三角形 角平分线部分经典题型

合集下载

利用角平分线性质解决问题练习题

利用角平分线性质解决问题练习题

利用角平分线性质解决问题练习题角平分线是初中数学中一个重要的概念,它有着广泛的应用。

在解决一些几何问题时,我们可以利用角平分线的性质来简化计算,提高解题效率。

下面我将给出一些角平分线的问题练习题并逐一解答。

1. 题目:在三角形ABC中,角A的角平分线交BC边于点D,若AB=AC,AD=5cm,BD=3cm,求BC的长度。

解析:根据角平分线的性质,我们知道BD/DC = AB/AC。

代入已知条件,可得3/DC = 1,解得DC=3cm。

由此可以知道,BC = BD+DC = 3+3 = 6cm。

2. 题目:在平行四边形ABCD中,角A的角平分线交BC边于点E,若AB=8cm,AD=10cm,BE=6cm,求CE的长度。

解析:由于平行四边形的特性,我们可以得知AE=AD=10cm。

根据角平分线的性质,可以得到BE/EC = AB/AC,代入已知条件可得6/EC = 8/(10+AC),解得EC=16cm。

因此,CE的长度为16cm。

3. 题目:在正方形ABCD中,角A的角平分线交BC边于点E,知AE=5cm,求BE的长度。

解析:由于正方形的特性,我们知道BE=BC。

根据角平分线的性质,我们可以得到AE/EC = AB/AC,即5/EC = 1。

解得EC=5cm,因此BE也等于5cm。

4. 题目:在三角形ABC中,角A的角平分线交BC边于点D,且AD=BD,若AC=6cm,BD=2cm,求AB的长度。

解析:根据角平分线的性质,我们知道BD/DC = AB/AC。

代入已知条件可得2/DC = AB/6。

由于AD=BD,即DC=2cm。

代入可得2/2 = AB/6,解得AB=6cm。

5. 题目:在梯形ABCD中,AB∥DC,角BAD的角平分线交BC边于点E,若BE=6cm,ED=9cm,求CD的长度。

解析:根据梯形的特性,我们可以得知AD∥BC。

根据角平分线的性质,可以得到BE/EC = BA/AD。

代入已知条件可得6/EC =AB/(AD+ED),即6/EC = BA/CD。

高中角平分线练习题及讲解

高中角平分线练习题及讲解

高中角平分线练习题及讲解### 高中角平分线练习题及讲解角平分线是高中数学中的一个重要概念,它将一个角平分为两个相等的角。

本文将提供几个关于角平分线的基础练习题,并给出相应的解题思路和步骤。

#### 练习题一题目:在三角形ABC中,BD是角B的平分线,求证:AB/AC = BD/DC。

解题思路:1. 利用角平分线定理,即角平分线将对边按比例分割。

2. 根据角平分线定理,我们知道AB/AC = BD/DC。

证明步骤:- 由于BD是角B的平分线,根据角平分线定理,我们有AB/AC =BD/DC。

- 证明完成。

#### 练习题二题目:在三角形ABC中,点D在BC上,且AD是角A的平分线。

求证:AB/AC = BD/DC。

解题思路:1. 根据角平分线的定义,AD将角A平分为两个相等的角。

2. 利用相似三角形的性质来证明比例关系。

证明步骤:- 由于AD是角A的平分线,角BAD = 角DAC。

- 根据角角相似准则,三角形ABD与三角形ACD相似。

- 因此,AB/AC = BD/DC。

- 证明完成。

#### 练习题三题目:在三角形ABC中,已知AB = AC,BD是角B的平分线,求证:AD垂直于BC。

解题思路:1. 利用等腰三角形的性质,即底角相等。

2. 利用角平分线的性质,结合等腰三角形的性质来证明垂直。

证明步骤:- 由于AB = AC,三角形ABC是等腰三角形,角B = 角C。

- BD是角B的平分线,所以角ABD = 角CBD。

- 由于角B = 角C,我们有角ABD = 角CBD = 角C / 2。

- 因此,角ADB = 90度,即AD垂直于BC。

- 证明完成。

#### 练习题四题目:在三角形ABC中,点D在BC上,AD是角A的平分线,且AB/AC = 2。

求BD/DC的值。

解题思路:1. 根据角平分线定理,找到AB和AC的比例关系。

2. 利用给定的比例关系求解BD/DC。

解题步骤:- 根据角平分线定理,AB/AC = BD/DC。

初二角平分线经典例题

初二角平分线经典例题

初二角平分线经典例题
以下是一个初二角平分线的经典例题:
在三角形ABC中,∠BAC=40°,∠ABC=76°,∠ABC的平分线与∠ACB的外角平分线交于点D,连接BD。

求∠ADB的度数。

解题思路:
1.根据三角形内角和为180°,我们可以得到∠ABC的补角为180°-76°=104°。

2.根据角平分线的性质,∠ABC的平分线将∠ABC分为两个相等的部分,因此
∠ABD=∠CBD=1/2∠ABC=38°。

3.同样地,∠ACB的外角平分线也将∠ACB的补角分为两个相等的部分,因此
∠ACD=∠BCD=1/2(180°-∠ACB)=52°。

4.在四边形ABCD中,我们可以看到∠ADB和∠ACD是互补的,即∠ADB+∠
ACD=180°。

根据上述计算结果,可以得到∠ADB=180°-52°=128°。

答案:∠ADB的度数是128°。

这道题主要考察了三角形内角和、角平分线的性质以及四边形内角和等知识点。

通过这道题可以加深对角平分线性质的理解,提高解题能力。

部编数学八年级上册专题08内外角平分线问题(解析版)含答案

部编数学八年级上册专题08内外角平分线问题(解析版)含答案

专题08 内外角平分线问题类型一一内一外求角1.如图∠ACD是△ABC的外角,∠A=40°,BE平分∠ABC,CE平分∠ACD,且BE,CE交于点E.(1)求∠E的度数;(2)请猜想∠A与∠E之间的数量关系,不用说明理由.【答案】(1)∠E=20°;(2)∠A=2∠E.【解析】【分析】(1)根据角平分线的定义,三角形内角和定理,三角形外角的性质进行解答即可;(2)根据(1)中的推导过程进行推论即可.【详解】(1)∵BE平分∠ABC,CE平分∠ACD,∴∠ABC=2∠CBE,∠ACD=2∠DCE,由三角形的外角性质得,∠ACD=∠A+∠ABC,∠DCE=∠E+∠CBE,∴∠A+∠ABC=2(∠E+∠CBE),∴∠A =2∠E ,∵∠A =40°,∴∠E =20°.(2)∠A =2∠E .理由如下:∵BE 平分∠ABC ,CE 平分∠ACD ,∴∠ABC =2∠CBE ,∠ACD =2∠DCE ,由三角形的外角性质得,∠ACD =∠A +∠ABC ,∠DCE =∠E +∠CBE ,∴∠A +∠ABC =2(∠E +∠CBE ),∴∠A =2∠E ,【点睛】本题考查了角平分线的定义,三角形内角和定理,三角形外角的性质,熟练掌握以上知识点是解本题的关键.2.如图,在△ABC 中,∠A =30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 等于( )A .10°B .15°C .20°D .30°【答案】B【解析】【分析】先根据角平分线的定义得到12Ð=Ð,34Ð=Ð,再根据三角形外角性质得1234A Ð+Ð=Ð+Ð+Ð,13D Ð=Ð+Ð,则2123A Ð=Ð+Ð,利用等式的性质得到12D A Ð=Ð,然后把A Ð的度数代入计算即可.【详解】解答:解:∵ABC Ð的平分线与ACE Ð的平分线交于点D ,∴12Ð=Ð,34Ð=Ð,∵ACE A ABCÐ=Ð+Ð,即1234A Ð+Ð=Ð+Ð+Ð,∴2123AÐ=Ð+Ð,∵13DÐ=Ð+Ð,∴11301522D AÐ=Ð=´°=°.故选:B.【点睛】本题考查了三角形内角和定理和三角形外角性质、角平分线的性质等,根据三角形内角和是180°和三角形外角性质进行分析是解题关键.3.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠BAC的度数是____________.【答案】80°.【解析】【详解】试题分析:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠PCD=∠P+∠PCB,根据角平分线的定义可得∠PCD=12∠ACD,∠PBC=12∠ABC,然后整理得到∠PCD=12∠A,再代入数据计算即可得解.在△ABC中,∠ACD=∠A+∠ABC,在△PBC中,∠PCD=∠P+∠PCB,∵PB、PC分别是∠ABC和∠ACD的平分线,∴∠PCD=12∠ACD,∠PBC=12∠ABC,∴∠P+∠PCB=12(∠A+∠ABC)=12∠A+12∠ABC=12∠A+∠PCB,∴∠PCD=12∠A,∴∠BPC=40°,∴∠A=2×40°=80°,即∠BAC=80°.考点:三角形内角和定理.4.如图△ABC,BD平分∠ABC且与△ABC的外角∠ACE的角平分线交于点D,若∠ABC=m°,∠ACB=n°,求∠D 的度数为()A.90°+12m°-12n°B.90°-12m°+12n°C.90°-12m°-12n°D.不能确定【答案】C【解析】【分析】由角平分线分别求出∠DBC和∠ACD,然后在△BCD中利用三角形内角和定理可求出∠D.【详解】∵BD平分∠ABC∴∠DBC=12∠ABC=12m°∵∠ACB=n°∴∠ACE=180°-n°又∵CD平分∠ACE∴∠ACD=12∠ACE=()111809022-=-o o o on n在△BCD中,∠DBC=12m°,∠BCD=∠ACB+∠ACD=1902+o o n,∴∠D=1111180DBC BCD=180********æö-Ð-Ð--+=--ç÷èøo o o o o o o o m n m n 故选C.【点睛】本题考查三角形中的角度计算,熟练运用三角形内角和定理是关键.5.如图,在ABC V 中,点D 在边BA 的延长线上,∠ABC 的平分线和∠DAC 的平分线相交于点M ,若∠BAC =80°,∠AB C =40°,则∠M 的大小为( )A .20°B .25°C .30°D .35°【答案】C【解析】【分析】先由80,BAC Ð=° 结合角平分线求解,,MAC MAB ÐÐ 再利用角平分线与40,ABC Ð=°求解ABM Ð,利用三角形的内角和定理可得答案.【详解】解:∵∠BAC=80°,∴100,DAC Ð=°AM Q 平分,DAC Ð150,2MAC DAC \Ð=Ð=° 130,BAM BAC MAC \Ð=Ð+Ð=°Q ∠ABC=40°,BM 平分ABC Ð,∴∠ABM=20°,∴∠M=1802013030,°-°-°=°故选:C .【点睛】本题考查了角平分线的性质,三角形的内角和定理,邻补角的定义,熟记定理和概念是解题的关键.6.如图,已知BD 为ABC V 中ABC Ð的平分线,CD 为ABC V 的外角ACE Ð的平分线,与BD 交于点D .若∠ABD =20°,50ACD Ð=°,则A D Ð+Ð=( )A .70°B .90°C .80°D .100°【答案】B【解析】【分析】根据角平分线定义求出∠DCE 、∠ACE 、∠DBC ,根据三角形外角性质求出∠A 、∠D ,即可求出答案.【详解】解:∵∠ABC 的平分线与∠ACB 的外角平分线交于D ,∠ABD =20°,∠ACD =55°,∴∠ABD =∠DBC =12∠ABC =20°,∠ACD =∠DCE =12∠ACE =50°,∴∠ABC =40°,∠ACE =100°,∴∠A =∠ACE -∠ABC =60°,∠D =∠DCE -∠DBC =50°-20°=30°,∴∠A +∠D =90°,故选:B .【点睛】本题考查了三角形的外角的性质,角平分线的性质,熟练掌握性质定理是解题的关键.7.如图所示,在Rt ABC △中,∠ACB=90°,∠CAB=60°,∠ACB 的角平分线与∠ABC 的外角平分线交于E 点,则∠AEB=( )A .50°B .45°C .40°D .35°【答案】B【解析】【分析】过点E 作ED BC ^,EH AB ^,EF AC ^,利用角平分线性质结合三角形内角和即可得出答案.【详解】解:如图所示,过点E 作ED BC ^,EH AB ^,EF AC ^,∴BE ,CE 是角平分线,∴ED EH =,ED EF =.∴EH EF =.∵EH AB ^,EF AC ^,∴AE 是BAF Ð的角平分线.∵60CAB Ð=°,∴30CBA Ð=°,60=°∠BAE ,∴75ABE Ð=°,由三角形内角和可得:45AEB Ð=°.故答案为:45.【点评】本题考查的知识点是角平分线性质,综合利用角平分线的性质是解此题的关键.8.如图,在△ABC 中,∠A =80°,∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1,∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2,⋯,∠A 3BC 与∠A 3CD 的平分线相交于点A 4,得∠A 4,则∠A 4的度数为( )A .5°B .10°C .15°D .20°【答案】A【解析】【分析】根据角平分线的定义,三角形的外角性质及三角形的内角和定理可知11118022A A Ð=Ð=´°,212118022A A Ð=Ð=´°,¼,依此类推可知4A Ð的度数【详解】解:ABC ÐQ 与ACD Ð的平分线交于点1A ,11118022A ACD ACB ABC \Ð=°-Ð-Ð-Ð,11180()(180)22ABC A A ABC ABC =°-Ð+Ð-°-Ð-Ð-Ð,11804022A =Ð=´°=°,同理可得,21211802022A A Ð=Ð=´°=°,¼4480521A \Ð=´°=°.故选:A .【点睛】本题是找规律的题目,主要考查了三角形的外角性质及三角形的内角和定理,同时考查了角平分线的定义.解答的关键是掌握外角和内角的关系.类型二 内外角分线进阶9.如图,在四边形ABCD 中,∠DAB 的角平分线与∠ABC 的邻补角的平分线相交于点P ,且∠D +∠C =210°,则∠P =( )A .10°B .15°C .30°D .40°【答案】B【解析】【分析】利用四边形内角和是360°可以求得150DAB ABC Ð+Ð=°.然后由角平分线的性质,邻补角的定义求得 PAB ABP Ð+Ð的度数,所以根据ABP D 的内角和定理求得P Ð的度数即可.【详解】解:210D C Ð+Ð=°Q ,360DAB ABC C D Ð+Ð+Ð+Ð=°,150DAB ABC \Ð+Ð=°.又DAB ÐQ 的角平分线与ABC Ð的外角平分线相交于点P ,111(180)90()165222PAB ABP DAB ABC ABC DAB ABC \Ð+Ð=Ð+Ð+°-Ð=°+Ð+Ð=°,180()15P PAB ABP \Ð=°-Ð+Ð=°.故选:B .【点睛】本题考查了三角形内角和定理、多边形的内角与外角.熟知“四边形的内角和是360°”是解题的关键.10.如图,在V ABC 中,∠ABC 和∠ACB 的角平分线交于点O ,延长BO 与∠ACB 的外角平分线交于点D ,若∠DOC =48°,则∠D =_____°.【答案】42【解析】【分析】根据角平分线的定义和三角形的内角和定理即可得到结论.【详解】解:∵∠ABC 和∠ACB 的角平分线交于点O ,∴∠ACO =12∠ACB ,∵CD 平分∠ACE ,∴∠ACD =12∠ACE ,∵∠ACB +∠ACE =180°,∴∠OCD =∠ACO +∠ACD =12(∠ACB +∠ACE )=12×180°=90°,∵∠DOC =48°,∴∠D =90°﹣48°=42°,故答案为:42.【点睛】本题考查了角平分线和三角形内角和,解题关键是熟练运用相关性质进行计算求角.11.如图,等腰ABC V 中,顶角42A Ð=°,点E ,F 是内角ABC Ð与外角ACD Ð三等分线的交点,连接EF ,则BFC Ð=_________°.【答案】14【解析】【分析】根据等腰三角形的性质和三角形的内角和定理可求∠ABC 和∠ACB ,再根据三角形外角的性质可求∠ACD ,再根据三等分线的定义与和差关系可求∠FBC 和∠BCF ,再根据三角形的内角和定理可求∠BFC .【详解】解:∵等腰△ABC 中,顶角∠A=42°,∴∠ABC=∠ACB=12×(180°-42°)=69°,∴∠ACD=111°,∵点E,F是内角∠ABC与外角∠ACD三等分线的交点,∴∠FBC=13×69°=23°,∠FCA=23×111°=74°,∴∠BCF=143°,∴∠BFC=180°-23°-143°=14°.故答案为:14.【点睛】本题考查了等腰三角形的性质,三角形内角和定理以及三角形外角的性质,解答此题的关键是找到角与角之间的关系.12.如图,在△ABC中,∠A=96°,延长BC到D,∠ABC与∠ACD的平分线相交于点A1,则∠A1=__,若∠A1BC 与∠A1CD的平分线相交于点A2,则∠A2=__,…,以此类推,则∠An﹣1BC与∠An﹣1CD的平分线相交于点An,则∠An的度数为__.【答案】 48°, 24°, 96°×1 (2n【解析】【分析】利用角平分线的定义和三角形内角与外角的性质计算.【详解】解:∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1=96°,∴∠A1=48°,同理可得∠A1=2∠A2,即∠A=2×2∠A2=96°,∴∠A2=24°,∴∠A=2n n AÐ,∴1962nnAæöÐ=°´ç÷èø.故答案为48°,24°,96°×1 ()2n.【点睛】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质并准确识图然后求出后一个角是前一个角的一半是解题的关键.13.如图,在五边形ABCDE中,∠A+∠B+∠E=310°,CF平分∠DCB,FC的延长线与五边形ABCDE外角平分线相交于点P,求∠P的度数【答案】∠P=25°.【解析】【分析】延长ED,BC相交于点G.由四边形内角和可求∠G=50°,由三角形外角性质可求∠P度数.【详解】解:延长ED,BC相交于点G.在四边形ABGE中,∵∠G=360°-(∠A+∠B+∠E)=50°,∴∠P=∠FCD-∠CDP=12(∠DCB-∠CDG)=1 2∠G=12×50°=25°.【点睛】本题考查了三角形内角和定理,三角形角平分线性质,外角的性质,熟练运用外角的性质是本题的关键.类型三综合解答14.如图,∠XOY=90°,点A,B分别在射线OX,OY上移动,BE是∠ABY的平分线,BE的反向延长线与∠OAB的平分线相交于点C,试问∠ACB的大小是否发生变化,如果不变,求出∠C的度数.【答案】不变,45°【解析】【分析】根据角平分线的定义、三角形的内角和、外角性质求解.【详解】解:∵∠ABY=90°+∠OAB,AC平分∠OAB,BE平分∠ABY,∴∠4=12∠ABY=12(90°+∠OAB)=45°+12∠OAB,即∠4=45°+∠1,又∵∠4=∠C+∠1,∴∠C=45°.【点睛】本题考查的是三角形内角与外角的关系,解答此题目要注意:①求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;②三角形的外角通常情况下是转化为内角来解决.15.如图,∠CBF, ∠ACG是△ABC的外角, ∠ACG的平分线所在的直线分别与∠ABC,∠CBF的平分线BD,DE交于点D,E.(1)∠DBE 的度数;(2)若∠A=70,求∠D 的度数;(3)若∠A=a ,求∠E 的度数(用含a 的式子表示).【答案】(1)90DBE Ð=°;(2)35D Ð=°;(3)1902E a Ð=°-【解析】【分析】(1)根据角平分线的定义可得11,,22DBC ABC EBC FBC Ð=ÐÐ=Ð 再根据平角的定义可得出结论;(2)根据角平分线的定义可得11,,22DCG ACG DBC ABC Ð=ÐÐ=Ð 再根据三角形外角的性质可推出2A D Ð=Ð则可求出∠D 的度数;(3)由第(2)问的结论可知1122D A a Ð=Ð=,再加上第(1)问的结论90DBE Ð=°,则可表示出∠E 的度数.【详解】(1)∵BD 平分ABC Ð,BE 平分,FBC Ð∴11,,22DBC ABC EBC FBC Ð=ÐÐ=Ð∵180ABF Ð=°∴1()902DBE DBC EBC ABC FBC Ð=Ð+Ð=Ð+Ð=°(2)∵CD 平分ACG Ð, BD 平分ABCÐ∴11,,22DCG ACG DBC ABC Ð=ÐÐ=Ð∵ACG A ABC Ð=Ð+Ð∴22DCG A DBCÐ=Ð+Ð∵DCG D DBCÐ=Ð+Ð∴222DCG D DBCÐ=Ð+Ð∴2A DÐ=Ð∴11703522D A Ð=Ð=´°=°(3)由(2)知1122D A a Ð=Ð=∵90DBE Ð=°∴1902E a Ð=°-【点睛】本题主要考查角平分线的定义及三角形外角的性质,掌握角平分线的定义及三角形外角的性质是解题的关键.16.已知,在四边形ABCD 中,∠F 为四边形ABCD 的∠ABC 的平分线及外角∠DCE 的平分线所在的直线构成的锐角,若∠A =α,∠D =β,(1)如图①,当α+β>180°时,∠F =____(用含α,β的式子表示);(2)如图②,当α+β<180°时,请在图②中,画出∠F ,且∠F =___(用含α,β的式子表示);(3)当α,β满足条件___时,不存在∠F .【答案】(1)12(α+β)﹣90°;(2)90°﹣12(α+β);(3)α+β=180°.【解析】【分析】(1)根据四边形的内角和定理表示出∠BCD,再表示出∠DCE,然后根据角平分线的定义可得∠FBC=12∠ABC,∠FCE=12∠DCE,三角形的一个外角等于与它不相邻的两个内角的和可得∠F+∠FBC=∠FCE,然后整理即可得解;(2)与(1)的思路相同,得到∠FBC=12∠ABC,∠FCE=12∠DCE,由外角性质,得到∠F+∠FBC=∠FCE,通过等量代换,求解即可;(3)根据∠F的表示,∠F为0时,不存在.【详解】解:(1)如图:由四边形内角和定理得,∠BCD=360°﹣∠A﹣∠D﹣∠ABC,∴∠DCE=180°﹣(360°﹣∠A﹣∠D﹣∠ABC)=∠A+∠D+∠ABC﹣180°,由三角形的外角性质得,∠FCE=∠F+∠FBC,∵BF、CF分别是∠ABC和∠DCE的平分线,∴∠FBC=12∠ABC,∠FCE=12∠DCE,∴∠F+∠FBC=12(∠A+∠D+∠ABC﹣180°)=12(∠A+∠D)+12∠ABC﹣90°,∴∠F=12(∠A+∠D)﹣90°,∵∠A=α,∠D=β,∴∠F=12(α+β)﹣90°;(2)如图3,由(1)可知,∠BCD =360°﹣∠A ﹣∠D ﹣∠ABC ,∴∠DCE =180°﹣(360°﹣∠A ﹣∠D ﹣∠ABC )=∠A+∠D+∠ABC ﹣180°,∴∠FCE =∠F+∠FBC ,∵∠FBC =12(360°﹣∠ABC ),∠FCE =180°﹣12∠DCE ,∴∠F=∠FCE ﹣∠FBC=180°﹣12(∠A+∠D+∠ABC ﹣180°)﹣12(360°﹣∠ABC ),∴∠F=90°﹣12(∠A+∠D )∴∠F =90°﹣12(α+β);(3)当α+β=180°时,∴∠F =90°﹣118002´°=,此时∠F 不存在.【点睛】本题考查了三角形的外角性质,三角形的内角和定理,多边形的内角和公式,此类题目根据同一个解答思路求解是解题的关键.17.如图,90MON Ð=°,点A 、B 分别在OM 、ON 上运动(不与点O 重合).(1)如图1,BC 是ABN Ð的平分线,BC 的反方向延长线与BAO Ð的平分线交于点D .①若60BAO Ð=°,则D Ð为多少度?请说明理由.②猜想:D Ð的度数是否随A 、B 的移动发生变化?请说明理由.(2)如图2,若13ABC ABN Ð=Ð,13BAD BAO Ð=Ð,则D Ð的大小为 度(直接写出结果);(3)若将“90MON Ð=°”改为“MON a Ð=(0180a °<<°)”,且1ABC ABN n Ð=Ð,1BAD BAO n Ð=Ð,其余条件不变,则D Ð的大小为 度(用含a 、n 的代数式直接表示出米).【答案】(1)①45°,理由见解析;②∠D 的度数不变;理由见解析(2)30 ;(3)a n【解析】【分析】(1)①先求出∠ABN=150°,再根据角平分线得出∠CBA=12∠ABN=75°、∠BAD=12∠BAO=30°,最后由外角性质可得∠D 度数;②设∠BAD=α,利用外角性质和角平分线性质求得∠ABC=45°+α,利用∠D=∠ABC-∠BAD 可得答案;(2)设∠BAD=α,得∠BAO=3α,继而求得∠ABN=90°+3α、∠ABC=30°+α,根据∠D=∠ABC-∠BAD 可得答案;(3)设∠BAD=β,分别求得∠BAO=nβ、∠ABN=∠AOB+∠BAO=α+nβ、∠ABC=n a +β,由∠D=∠ABC-∠BAD 得出答案.【详解】解:(1)①45°∵∠BAO=60°,∠MON=90°,∴∠ABN=150°,∵BC 平分∠ABN 、AD 平分∠BAO ,∴∠CBA=12∠ABN=75°,∠BAD=12∠BAO=30°∴∠D=∠CBA-∠BAD=45°,②∠D 的度数不变.理由是:设∠BAD=α,∵AD 平分∠BAO ,∴∠BAO=2α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+2α,∵BC 平分∠ABN ,∴∠ABC=45°+α,∴∠D=∠ABC-∠BAD=45°+α-α=45°;(2)设∠BAD=α,∵∠BAD=13∠BAO,∴∠BAO=3α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+3α,∵∠ABC=13∠ABN,∴∠ABC=30°+α,∴∠D=∠ABC-∠BAD=30°+α-α=30°;(3)设∠BAD=β,∵∠BAD=1n∠BAO,∴∠BAO=nβ,∵∠AOB=α°,∴∠ABN=∠AOB+∠BAO=α+nβ,∵∠ABC=1n∠ABN,∴∠ABC=an+β,∴∠D=∠ABC-∠BAD=an+β-β=an.【点睛】本题主要考查角平分线和外角的性质,熟练掌握三角形的外角性质和角平分线的性质是解题的关键.。

