E[Y ] aμ, D[Y ] aCa 。
若e=(ejk)是m × n矩阵, Z eX 是m × 1的列矩阵,即m 维向量,则, E[Z] eμ, D[Z] eCe 。
4.1.1 正态分布(高斯分布)
n维正态随机变量的性质:
(3)(线性变换)
定理1:X ( X1, X 2 , , X n )服从n维正态分布N(μ,C)
次试验结果互不影响,伯努利随机序列{X(n), n=1,2,…}是
独立随机序列。 定义概率分布:
P[ X (n) 0] q, P[ X (n) 1] p,

中南大学随机过程第四章

中南大学随机过程第四章
随机过程与排队论
数学科学与计算技术学院 胡朝明
Email:math_ 2020/6/5
上一讲内容回顾
➢ 随机过程的基本概念
• 随机过程的定义 • 随机过程的分布 • 随机过程的数字特征
➢ 重要随机过程
• 独立过程
• 独立增量过程
2020/6/5
计算机科学与工程学院 顾小丰
f(x)f(s,t;x,y)
1 1(x)TC 1(x) 2 e , 1
2C 2
x y x
二维特征函数
1T
T
uC uiuu
u
(u) (s,t;u,v)e2
, u v
2020/6/5
计算机科学与工程学院 顾小丰
26-6
正态过程的n维概率分布
均值函数向量 m ( t 1 )m , ( t 2 ) ,,m ( t n ) T
计算机科学与工程学院 顾小丰
26-7
正态过程的n维概率分布
n维概率密度函数 f(x ) f(t1 ,t2 , ,tn ;x 1 ,x 2 , ,x n )
x1
1
1(x)TC1(x)
n
e2
1
,
(2)2 C2
xxx n2
n维特征函数 (u ) (t1 ,t2 , ,tn ;u 1 ,u 2 , ,u n )
2020/6/5
计算机科学与工程学院 顾小丰
26-3
正态过程的定义
给定随机过程{X(t),tT},如果对任意正整数 n及t1,t2,…,tnT,n维随机变量(t1),X(t2),…,X(tn)) 的联合概率分布为n维正态分布,则称随机过程 {X(t),tT}为正态过程(或高斯过程)。
设{X(t),tT}为正态过程,则其有限维概率分 布都是正态分布。

正态随机过程PPT课件

正态随机过程PPT课件

CX T
(uT
)
e
juT a 1 uT Bu 2
C (u , u ...u ) e x1,...,xn ;t1,...,tn 1 2
n
j
n k 1
uk
a
1 2
n k 1
n i1
uk uib(tk
ti
)
第29页/共38页
若把n个时间抽样点作一个时间平移h,即取
抽样时刻为t1+h,t2+h,…tn+h,则平移后的对应的 n个正态分布的随机变量的特征函数为:
1
2 i
exp[
(xi a1)2
2
2 i
]
第27页/共38页
正态随机过程定义:
若随机过程X(t)的任意n维分布都是n维正态 分布,则称X(t)是正态随机过程(高斯过程)。
正态随机过程的性质:
1. 若正态随机过程为宽平稳,则必为严平稳。
宽平稳特点
X(t)的期望为常数,与时间原点无关 X(t)的相关函数只是时间差t的函数 二阶矩过程
1
|2
exp{
1 2
yT
D1 y}
且 yi ~ N(0, di )
CYT (V T ) Cy1 (v1)Cy2 (v2 )...Cyn (vn )
其中,
divi2
Cyi (vi ) e 2

C (V ) e e ...e T YT
d1v12 d2v22
2
2
dnvn2 2
CYT
(V
T
)
1V T
e jux f (x)dx
CX (u) e juxP{x xi} i 0
已知特征函数,求概率密度函数。

