初等数论练习册汇总
初等数论练习题一(含答案)
![初等数论练习题一(含答案)](https://img.taocdn.com/s3/m/c70b071002d8ce2f0066f5335a8102d276a261c5.png)
初等数论练习题⼀(含答案)《初等数论》期末练习⼆⼀、单项选择题1、=),0(b ().A bB b -C bD 02、如果1),(=b a ,则),(b a ab +=().A aB bC 1D b a +3、⼩于30的素数的个数().A 10B 9C 8D 74、如果)(mod m b a ≡,c 是任意整数,则A )(mod m bc ac ≡B b a =C (mod )ac bc m ≡/D b a ≠5、不定⽅程210231525=+y x ().A 有解B ⽆解C 有正数解D 有负数解6、整数5874192能被( )整除.A 3B 3与9C 9D 3或97、如果a b ,b a ,则( ).A b a =B b a -=C b a ≥D b a ±=8、公因数是最⼤公因数的().A 因数B 倍数C 相等D 不确定9、⼤于20且⼩于40的素数有().A 4个B 5个C 2个D 3个10、模7的最⼩⾮负完全剩余系是( ).A -3,-2,-1,0,1,2,3B -6,-5,-4,-3,-2,-1C 1,2,3,4,5,6D 0,1,2,3,4,5,611、因为( ),所以不定⽅程71512=+y x 没有解.A [12,15]不整除7B (12,15)不整除7C 7不整除(12,15)D 7不整除[12,15]12、同余式)593(m od 4382≡x ().A 有解B ⽆解C ⽆法确定D 有⽆限个解⼆、填空题1、有理数ba ,0,(,)1ab a b <<=,能写成循环⼩数的条件是(). 2、同余式)45(mod 01512≡+x 有解,⽽且解的个数为( ). 3、不⼤于545⽽为13的倍数的正整数的个数为( ).4、设n 是⼀正整数,Euler 函数)(n ?表⽰所有( )n ,⽽且与n ()的正整数的个数.5、设b a ,整数,则),(b a ()=ab .6、⼀个整数能被3整除的充分必要条件是它的()数码的和能被3整除.7、+=][x x ().8、同余式)321(m od 75111≡x 有解,⽽且解的个数( ). 9、在176与545之间有( )是17的倍数.10、如果0 ab ,则),](,[b a b a =( ).11、b a ,的最⼩公倍数是它们公倍数的( ).12、如果1),(=b a ,那么),(b a ab +=( ).三、计算题1、求24871与3468的最⼩公倍数?2、求解不定⽅程2537107=+y x .(8分)3、求??563429,其中563是素数. (8分) 4、解同余式)321(m od 75111≡x .(8分) 5、求[525,231]=?6、求解不定⽅程18116=-y x .7、判断同余式)1847(m od 3652≡x 是否有解?8、求11的平⽅剩余与平⽅⾮剩余.四、证明题1、任意⼀个n 位数121a a a a n n -与其按逆字码排列得到的数n n a a a a 121- 的差必是9的倍数.(11分)2、证明当n 是奇数时,有)12(3+n .(10分)3、⼀个能表成两个平⽅数和的数与⼀个平⽅数的乘积,仍然是两个平⽅数的和;两个能表成两个平⽅数和的数的乘积,也是⼀个两个平⽅数和的数.(11分)4、如果整数a 的个位数是5,则该数是5的倍数.5、如果b a ,是两个整数,0 b ,则存在唯⼀的整数对r q ,,使得r bq a +=,其中b r ≤0.《初等数论》期末练习⼆答案⼀、单项选择题1、C2、C3、A4、A5、A6、B7、D8、A9、A 10、D 11、B 12、B⼆、填空题1、有理数ba ,1),(,0=b a b a ,能写成循环⼩数的条件是( 1)10,(=b ). 2、同余式)45(mod 01512≡+x 有解,⽽且解的个数为( 3 ). 3、不⼤于545⽽为13的倍数的正整数的个数为( 41 ).4、设n 是⼀正整数,Euler 函数)(n ?表⽰所有( 不⼤于 )n ,⽽且与n (互素)的正整数的个数.5、设b a ,整数,则),(b a ( ],[b a )=ab .6、⼀个整数能被3整除的充分必要条件是它的(⼗进位)数码的和能被3整除.7、+=][x x ( }{x ).8、同余式)321(m od 75111≡x 有解,⽽且解的个数( 3 ). 9、在176与545之间有( 12 )是17的倍数.10、如果0 ab ,则),](,[b a b a =( ab ).11、b a ,的最⼩公倍数是它们公倍数的( 因数 ).12、如果1),(=b a ,那么),(b a ab +=( 1 ).三、计算题1、求24871与3468的最⼩公倍数?解:因为(24871,3468)=17所以[24871,3468]= 17346824871?=5073684 所以24871与3468的最⼩公倍数是5073684。
初等数论练习册
![初等数论练习册](https://img.taocdn.com/s3/m/274fc0a20029bd64783e2c98.png)