初一三角形角平分线经典例题

初一三角形角平分线经典例题

《角平分线》经典例题在直角三角形ABC中,∠A=90°,∠ABC的平分线BE交AC于E点,过E点作ED⊥BC于D点,已知AC=10cm,ΔCDE的周长为16cm,求CD的长.〔解析〕根据角平分线上的点到角的两边的距离相等可得AE=DE,从而求出DE+CE=AC,所以ΔCDE的周长=AC+CD,根据ΔCDE的周长及AC的长即可求得CD的长.解:∵BE为∠ABC的平分线,∠A=90°,DE⊥BC,∴AE=DE,∴DE+CE=AE+CE=AC=10cm,∵ΔCDE的周长为16cm,∴DE+CE+CD=16cm,∴CD=16-10=6(cm).如图(1)所示,已知∠ADC+∠ABC=180°,DC=BC.求证点C在∠DAB的平分线上.〔解析〕作CE⊥AB,CF⊥AD,垂足分别为E,F,利用∠ADC+∠ABC=180°,∠ADC+∠CDF=180°,得出∠ABC=∠CDF,进而证得ΔCBE≌ΔCDF,得出FC=EC,即可求得结论.证明:如图(2)所示,作CE⊥AB,CF⊥AD,垂足分别为E,F,∴∠BEC=∠DFC=90°,∵∠ADC+∠ABC=180°,∠ADC+∠CDF=180°,∴∠ABC=∠CDF,在ΔCBE和ΔCDF中,∴ΔCBE≌ΔCDF(AAS),∴FC=EC,∴点C在∠DAB的平分线上.如图(1)所示,已知点P 是ΔABC 三条角平分线的交点,PD ⊥AB ,若PD =5,ΔABC 的周长为20,求ΔABC 的面积.〔解析〕作PE ⊥BC 于E ,PF ⊥AC 于F ,根据角平分线的性质定理得PE =PF =PD =5,然后根据三角形面积公式和S ΔABC =S ΔPAB +S ΔPBC +S ΔPAC 得到S ΔABC =(AB +BC +AC ),再把ΔABC 的周长为20代入计算即可.解:作PE ⊥BC 于E ,PF ⊥AC 于F ,如图(2)所示,∵点P 是ΔABC 三条角平分线的交点,∴PE =PF =PD =5,∴S ΔABC =S ΔPAB +S ΔPBC +S ΔPAC=PD ·AB +PE ·BC +PF ·AC=(AB +BC +AC )=20=50.如图(1)所示,在RtΔABC 中,∠ACB =90°,且AC =b ,BC =a ,AB =c ,∠A 与∠B 的平分线交于点O ,O 到AB 的距离为OD.试探究OD 与a ,b ,c 的数量关系.〔解析〕过点O作OE⊥AC于E,OF⊥BC于F,然后根据角平分线上的点到角的两边的距离相等可得OD=OE=OF,然后证得四边形EOFC是正方形,从而证得OE=OF=FC=EC=OD,AE=AD,BD=BF,通过AB=AC-OD+BC-OD即可求解.解:如图(2)所示,过点O作OE⊥AC于E,OF⊥BC于F,∵∠BAC,∠ABC的平分线交于点O,OD⊥AB,∴OD=OE,OD=OF,∴OD=OE=OF,∵∠ACB=90°,∴四边形EOFC是正方形,∴OE=OF=FC=EC=OD,在RtΔOAE和RtΔOAD中,∴RtΔOAE≌RtΔOAD,∴AE=AD,同理BD=BF,∴AE+EC=AD+OD=AC=b,BF+CF=BD+OD=BC=a,∴AD=b-OD,BD=a-OD,∴AD+BD=a+b-2OD,即c=a+b-2OD,∴OD=(a+b-c).。

角平分线的性质练习题

角平分线的性质练习题

角平分线的性质练习题一、选择题1. 在三角形ABC中,BD是角B的平分线,若AB=5,BC=7,AC=6,那么BD的长度为:A. 4B. 6C. 8D. 无法确定2. 如果角平分线将三角形分成两个面积相等的部分,那么这两个部分的底边分别是:A. 相等B. 不相等C. 一个底边是另一个的两倍D. 底边长度无法确定3. 在三角形ABC中,角A的平分线与BC相交于点D,若AD=4,AC=8,那么AB的长度可能是:A. 6B. 8C. 10D. 12二、填空题4. 在三角形ABC中,如果角A的平分线将BC分为BD和DC两段,BD=DC,那么三角形ABD与三角形ACD的面积之比为________。

5. 若角平分线定理告诉我们,在三角形ABC中,如果BD是角B的平分线,则AB:AC=______:______。

6. 在三角形ABC中,如果角A的平分线与BC相交于点D,且AD垂直于BC,那么角B和角C的度数之和为________。

三、简答题7. 描述角平分线定理的内容,并给出一个应用此定理的几何问题。

8. 解释为什么在三角形中,角平分线可以将对边分成的两段长度与相邻两边成比例。

四、计算题9. 在三角形ABC中,已知角A的平分线AD与BC相交于点D,且BD=3,DC=4,AB=6,求AC的长度。

10. 在三角形ABC中,角B的平分线BE与AC相交于点E,已知AE=4,EC=6,AB=5,求BC的长度。

五、证明题11. 证明:在三角形ABC中,如果BD是角B的平分线,那么AB/AC = BD/DC。

12. 证明:如果点D在三角形ABC的边BC上,且AD是角A的平分线,那么三角形ABD与三角形ACD的面积相等。

六、综合题13. 在三角形ABC中,已知角A的平分线AD与BC相交于点D,且AD=2,BD=3,DC=4,AB=5,求BC的长度,并证明你的结论。

14. 给定三角形ABC,其中角A的平分线AD与BC相交于点D,角B的平分线BE与AC相交于点E。

实用文库汇编之三角形 角平分线部分经典题型

实用文库汇编之三角形 角平分线部分经典题型

*实用文库汇编之1.如图1所示,在△ABC中,∠A =90°,BD平分∠ABC,AD=2 cm,则点D到BC的距离为________cm.*图1图22.如图2所示,在RtΔABC中,∠C=90°,BD是∠ABC的平分线,交AC于D,若CD=n,AB=m,则ΔABD的面积是()A.mn31B.mn21C.mn D.2mn3.如图,在△ABC中,∠C=900,BC=40,AD是∠BAC的平分线交BC于D,且DC∶DB=3∶5,则点D到AB的距离是。

4.如图,已知BD是∠ABC的内角平分线,CD是∠ACB的外角平分线,由D出发,作点D到BC、AC和AB 的垂线DE、DF和DG,垂足分别为E、F、G,则DE、DF、DG的关系是。

5.如图,已知AB∥CD,O为∠A、∠C的角平分线的交点,OE⊥AC于E,且OE=2,则两平行线间AB、CD的距离等于。

6.AD是△BAC的角平分线,自D向AB、AC两边作垂线,垂足为E、F,那么下列结论中错误的是( )A、DE=DFB、AE=AFC、BD=CDD、∠ADE=∠ADF7.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点8.已知△ABC中,∠A=80°,∠B和∠C的角平分线交于O点,则∠BOC= 。

9.如图,已知相交直线AB和CD,及另一直线EF。

如果要在EF上找出与AB、CD距离相等的点,方法是,这样的点至少有个,最多有个。

第3题图DC BA10.如图所示,已知△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB ,交BC 于点D ,DE ⊥AB 于点E ,且AB =6 cm,则△DEB 的周长为( )。

A.9 cm B.5 cm C.6 cm D.不能确定11.如图,AB //CD ,CE 平分∠ACD ,若∠1=250,那么∠2的度数是 .12.如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B .下列结论中不一定成立的是( )A .PA PB = B .PO 平分APB ∠C .OA OB =D .AB 垂直平分OP13.如图,已知AC ∥BD 、EA 、EB 分别平分∠CAB 和∠ABD ,CD 过点E ,则AB 与AC+BD•相等吗?说明理由.14、如图所示,已知AD 为等腰三角形ABC 的底角的平分线,∠C =90° 求证:AB =AC +CD .15、如图,在四边形ABCD 中,BC>BA ,AD=DC,BD 平分∠ABC,求证:∠A+∠C=180°D16、如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE. 求证:△ACD≌△CBE.17.已知:如图,△ABC中,∠C=90°,试在AC上找一点P,使P到斜边的距离等于PC.(画出图形,并写出画法)18.已知:OD平分∠POQ,在OP、OQ边上取OA=OB,CM⊥AD于M,CN⊥BD于N.求证:CM=CN.19.已知:如图,ΔABC的外角∠CBD和∠BCE的平分线BF、CF交于点F.求证:一点F必在∠DAE的平分线上.20.已知:如图,A、B、C、D四点在∠MON的边上,AB=CD,P为∠MON内一点,并且△PAB的面积与△PCD的面积相等.求证:射线OP是∠MON的平分线.ABCDE21.如图,ΔABC中,∠C=90°,BD平分∠ABC,DE⊥AB于E,若△BCD与△BCA的面积比为3∶8,求△ADE与△BCA的面积之比.22.已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠DAB;(2)猜想AM与DM的位置关系如何?并证明你的结论.23.已知:如图,在ΔABC中,AD是△ABC的角平分线,E、F分别是AB、AC上一点,并且有∠EDF +∠EAF=180°.试判断DE和DF的大小关系并说明理由.24.如图1所示:AM∥DN,AE、DE分别平分∠MAD和∠AND,并交于E点.过点E的直线分别交AM、DN于B、C.(1)如图2,当点B、C分别位于点AD的同侧时,猜想AD、AB、CD之间的存在的数量关系:_______________________________.(2)试证明你的猜想.(3)若点B、C分别位于点AD的两侧时,试写出AD、AB、CD之间的关系,并选择一个写出证明过程。

解三角形(角平分线问题问题)(典型例题+题型归类练)(原卷版)

解三角形(角平分线问题问题)(典型例题+题型归类练)(原卷版)