湖南大学《随机过程》课程习题集

湖南大学《随机过程》课程习题集

湖南大学本科课程《随机过程》习题集主讲教师:何松华 教授第一章:概述及概率论复习设一批产品共50个,其中45个合格,5个为次品,从这一批产品中任意抽取3个,求其中有次品的概率。

设一批零件共100个,次品率为10%,每次从其中任取一个零件,取出的零件不再放回,求第3次才取得合格品的概率。

设一袋中有N 个球,其中有M 个红球,甲、乙两人先后各从袋中取出一个球,求乙取得红球的概率(甲取出的球不放回)。

设一批产品有N 个,其中有M 个次品,每次从其中任取一个来检查,取出后再放回,求连续n 次取得合格品的概率。

设随机变量X 的概率分布函数为连续的,且0()00xA Be x F x x λ-⎧+≥=⎨<⎩其中0为常数,求常数A 、B 的值。

设随机变量X 的分布函数为 ()() (-<<)F x A Barctg x x =+∞∞(1) 求系数A 、B ;(2)求随机变量落在(-1,1)内的概率;(3)求其概率密度函数。

已知二维随机变量(X,Y)的联合概率密度分布函数为6(2)0,1(,)0XY xy x y x y f x y elsewhere --≤≤⎧=⎨⎩(1)求条件概率密度函数|(|)X Y f x y 、|(|)Y X f y x ;(2)问X 、Y 是否相互独立已知随机变量X 的概率密度分布函数为22()()]2X X X x m f x σ-=- 随机变量Y 与X 的关系为 Y=cX+b ,其中c ,b 为常数。

求Y 的概率密度分布函数。

设X 、Y 是两个相互独立的随机变量,其概率密度分布函数分别为101()0X x f x elsewhere ≤≤⎧=⎨⎩,0()0y Y e y f y elsewhere-⎧<=⎨⎩ 求随机变量Z=X+Y 的概率密度分布函数。

设随机变量Y 与X 的关系为对数关系,Y=ln(X),随机变量Y 服从均值为m Y 、标准差为Y的正态分布,求X 的概率密度分布。

相互正态随机过程的仿真实验报告

相互正态随机过程的仿真实验报告

实验名称:相关正态随机过程的仿真一、实验目的以正态随机过程为例,掌握离散时间随机过程的仿真方法,理解正态分布随机过程与均匀分布随机过程之间的相互关系,理解随机过程的相关函数等数值特征;培养计算机编程能力。