作业次数:学号姓名作业成绩第0章序言及预备知识第一节序言(1)1、数论人物、资料查询:(每人物写60字左右的简介)(1)华罗庚2、理论计算与证明:(1(2)Show that there are infinitely many Ulam numbers3、用Mathematica数学软件实现A Ulam number is a member of an integer sequence which was devised by Stanislaw Ulamand published in SIAM Review in 1964. The standard Ulam sequence (the (1, 2)-Ulam sequence) starts with U1=1 and U2=2 being the first two Ulam numbers. Then for n > 2, U n is defined to be the smallest integer that is the sum of two distinct earlier terms in exactly one way 。
By the definition, 3=1+2 is an Ulam number; and 4=1+3 is an Ulam number (The sum 4=2+2 doesn't count because the previous terms must be distinct.) The integer 5 is not an Ulam number because 5=1+4=2+3. The first few terms are1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53, 57, 62, 69, 72, 77, 82, 87, 97, 99(1)Find the first 200 Ulam numbers(2)What conjectures can you make about the number of Ulam numbers less than an integer n?Do your computations support these conjetures?作业次数: 学号 姓名 作业成绩第2节 序言(2)1、数论人物、资料查询:(每人物写60字左右的简介)(2)陈景润2、理论计算与证明:(1)用数学归纳法证明:!n n n ≤(2)用数学归纳法证明:2!(4)n n n ≤≥3、用Mathematica 数学软件实现The 3x + 1 problem, also known as the Collatz problem, the Syracuse problem, Kakutani's problem, Hasse'salgorithm , and Ulam's problem , concerns the behavior of the iterates of the function which takes odd integers nto 3n+1 and even integers n to 2n . The 3x+1 Conjecture asserts that, starting from any positive integer n , repeated iteration of this function eventually produces the value 1.参考文献:Jeffrey C. Lagarias, "The 3x+1 problem and its generalizations".作业次数: 学号 姓名 作业成绩第3节 预备知识1、数论人物、资料查询:(每人物写60字左右的简介)(1)王小云(山东大学)(2)The tower of Hanoi2、理论计算与证明: (1)设n f 是第n 个Fabonacci 数,11F 10⎛⎫= ⎪⎝⎭,则1n 1F n n n n f f f f +-⎛⎫= ⎪⎝⎭(2)求证:212232122...n n n f f f f f f f -+++=3、用Mathematica 数学软件实现(The tower of Hanoi puzzle )The Tower of Hanoi or Towers of Hanoi is a mathematical game or puzzle. It consists of threerods, and a number of disks of different sizes which can slide onto any rod. The puzzle starts withthe disks in a neat stack in ascending order of size on one rod, the smallest at the top, thus makinga conical shape.The objective of the puzzle is to move the entire stack to another rod, obeying the followingrules:∙Only one disk may be moved at a time.∙ Each move consists of taking the upper disk from one of the rods and sliding it ontoanother rod, on top of the other disks that may already be present on that rod.∙ No disk may be placed on top of a smaller disk 参考文献:[1]、http://wipos.p.lodz.pl/zylla/games/hanoi5e.html[2]、/wiki/Tower_of_Hanoi作业次数: 学号 姓名 作业成绩第一章 整数的可除性第1节 整数的整除性1、数论人物、资料查询:(每人物写60字左右的简介)(1)素数有无限个的多种证明方法.(2) 欧几里德 高斯2、理论计算与证明:(1)证明:3|(1)(21)n n n ++,其中n 是任何整数。