专题05 解三角形(角平分线问题问题)(典型例题+题型归类练) 一、必备秘籍角平分线如图,在ABC ∆中,AD 平分BAC ∠,角A ,B ,C 所对的边分别为a ,b ,c 核心技巧1:内角平分线定理:AB AC BD DC =或AB BDAC DC= 核心技巧2:等面积法(使用频率最高)ABC ABD ADC S S S ∆∆∆=+⇒111sin sin sin 22222A A AB AC A AB AD AC AD ⨯⨯=⨯⨯+⨯⨯ 核心技巧3:边与面积的比值:ABD ADCSAB AC S=核心技巧4:角互补:ADB ADC π∠+∠=⇒cos cos 0ADB ADC ∠+∠=在ADB ∆中有:222cos 2DA DB AB ADB DA DB +-∠=⨯;在ADC ∆中有:222cos 2DA DC AC ADC DA DC+-∠=⨯二、典型例题例题1.如图,已知AD 是ABC ∆中BAC ∠的角平分线,交BC 边于点D .(1)用正弦定理证明:AB BDAC DC=; (2)若120BAC ∠=︒,2AB =,1AC =,求AD 的长.第(2)问思路点拨:本小题已知,,,求的长.可利用第(1)问结论解答过程:根据余弦定理,,即,解得利用第(1)问结论由(1)知∴,得,;在与中,根据余弦定理得,且解得,即的长为.例题2.在ABC 中,内角,,A B C 所对的边分别为,,a b c 且πsin sin 3a B b A ⎛⎫=+ ⎪⎝⎭.(1)求角A 的大小;(2)若3AB =,1AC =,BAC ∠的内角平分线交BC 于点D ,求AD .第(2)问思路点拨:由(1)知,求角平分线长,,可优先考虑面积公式解答过程:由(1)知,由角平分线面积公式∴,∴.代入数据计算例题3.在ABC 中,3,AB =4,BC =线段BD 是B ∠的角平分线,且 6.ABDS =求BCD S △.思路点拨:已知在中,线段是的角平分线,且涉及角平分线问题,但是不知的大小,不适合直接用面积公式,但知,可考虑面积和边长的关系解答过程:平分由,代入代入例题4.在ABC中,D是BC的中点,1AB=,2AC=,32 AD=.(1)ABC的面积为________.(2)若AE为BAC∠的角平分线,E在线段BC上,则AE的长度为________.第(2)问思路点拨:由(1)知,可优先考虑面积公式解答过程:由可得即,从而.代入,计算例题5.在△ABC 中, AM 是BAC ∠的角平分线, 且交BC 于M . 已知23,2,3AM BM MC ===, 则AC = __________;思路点拨:在中,是的角平分线, 且交于. 已知,涉及到角平分线,又,可利用,得到的关系解答过程:由是的角平分线,又,得,设,则因为,则,利用余弦定理代入得:,整理得,解得或(舍).所以.利用角互补关系(不适合面积公式)三、题型归类练1.三角形内角平分线定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例.请你认真思考,用三角形内角平分线定理解决问题:已知ABC 中,AD 为角平分线,3AB =,4AC =,5BC =,则AD =( )A .127B .157C .7D .72.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知,()(sin sin )(sin sin )a b A B c C B +-=+,若角A 的内角平分线AD 的长为2,则4b c +的最小值为( ) A .10B .12C .16D .183.在△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若()sin sin sin a A c C b c B =+-,角A 的角平分线交BC 于点D ,且3AD c b ==,则a 的值为( )A .72BC .3D4.在ABC 中,CD 是ACB ∠的角平分线且4,||AB AD AD ==若||3CD =,则CDA ∠=__________,ABC的面积为__________.5.在ABC 中,60A ∠=,∠A 的角平分线与BC 边相交于D .AD =BC =AB 边的长度为___.6.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,tan tan tan 0B C B C +=. (1)求角A 的大小;(2)若2BD DC =,AD =2,且AD 平分∠BAC ,求△ABC 的面积.注:三角形的内角平分线定理:在△PQR 中,点M 在边QR 上,且PM 为∠QPR 的内角平分线,有PQ QMPR MR=.7.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知22cos cos (sin sin )sin 0C A A B B +-+=. (1)求C ;(2)若a ,b 为方程210200x x -+=的两个实数根,且C 的角平分线交AB 于点D ,求CD .8.已知△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,BD 为∠ABC 的角平分线.(1)求证:::AD AB CD CB =;(2)若2BD =且26c a ==,求△ABC 的面积.9.已知△ABC 中,,,a b c 分别为内角,,A B C 的对边,且()()2sin 2sin 2sin a A b c B c b C =+++. (1)求角A 的大小;(2)设点D 为BC 上一点,AD 是ABC 的角平分线,且2AD =,3b =,求ABC 的面积.10.已知ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,点D 在BC 边上,AD 是角平分线,222sin sin sin sin sin C B C B A ++⋅=,且ABC 的面积为(1)求A 的大小及AB AC ⋅的值; (2)若4c =,求BD 的长.11.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,AD 为∠BAC 的角平分线,已知2c =且222223a c b cosA bc AD ⎛⎫+-=-= ⎪⎝⎭,(1)求△ABC 的面积;12.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,a =1b =,c =M 是BC 上的点. (1)若AM 是BAC ∠的角平分线,求BMCM的值; (2)若AM 是BC 边上的中线,求AM 的长.13.已知ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,点D 在AC 边上,BD 为ABC ∠的角平分线.32ABC ABD S S =△△.(1)求sin sin CA∠∠; (2)若BD b =,求cos ABC ∠的大小.。

角平分线的性质典型例题

角平分线的性质典型例题

【典型例题】例1. 已知:如图所示,∠C=∠C′=90°,AC=AC′.求证:(1)∠ABC=∠ABC′;(2)BC=BC′(要求:不用三角形全等判定).分析:由条件∠C=∠C′=90°,AC=AC′,可以把点A看作是∠CBC′平分线上的点,由此可打开思路.证明:(1)∵∠C=∠C′=90°(已知),∴AC⊥BC,AC′⊥BC′(垂直的定义).又∵AC=AC′(已知),∴点A在∠CBC′的角平分线上(到角的两边距离相等的点在这个角的平分线上).∴∠ABC=∠ABC′.(2)∵∠C=∠C′,∠ABC=∠ABC′,∴180°-(∠C+∠ABC)=180°-(∠C′+∠ABC′)(三角形内角和定理).即∠BAC=∠BAC′,∵AC⊥BC,AC′⊥BC′,∴BC=BC′(角平分线上的点到这个角两边的距离相等).评析:利用三角形全等进行问题证明对平面几何的学习有一定的积极作用,但也会产生消极作用,在解题时,要能打破思维定势,寻求解题方法的多样性.例2. 如图所示,已知△ABC中,PE∥AB交BC于E,PF∥AC交BC于F,P是AD上一点,且D点到PE的距离与到PF的距离相等,判断AD是否平分∠BAC,并说明理由.分析:判定一条射线是不是一个角的平分线,可用角平分线的定义和角平分线的判定定理.根据题意,首先由角平分线的判定定理推导出∠1=∠2,再利用平行线推得∠3=∠4,最后用角平分线的定义得证.解:AD平分∠BAC.∵D到PE的距离与到PF的距离相等,∴点D在∠EPF的平分线上.∴∠1=∠2.又∵PE∥AB,∴∠1=∠3.同理,∠2=∠4.∴∠3=∠4,∴AD平分∠BAC.评析:由角平分线的判定判断出PD平分∠EPF是解决本例的关键.“同理”是当推理过程相同,只是字母不同时为书写简便可以使用“同理”.例3. 如图所示,已知△ABC的角平分线BM,CN相交于点P,那么AP能否平分∠BAC?请说明理由.由此题你能得到一个什么结论?分析:由题中条件可知,本题可以采用角的平分线的性质及判定来解答,因此要作出点P到三边的垂线段.解:AP平分∠BAC.结论:三角形的三条角平分线相交于一点,并且这一点到三边的距离相等.理由:过点P分别作BC,AC,AB的垂线,垂足分别是E、F、D.∵BM是∠ABC的角平分线且点P在BM上,∴PD=PE(角平分线上的点到角的两边的距离相等).同理PF=PE,∴PD=PF.∴AP平分∠BAC(到角的两边的距离相等的点在这个角的平分线上).例4.如图所示的是互相垂直的一条公路与铁路,学校位于公路与铁路所夹角的平分线上的P点处,距公路400m,现分别以公路、铁路所在直线为x轴、y 轴建立平面直角坐标系.(1)学校距铁路的距离是多少?(2)请写出学校所在位置的坐标.分析:因为角平分线上的点到角的两边距离相等,所以点P到铁路的距离与到公路的距离相等,也是400m;点P在第四象限,求点P的坐标时要注意符号.解:(1)∵点P在公路与铁路所夹角的平分线上,∴点P到公路的距离与它到铁路的距离相等,又∵点P到公路的距离是400m,∴点P(学校)到铁路的距离是400m.(2)学校所在位置的坐标是(400,-400).评析:角平分线的性质的作用是通过角相等再结合垂直证明线段相等.例5.如图所示,在△ABC中,∠C=90°,AC=BC,DA平分∠CAB交BC于D,问能否在AB上确定一点E,使△BDE的周长等于AB的长?若能,请作出点E,并给出证明;若不能,请说明理由.分析:由于点D在∠CAB的平分线上,若过点D作DE⊥AB于E,则DE=DC.于是有BD+DE=BD+DC=BC=AC,只要知道AC与AE的关系即可得出结论.解:能.过点D作DE⊥AB于E,则△BDE的周长等于AB的长.理由如下:∵AD平分∠CAB,DC⊥AC,DE⊥AB,∴DC=DE.在R t△ACD和R t△AED中,,∴R t△ACD≌R t△AED(HL).∴AC=AE.又∵AC=BC,∴AE=BC.∴△BDE的周长=BD+DE+BE=BD+DC+BE=BC+BE=AE+BE=AB.评析:本题是一道探索题,要善于利用已知条件获得新结论,寻找与要解决的问题之间的联系.本题利用角平分线的性质将要探究的结论进行转化.这是初中几何中常用的一种数学思想.【方法总结】学过“角的平分线上的点到角的两边的距离相等”与“到角的两边的距离相等的点在角的平分线上”这两个结论后,许多涉及角的平分线的问题用这两个结论解决很方便,需要注意的是有许多同学对证明两个三角形全等的问题已经很熟悉了,所以证题时,不习惯直接应用这两个结论,仍然去找全等三角形,结果相当于重新证明了一次这两个结论.所以特别提醒大家,能用简单方法的,就不要绕远路.Welcome !!! 欢迎您的下载,资料仅供参考!。

角平分线的性质专项练习(含解析)

角平分线的性质专项练习(含解析)

角平分线的性质专项练习一、单选题知识点一:角平分线的有关证明1.在Rt ABC 中,90B ︒∠=,AD 平分BAC ∠,交BC 于点D ,DE AC ⊥,垂足为点E ,若3BD =,则DE 的长为( )A .3B .32C .2D .62.如图,在△ABC 中,AB =6,BC =5,AC =4,AD 平分∠BAC 交BC 于点D ,在AB 上截取AE =AC ,则△BDE 的周长为( )A .8B .7C .6D .53.如图,在ABC 中,90,C AD ∠=平分,BAC DE AB ∠⊥于点,E 给出下列结论.CD ED =①;,AC BE AB +=② ③BDE BAC ∠=∠, DA ④平分CDE ∠,::BDE ACD S S AB AC =⑤其中正确的有( )个A .5B .4C .3D .2知识点二:角平分线的性质定理4.如图,在Rt ABC ∆中,90B =∠,以点A 为圆心,适当长为半径画弧,分别交AB AC 、于点,D E ,再分别以点D E 、为圆心,大于12DE 为半径画弧,两弧交于点F ,作射线AF 交边BC 于点1,4BG AC ==,则ACG ∆的面积是( )A .1B .32C .2D .525.如图,在△ABC 中,AB =AC ,AD 是中线,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,则下列四个结论中:①AB 上任一点与AC 上任一点到D 的距离相等;②AD 上任一点到AB ,AC 的距离相等;③∠BDE =∠CDF ;④∠1=∠2;其中正确的有( )A .1个B .2个C .3个D .4个6.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .27.如图,已知在四边形ABCD 中,90BCD ∠=︒,BD 平分ABC ∠,6AB =,9BC =,4CD =,则四边形ABCD 的面积是( )A.24 B.30 C.36 D.42知识点三:角平分线判定定理=,则()8.如图,AC AD=,BC BDA.CD垂直平分AD B.AB垂直平分CDC.CD平分ACB∠D.以上结论均不对9.如图,已知AB∥CD,PE⊥AB,PF⊥BD,PG⊥CD,垂足分别E、F、G,且PF=PG=PE,则∠BPD=().A.60°B.70°C.80°D.90°10.如图所示,若DE⊥AB,DF⊥AC,则对于∠1和∠2的大小关系下列说法正确的是()A.一定相等B.一定不相等C.当BD=CD时相等D.当DE=DF时相等11.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A .线段CD 的中点B .OA 与OB 的中垂线的交点C .OA 与CD 的中垂线的交点 D .CD 与∠AOB 的平分线的交点知识点四:角平分线性质的实际应用12.如图,在ABC ∆中,90︒∠=C ,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于( )A .4B .3C .2D .113.如图,Rt △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,若AB=14,S △ABD=14,则CD=( )A .4B .3C .2D .114.如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,S △ABC =7,DE =2,AB =4,则AC 长是( )A .6B .5C .4D .3知识点五:尺规作图-角平分线15.尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP ≌的根据是( )A .SASB .ASAC .AASD .SSS16.如图,在ABC ∆中,,40AC BC A =∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为()A .40︒B .45︒C .50︒D .60︒17.如图1,已知ABC ∠,用尺规作它的角平分线.如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ;第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ;第三步:画射线BP .射线BP 即为所求.下列正确的是( )A .a ,b 均无限制B .0a >,12b DE >的长C .a 有最小限制,b 无限制D .0a ≥,12b DE <的长18.如图,观察图中尺规作图痕迹,下列说法错误的是( )A .OE 是AOB ∠的平分线B .OC OD =C .点C,D 到OE 的距离不相等D .AOE BOE ∠=∠二、填空题 知识点一:角平分线的有关证明19.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是_____.20.如图,在平面直角坐标系xOy 中,点A 、B 分别在x 轴的正半轴、y 轴的正半轴上移动,点M 在第二象限,且MA 平分∠BAO ,做射线MB ,若∠1=∠2,则∠M 的度数是_______。

角平分线性质练习题

角平分线性质练习题

角平分线性质练习题一、选择题1. 在三角形ABC中,角A的平分线交BC于点D,以下哪个说法是正确的?A. AD是角A的角平分线B. 角BAD等于角CADC. 角BAC等于角DACD. AD是BC的垂直平分线2. 如果在三角形ABC中,角A的平分线和边BC的垂直平分线重合,那么三角形ABC是什么三角形?A. 等腰三角形B. 等边三角形C. 直角三角形D. 不规则三角形3. 在三角形ABC中,角A的平分线交BC于点D,若角B等于角C,那么角BAD和角CAD的大小关系是什么?A. 相等B. 角BAD大于角CADC. 角BAD小于角CADD. 不能确定二、填空题4. 在三角形ABC中,若角A的平分线将角A平分为两个相等的角,那么角BAD等于______。

5. 如果角A的平分线AD交BC于点D,且BD等于DC,那么三角形ABC是一个______三角形。

6. 在三角形ABC中,角A的平分线交BC于点D,若角A等于60度,角B等于40度,则角ADC等于______度。

三、计算题7. 在三角形ABC中,已知角A的平分线AD交BC于点D,且BD等于3厘米,DC等于4厘米,求BC的长度。

8. 在三角形ABC中,角A的平分线AD交BC于点D,已知角A等于70度,角B等于50度,求角BAD的度数。

四、证明题9. 证明:在三角形ABC中,如果角A的平分线AD交BC于点D,那么角BAD等于角CAD。

10. 证明:如果三角形ABC中角A的平分线AD交BC于点D,并且AB 等于AC,那么三角形ABC是一个等腰三角形。

五、应用题11. 在三角形ABC中,已知角A的平分线AD交BC于点D,且角A等于60度,角B等于角C,求角B和角C的度数。

12. 在三角形ABC中,角A的平分线AD交BC于点D,已知BD等于2厘米,DC等于3厘米,且角A等于40度,求AD的长度。

六、开放性问题13. 如果在三角形ABC中,角A的平分线AD交BC于点D,且角A等于90度,讨论三角形ABC的性质。

初中角平分线相关的经典题型

初中角平分线相关的经典题型

初中角平分线相关的经典题型什么是角平分线呢?角平分线指的是将一个角分成两个相等的角的线段。

在初中数学中,角平分线是一个非常常见的概念,并且在各类题型中经常被考察。

接下来,我们将介绍一些与初中角平分线相关的经典题型,帮助大家更好地理解和应用这一知识点。

题型一:已知角的两边长,求角平分线的长度和夹角大小。

在这种题型中,我们需要根据已知的角的两边长,求出角平分线的长度和夹角大小。

解题的关键是利用角平分线将一个角划分成两个相等的角,并应用三角函数的相关知识。

示例题:已知角ABC的两边AB和AC的长度分别为8cm和10cm,求角平分线BD的长度和角ABD的大小。

解析:首先,利用角平分线将角ABC分成了两个相等的角,即角ABD和角CBD。

然后,利用三角函数的正弦定理和余弦定理可以求解出角ABD和角CBD的大小。

最后,通过角ABD的大小,可以用正弦函数求出角平分线BD的长度。

题型二:已知角平分线的长度,求角的两边长和夹角大小。

在这种题型中,我们需要根据已知的角平分线的长度,求出角的两边长和夹角大小。

解题的关键是利用角平分线将一个角分成两个相等的角,并利用三角函数的相关知识解方程。

示例题:在三角形ABC中,角BAD是角BAC的平分线,已知角BAD 的长度为6cm,且角ABD的大小为60°,求角BAC的大小和边AC的长度。

解析:首先,利用已知条件可以得出角BAC可以由角ABD的大小得出,再由角BAC的大小,可以用三角函数求解出边AC的长度。

最后,应用角平分线的性质可以求出角CAD的大小。

题型三:利用角平分线性质求证题这类题型主要是利用角平分线的性质来进行证明。

我们需要根据已知条件,通过合理的推理和运用一些几何性质,来证明某些定理或者结论。

示例题:已知在三角形ABC中,角BAD是角BAC的平分线,证明:AB/BC=AD/DC。

解析:首先,利用角平分线的定义可以得出角BAD和角DAC的大小相等。

然后,通过角度相等和边的比值可以得出AB/BC=AD/DC的关系。

角平分线性质典型试题

角平分线性质典型试题

角平分线性质典型试题1.如图如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A. 3 B.4 C.6 D. 52.如图,三角形ABC中,∠A的平分线交BC于点D,过点D作DE⊥AC,DF⊥AB,垂足分别为E,F,下面四个结论:①∠AFE=∠AEF;②AD垂直平分EF;③ SBFD/SCED=BF/CE④EF 一定平行BC.其中正确的是()A.①②③B.②③④C.①③④D.①②③④3.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.24.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于1/2 CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E 作射线OE,连接CD.则下列说法错误的是()A.射线OE是∠AOB的平分线B.△COD 是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称5.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC 于点M和N,再分别以M、N为圆心,大于1/2MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1 B.2 C.3 D.46.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD 与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°7.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为()A.6 B.7 C.8 D.98.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为()A.1 B.2 C.3 D.49.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7 D.3.510.如图.将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF的大小为45°.11.如图,在△ABC中,∠B=∠C=60°,点D、E分别在边AB、BC上,将△BDE沿直线DE 翻折,使点B落在B1处,DB1、EB1分别交边AC于点F、G.若∠ADF=80°,则∠GEC= 40°.12.如图,△BEF的内角∠EBF平分线BD与外角∠AEF的平分线交于点D,过D作DH∥BC 分别交EF、EB于G、H两点.下列结论:①S△EBD:S△FBD=BE:BF;②∠EFD=∠CFD;③HD=HF;④BH-GF=HG,其中正确结论的个数有()A.只有①②③ B.只有①②④C.只有③④ D.①②③④13.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是15214.如图,在△ABC中,∠A=90°,∠C=45°,AB=6cm,∠ABC的平分线交AC于点D,DE⊥BC,垂足为E,则DC+DE= 6cm.15.如图所示.CD是∠ACB的平分线,∠ACB=40°,∠B=70°,DE∥BC.求∠EDC和∠BDC 的度数.16.如图,AD是△ABC的外角平分线,CD⊥AD于D,E是BC的中点.求证:(1)DE∥AB;(2)DE= 1/2(AB+AC).17.如图,已知AD∥BC,CD⊥AD于D点,交BC于C,点E是CD上一点.(1)若AE=BE,∠AEB=90°,求证:AD+BC=CD;(2)若AE,BE分别平分∠BAD和∠ABC,求证:AD+BC=AB.18.已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.19.如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE 与直线AC的位置关系(不要求证明).。