二、实验内容相关正态分布离散随机过程的产生(1)利用计算机语言的[0,1]区间均匀分布随机数产生函数生成两个相互独立的序列{U1(n)|n=1,2,…100000},{U2(n)|n=1,2,…100000}程序代码:clc;N=100000;u1=rand(1,N);u2=rand(1,N);%----------------在[0,1] 区间用rand函数生成两个相互独立的随机序列n1=hist(u1,10);%--------------------------hist函数绘制分布直方图subplot(121);%-----------------------------一行两列中的第一个图bar(n1);n2=hist(u2,10);subplot(122);bar(n2); 实验结果:(2)生成均值为m=0,根方差σ=1的白色正态分布序列 {e(n)|n=1,2, (100000)[][]m n u n u n +=)(2cos )(ln 2-)(e 21πσ 程序代码:clc; N=100000; u1=rand(1,N);u2=rand(1,N);%---------------在[0,1] 区间用rand 函数生成两个相互独立的随机序列en=sqrt(-2*log(u1)).*cos(2*pi*u2);%--------定义白色正态分布e(n)n=hist(en,100);%--------------------------hist 函数绘制分布直方图 bar(n);实验结果:(3)假设离散随机过程x(n)服从均值为x m =0、根方差为2x =σ、相关函数为||2)(r k x x k ασ= )6.0(=α功率谱函数为∑∞-∞=----=-=k jwjw x x x e e jwk k r w P )1)(1()1()exp()()(22ααασ 1211)(---=z z G x αασ随机过程x(n)的生成方法为)(1)1()(x 2n e n x n x ασα-+-= (n=1,2,…100000)给定初始条件x(0)=0程序代码:clc;N=100000;u1=rand(1,N);u2=rand(1,N);%---------------在[0,1] 区间用rand函数生成两个相互独立的随机序列en=sqrt(-2*log(u1)).*cos(2*pi*u2);%--------定义白色正态分布e(n)a=0.6;x(1)=2*sqrt(1-a*a)*en(1);%-----------------初始化for n=1:100000-1;x(n+1)=a*x(n)+2*sqrt(1-a*a).*en(n+1);end%------------------------------------生成随机过程x(n)hist(x,100);%--------------------------hist函数绘制分布直方图实验结果:(4)采用集合统计的方法计算∑==1000001')(1000001n x n x m∑==10000012')(1000001n x n x σ ∑-=+-=kn x k n x n x k r 1000001')()(1000001)4,3,2,1(=k 验证计算出来的统计参数与理论值是否一致,差异大小 程序代码:sum=0; for i=1:100000sum=sum+x(i);%--------------------表示x(n)的1到100000项的累加和 endmx=sum/100000%-----------------------------算出mx 的值 sum=0;for i=1:100000sum=sum+x(i)*x(i);%--------------------表示x(n)*x(n)的1到100000项的累加和endax=sqrt(sum/100000)%-----------------------算出标准差for k=1:4sum=0;%--------------------------------sum清零for j=1:100000-ksum=sum+x(j)*x(j+k);endr(k)=sum/(100000-k);%------------------用集合统计的方法算出相关函数endr%-----------------------------------------算出r的值实验结果:(5)采用计算机程序计算正态分布的区间积分00001.0]22)00001.0(ex p[221]22ex p[2212000001222022⨯⨯⨯-⨯=⨯-⨯=∑⎰=i i ds s P ππ根据已生成的序列x(n),在100000个数据中,分别计算(-∞,-2),[-2,0],(0,2],[2,∞)区间上数据出现的比例P1,P2,P3,P4。

随机信号分析 随机过程微分正态

随机信号分析  随机过程微分正态
t 0
lim E[ X (t t )] E[ lim X (t t )]
t 0
2013-12-28
5
二 随机过程的导数
预备知识:
对于一般确定性函数,高等数学给出的 可导定义如下: 一阶可导: 如果 t 0 可导,记为 f (t ) 。
lim f ( t t ) f ( t ) t
X ' (t )
dX (t ) X (t t ) X (t ) l.i.m t 0 dt t
2013-12-28
8
2 判别方法 判断一个随机过程是否均方可微的方 法是采用柯西准则,即
t1 , t 2 0
lim
E[(
X ( t1 t1 ) X ( t1 ) X ( t 2 t 2 ) X ( t 2 ) 2 ) ] 0 t1 t 2
t 0
lim E[ X (t t ) X (t ) ] 0
2
则称 X (t ) 依均方收敛意义下在t点连续,简 称随机过程 X (t ) 在t点均方连续。
2013-12-28
2
3 随机过程 X (t )的相关函数连续,则 X (t ) 连续
E[ X (t t ) X (t ) ]
即由X,Y的联合概率分布描述。
2013-12-28 19
3 数字特征 (1) 数学期望
mZ E[ Z ] E[ X jY ] E[ X ] jE[Y ] mX jmY
(2) 方差
0 2
DZ D[Z ] E[| Z | ] E[ X Y ] E[ X ] E[Y ] DX DY

t1 0

t2
0
E[ X ( ) X (' )]dd'
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 2 2 2 exp − [(π2 − 4)(x1 + x3 ) +π2 x2 − 4π(x1x2 + x2 x3 ) + 8x1x3 ] 2 ) 2 2π(π2 −8) 2(π −8
例4.2 正态随机信号通过线性系统 输入是一个零均值正态随机过程
X(t) H(ω) Y(t)
输出的均值为零
GY (ω ) = G X (ω ) H (ω )
2
输出的功率谱
输出的自相关函数 输出的方差
1 RY (τ ) = 2π
2 Y