最新初等数论复习题题库及答案
![最新初等数论复习题题库及答案](https://img.taocdn.com/s3/m/1b7da718ed630b1c59eeb5c9.png)
《初等数论》本科一 填空题(每空2分)1.写出30以内的所有素数 2,3,5,7,11,13,17,19,23,29 .2.,(,)(,)(,)a b a b a b a b =设是任意两个不为零的整数,则 1 . 3.若,a b 是非零整数,则a 与b 互素的充要条件是存在整数,x y ,适1ax by +=4.写出180的标准分解式是 22235⋅⋅ ,其正约数个数有 (2+1)(2+1)(1+1)=18个.5.,1,2,,a b a b 设与是正整数则在中能被整除的整数恰有 []ab个.6.设,a b 是非零整数,c 是整数,方程ax by c +=有整数解(,x y )的充要条件是 (,)|a b c7. 若整数集合A 是模m 的完全剩余系,则A 中含有 m 个整数.8.ϕ(3)= 2 ;ϕ(4)= 2 .9.当p 素数时,(1)()p ϕ= 1p - ;(2)()k p ϕ= 1k k p p -- . 10.(),(,)1,1m m a m a ϕ=-≡设是正整数则 0 (m o d ).m 11.,,p p a a a -≡设是素数则对于任意的整数有 0 (m o d ).p 12.已知235(mod7)x +≡,则x ≡ 1 (m o d 7). 13.同余方程22(mod 7)x ≡的解是 4(mod7) . 14.同余方程2310120(mod 9)x x ++≡的解是 .X=6. . 15.(,)1n p =若,n p 是模的二次剩余的充要条件是 -121(mod ).p n p ≡ . 16.(,)1n p =若,n p 是模的二次非剩余的充要条件是 -121(mod ).p np ≡- .17.3()=5 -1 ; 4()=5 1 .18.,p 设是奇素数则2()p= 218(1).p --.19.,p 设是奇素数则1()p = 1 ;-1()p= -12(-1).p .20. 5()=9 1 ; 2()=45-1 .二 判断题(判断下列结论是否成立,每题2分).1. ||,|a b a c x y Z a bx cy ⇒∈+且对任意的有.成立2. (,)(,),[,][,]a b a c a b a c ==若则.不成立3. 23|,|a b a b 若则.不成立4.(mod ),0,(mod ).a b m k k N ak bk mk ≡>∈⇒≡ 成立5.(mod )(mod ).ac bc m a b m ≡⇒≡ 不成立6. 22(mod ),(mod )(mod )a b m a b m a b m ≡≡≡-若则或至少有一个成立. 不成立 7. 222(mod ),(mod )a b m a b m ≡≡若则.不成立8. 若x 通过模m 的完全剩余系,则x b +(b 是整数)通过模m 的完全剩余系. 成立 9. 1212{,,,}{,,,}.m m a a a b b b 若与都是模m 的完全剩余系不成立1122{,,,}.m m a b a b a b m +++则也是模的完全剩余系不成立10.若(,)1a m =,x 通过模m 的简化剩余系,则ax b +也通过模m 的简化剩余系. 不成立 11.12121212,,(,)1,()()().m m N m m m m m m ϕϕϕ∈==若则 成立12. 同余方程24330(mod15)x x -+≡和同余方程2412120(mod15)x x +-≡是同解的. 成立13. (mod ).ax b m ax my b ≡+=同余方程等价于不定方程成立14. 2,(mod ),() 1.am x a m m≡=当是奇素数时若有解则成立15. 2,()1,(mod ).a m x a m m=≡当不是奇素数时若则方程一定有解不成立三 计算题1. (1859,1573)-求.(6分)解:1.(1859,1573)(1859,1573)(286,1573)(286,15732865)(286,143)(0,143)143-===-⨯===2.求 [-36,108,204].(8分)解:22232232.[36,108,204][36,108,204],3623,10823,2042317,[36,108,204]23171836.-==⨯=⨯=⨯⨯∴=⨯⨯=3. 求(125,17),以及x ,y ,使得125x +17y =(125,17).(10分)解:3.651,16-56-(17-26)36-173(125-177)-173125-2217.1253-17221,3,-22.x y =+==⨯=⨯=⨯⨯=⨯⨯∴⨯⨯===由等式起逐步回代得4. 求整数x ,y ,使得1387x -162y =(1387,162).(10分)解:4.9421,19-429-4(11-9)59-4115(20-11)-411520-911520-9(71320)322097132(91-71)97132914171329141(16291)73914116273(13878162)41162731387625162.1=⨯+=⨯=⨯=⨯⨯=⨯⨯=⨯⨯=⨯⨯-⨯=⨯-⨯=⨯-⨯=⨯-⨯=⨯-⨯-=⨯-⨯=⨯-⨯-⨯=⨯-⨯∴由等式起逐步回代得38773162625 1.⨯-⨯=5. 12!.分解为质因数乘积(8分)6. ,10|199!k k 求最大的正整数使.