三角形内外角平分线定理例题

三角形内外角平分线定理例题

三角形内外角平分线定理例题
1. 嘿,来看这道题!在三角形 ABC 中,AD 是角 A 的平分线,那是不是就能用三角形内角平分线定理啦?比如说角 A 是 60 度,AB 长 5,AC 长 3,那 BD 和 DC 的比不就好求啦!
2. 哇哦,这道题也很典型呀!三角形 DEF 中,EF 边上有角平分线DG,已知一些边长,这不就是三角形内外角平分线定理大显身手的时候嘛!
3. 嘿呀,想想看这个三角形 MNO,角 M 的平分线 NP,通过这个定理就能算出好多线段的关系呢,就像找到了宝藏的钥匙!
4. 哎呀呀,在三角形 PQR 中,QR 上的角平分线 PS,这道题用定理来做不就轻而易举嘛,难道不是吗?
5. 哟呵,看看这个三角形 STU,角 S 的平分线 TV,根据定理马上就能知道相关线段的比例啦,是不是很神奇!
6. 哈哈,这道关于三角形 VWX 的题,角 V 的平分线 WY,利用定理就能快速解题啦,超有趣的呢!
7. 哇塞,三角形 YZA 中,ZA 边上的角平分线 YB,这不就是三角形内外角平分线定理发挥作用的好例子嘛!
8. 嘿嘿,这个三角形 abc 中,bc 边上的角平分线 ad,用定理来解决简直太爽啦,不信你试试!
9. 哎呀,三角形 def 中,ef 边上的角平分线 dg,有了定理,这些题都变得好简单呀!
10. 哇哦,三角形 ghi 中,hi 边上的角平分线 gj,定理一用,答案马上就出来啦,真的很棒呢!
我的观点结论就是:三角形内外角平分线定理在解题中超级好用,能让我们快速找到答案,大家一定要好好掌握呀!。

角平分线专题训练题

角平分线专题训练题

角平分线专题训练题1. 已知三角形ABC,角A的角平分线交BC边于点D,角B 的角平分线交AC边于点E。

若AD=DE,求证角A=2角B。

证明:由角平分线的定义,有∠DAB=∠EAC,且∠DAE=∠EAD。

在△ADE中,由角度和定理可得∠DAE+∠DEA+∠EDA=180°,即∠DAE+∠DEA+∠EAD=180°。

由已知条件AD=DE,可得∠DEA=∠EAD,代入上式得2∠DAE+∠EAD=180°,即3∠DAE=180°,解得∠DAE=60°。

同理,在△DBE中,由角度和定理可得∠EBD+∠BED+∠DEB=180°,即∠EBD+∠BED+∠EDA=180°。

由已知条件AD=DE,可得∠DEA=∠EDA,代入上式得∠EBD+2∠DEA=180°,即∠EBD+2∠DAE=180°,代入∠DAE=60°,得∠EBD+120°=180°,即∠EBD=60°。

又因为∠DAB=∠DBE,且∠DAE=∠EBD,所以,由三角形内角和定理可得∠ABD+∠DBE+∠DAE=180°。

代入∠DAE=60°,得∠ABD+60°+60°=180°,即∠ABD=60°。

所以,角A=∠DAB+∠DAD+∠DAE=∠DAB+∠ABD+∠DAE=∠DBE+∠EBD+∠DAE=∠EDC+∠CDE+∠EAD=∠EDC+∠CDE+∠A DA=∠ADC+∠CDA+∠ADA=2∠ADC。

角B=∠ABD+∠DBE+∠BED=∠ABD+∠DBE+∠EDC=∠ABD+∠DBE+∠DCE=∠ADG+∠DGE+∠DCE=∠ADE+∠DEC+∠D CE=∠DAE+∠EDA+∠DCE=∠DAE+∠EDA+∠EDA=2∠DA E。

所以,角A=2∠ADC,角B=2∠DAE,结合前面的推导可知角A=2角B。

三角形的角平分线、中线和高的专题训练50题

三角形的角平分线、中线和高的专题训练50题

三角形的角平分线、中线和高的专题训练50题1. 在△ABC中,角A的角平分线交对边BC于点D,若BD=DC,求证:∠B=∠C。

【解答】设∠BAD=∠CAD=x,由于角A的角平分线BD、CD分别相交对边BC于点D,所以AD是△ABC的角平分线。

根据角平分线定理可知:$\frac{BD}{CD}=\frac{AB}{AC}$由于BD=CD,所以$\frac{AB}{AC}=1$,即AB=AC。

根据等边三角形的性质可知∠B=∠C。

2. 在△ABC中,角A的角平分线交对边BC于点D,若∠BAD=30°,求∠B和∠C的度数。

【解答】设∠BAD=∠CAD=x,根据题意可知角A的角平分线BD、CD分别相交对边BC于点D。

由于∠BAD=30°,所以x=30°。

根据角平分线定理可知:$\frac{BD}{CD}=\frac{AB}{AC}$由于BD=CD,所以$\frac{AB}{AC}=1$,即AB=AC。

又由等边三角形的性质可知∠B=∠C,即∠B=∠C=75°。

3. 在△ABC中,角B的角平分线交对边AC于点D,若∠BAD=80°,求∠ABC的度数。

【解答】设∠BAD=∠DAC=x,根据题意可知角B的角平分线AD相交对边AC于点D。

由于∠BAD=80°,所以x=80°。

根据角平分线定理可知:$\frac{BD}{CD}=\frac{AB}{AC}$又由于BD=CD,所以$\frac{AB}{AC}=1$,即AB=AC。

由等边三角形的性质可知∠ABC=∠ACB,设∠ABC=∠ACB=y,则∠ADB=∠ADC=180°-2x=20°。

再由三角形内角和为180°可知∠B+∠ADC=180°,即y+20°=180°,解得y=160°。

所以∠ABC=∠ACB=160°。

4. 在△ABC中,角A的角平分线交对边BC于点D,若∠B=70°,∠C=50°,求∠BAD的度数。

2024年中考数学复习 角平分线模型的三种考法(原卷+答案解析)

2024年中考数学复习 角平分线模型的三种考法(原卷+答案解析)