+∞
−∞
G X (ω ) H (ω ) e jωτ dω
2
1 σ = RY (0) = 2π

+∞
−∞
G X (ω ) H (ω ) dω
2
2 1 y exp− fY ( y) = 2πRY (0) 2RY (0)
i =1 N
性质4 性质4 正态随机过程与确定信号之和是正态随机过程
X (t) = N(t) + S(t)
[ x − S(t)]2 1 f X (x, t) = exp − 2 1/2 2 ( πσ ) 2 2σ
性质5 性质5 正态随机过程通过线性系统的输出是 正态随机过程
1 K = 2/ π 0
2/ π 1 2/ π
0 2/ π = 1−8/ π2 1
−2π 2 π −2π 4 −2π π2 − 4
π2 − 4 1 −1 K = 2 −2π π −8 4
f X (x) 2
1 T −1 exp − x K x 1 2 K2
第四章 典型随机过程
正态随机过程 窄带随机过程 马尔可夫过程
4.1 正态随机过程
任意n 任意n维分布都服从正态分布
一维分布
( x1 − m(t1 ))2 1 f X (x1 , t1 ) = exp− 2 2σ (t1 ) 2πσ (t1 )
n维分布
f X (x) =
广义平稳必 定严格平稳
性质3 性质3 正态随机过程状态的不相关等价于独立 不相关即意味着
σ cov( X (ti ), X (t j )) = 0
N
2
i= j i≠ j
xi2 1 f X (x1, x2 ,L, xN , t1, t2 ,L, tN ) = ∏ exp − 2 2 1/ 2 ( i =1 2πσ ) 2σ = ∏ fx ( xi , ti )
1
(2π )
n 2
K
1 2
1 T −1 exp− (x − m) K (x − m) 2
x1 x x = 2 M xn
m(t1 ) m(t ) 2 m= M m(t n )
cov[ X (t1 ), X (t1 )] L cov[ X (t1 ), X (t n )] K= M M M cov[ X (t n ), X (t1 )] L cov[ X (t n ), X (t n )]
4.1.2 正态随机过程的性质 性质1 性质1 正态随机过程的统计特性完全由它的的均值 函数和协方差函数决定。 函数和协方差函数决定。 性质2 性质2 广义平稳的正态随机过程也一定是严格平稳的 平稳正态随机过程
m X (t ) = m X
R X (t1 , t 2 ) = R X (τ )
L K X (t1 − t n ) K X (0) M M M K= K X (t n − t1 ) L K X (0)
Y (t) = ∫ X (τ)h(t −τ)dτ = lim
−∞
t
max ∆τi →0
∑X (τ )h(t −τ )∆τ
i =0 i i
N
i
4.1.3 随机过程的正态化
白噪声通过线性系统, 白噪声通过线性系统,输出服从正态分布
宽带噪声通过窄带系统, 宽带噪声通过窄带系统,输出近似服从正态分布
4.1.4 正态随机过程举例 例4.1 设平稳正态随机过程的均值为零,自相关函数为 设平稳正态随机过程的均值为零,
sin(πτ) RX (τ) = πτ
1 求 t1 = 0, t2 = , t3 = 1 的三维概率密度 2
K(t1 − t2 ) K(t1 − t3 ) K(0) K = K(t2 − t1) K(0) K(t2 − t3 ) K(t3 − t1) K(t3 − t2 ) K(0) 1 sin(π / 2)/(π / 2) sin π / π = sin(π / 2)/(π / 2) 1 sin(π / 2)/(π / 2) sin π / π sin(π / 2)/(π / 2) 1 1 = 2/ π 0 2/ π 1 2/ π 0 2/ π 1
相关文档
最新文档