角平分线模型的三种考法类型一、角平分线上的点向两边作垂线1已知,△ABC中,∠BAC=120°,AD平分∠BAC,∠BDC=60°,AB=2,AC=3,则AD的长是.1.如图,AC、BD是四边形ABCD的对角线,BD平分∠ABC,2∠ACD=∠ABC+∠BAC,已知∠CAD=43°,则∠BDC=.2.已知:AD是△ABC的角平分线,且AD⊥BC.(1)如图1,求证:AB=AC;(2)如图2,∠ABC=30°,点E在AD上,连接CE并延长交AB于点F,BG交CA的延长线于点G,且∠ABG=∠ACF,连接FG.①求证:∠AFG=∠AFC;②若S△ABG:S△ACF=2:3,且AG=2,求AC的长.3.在平面直角坐标系中,点A的坐标是(0,a),点B的坐标(b,0)且a,b满足a2-12a+36+a-b=0.(1)求A、B两点的坐标;(2)如图(1),点C为x轴负半轴一动点,OC<OB,BD⊥AC于D,交y轴于点E,求证:OD平分∠CDB.(3)如图(2),点F为AB的中点,点G为x正半轴点B右侧的一动点,过点F作FG的垂线FH,交y轴的负半轴于点H,那么当点G的位置不断变化时,S△AFH-S△FBG的值是否发生变化?若变化,请说明理由;若不变化,请求出相应结果.类型二、过边上的点向角平分线作垂线构造等腰三角形2已知:ΔABC中,D为BC的中点,AG平分∠BAC,CG⊥AG于G,连结DG,若AB=6,AC=4,求DG的长.1.已知:等腰直角三角形ABC中,∠ACB=90°;AC=BC;∠1=∠3;BE⊥AD.求证:BE=12 AD.2.如图,在△ABC中,∠C=90°,BC=AC,D是AC上一点,AE⊥BD交BD的延长线于E,AE=12BD,且DF⊥AB于F,求证:CD=DF类型三、利用角平分线的性质,在角两边截长补短3如图,在ΔABC中,AB>AC,AD平分∠BAC交BC于D,求证:AB-AC>BD-CD.1.如图所示,在ΔABC中,∠ACB=60°,AE,BD是ΔABC的角平分线,AE,BD交于点G,求证:GD=GE.2.阅读下面材料:小明遇到这样一个问题:如图一,△ABC中,∠A=90°,AB=AC,BD平分∠ABC,猜想线段AD与DC数量关系.小明发现可以用下面方法解决问题:作DE⊥BC交BC于点E:(1)根据阅读材料可得AD与DC的数量关系为.(2)如图二,△ABC中,∠A=120°,AB=AC,BD平分∠ABC,猜想线段AD与DC的数量关系,并证明你的猜想.(3)如图三,△ABC中,∠A=100°,AB=AC,BD平分∠ABC,猜想线段AD与BD、BC的数量关系,并证明你的猜想.3.如图,已知B(-1,0),C(1,0),A为y轴正半轴上一点,点D为第二象限一动点,E在BD的延长线上,CD交AB于F,且∠BDC=∠BAC.(1)求证:∠ABD=∠ACD;(2)求证:AD平分∠CDE;(3)若在点D运动的过程中,始终有DC=DA+DB,在此过程中,∠BAC的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC的度数.4.如图1,点A、D在y轴正半轴上,点B、C分别在x轴上,CD平分∠ACB与y轴交于D点,∠CAO=90°-∠BDO.(1)求证:AC=BC;(2)在(1)中点C的坐标为4,0,点E为AC上一点,且∠DEA=∠DBO,如图2,求BC+EC的长;(3)在(1)中,过D作DF⊥AC于F点,点H为FC上一动点,点G为OC上一动点,(如图3),当点H在FC上移动、点G在OC上移动时,始终满足∠GDH=∠GDO+∠FDH,试判断FH、GH、OG这三者之间的数量关系,写出你的结论并加以证明.课后训练1如图,在ΔABC中,∠B=60°,AD、CE分别是∠BAC、∠ACB的平分线,AD、CE相交于点F,试判断FE和FD之间的数量关系.2如图,在ΔABC中,∠ABC=2∠C,BE平分∠ABC,交AC于E,AD⊥BE于D,求证:AC= 2BD.3如图,在△ABC中,AB=AC,∠A=100°,BD是∠ABC的平分线,延长BD至点E,DE=AD,试求∠ECA的度数.4如图1,在△ABC中,CM是AB边的中线,∠BCN=∠BCM交AB延长线于点N,2CM=CN.(1)求证AC=BN;(2)如图2,NP平分∠ANC交CM于点P,交BC于点O,若∠AMC=120°,CP=kAC,求CPCM的值.5如图,在△ABC中,AD为BC边上的高,AE是∠BAD的角平分线,点F为AE上一点,连接BF,∠BFE=45°.(1)求证:BF平分∠ABE;(2)连接CF交AD于点G,若SΔABF=SΔCBF,求证:∠AFC=90°;(3)在(2)的条件下,当BE=3,AG=4.5时,求线段AB的长.6已知△ABC中,BE平分∠ABC,BE交AC于点E,CD平分∠ACB,交AB于点D,BE与CD交于点O.(1)如图1,求证:∠BOC=90°+1∠BAC.2(2)如图2,连接OA,求证:OA平分∠BAC.(3)如图3,若∠BAC=60°,BD=4,CE=2,求ODOC的值.7已知:在ΔABC和ΔDEC中,AC=BC,DC=EC,∠ACB=∠ECD=α.(1)如图1,A,C,D在同一直线上,延长AE交BD于F,求证:AF⊥BD;(2)如图2,AE与BD交于F,G在AD上,若FG平分∠AFD,求证:点C在直线FG上.角平分线模型的三种考法类型一、角平分线上的点向两边作垂线1已知,△ABC 中,∠BAC =120°,AD 平分∠BAC ,∠BDC =60°,AB =2,AC =3,则AD 的长是.【答案】5【分析】过D 作,DE ⊥AC ,DF ⊥AB 交AB 延长线于F ,然后根据全等三角形的性质和30°角直角三角形的性质即可求解.【详解】过D 作,DE ⊥AC ,DF ⊥AB 交AB 延长线于F ,∵AD 平分∠BAC ,DE ⊥AC ,DF ⊥AB ,∴DE =DF ,∠DEC =∠DFB =90°=∠DEA ,∵∠BAC +∠BDC +∠DCE +∠DBA =360°,∠BAC =120°,∠BDC =60°,∴∠DCE +∠DBA =180°,∵∠DBF +∠DBA =180°,∴∠DCE =∠DBF ,在△DEC 和△DFB 中,∠DCE =∠DBF∠DEC =∠DFBDE =DB∴△DEC ≌△DFB AAS ,∴CE =BF ,在Rt △DEA 和Rt △DFA 中,DE =DF DA =DA ,∴Rt △DEA ≌△DFA HL ,∴AE =AF ,∵AE =AC -CE ,AF =AB +BF ,∴AC -CE =AB +BF ,∴CE +BF =AC -AB =1,∴CE =BF =12,∴AF =AB +BF =52,∵AD 平分∠BAC ,∴∠DAB =12∠BAC =60°,∴∠ADF =180°-∠DAB -∠DFB =30°,∴AD =2AF =5.【点睛】此题考查了全等三角形和角平分线的性质,解题的关键是作出辅助线构造全等三角形.1.如图,AC 、BD 是四边形ABCD 的对角线,BD 平分∠ABC ,2∠ACD =∠ABC +∠BAC ,已知∠CAD =43°,则∠BDC =.【答案】47°【分析】过D 作DE ⊥BC 于E ,DF ⊥AB 于F ,DG ⊥AC 于G ,依据DC 平分∠ACE ,BD 平分∠ABC ,利用角平分线的性质,即可得到DF =DG ,进而得出AD 平分∠CAF .再根据三角形外角的性质,即可得到∠BDC =12∠BAC ,进而得出结论.【解析】如图所示,过D 作DE ⊥BC 于E ,DF ⊥AB 于F ,DG ⊥AC 于G ,∵BD 平分∠ABC ,DE ⊥BC ,DF ⊥AB ,∴DF =DE ,∵2∠ACD =∠ABC +∠BAC ,∠ACE =∠ABC +∠BAC ,∴∠ACE =2∠ACD ,∴CD 平分∠ACE ,又∵DE ⊥BC ,DG ⊥AC ,∴DE =DG ,∴DF =DG ,又∵DF ⊥AB ,DG ⊥AC ,∴AD 平分∠CAF ,∵∠CAD =43°,∴∠CAF =86°,∠BAC =94°,∵∠DCE 是△BCD 的外角,∠ACE 是△ABC 的外角,∴∠BDC =∠DCE -∠DBC =12∠ACE -12∠ABC =12∠ACE -12∠ABC =12∠ACE -∠ABC =12∠BAC =12×94°=47°故答案为:47°.【点评】本题主要考查了角平分线的性质以及三角形外角的性质,解题的关键是掌握角平分线的性质:角的平分线上的点到角的两边的距离相等.2.已知:AD 是△ABC 的角平分线,且AD ⊥BC.(1)如图1,求证:AB =AC ;(2)如图2,∠ABC =30°,点E 在AD 上,连接CE 并延长交AB 于点F ,BG 交CA 的延长线于点G ,且∠ABG =∠ACF ,连接FG .①求证:∠AFG =∠AFC ;②若S △ABG :S △ACF =2:3,且AG =2,求AC 的长.【答案】(1)见解析;(2)①见解析;②6.【分析】(1)用ASA 证明△ABD ≌△ACD ,即得AB =AC ;(2)①证明△BAG ≌△CAE 可得AG =AE ,再用SAS 证明△FAG ≌△FAE ,即得∠AFG =∠AFC ;②过F 作FK ⊥AG 于K ,由S △ABG :S △ACF =2:3,可得S △CAE :S △ACF =2:3,S △FAE :S △ACF =1:3,而△FAG ≌△FAE ,故S △FAG :S △ACF =1:3,即得AG :AC =1:3,根据AG =2,可求AC =6.【解析】解:(1)证明:∵AD 是△ABC 的角平分线,∴∠BAD =∠CAD ,∵AD ⊥BC ,∴∠ADB =∠ADC ,在△ABD 和△ACD 中,∠BAD =∠CADAD =AD ∠ADB =∠ADC,∴△ABD ≌△ACD ASA ,∴AB =AC ;(2)①∵AB =AC ,∠ABC =30°,AD ⊥BC ,∴∠BAD =∠CAD =60°,∴∠BAG =60°=∠CAD ,在△BAG 和△CAE 中,∠BAG =∠CAEAB =AC ∠ABG =∠ACE,∴△BAG ≌△CAE ASA ,∴AG =AE ,在△FAG 和△FAE 中,AG =AE∠GAF =∠EAF AF =AF,∴△FAG ≌△FAE SAS ,∴∠AFG =∠AFC ;②过F 作FK ⊥AG 于K ,如图:由①知:△BAG ≌△CAE,∵S △ABG :S △ACF =2:3,∴S △CAE :S △ACF =2:3,∴S △FAE :S △ACF =1:3,由①知:△FAG ≌△FAE ,∴S △FAG :S △ACF =1:3,∴12AG ⋅FK :12AC ⋅FK =1:3,∴AG :AC =1:3,∵AG =2,∴AC =6.【点睛】本题主要考查了全等三角形的性质与判定,解题的关键在于能够熟练掌握全等三角形的相关知识.3.在平面直角坐标系中,点A 的坐标是(0,a ),点B 的坐标(b ,0)且a ,b 满足a 2-12a +36+a -b =0.(1)求A 、B 两点的坐标;(2)如图(1),点C 为x 轴负半轴一动点,OC <OB ,BD ⊥AC 于D ,交y 轴于点E ,求证:OD 平分∠CDB .(3)如图(2),点F 为AB 的中点,点G 为x 正半轴点B 右侧的一动点,过点F 作FG 的垂线FH ,交y 轴的负半轴于点H ,那么当点G 的位置不断变化时,S △AFH -S △FBG 的值是否发生变化?若变化,请说明理由;若不变化,请求出相应结果.【答案】(1)A (0,6),B (6,0);(2)证明见解析;(3)不变化,S △AFH -S △FBG =9.【分析】(1)由非负性可求a ,b 的值,即可求A 、B 两点的坐标;(2)过点O 作OM ⊥BD 于M ,ON ⊥AC 于N ,根据全等三角形的判定和性质解答即可;(3)由于点F 是等腰直角三角形AOB 的斜边的中点,所以连接OF ,得出OF =BF .∠BFO =∠GFH ,进而得出∠OFH =∠BFG ,利用等腰直角三角形和全等三角形的判定和性质以及三角形面积公式解答即可.【解析】解:(1)∵a 2-12a +36+a -b =0∴(a -6)2+a -b =0,∴a -6=0a -b =0 ,即a =b =6.∴A (0,6),B (6,0).(2)如图,过点O 作OM ⊥BD 于M ,ON ⊥AC 于N ,根据题意可知∠ACO +∠CAO =90°.∵BD ⊥AC ,∴∠BCD +∠CBE =90°,∴∠CAO =∠CBE .∵A (0,6),B (6,0),∴OA =OB =6.在△AOC 和△BOE 中,∠CAO =∠EBOOA =OB ∠AOC =∠BOE =90°,∴△AOC ≅△BOE (ASA ).∴OE =OC ,AC =BE ,S △AOC =S △BOE .∴12AC ∙ON =12BE ∙OM ,∴OM =ON ,∴点O 一定在∠CDB 的角平分线上,即OD 平分∠CDB .(3)如图,连接OF ,∵△AOB 是等腰直角三角形且点F 为AB 的中点,∴OF ⊥AB ,OF =FB ,OF 平分∠AOB .∴∠OFB =∠OFH +∠HFB =90°.又∵FG ⊥FH ,∴∠HFG =∠BFG +∠HFB =90°,∴∠OFH =∠BFG .∵∠FOB =12∠AOB =45°,∴∠FOH =∠FOB +∠HOB =45°+90°=135°.又∵∠FBG =180°-∠ABO =180°-45°=135°,∴∠FOH =∠FBG .在△FOH 和△FBG 中∠OFH =∠BFGOF =BF ∠FOH =∠FBG,∴△FOH ≅△FBG (ASA ).∴S △FOH =S △FBG ,∴S △AFH -S △FBG =S △AFH -S △FOH =S △FOA =12S △AOB =12×12OA ∙OB =14×6×6=9.故不发生变化,且S △AFH -S △FBG =9.【点睛】本题为三角形综合题,考查非负数的性质,角平分线的判定,等腰直角三角形的性质和判定、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,正确添加辅助线,构造全等三角形解决问题,属于中考压轴题.类型二、过边上的点向角平分线作垂线构造等腰三角形2已知:ΔABC 中,D 为BC 的中点,AG 平分∠BAC ,CG ⊥AG 于G ,连结DG ,若AB =6,AC =4,求DG 的长.【答案】DG =1【分析】延长CG 交AB 于点E . 根据等腰三角形的判定与性质得CG =EG ,AE =AC ,再根据三角形中位线的性质得出DG =12BE =12(AB -AC ),从而得出DG 的长.【详解】解:延长CG 交AB 于点E .∵AG 平分∠BAC ,CG ⊥AG 于G ,∴CG =EG ,AE =AC =4,∴BE =AB -AC =2,∵CG =EG ,D 为BC 的中点,∴DG =12BE =1.故答案为DG =1.【点睛】本题考查等腰三角形的判定与性质,三角形中位线定理,根据题意作出辅助线,利用三角形中位线定理求解是解题的关键. 1.已知:等腰直角三角形ABC 中,∠ACB =90°;AC =BC ;∠1=∠3;BE ⊥AD .求证:BE =12AD .【答案】见解析.【分析】延长AC 、BE 交于F ,首先由ASA 证明△AEF ≌△AEB ,得到BE =12BF ,然后再次通过ASA 证明△ACD ≌△BCF ,得到AD =BF ,问题得解.【解析】证明:延长AC 、BE 交于F ,∵∠1=∠3,BE ⊥AE ,在△AEF 和△AEB 中,∠1=∠3AE =AE ∠AEF =∠AEB =90°,∴△AEF ≌△AEB (ASA),∴FE =BE ,∴BE =12BF ,∵∠ACD =∠BED =90°,∠ADC =∠BDE ,∴∠1=∠2,在△ACD 和△BCF 中,∠ACD =∠BCF =90°AC =BC ∠1=∠2,∴△ACD ≌△BCF (ASA ),∴AD =BF ,∴BE =12AD .【点睛】本题主要考查了全等三角形的判定和性质,正确作出辅助线,两次证明全等是解题关键,也考查学生的推理能力,题目比较好,有一定的难度. 2.如图,在△ABC 中,∠C =90°,BC=AC ,D 是AC 上一点,AE ⊥BD 交BD 的延长线于E ,AE =12BD ,且DF ⊥AB 于F ,求证:CD =DF 【答案】见解析【解析】证明:延长AE 、BC 交于点F . 如图所示:∵AE ⊥BE ,∴∠BEA =90°,又∠ACF =∠ACB =90°,∴∠DBC +∠AFC =∠FAC +∠AFC =90°,∴∠DBC =∠FAC ,在△ACF 和△BCD 中,∠ACF =∠BCD =90°AC =BC ∠FAC =∠DBC,∴△ACF ≌△BCD (ASA ),∴AF =BD .又AE =12BD ,∴AE =12AF ,即点E 是AF 的中点,∴AB =BF ,∴BD 是∠ABC 的角平分线,∵∠C =90°,DF ⊥AB 于F ,∴CD =DF .类型三、利用角平分线的性质,在角两边截长补短3如图,在ΔABC 中,AB >AC ,AD 平分∠BAC 交BC 于D,求证:AB -AC >BD -CD .【答案】详见解析【分析】可以在AB 上截取AE =AC ,构造三角形全等,再结合三角形三边关系可证得结论.【详解】在AB 上截取AE =AC ,则BE=AB-AC,在△AED和△ACD中,AE=AC∠EAD=∠CADAD=AD,∴△AED≌△ACD(SAS),∴DE=DC,在△BDE中,BD-DE<BE(三角形两边之差小于第三边),∴BE>BD-CD,即AB-AC>BD-CD.【点睛】本题考查了全等三角形的判定与性质,三角形三边关系,构造三角形全等是解题的关键.1.如图所示,在ΔABC中,∠ACB=60°,AE,BD是ΔABC的角平分线,AE,BD交于点G,求证:GD=GE.【答案】详见解析【分析】在AB上截AF=AD,连接FG,根据角平分线的性质、结合三角形内角和定理可得∠AGD=60°,∠AGB=120°,证明ΔADG≌ΔAFG,得GD=GF,∠AGD=∠AGF=60°,可证得ΔBGF≌ΔBGE,即可得GF=GE=GD.【解析】证明:在AB上截AF=AD,连接FG,∵AE平分∠BAC,∴∠EAC=∠EAB,又∵AG=AG,∴ΔADG≌ΔAFG ,∴GD=GF,∠AGD=∠AGF,∵∠ACB=60°,AE,BD是ΔABC的角平分线,∴∠AGB=180°-12∠CAB-12∠CBA=180°-12∠CAB+∠CBA=120°∴∠AGD=∠AGF=∠BGF=∠BGE=60°,∵∠BGF =∠BGEBG =BG∠GBF =∠GBE∴ΔBGF ≌ΔBGE ASA ,∴GF =GE ,∴GD =GE .【点睛】本题考查角平分线的性质、全等三角形的判定和性质,作辅助线是解题的关键.2.阅读下面材料:小明遇到这样一个问题:如图一,△ABC 中,∠A =90°,AB =AC ,BD 平分∠ABC ,猜想线段AD 与DC 数量关系.小明发现可以用下面方法解决问题:作DE ⊥BC 交BC 于点E :(1)根据阅读材料可得AD 与DC 的数量关系为.(2)如图二,△ABC 中,∠A =120°,AB =AC ,BD 平分∠ABC ,猜想线段AD 与DC 的数量关系,并证明你的猜想.(3)如图三,△ABC 中,∠A =100°,AB =AC ,BD 平分∠ABC ,猜想线段AD 与BD 、BC 的数量关系,并证明你的猜想.【答案】(1)CD =2AD ;(2)CD =3AD ;(3)BC =AD +BD .【分析】(1)由角平分线的性质可得AD =DE ,根据∠A =90°,AB =AC ,可得∠C =45°,由DE ⊥BC 可得△DEC 是等腰直角三角形,可得CD =2DE ,进而可得答案;(2)在BC 上截取BE =AB ,连接DE ,利用SAS 可证明△ABD ≌△EBD ,可得AD =DE ,∠BED =∠A =120°,由等腰三角形的性质可得∠C =30°,利用三角形外角性质可得∠CDE =90°,利用含30°角的直角三角形的性质即可得答案;(3)在BC 上取一点E ,使BE =BD ,作DF ⊥BA 于F ,DG ⊥BC 于G ,由角平分线的性质就可以得出DF =DG ,利用AAS 可证明△DAF ≌△DEG ,可得DA =DE ,利用外角性质可求出∠EDC =40°,进而可得DE =CE ,即可得出结论.【解析】(1)∵∠A =90°,BD 平分∠ABC ,DE ⊥BC ,∴DE =AD ,∵∠A =90°,AB =AC ,∴∠C =45°,∴△CDE 是等腰直角三角形,∴CD =2DE =2AD ,故答案为CD =2AD(2)如图,在BC 上截取BE =AB ,连接DE ,∵BD 平分∠ABC ,∴∠ABD =∠DBE ,在△ABD 和△EBD 中,AB =BE∠ABD=∠DBE BD =BD,∴△ABD ≌△EBD ,∴DE =AD ,∠BED =∠A =120°,∵AB =AC ,∴∠C =∠ABC =30°,∴∠CDE =∠BED -∠C =90°,∴CD =3DE =3AD .(3)如图,在BC 上取一点E ,是BE =BD ,作DF ⊥BA 于F ,DG ⊥BC 于G ,∴∠DFA =∠DGE =90°.∵BD 平分∠ABC ,DF ⊥BA ,DG ⊥BC ,∴DF =DG .∵∠BAC =100°,AB =AC ,∴∠FAD =80°,∠ABC =∠C =40°,∴∠DBC =20°,∵BE =BD ,∴∠BED =∠BDE =80°,∴∠FAD =∠BED .在△DAF 和△DEG 中,∠DFA =∠DGE∠FAD =∠BED DF =DG,∴△DAF ≌△DEG (AAS ),∴AD =ED .∵∠BED =∠C +∠EDC ,∴80°=40+∠EDC ,∴∠EDC =40°,∴∠EDC =∠C ,∴DE =CE ,∴AD =CE .∵BC =BE +CE ,∴BC =BD +AD .【点睛】本题考查了等腰三角形的性质的运用,角平分线的性质的运用,全等三角形的判定及性质的运用,解答时合理添加辅助线是解答本题的关键.3.如图,已知B (-1,0),C (1,0),A 为y 轴正半轴上一点,点D 为第二象限一动点,E 在BD 的延长线上,CD 交AB 于F ,且∠BDC =∠BAC .(1)求证:∠ABD =∠ACD ;(2)求证:AD 平分∠CDE ;(3)若在点D 运动的过程中,始终有DC =DA +DB ,在此过程中,∠BAC 的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC 的度数.【答案】(1)见解析;(2)见解析;(3)不变,60°【分析】(1)根据∠BDC=∠BAC,∠DFB=∠AFC,再结合∠ABD+∠BDC+∠DFB=∠BAC+∠ACD +∠AFC=180°,即可得出结论;(2)过点A作AM⊥CD于点M,作AN⊥BE于点N.运用“AAS”证明△ACM≌△ABN得AM=AN.根据“到角的两边距离相等的点在角的平分线上”得证;(3)运用截长法在CD上截取CP=BD,连接AP.证明△ACP≌ABD得△ADP为等边三角形,从而求∠BAC的度数.【解析】(1)证明:∵∠BDC=∠BAC,∠DFB=∠AFC,又∵∠ABD+∠BDC+∠DFB=∠BAC+∠ACD+∠AFC=180°,∴∠ABD=∠ACD;(2)过点A作AM⊥CD于点M,作AN⊥BE于点N.则∠AMC=∠ANB=90°,∵OB=OC,OA⊥BC,∴AB=AC,∵∠ABD=∠ACD,∴△ACM≌△ABN(AAS),∴AM=AN,∴AD平分∠CDE(到角的两边距离相等的点在角的平分线上);(3)∠BAC的度数不变化.在CD上截取CP=BD,连接AP.∵CD=AD+BD,∴AD=PD,∵AB=AC,∠ABD=∠ACD,BD=CP,∴△ABD≌△ACP,∴AD=AP,∠BAD=∠CAP,∴AD=AP=PD,即△ADP是等边三角形,∴∠DAP=60°,∴∠BAC=∠BAP+∠CAP=∠BAP+∠BAD=60°.【点睛】此题考查全等三角形的判定与性质,运用了角平分线的判定定理和“截长补短”的数学思想方法,综合性较强.4.如图1,点A、D在y轴正半轴上,点B、C分别在x轴上,CD平分∠ACB与y轴交于D点,∠CAO=90°-∠BDO.(1)求证:AC=BC;(2)在(1)中点C的坐标为4,0,点E为AC上一点,且∠DEA=∠DBO,如图2,求BC+EC的长;(3)在(1)中,过D作DF⊥AC于F点,点H为FC上一动点,点G为OC上一动点,(如图3),当点H在FC上移动、点G在OC上移动时,始终满足∠GDH=∠GDO+∠FDH,试判断FH、GH、OG这三者之间的数量关系,写出你的结论并加以证明.【答案】(1)见解析;(2)8;(3)GH=FH+OG,证明见解析.【分析】(1)结合题意易得∠CAO=∠CBD,从而易证△CAO≌△CBD AAS得到结论;(2)如图所示,过D作DN⊥AC于N点,结合(1)易证得Rt△BDO≌Rt△EDN HL及Rt△CDO≌Rt△CDN HL,由全等三角形的性质可求解;(3)如图所示,在x轴的负半轴上取OM=FH,连接DM,易证得△DFH≌△DOM SAS,得到DH= DM及∠1=∠ODM,结合题意易得∠GDH=∠GDM,再证得△GDH≌△GDM SAS得到MG=GH从而得到结论.【解析】(1)证明:∵∠CAO=90°-∠BDO,∠CBD=90°-∠BDO,∴∠CAO=∠CBD,∵CD平分∠ACB,∴∠ACD=∠BCD,在△CAD和△CBD中,∠CAO=∠CBD ∠ACD=∠BCD CD=CD,∴△CAD≌△CBD AAS,∴AC=BC;(2)解:由(1)知∠DEA=∠DBO=∠CAD,∴BD=AD=DE,如图所示,过D作DN⊥AC于N点,∵CD平分∠ACB,∴DO=DN,在Rt△BDO和Rt△EDN中,BD=DE DO=DN,∴Rt△BDO≌Rt△EDN HL,∴BO=EN,在Rt△CDO和Rt△CDN中,CD=CD DO=DN,∴Rt△CDO≌Rt△CDN HL,∴CO=CN,∴BC+EC=BO+OC+CN-EN=2OC=8;(3)GH=FH+OG.∵CD平分∠ACB,在x轴的负半轴上取OM=FH,连接DM,如图所示:在△DFH和△DOM中,DF=DO∠DFH=∠DOM OM=FH, ∴△DFH≌△DOM SAS,∴DH=DM,∠1=∠ODM,∴∠GDH=∠1+∠2=∠ODM+∠2=∠GDM,在△GDH和△GDM中,DH=DM∠GDH=∠GDM DG=DG,∴△GDH≌△GDM SAS,∴MG=GH,∴GH=MG=OM+OG=FH+OG.【点睛】本题考查了角平分线的性质,全等三角形的判定和性质的综合运用;解题的关键是熟练掌握全等三角形的判定和性质的综合运用.课后训练1如图,在ΔABC中,∠B=60°,AD、CE分别是∠BAC、∠ACB的平分线,AD、CE相交于点F,试判断FE和FD之间的数量关系.【答案】详见解析【分析】如图,过点F作FH⊥BC,FG⊥AB,垂足分别为H、G,根据角平分线,可得点F是ΔABC的内心,则有FG=FH,继而根据三角形内心的性质可得∠FDH=∠FEG,从而可得ΔFDH≌ΔFEG,继而可得FE=FD.【详解】FE=FD,理由如下:如图,过点F作FH⊥BC,FG⊥AB,垂足分别为H、G.∵F是∠BAC,∠ACB的平分线AD、CE的交点,∴F为ΔABC的内心,∴FG=FH.∵∠B=60°,∴∠FAC+∠FCA=12∠BAC+∠BCA=60°,又∵∠FDH=∠B+∠BAD=60°+∠BAD;∠FEG=∠BAD+∠FAC+∠FCA=60°+∠BAD,∴∠FDH=∠FEG,又GH=FH,∴ΔFDH≌ΔFEG,∴FD=FE.【点睛】本题考查了三角形的内心的性质,全等三角形的判定与性质解题的关键是注意数形结合思想的应用,注意辅助线的作法.2如图,在ΔABC中,∠ABC=2∠C,BE平分∠ABC,交AC于E,AD⊥BE于D,求证:AC=2BD.【答案】详见解析【分析】延长BD至N,使DN=BD,易得AD垂直平分BN,继而证得AE=EN,则可证得结论.【详解】延长BD至N,使DN=BD,连接AN.∵AD⊥BE,∴AD垂直平分BN,∴AB=AN,∴∠N=∠ABN,又∵BE平分∠ABC,∠ABC=2∠C,∴∠ABN=∠NBC=∠C,∴∠NBC=∠C,∴AN∥BC,∴∠C=∠NAC,∴∠NAC=∠N,∴AE=EN,∵BE=EC,∴AC=BN=2BD.【点睛】本题考查了等腰三角形的性质与判定、线段垂直平分线的性质以及平行线的判定与性质.注意掌握辅助线的作法,注意数形结合思想的应用.3如图,在△ABC中,AB=AC,∠A=100°,BD是∠ABC的平分线,延长BD至点E,DE=AD,试求∠ECA的度数.【答案】40°【分析】在BC上截取BF=AB,连接DF,通过证明△ABD≌△FBD SAS,可得∠DFC=180°-∠A= 80°,再通过证明△DCE≌△DCF SAS,即可求得∠ECA=∠DCB=40°【详解】解:如图,在BC 上截取BF =AB ,连接DF ,∵BD 是∠ABC 的平分线,∴∠ABD =∠FBD ,在△ABD 和△FBD 中,AB =FB ,∠ABD =∠FBD ,BD =BD ,∴△ABD ≌△FBD SAS ,∴∠BFD =∠A ,AD =DF ,∴DE =DF ,∴∠DFC =180°-∠A =80°,又∵∠ABC =∠ACB =40°,∴∠FDC =60°,∵∠EDC =∠ADB =180°-∠ABD -∠A =60°,∴∠EDC =∠FDC ,在△DCE 和△DCF 中,DE =DF ,∠EDC =∠FDC ,DC =DC ,∴△DCE ≌△DCF SAS ,故∠ECA =∠DCB =40°.【点睛】本题考查了全等三角形的问题,掌握全等三角形的性质以及判定定理是解题的关键.4如图1,在△ABC 中,CM 是AB 边的中线,∠BCN =∠BCM 交AB 延长线于点N ,2CM =CN.(1)求证AC =BN ;(2)如图2,NP 平分∠ANC 交CM 于点P ,交BC 于点O ,若∠AMC =120°,CP =kAC ,求CP CM的值.【答案】(1)见解析;(2)2k k +1【分析】(1)延长CM 至点D ,使CM =DM ,可证ΔACM ≅ΔBDM ,由全等三角形的性质从而得出AC =BD ,根据题目已知,可证ΔDCB ≅ΔNCB ,由全等三角形的性质从而得出BN =BD ,等量代换即可得出答案;(2)如图所示,作CQ =CP ,可证ΔCPO ≅ΔCQO ,由全等三角形的性质相等角从而得出∠1=∠2=∠3,进而得出∠4=∠5,故可证ΔNOB ≅ΔNOQ 等量转化即可求出CP CM的值.【详解】(1)如图1所示,延长CM 至点D ,使CM =DM ,在△ACM 与△BDM 中,CM =DM∠AMC =∠BMD AM =BM,∴ΔACM ≅ΔBDM ,∴AC =BD ,∵2CM =CN ,∴CD =CN ,在△DCB 与△NCB 中,CD =CN∠DCB =∠NCB CB =CB,∴ΔDCB ≅ΔNCB ,∴BN =BD ,∴AC =BN ;(2)如图所示,∵∠AMC =120°,∴∠CMN =60°,∵NP 平分∠MNC ,∠BCN =∠BCM ,∠PNC +∠BCN =12∠AMC =60°,∴∠CON =120°,∠COP =60°,∴∠CMN +∠BOP =180°,作CQ =CP ,在△CPO 与△CQO 中,CQ =CP∠QCO =∠PCO CO =CO,∴ΔCPO ≅ΔCQO ,∴∠1=∠2=∠3,∴∠4=∠5,在△NOB 与△NOQ 中,∠4=∠5∠BNO =∠QNO NO =NO,∴ΔNOB ≅ΔNOQ ,∴BN =NQ ,∴CN =CP +NB ,∴2CM =CP +AC ,设AC =a ,∴CP =ka ,CM =a (k +1)2,∴CP CM=2k k +1.【点睛】本题考查全等三角形的综合应用,掌握全等三角形的判定与性质是解题的关键.5如图,在△ABC 中,AD为BC 边上的高,AE 是∠BAD 的角平分线,点F 为AE 上一点,连接BF ,∠BFE =45°.(1)求证:BF平分∠ABE;(2)连接CF交AD于点G,若SΔABF=SΔCBF,求证:∠AFC=90°;(3)在(2)的条件下,当BE=3,AG=4.5时,求线段AB的长.【答案】(1)见解析(2)见解析(3)7.5【分析】(1)根据AE是∠BAD的角平分线和∠BFE=45°得2∠FBA+2∠BAF=90°,再结合AD为BC边上的高得出∠EBF=∠FBA即可证明;(2)过点F作FM⊥BC于点M,FN⊥AB于点N,证明△ABF≅△CBF,得出∠AFB=∠CFB,再根据∠BFE=45°,解出∠AFB=∠CFB=135°即可证明;(3)根据△ABF≅△CBF及AD为BC边上的高证明△AFG≅△CFE,得出AG=EC=4.5,再根据BE= 3,解得BC=BE+EC=7.5,结合△ABF≅△CBF即可求出AB=BC=7.5;【详解】(1)证明:∵AE是∠BAD的角平分线,∴∠BAD=2∠BAF.∵∠BFE=45°,∴∠FBA+∠BAF=45°.∴2∠FBA+2∠BAF=90°.∵AD为BC边上的高,∴∠EBF+∠FBA+2∠BAF=90°.∴∠EBF=∠FBA.∴BF平分∠ABE.(2)过点F作FM⊥BC于点M,FN⊥AB于点N,∵BF平分∠ABE,且FM⊥BC,FN⊥AB,∴FM=FN.∵SΔABF=SΔCBF,∴AB=BC,∵BF平分∠ABE,∴∠ABF=∠CBF,在△ABF和△CBF中,AB=BC∠ABF=∠CBF BF=BF∴△ABF≅△CBF(SAS),∴∠AFB=∠CFB,∵∠BFE=45°,∴∠AFB =∠CFB =135°,∴∠AFC =90°,(3)∵△ABF ≅△CBF ,∴AF =FC ,∠AFC =90°,∴∠AFC =∠EFC ,∵AD 为BC 边上的高,∴∠ADE =90°,∴∠EAD +∠AEC =∠FCE +∠AEC ,∴∠EAD =∠FCE .在△AFG 和△CFE 中,∠EAD =∠FCEAF =CF∠AFC =∠EFC∴△AFG ≅△CFE (ASA ).∴AG =EC =4.5,∵BE =3,∴BC =BE +EC =7.5,∵△ABF ≅△CBF ,∴AB =BC =7.5.【点睛】本题主要考查了全等三角形的证明以及性质运用,角平分线的判定以及基本性质,熟练掌握全等三角形的几种判定方法以及角平分线的判定是解答该题的关键.6已知△ABC 中,BE 平分∠ABC ,BE 交AC 于点E ,CD 平分∠ACB ,交AB 于点D ,BE与CD 交于点O .(1)如图1,求证:∠BOC =90°+12∠BAC .(2)如图2,连接OA ,求证:OA 平分∠BAC .(3)如图3,若∠BAC =60°,BD =4,CE =2,求OD OC的值.【答案】(1)见解析(2)详见解析(3)23【分析】(1)由角平分线的性质得出∠OBC=12∠ABC,∠OCB=12∠ACB,由三角形的内角和定理得出∠ABC+∠ACB=180°-∠BAC,∠BOC+∠OBC+∠OCB=180°,代入即可得出结论;(2)过点O作ON⊥BC于N,OM⊥AB于M,OK⊥AC于K,证明OM=OK,则点O在∠BAC的平分线上,即可得出结论;(3)过点B作BH⊥CD交CD的延长线于点H,过点O作OF平分∠BOC交BC于点F,过点O作ON⊥BC于N,OM⊥AB于M,证明∠BOF=∠BOD,∠COF=∠COE,由角平分线的性质得出∠OBF=∠OBD,∠OCF=∠OCE,由ASA证得△BOF≌△BOD,BF=BD=4,由ASA证得△COF≌△COE,CF=CE=2,求出BC=6,由S△BOD:S△BOC=12OD⋅BH:12OC⋅BH=OD:OC,S△BOD:S△BOC=12BD⋅OM:12BC⋅ON=BD:BC,进行计算即可得出结论.【详解】(1)证明:∵BE平分∠ABC,CD平分∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠ABC+∠ACB+∠BAC=180°,∴∠ABC+∠ACB=180°-∠BAC,∵∠BOC+∠OBC+∠OCB=180°,∴∠BOC=180°-∠OBC+∠OCB=180°-12∠ABC+12∠ACB=180°-12∠ABC+∠ACB=180°-12180°-∠BAC=180°-90°+12∠BAC=90°+12∠BAC;(2)证明:如图,过点O作ON⊥BC于N,OM⊥AB于M,OK⊥AC于K,∵BE平分∠ABC,CD平分∠ACB,∴OM=ON,ON=OK,∴OM=OK,∴点O在∠BAC的平分线上,∴OA平分∠BAC;(3)解:如图,过点B作BH⊥CD交CD的延长线于点H,过点O作OF平分∠BOC交BC于点F,过点O作ON⊥BC于N,OM⊥AB于M,∵∠BAC =60°,∴∠BOC =90°+12∠BAC =120°,∴∠BOD =∠COE =180°-∠BOC =180°-120°=60°,∵OF 平分∠BOC ,∴∠BOF =∠COF =12∠BOC =60°,∴∠BOF =∠BOD ,∠COF =∠COE ,∵BE 平分∠ABC ,CD 平分∠ACB ,∴∠OBF =∠OBD ,∠OCF =∠OCE ,在△BOF 和△BOD 中,∠OBF =∠OBDBO =BO ∠BOF =∠BOD,∴△BOF ≌△BOD ASA ,∴BF =BD =4,在△COF 和△COE 中,∠OCF =∠OCECO =CO ∠COF =∠COE,∴△COF ≌△COE ASA ,∴CF =CE =2,∴BC =BF +CF =4+2=6,∵S △BOD :S △BOC =12OD ⋅BH :12OC ⋅BH =OD :OC ,S △BOD :S △BOC =12BD ⋅OM :12BC ⋅ON =BD :BC ,∴OD OC =BD BC=46=23.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质、角平分线的判定与性质、三角形内角和定理、三角形面积的计算等知识,熟练掌握角平分线的性质与判定以及全等三角形的判定与性质是解题的关键.7已知:在ΔABC 和ΔDEC 中,AC =BC ,DC =EC ,∠ACB =∠ECD =α.(1)如图1,A ,C ,D 在同一直线上,延长AE 交BD 于F ,求证:AF ⊥BD ;(2)如图2,AE 与BD 交于F ,G 在AD 上,若FG 平分∠AFD ,求证:点C 在直线FG 上.【答案】(1)见解析(2)见解析【分析】(1)先说明∠ACB =∠ECD =12×180°=90°,根据SAS 证明ΔACE ≌ΔBCD ,得出∠CAE =∠CBD ,说明∠CAE +∠CDB =90°,即可得出答案;(2)连接CF ,过点C 作CM ⊥BD 于点M ,CN ⊥AE 于点N ,根据SAS 证明ΔBCD ≌ΔACE 得出∠CBM =∠CAN ,根据AAS 证明ΔCBM ≌ΔCAN ,得出CM =CN ,说明CF 平分∠MFN ,得出∠AFG =∠DFG ,证明∠CFM +∠MFA +∠AFG =∠CFN +∠NFD +∠DFG =180°即可得出结论.【详解】(1)证明:∵A ,C ,D 在同一直线上,∠ACB =∠ECD =α,∴∠ACB =∠ECD =12×180°=90°,∵在ΔACE 和ΔBCD 中AC =BC∠ACE =∠BCD CE =CD,∴ΔACE ≌ΔBCD SAS ,∴∠CAE =∠CBD ,∵∠CBD +∠BDC =90°,∴∠CAE +∠CDB =90°,∴∠AFD =180°-∠CAE +∠CDB =90°,∴AF ⊥BD .(2)证明:连接CF ,过点C 作CM ⊥BD 于点M ,CN ⊥AE 于点N ,如图所示:∵∠ACB =∠DCE ,∴∠ACB +∠ACD =∠ACD +∠DCE ,即∠BCD =∠ACE ,∵在ΔBCD 和ΔACE 中BC =AC∠BCD =∠ACE CD =CE,∴ΔBCD ≌ΔACE SAS ,∴∠CBM =∠CAN ,∵在ΔCBM 和ΔCAN 中∠CBM =∠CAN∠CMB =∠CNA =90°CB =CA,∴ΔCBM ≌ΔCAN ,∴CM =CN ,∵CM⊥BD,CN⊥AE,∴CF平分∠MFN,∴∠MFC=∠NFC,∵FG平分∠AFD,∴∠AFG=∠DFG,∵∠MFA=∠NFD,∴∠CFM+∠MFA+∠AFG=∠CFN+∠NFD+∠DFG,∵∠CFM+∠MFA+∠AFG+∠CFN+∠NFD+∠DFG=360°,∴∠CFM+∠MFA+∠AFG=∠CFN+∠NFD+∠DFG=180°,∴C、F、G在同一直线上,即点C在直线FG上.【点睛】本题主要考查了全等三角形的判定和性质,角平分线的性质,垂直的定义,解题的关键是作出辅助线,构造全等三角形.。

角平分线专项练习30题(有答案)ok

角平分线专项练习30题(有答案)ok

角平分线专项练习30题(有答案)1.如图,在△ABC中,∠C=90°,AB=2AC,AD平分∠BAC,求证:点D在AB的垂直平分线上.2.如图,在△ABC中,PD⊥AC,PE⊥AB,PF⊥BC,PD=PE=PF,求证:∠BPC=90°+∠BAC.3.如图已知:BD⊥AC,CE⊥AB,垂足分别是D、E,BD、CE交于F,且CF=FB,求证:AF平分∠BAC.4.如图,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,若AB=AC.求证:AD平分∠BAC.5.如图,在△ABC中,∠BAC=90°,BE平分∠ABC,DE⊥BC于D,DE=DC.求证:BC=AB+AE.6.已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠BAD;(2)试说明线段DM与AM有怎样的位置关系?(3)线段CD、AB、AD间有怎样的关系?直接写出结果.7.如图,CD是Rt△ABC斜边上的高,∠BAC的平分线分别交BC、CD于点E、F.(1)求证:△ACF∽△ABE;(2)若AC=6cm,AF=3cm,AB=10cm,求出AE的长度.8.如图,CD∥AB,∠ABC,∠BCD的角平分线交于E点,且E在AD上,CE交BA的延长线于F点.(1)BE与CF互相垂直吗?若垂直,请说明理由;(2)若CD=3,AB=4,求BC的长.9.如图,直线MN分别交直线AB,CD于点E,F,EG平分∠BEF,若∠1=50°,∠2=65°,(1)求证:AB∥CD;(2)在(1)的条件下,求∠AEM的度数.10.如图,AD平分∠MAN,BD⊥AM,CD⊥AN,垂足分别为B、C,E为线段AB上一点,(1)用尺规在射线AN上找一点F,使△CDF与△BDE全等(保留作图痕迹);(2)若BE=3,请写出此时线段AE与AF的数量关系,并说明理由.11.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,(1)分别作出D到BA、BC的距离DE、DF;(2)求证:∠A+∠C=180°.12.已知:如图,△ABC中,∠ABC=90°,BD⊥AC于D,AE平分∠BAC,EF∥DC,交BC于F,求证:BE=FC.13.如图,四边形AOBC中,AC=BC,∠A+∠OBC=180°,CD⊥OA于D.(1)求证:OC平分∠AOB;(2)若OD=3DA=6,求OB的长.14.如图,点D、B分别在∠A的两边上,C是∠DAB内一点,AB=AD,BC=CD,CE⊥AD于E,CF⊥AF于F,求证:CE=CF.15.如图,已知:在四边形ABCD中,过C作CE⊥AB于E,并且CD=CB,∠ABC+∠ADC=180°,(1)求证:AC平分∠BAD;(2)若AE=3BE=9,求AD的长;(3)△ABC和△ACD的面积分别为36和24,求△BCE的面积.16.如图,在△ABC中,AB>AC,E为BC边的中点,AD为∠BAC的平分线,过E作AD的平行线,交AB于F,交CA的延长线于G.求证:BF=CG.17.如图,AE平分∠BAC,BD=DC,DE⊥BC,EM⊥AB,EN⊥AC.求证:BM=CN.18.如图,△ABC中,∠B的平分线与∠C的外角的平分线交于P点,PD⊥AC于D,PH⊥BA于H,求证:AP平分∠HAD.19.如图,△ABC中,若AD平分∠BAC,过D点作DE⊥AB,DF⊥AC,分别交AB、AC于E、F两点.求证:AD⊥EF.(2)若∠MON=80°,求∠PAB的度数.21.如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC.(1)求证:∠PCB+∠BAP=180°;(2)若BC=12cm,AB=6cm,PA=5cm,求BP的长.22.如图,△ABC中,AD是它的角平分线,P是AD上的一点,PE∥AB交BC与E,PF∥AC交BC与F.求证:D 到PE的距离与D到PF的距离相等.23.如图,在△ABC中,AD平分∠BAC,DG⊥BC且平分BC于点G,DE⊥AB于E,DF⊥AC于F.证明:BE=CF;(提示:连接线段BD、CD)25.如图,已知∠ABC=40°,∠ACB=60°,BO,CO平分∠ABC和∠ACB,DE过O点,且DE∥BC,求∠BOC的度数.26.四边形ABCD中,AC平分∠BAD,CE⊥AB于E,∠ADC+∠B=180°求证:2AE=AB+AD.27.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE、BE的长.(2)ED=BC+BD.29.如图,在△ABC中,∠C=90°,M为AB的中点,DM⊥AB,CD平分∠ACB,求证:MD=AM.30.如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,M为OP上任一点,连接CM、DM,则有CM与DM相等,试说明你的理由.参考答案:1.证明:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴CD=DE,在△ADC和△ADE中,,∴△ADC≌△ADE(HL),∴AE=AC,∵AB=2AC,∴BE=AB﹣AE=2AC﹣AE=AE,∴点D在AB的垂直平分线上.2.证明:连接AP,且延长至G,∵PD⊥AC,PE⊥AB,PF⊥BC,PD=PE=PF,∴点P是△ABC三角平分线的交点,∴AP平分∠BAC,∴∠CAG=∠BAG=∠BAC,∵CP平分∠ACB,BP平分∠ABC,∴∠ACP=∠ACB,∠ABP=∠ABC,∴∠CPG=∠BAG+∠ABP=(∠BAC+∠ACB),∠BPG=∠BAG+∠ABP=(∠BAC+∠BC),∴∠BPC=∠CPG+∠BPG=(∠BAC+∠ACB)+(∠BAC+∠ABC)=∠BAC+(180°﹣∠BAC)=90°+∠BAC.3.证明:∵BD⊥AC,CE⊥AB,∠CDF=∠BEF=90°,在△CDF与△BEF中,,∴DF=EF,又∵BD⊥AC,CE⊥AB,∴AF平分∠BAC(到角的两边距离相等的点在角的平分线上)4.解:方法一:连接BC,∵BE⊥AC于E,CF⊥AB于F,∴∠CFB=∠BEC=90°,∵AB=AC,∴∠ABC=∠ACB,在△BCF和△CBE中∵∴△BCF≌△CBE(AAS),∴BF=CE,在△BFD和△CED中∵,∴△BFD≌△CED(AAS),∴DF=DE,∴AD平分∠BAC.方法二:先证△AFC≌△AEB,得到AE=AF,再用(HL)证△AFD≌△三AED,得到∠FAD=∠EAD,所以AD平分∠BAC.5.解:∵∠BAC=90°,BE平分∠ABC,DE⊥BC于D,∴AE=DE,∵BE是公共边,∴△BDE≌△BAE(HL),∴BD=BA,AE=DE=DC,∴BC=BD+DC=AB+AE6.(1)证明:作ME⊥AD于E,∵MC⊥DC,ME⊥DA,MD平分∠ADC,∴ME=MC,∵M为BC中点,∴MB=MC,又∵ME=MC,∴ME=MB,又∵ME⊥AD,MB⊥AB,∴AM平分∠DAB.(2)解:DM⊥AM,理由是:∵DM平分∠CDA,AM平分∠DAB,∴∠1=∠2,∠3=∠4,∴∠1+∠3=90°,∴∠DMA=180°﹣(∠1+∠3)=90°,即DM⊥AM.(3)解:CD+AB=AD,理由是:∵ME⊥AD,MC⊥CD,∴∠C=∠DEM=90°,在Rt△DCM和Rt△DEM中∴Rt△DCM≌Rt△DEM(HL),∴CD=DE,同理AE=AB,∵AE+DE=AD,∴CD+AB=AD.7.(1)证明:∵∠ACB=90°,∠CDB=90°,∴∠ACD=90°﹣∠DCB,∠B=90°﹣∠DCB,∴∠ACD=∠B,(2分)∵AE平分∠CAB,∴∠CAE=∠EAB,(3分)∴△ACF∽△ABE;(7分)(2)解:∵△ACF∽△ABE,∴,(9分)∴AE===5cm8.解:(1)垂直.∵CD∥AB,∴∠ABC+∠BCD=180°,∵∠ABC,∠BCD的角平分线交于E点,∴∠ABE=∠EBC,∠DCE=∠ECB,∴∠EBC+∠ECB=∠ABC+∠BCD=(∠ABC+∠BCD)=90°,∴∠CEB=90°,∴BE与CF互相垂直.(2)∵∠CEB=90°,∴∠FEB=90°,在△FBE和△CBE中,∵,∴△FBE≌△CBE(ASA),∴BF=BC,EF=EC,∵CD∥AB,∴∠DCE=∠AFE,∵∠FEA=∠CED,∴△DCE≌△AFE,∴DC=AF,∵CD=3,AB=4,BF=AF+AB,∴BF=BC=7.9.(1)证明:∵∠1+∠2+∠FEG=180°,∵∠1=50°,∠2=65°,∴∠FEG=65°,∵EG平分∠BEF,∴∠BEF=2∠FEG=130°,∴∠BEF+∠1=180°,∴AB∥CD.(2)∵∠AEM=∠BEF,∵∠BEF=130°,∴∠AEM=130°,答:∠AEM的度数是130°10.解:(1)以D为圆心,DE为半径交AN于F1或F2,如图,∵AD平分∠MAN,BD⊥AM,CD⊥AN,∴DB=DC,∵DE=DF,∴Rt△CDF≌Rt△BDE(HL);(2)∵DB=DC,DA=DA,∴Rt△DBA≌Rt△DCA(HL);∴AB=AC,∵Rt△CDF≌Rt△BDE,∴BE=CF,∴当F点在F1时,AF=AE;当F点在F2时,AF2=AC+CF2=AB+CF2=AE+BE+BE,∴AF﹣AE=2BE=6.11.解:(1)如图所示:.(2)证明:∵BD平分∠ABC,DE⊥BA,DF⊥BC,∴DE=DF,∠E=∠DFC=90°,∴在Rt△DEA和Rt△DFC中∴Rt△DEA≌Rt△DFC(HL),∴∠C=∠EAD,∵∠BAD+∠EAD=180°,∴∠BAD+∠C=180°12.证明:过点E作EG⊥AB于点G,过F点作FH⊥AC于点H,∵△ABC中,∠ABC=90°,∴∠C+∠BAC=90°,∵BD⊥AC于D,∴∠ADB=90°,∴∠BAC+∠ABD=90°,∴∠C=∠ABD,∵点E在∠BAC的平分线上,∴GE=DE,∵EF∥DC且BD⊥AC于D,FH⊥AC于D∴ED=FH,∴GE=FH,在△BEG与△CFH中,,∴△BEG≌△CFH(AAS),∴BE=CF.13.证:(1)作CE⊥OB于E,∵∠A+∠OBC=180°,∠OBC+∠CBE=180°∴∠A=∠CBE,在△ACD和△BCE中,,∴△ACD≌△BCE(AAS),∴CD=CE,∴OC平分∠AOB.(2)∵OD=3DA=6,∴AD=BE=2,在Rt△ODC和Rt△OEC中∵∴Rt△ODC≌Rt△OEC(HL),∴OE=OD=6,∴OB=OE﹣BE=4.14.证明:在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,∵CE⊥AD于E,CF⊥AF于F,∴CE=CF15.解:(1)作CF⊥AD的延长线于F,∴∠F=90°.∵CE⊥AB,∴∠CEA=∠CEB=90°,∴∠F=∠CEA=∠CEB.∵∠ADC+∠CDF=180°,且∠ABC+∠ADC=180°∴∠CDF=∠B.在△CDF和△CEB中,∴△CDF≌△CEB(AAS),∴CF=CE.∵CF⊥AD,CE⊥AB,∴AC平分∠BAD;(2)在Rt△CAF和Rt△CAE中,∴Rt△CAF≌Rt△CAE(HL),∴AF=AE.∵△CDF≌△CEB,∴DF=EB.∵3BE=9,∴BE=3,∴DF=3.∵AD=AF﹣DF,∴AD=AE﹣DF.∵AE=9,∴AD=9﹣3=6;(3)∵△CAF≌△CAE,△CDF≌△CEB,∴S△CAF=S△CAE,S△CDF=S△CEB..设△BCE的面积为x,则△CDF的面积为x,由题意,得24+x=36﹣x,∴x=6,答:△BCE的面积为6.16.证明:延长FE至Q,使EQ=EF,连接CQ,∵E为BC边的中点,∴BE=CE,∵在△BEF和CEQ中,∴△BEF≌△CEQ,∴BF=CQ,∠BFE=∠Q,∵AD平分∠BAC,∴∠CAD=∠BAD,∵EF∥AD,∴∠CAD=∠G,∠BAD=∠GFA,∴∠G=∠GFA,∴∠GFA=∠BFE,∵∠BFE=∠Q(已证),∴∠G=∠Q,∴CQ=CG,∵CQ=BF,∴BF=CG.17.证明:连接BE、EC,∵BD=DC,DE⊥BC∵BE=EC.∵AE平分∠BAC,EM⊥AB,EN⊥AC,EM=EN,∠EMB=∠ENC=90°.在Rt△BME和Rt△CNE中,∵BE=EC,EM=EN,∴Rt△BME≌Rt△CNE(HL)∴BM=CN.18.证明:过P作PF⊥BE于F,∵BP平分∠ABC,PH⊥BA于H,PF⊥BE于F,∴PH=PF(角平分线上的点到角的两边距离相等).又∵CP平分∠ACE,PD⊥AC于D,PF⊥BE于F,∴PF=PD(角平分线上的点到角的两边距离相等).∴PD=PH(等量代换).∴AP平分∠HAD(到角的两边距离相等的点在这个角的平分线上).19.证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠EAD=∠FAD,∠AED=∠AFD=90°,∵∠AED+∠EAD+∠EDA=180°,∠FAD+∠AFD+∠ADF=180°,∴∠EDA=∠FDA,∵DE=DF,∴AD⊥EF三线合一)20.(1)证明:∵∠PAB=∠PBA,∴PA=PB,∵PA⊥OM于A,PB⊥ON于B,∴OP平分∠MON(到角的两边距离相等的点在角的平分线上);(2)解:∵∠MON=80°,PA⊥OM于A,PB⊥ON于B,∴∠APB=360°﹣90°×2﹣80°=100°,∵∠PAB=∠PBA,∴∠PAB=(180°﹣100°)=40°21.证明:(1)如图,过点P作PE⊥AB于E,∵∠1=∠2,PF⊥BC,∴PE=PF,在△APE和△CPF中,,∴△APE≌△CPF(HL),∴∠PAE=∠PCB,∵∠PAE+∠PAB=180°,∴∠PCB+∠BAP=180°;(2)∵△APE≌△CPF,∴AE=FC,∵BC=12cm,AB=6cm,∴AE=×(12﹣6)=3cm,BE=AB+AE=6+3=9cm,在Rt△PAE中,PE==4cm,在Rt△PBE中,PB==cm.22.证明:∵PE∥AB,PF∥AC,∴∠EPD=∠BAD,∠DPF=∠CAD,∵△ABC中,AD是它的角平分线,∴∠BAD=∠CAD,∴∠EPD=∠DPF,即DP平分∠EPF,∴D到PE的距离与D到PF的距离相等23.证明:连接BD,CD,∵AD平分∠BAC,且DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵DG⊥BC且平分BC,∴BD=CD,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF.24.证明:∵DE⊥AB的延长线于点E,DF⊥AC于点F,∴∠BED=∠CFD,∴△BDE与△CDE是直角三角形,∵,∴Rt△BDE≌Rt△CDF,∴DE=DF,∴AD是∠BAC的平分线25.解:∵∠ABC=40°,∠ACB=60°,BO,CO平分∠ABC和∠ACB,∴∠OBC+∠OCB=(∠ACB+∠ABC)=50°;∴∠BOC=180°﹣50°=130°26.证明:过C作CF⊥AD于F,∵AC平分∠BAD,∴∠FAC=∠EAC,∵CE⊥AB,CF⊥AD,∴∠DFC=∠CEB=90°,∴△AFC≌△AEC,∴AF=AE,CF=CE,∵∠ADC+∠B=180°∴∠FDC=∠EBC,∴△FDC≌△EBC∴DF=EB,∴AB+AD=AE+EB+AD=AE+DF+AD=AF+AE=2AE∴2AE=AB+AD27.(1)证明:连接BD,CD,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵DG⊥BC且平分BC,∴BD=CD,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF;(2)解:在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,设BE=x,则CF=x,∵AB=5,AC=3,AE=AB﹣BE,AF=AC+CF,∴5﹣x=3+x,解得:x=1,∴BE=1,AE=AB﹣BE=5﹣1=4.28.证明:(1)由三角形的外角性质,∠BAD+∠ABD=∠1+∠EDC,∵∠1=90°﹣∠EDC,∴∠BAD+90°=90°﹣∠EDC,∴∠BAD=∠EDC,延长DB至F,使BF=BD,则AB垂直平分DF,∴∠BAD=∠DAF,AD=AF,∴∠DAF=∠EDC,∠2=∠F,在△ADF中,∠F+∠DAF=∠1+∠EDC,∴∠1=∠F,∴∠1=∠2;(2)在△AED和△ACF中,,∴△AED≌△ACF(ASA),∴ED=CF,∵CF=BC+BF=BC+DB,∴ED=BC+BD.29.证明:如图,连接CM,设AB、CD相交于点E,则CM是斜边上的中线,MC=MB=AM,∴∠MCB=∠B,∵CD平分∠ACB,∠C=90°,∴∠BCD=×90°=45°,∴∠MCD=∠MCB﹣45°=∠B﹣45°,又∵∠DEM=∠BEC=180°﹣∠B﹣45°=135°﹣∠B,∴∠D=90°﹣∠DEM=∠B﹣45°,∴∠D=∠MCD,∴MD=MC,∴MD=AM.30.解:∵OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,∴PC=PD,∵OM是公共边,∴△POC≌△POD(HL),∴OC=OD,∴△COM≌△DOM(SAS),∴CM=DM。

专题01 角平分线四大模型在三角形中的应用(能力提升)(解析版)

专题01  角平分线四大模型在三角形中的应用(能力提升)(解析版)

专题01 角平分线四大模型在三角形中的应用(能力提升)1.如图:在四边形ABCD中,BC>DA,AD=DC,BD平分∠ABC,DH⊥BC于H,求证:(1)∠DAB+∠C=180°(2)BH=(AB+BC)【解答】证明:(1)过D作DE⊥AB,交BA延长线于E,如图所示:∵BD平分∠ABC,DH⊥BC,∴DH=DE,在Rt△ADE和Rt△CDH中,,∴Rt△ADE≌Rt△CDH(HL),∴∠C=∠DAE,∵∠DAB+∠DAE=180°,∴∠DAB+∠C=180°;(2)在Rt△BDE和Rt△BDH中,,∴Rt△BDE≌Rt△BDH(HL),∴BE=BH,∵Rt△ADE≌Rt△CDH,∴AE=CH,∴AB+BC=AB+BH+CH=BE+BH=2BH,∴BH=(AB+BC).2.如图,AD∥BC,∠D=90°,∠CPB=30°,∠DAB的角平分线与∠CBA的角平分线相交于点P,且D,P,C在同一条直线上.(1)求∠PAD的度数;(2)求证:P是线段CD的中点.【解答】(1)解:∵AD∥BC,∴∠C=180°﹣∠D=180°﹣90°=90°,∵∠CPB=30°,∴∠PBC=90°﹣∠B=60°,∵PB平分∠ABC,∴∠ABC=2∠PBC=120°,∵AD∥BC,∴∠DAB+∠ABC=180°,∴∠DAB=180°﹣120°=60°,∵AP平分∠DAB,∴∠PAD=∠DAB=30°;(2)证明:过P点作PE⊥AB于E点,如图,∵AP平分∠DAB,PD⊥AD,PE⊥AB,∴PE=PD,∵BP平分∠ABC,PC⊥BC,PE⊥AB,∴PE=PC,∴PD=PC,∴P是线段CD的中点.3.如图,梯形ABCD中,AD∥BC,E是CD的中点,AE平分∠BAD,AE⊥BE.(1)求证:BE平分∠ABC;(2)求证:AD+BC=AB;=4,求梯形ABCD的面积.(3)若S△ABE【解答】(1)证明:延长AE交BC的延长线于M,如图所示:∵AD∥BC,∴∠M=∠DAE,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠M,∴AB=MB,∵AE⊥BE,∴∠ABE=∠CBE,∴BE平分∠ABC;(2)证明:∵AB=MB,BE⊥AE,∴AE=ME,∵E是CD的中点,∴DE=CE,在△ADE和△MCE中,,∴△ADE≌△MCE(SAS),∴AD=MC,∴AD+BC=MC+BC=MB=AB;(3)解:∵AB=MB,AE=ME,∴△MBE的面积=△ABE的面积=4,∴△ABM的面积=2×4=8,∵△ADE≌△MCE,∴△ADE的面积=△MCE的面积,∴梯形ABCD的面积=△ABM的面积=8.4.【问题提出】在△ABC中,∠ACB=2∠B,AD为∠BAC的角平分线,探究线段AB,AC,CD的数量关系.【问题解决】如图1,当∠ACB=90°,过点D作DE⊥AB,垂足为E,易得AB=AC+CD;由此,如图2,当∠ACB≠90°时,猜想线段AB,AC,CD有怎样的数量关系?给出证明.【方法迁移】如图3,当∠ACB≠90°,AD为△ABC的外角平分线时,探究线段AB,AC,CD又有怎样的数量关系?直接写出结论,不证明.【解答】解:【问题解决】:如图1中,当∠ACB=90°时,∵AD为∠BAC的角平分线,∠ACB=90°,DE⊥AB,∴DC=DE,∵∠ACB=2∠B,∠ACB=90°,∴∠B=45°,∵DE⊥AB,∴DE=BE,在△AED和△ACD中,,∴△AED≌△ACD(AAS),∴AE=AC,∴AB=AE+BE=AC+CD;当∠ACB≠90°时,结论:AB=CD+AC,理由:如图2,在AB上截取AG=AC,连接DG,∵AD为∠BAC的平分线,∴∠GAD=∠CAD,在△ADG和△ADC中,,∴△ADG≌△ADC(SAS),∴CD=DG,∠AGD=∠ACB,∵∠ACB=2∠B,∴∠AGD=2∠B,∵∠AGD=∠B+∠GDB,∴∠B=∠GDB,∴BG=DG=DC∴AB=BG+AG=CD+AC;【方法迁移】结论:AB=CD﹣AC,理由:如图3.在AF上截取AH=AC,连接DH,∵AD为∠FAC的平分线,∴∠HAD=∠CAD,在△ADH和△ACD中,,∴△ADH≌△ACD(SAS),∴CD=HD,∠AHD=∠ACD,即∠ACB=∠FHD,∵∠ACB=2∠B,∴∠FHD=2∠B,∵∠FHD=∠B+∠HDB,∴∠B=∠HDB,∴BH=DH=DC,∴AB=BH﹣AH=CD﹣AC.5.已知:如图,在Rt△ABC中,∠A=90°,AB=AC,点D在BC上,点E与点A在BC 的同侧,且∠CED=90°,∠B=2∠EDC.(1)求证:∠FDC=∠ECF;(2)若CE=1,求DF的长.【解答】解:∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∴∠B=∠ACB=45°,∵∠B=2∠EDC,∴∠FDC=45°×=22.5°,∵∠CED=90°,∴∠∠DCE=90°﹣∠FDC=90°﹣67.5°=22.5°,∴∠FDC=∠ECF;(2)如图,延长CE到G,使EG=CE,连接DG交AC于H,∵∠CED=90°,∴∠GED=90°,∴∠CED=∠GED,在△GED和△CED中,,∴△GED≌△CED(SAS),∴GFDE=∠CDE,∴∠DHF=∠CEF=90°,∵∠ACB=45°,∴∠HDC=45°,∴∠HDC=∠HCD,∴DH=CH,在△DHF和△CHG中,,∴△DHF≌△CHG(ASA),∴DF=CG,∵EG=CE,∴CG=2CE,∴DF=2CE,∵CE=1,∴DF=2.6.如图,已知在△ABC中,∠BAC=90°,AB=AC,BD平分∠ABC,CE⊥BD交BD的延长线于点E.求证:CE=BD.【解答】证明:如图,延长CE,BA交于点F.∵CE⊥BD,∠BAC=90°,∴∠BAD=∠CAF=∠BEC=90°.又∵∠ADB=∠EDC,在△ABD与△ACF中,∴△ABD≌△ACF(ASA).∴BD=CF.∵BD平分∠ABC,∴∠CBE=∠FBE.在△BCE与△BFE中,∴△BCE≌△BFE(ASA).∴CE=FE,即CE=CF.∴CE=BD.7.如图,在△ABC中,∠CAB=90°,D是斜边BC上的中点,E、F分别是AB、AC边上的点,且DE⊥DF.(1)若AB=AC,BE+CF=4,求四边形AEDF的面积.(2)求证:BE2+CF2=EF2.【解答】(1)解:连接AD,如图1,∵在Rt△ABC中,AB=AC,AD为BC边的中线,∴∠DAC=∠BAD=∠C=45°,AD⊥BC,AD=DC,又∵DE⊥DF,AD⊥DC,∴∠EDA+∠ADF=∠CDF+∠FDA=90°,∴∠EDA=∠CDF,在△AED与△CFD中,,∴△AED≌△CFD(ASA).∴AE=CF,∵BE+CF=4,∴AB=BE+AE=4.所以S四边形AFDE =S△AFD+S△AED=S△AFD +S△CFD=S△ADC=S△ABC=×AB2=×42=4.(2)证明:延长ED至点G,使得DG=DE,连接FG,CG,如图2,∵DE=DG,DF⊥DE,∴DF垂直平分DE,∴EF=FG,∵D是BC中点,∴BD=CD,在△BDE和△CDG中,,∴△BDE≌△CDG(SAS),∴BE=CG,∠DCG=∠DBE,∵∠ACB+∠DBE=90°,∴∠ACB+∠DCG=90°,即∠FCG=90°,∵CG2+CF2=FG2,∴BE2+CF2=EF2.8.(2020春•南岸区期末)在∠MAN内有一点D,过点D分别作DB⊥AM,DC⊥AN,垂足分别为B,C.且BD=CD,点E,F分别在边AM和AN上.(1)如图1,若∠BED=∠CFD,请说明DE=DF;(2)如图2,若∠BDC=120°,∠EDF=60°,猜想EF,BE,CF具有的数量关系,并说明你的结论成立的理由.【答案】(1)略(2)略【解答】解:(1)∵DB⊥AM,DC⊥AN,∴∠DBE=∠DCF=90°,在△BDE和△CDF中,∵∴△BDE≌△CDF(AAS).∴DE=DF;(2)EF=FC+BE,理由:过点D作∠CDG=∠BDE,交AN于点G,在△BDE和△CDG中,,∴△BDE≌△CDG(ASA),∴DE=DG,BE=CG.∵∠BDC=120°,∠EDF=60°,∴∠BDE+∠CDF=60°.∴∠FDG=∠CDG+∠CDF=60°,∴∠EDF=∠GDF.在△EDF和△GDF中,,∴△EDF≌△GDF(SAS).∴EF=GF,∴EF=FC+CG=FC+BE.9.(2020秋•渑池县期末)(1)如图①,在Rt△ABC中,∠C=90°,∠B=45°,AD平分∠BAC,交BC于点D.如果作辅助线DE⊥AB于点E,则可以得到AC、CD、AB三条线段之间的数量关系为 ;(2)如图,△ABC中,∠C=2∠B,AD平分∠BAC,交BC于点D.(1)中的结论是否仍然成立?若不成立,试说明理由;若成立,请证明.【答案】(1) AB=AC+CD(2)略【解答】解:(1)如图1,∵AD平分∠BAC,∴∠CAD=∠EAD,在△CAD和△EAD中,∴△CAD≌△EAD(AAS),∴CD=DE,AC=AE,∵∠B=45°,∠DEB=90°,∴DE=EB,∴DC=BE,∴AE+BE=AC+DC=AB;故答案为:AB=AC+CD.(2)成立.证明:如图2,在AB上截取AE=AC,连接DE.∵在△ACD和△AED中,∴△ACD≌△AED(SAS),∴CD=ED,∠C=∠AED,又∵∠C=2∠B,∴∠AED=2∠B,又∵∠AED=∠B+∠EDB,∴2∠B=∠B+∠EDB,∴∠B=∠EDB,∴ED=EB∵AB=AE+EB,ED=EB=CD,AE=AC,∴AB=AC+CD.10.(百色期末)如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE、BE的长.【答案】(1)略(2)BE=1,AE=4.【解答】(1)证明:连接BD,CD,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵DG⊥BC且平分BC,∴BD=CD,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF;(2)解:在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,设BE=x,则CF=x,∵AB=5,AC=3,AE=AB﹣BE,AF=AC+CF,∴5﹣x=3+x,解得:x=1,∴BE=1,AE=AB﹣BE=5﹣1=4.11.(广州期中)如图,在△ABC中,∠ABC的平分线与∠ACB的外角的平分线相交于点D.(1)求证:点D到三边AB、BC、CA所在直线的距离相等;(2)连接AD,若∠BDC=40°,求∠DAC的度数.【答案】(1)略(2)∠DAC=50°【解答】(1)证明:如图,过点D作三边AB、BC、CA所在直线的垂线,垂足分别是Q、M、N.则垂线段DQ、DM、DN,即为D点到三边AB、BC、CA所在直线的距离.∵D是∠ABC的平分线BD上的一点,∴DM=DQ.∵D是∠ACM的平分线CD上的一点,∴DM=DN.∴DQ=DM=DN.∴D点到三边AB、BC、CA所在直线的距离相等.(2)解:连接AD,∵∠DCG是△BCD的外角,∴∠DCG=∠DBC+∠BDC,∵∠ACG△ABC的外角∴∠ACG=∠ABC+∠BAC,∴2∠BDC=∠BAC,∵∠BDC=40°,∴∠BAC=80°,∠EAC=100°,由(1)可得DQ=DN,∴AD平分∠EAC,∴∠DAC=EAC=50°.12.(2021秋•雨花区期末)如图,△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,AD、CE相交于点P.(1)求∠APC的度数;(2)若AE=3,CD=4,求线段AC的长.【解答】解:(1)∵∠ABC=60°,∴∠BAC+∠BCA=120°,∵AD、CE分别平分∠BAC、∠ACB,∴∠PAC+∠PCA=(∠BAC+∠BCA)=60°,∴∠APC=120°.(2)如图,在AC上截取AF=AE,连接PF,∵AD平分∠BAC,∴∠BAD=∠CAD,在△APE和△APF中,,∴△APE≌△APF(SAS),∴∠APE=∠APF,∵∠APC=120°,∴∠APE=60°,∴∠APF=∠CPD=60°=∠CPF,∵CE平分∠ACB,∴∠ACP=∠BCP,在△CPF和△CPD中,,∴△CPF≌△CPD(ASA),∴CF=CD,∴AC=AF+CF=AE+CD=3+4=7.13.(2020秋•南开区校级期中)如图1,在平面直角坐标系中,直线AB分别交x轴、y轴于A(a,0)、B(0,b)两点,且a,b满足(a﹣b)2+|a﹣4t|=0,且t>0,t是常数.直线BD平分∠OBA,交x轴于D点.(1)若AB的中点为M,连接OM交BD于N,求证:ON=OD;(2)如图2,过点A作AE⊥BD,垂足为E,猜想AE与BD间的数量关系,并证明你的猜想;(3)如图3,在x轴上有一个动点P(在A点的右侧),连接PB,并作等腰Rt△BPF,其中∠BPF=90°,连接FA并延长交y轴于G点,当P点在运动时,OG的长是否发生改变?若改变,请求出它的变化范围;若不变,求出它的长度.【解答】(1)证明:∵直线AB分别交x轴、y轴于A(a,0)、B(0,b)两点,且a,b满足(a﹣b)2+|a﹣4t|=0,且t>0,∴a=b=4t,∴点A、B的坐标是A(4t,0),B(0,4t),∴△AOB是等腰直角三角形,∵点M是AB的中点,∴OM⊥AB,∴∠MOA=45°,∵直线BD平分∠OBA,∴∠ABD=∠ABO=22.5°,∴∠OND=∠BNM=90°﹣∠ABD=90°﹣22.5°=67.5°,∠ODB=∠ABD+∠BAD=22.5°+45°=67.5°,∴∠OND=∠ODB,∴ON=OD(等角对等边);(2)答:BD=2AE.理由如下:延长AE交BO于C,∵BD平分∠OBA,∴∠ABD=∠CBD,∵AE⊥BD于点E,∴∠AEB=∠CEB=90°,在△ABE≌△CBE中,,∴△ABE≌△CBE(ASA),∴AE=CE,∴AC=2AE,∵AE⊥BD,∴∠OAC+∠ADE=90°,又∠OBD+∠BDO=90°,∠ADE=∠BDO(对顶角相等),∴∠OAC=∠OBD,在△OAC与△OBD中,,∴△OAC≌△OBD(ASA),∴BD=AC,∴BD=2AE;(3)OG的长不变,且OG=4t.过F作FH⊥OP,垂足为H,∴∠FPH+∠PFH=90°,∵∠BPF=90°,∴∠BPO+∠FPH=90°,∴∠FPH=∠BPO,∵△BPF是等腰直角三角形,∴BP=FP,在△OBP与△HPF中,,∴△OBP≌△HPF(AAS),∴FH=OP,PH=OB=4t,∵AH=PH+AP=OB+AP,OA=OB,∴AH=OA+AP=OP,∴FH=AH,∴∠GAO=∠FAH=45°,∴△AOG是等腰直角三角形,∴OG=OA=4t.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.如图1所示,在△ABC中,∠A=90°,BD平分∠ABC,AD=2 cm,则点D到BC的距离为________cm.
图1图2
2.如图2所示,在RtΔABC中,∠C=90°,BD是∠ABC的平分线,交AC于D,若CD=n,AB=m,则ΔABD的面积是()
A.mn
3
1
B.mn
2
1
C.mn D.2mn
3.如图,在△ABC中,∠C=900,BC=40,AD是∠BAC的平分线交BC于D,且DC∶
DB=3∶5,则点D到AB的距离是。

4.如图,已知BD是∠ABC的内角平分线,CD是∠ACB的外角平分线,由D出发,作点D到BC、AC和AB 的垂线DE、DF和DG,垂足分别为E、F、G,则DE、DF、DG的关系是。

5.如图,已知AB∥CD,O为∠A、∠C的角平分线的交点,OE⊥AC于E,且OE=2,
则两平行线间AB、CD的距离等于。

是△BAC的角平分线,自D向AB、AC两边作垂线,垂足为E、F,那么下列结论中错误的是( )
A、DE=DF
B、AE=AF
C、BD=CD
D、∠ADE=∠ADF
7.到三角形三条边的距离都相等的点是这个三角形的()
A.三条中线的交点B.三条高的交点
C.三条边的垂直平分线的交点D.三条角平分线的交点
8.已知△ABC中,∠A=80°,∠B和∠C的角平分线交于O点,则∠BOC= 。

9.如图,已知相交直线AB和CD,及另一直线EF。

如果要在EF上找出与AB、CD距离相等的点,方法是,这样的点至少有个,最多有个。

3题图
D
C B
A
D
A
10.如图所示,已知△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB ,交BC 于点D ,DE ⊥AB 于点E ,且AB =6 cm,则△DEB 的周长为( )。

cm cm cm D.不能确定
11.如图,AB
12.如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B .下列结论中不一定成立的是( )
A .PA P
B = B .PO 平分APB ∠
C .OA OB =
D .AB 垂直平分OP
13.如图,已知AC ∥BD 、EA 、EB 分别平分∠CAB 和∠ABD ,CD 过点E ,则AB 与AC+BD•相等吗说明理由.
14、如图所示,已知AD 为等腰三角形ABC 的底角的平分线,∠C =90° 求证:AB =AC +CD .
15、如图,在四边形ABCD 中,BC>BA ,AD=DC,BD 平分∠ABC,求证:∠A+∠C=180°
O
B
A
P D
C
A
B
E
16、如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE. 求证:△ACD≌△CBE.
17
.已知:如图,△ABC中,∠C=90°,试在AC上找一点P,使P到斜边的距离等于PC.(画出图形,并写出画法)
18.已知:OD平分∠POQ,在OP、OQ边上取OA=OB, CM⊥AD于M,CN⊥BD于N.
求证:CM=CN.
19.已知:如图,ΔABC的外角∠CBD和∠BCE的平分线BF、CF交于点F.
求证:一点F必在∠DAE的平分线上.
20.已知:如图,A、B、C、D四点在∠MON的边上,AB=CD,P为∠MON内一点,并且△PAB的面积与△PCD 的面积相等.求证:射线OP是∠MON的平分线.
A
B
C
D
E
21.如图,ΔABC中,∠C=90°,BD平分∠ABC,DE⊥AB于E,若△BCD与△BCA的面积比为3∶8,求△ADE与△BCA的面积之比.
22.已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.
(1)求证:AM平分∠DAB;
(2)猜想AM与DM的位置关系如何并证明你的结论.
23.已知:如图,在ΔABC中,AD是△ABC的角平分线,E、F分别是AB、AC上一点,并且有∠EDF+∠EAF =180°.试判断DE和DF的大小关系并说明理由.
24.如图1所示:AM∥DN,AE、DE分别平分∠MAD和∠AND,并交于E点.
过点E的直线分别交AM、DN于B、C.
(1)如图2,当点B、C分别位于点AD的同侧时,猜想AD、AB、CD之间的存在的数量关系:_______________________________.
(2)试证明你的猜想.
(3)若点B 、C 分别位于点AD 的两侧时,试写出AD 、AB 、CD 之间的关系,并选择一个写出证明过程。

25.已知:在平面直角坐标系中,△ABC 的顶点A 、C 分别在y 轴、x 轴上,且∠ACB=90°,AC=BC. (1)如图1,当(0,2),(1,0)A C -,点B
(2)如图2,当点C 在x 轴正半轴上运动,点A 在y 正半轴上运动,点B 在第四象限时,作BD ⊥
y
试判断
OA BD OC +与OA
BD
OC -哪一个是定值,
并说明定值是多少请证明你的结论.
结论: 证明:
26.如图,△ABC 中,∠ABC=42°,D 是BC (1)△ABC 是____________ 三角形; (2)证明你的结论。

27.在ABC △中,AB AC =,点D 是直线BC 上一点(不与B C 、重合),以AD 为一边在AD 的右侧..
作ADE △,使AD AE DAE BAC =∠=∠,,连接CE .
(1)如图1,当点D 在线段BC 上,如果90BAC ∠=°,则BCE ∠= 度; (2)设BAC α∠=,BCE β∠=.
①如图2,当点D 在线段BC 上移动,则αβ,之间有怎样的数量关系请说明理由;
D
图2
v1.0 可编辑可修改
②当点D 在直线BC 上移动,则αβ,之间有怎样的数量关系请直接写出你的结论.
28.已知:如图,在△ABC 中,AB=AC ,∠BAC=α,且60°<α<120
°.P 为△ABC 内部一点,且PC=AC ,∠PCA=120°—α.
(1)用含α的代数式表示∠APC ,得∠APC =_______________________; (2)求证:∠BAP=∠PCB ; (3)求∠PBC 的度数. 证明:(2)
B
C
P
A。

相关文档
最新文档