(8分)7. [1].100++求(10分) 8. 81743.x y +=求方程的整数解(6分)9. 19201909.x y +=求方程的正整数解(10分)10. 求方程111x -321y =75的整数解.(10分) 11. 12310661.x x x ++=求方程15的整数解(8分) 12. 361215.x y z ++=求不定方程的整数解(8分)13. 237.x y z ++=求不定方程的所有正整数解(8分)14. 19,2,3 5.30将写成三个分数之和它们的分母分别是和(10分) 15. 222370.x y x y +--=求方程的整数解(6分) 16. 331072.x y +=求方程的整数解(8分)17. 5()4.xy yz zx xyz ++=求方程的正整数解(10分)18. 4063().求的个位数字与最后两位数字十进制(10分)19. 67(mod 23).x ≡解同余方程(8分) 20. 12150(mod 45).x +≡解同余方程(8分)21. 2(mod 3)3(mod 5).2(mod 7)x x x ≡⎧⎪≡⎨⎪≡⎩解同余式组(6分)22. 43()0(mod35),()289.f x f x x x x ≡=+++解同余式(10分) 23. 765:2720(mod5).x x x x --++≡解同余方程(6分)24. .求出模23的所有二次剩余和二次非剩余(8分)25. 25(mod11).x ≡判断方程有没有解(6分)26. 2563,429(mod563).x ≡已知是素数判定方程是否有解(8分) 27. 3求以为其二次剩余的全体素数.(8分)28. 10173:(1)();(2)().1521计算(8分) 29. (300).ϕ计算(6分)30. 3(mod8)11(mod 20).1(mod15)x x x ≡⎧⎪≡⎨⎪≡⎩解同余式组(10分)四 证明题1、,,,, 1.:|,|,|.a b x y ax by a n b n ab n +=设是两个给定的非零整数且有整数使得求证若则(6分)证明:1.()|,|.n n ax by nax nbyab na ab nb ab n =+=+∴又2.121212,,,,0,.4|.n n n a a a a a a a a a n n +++==设是整数且则(8分)证明:1212121231122.,,,,,,0,2.,,,.,,2(2).-,(-1),,.,,,,4.n n n i n n n n a a a a a a n a a a a a i n a a a a n a a a n +++=∴≤≤+++=∴若是奇数则都是奇数则不可能即在中至少有一个偶数如果只有一个偶数不妨设为则不整除由知左边是个奇数的和右边是偶数这是不可能的在中至少有两个偶数即3. 任给的五个整数中,必有三个数之和被3整除.(8分)证明:1231231231231231233.3,03,1,2,3,4,5.(1)0,1,2,0,1,2,3()3.(2)0,1,2,,(0,12),3()3.i i i i i i i a q r r i r r r r a a a q q q r r r r r r r a a a q q q r =+≤<====++=+++====++=+++设若在中数都出现不妨设则成立若在中数至少有一个不出现则至少有三个取相同的值令或则成立4. 22,,9|,3|(,).a b a ab b a b ++设是整数且则(8分)证明:2222224.9,9()3,3()3,3(),3,9(),93,3,33.3,3,3.3.3,3.3(,).a ab b a b ab a b ab a b a b a b ab ab a b a a b b b a b a a b ++∴-+∴-+∴-∴-∴-∴∴∴-∴-∴或若若故5. 设,a b 是正整数,证明()[,][,]a b a b a b a b +=+.(8分)证明:()5.()[,](),(,)(,)()[,](,),(,)(,),()[,](,),()[,],(,)ab b a b a b a b a b a a b a b b a b b a b b a b b a b a b b a b b a b a b b a b b a b a b ++=+⋅=⋅+=+++=∴+=++=+∴而即结论成立6. (mod ),0,,(mod ).nna b m n n N a b m ≡>∈≡当时又则(6分)证明:123216.(mod ),,()(),,(mod ).n n n n n n n n n n a b m m a b a b a b a a b a b b m a b a b m ----≡∴--=-++++∴-≡又即7. 12{,,,},{}.m A x x x m x x =设是模的一个完全剩余系以表示的小数部分11:(,)1,{}(-1).2mi i ax b a m m m =+==∑证明若则(10分) 证明:1211111117.2,{,,,},(1),1(1)1{}{}{}{}.22m i mm mm m i i j j j j ax b ax b ax b m ax b km j j m ax b j j j j m m m k m m m m m m --=====++++=+≤≤+--=+====⋅=∑∑∑∑∑由定理知也是模的一个完全剩余系可设从而8. ,:n N ∈设证明1()2,2k n n n k N ϕ==∈的充要条件是.(10分)证明:-1-118.2,(2)2(1-)2.22(),2,2|,21()()()(2)(2)()2()2,222(),1,.(()112)k k k k k k k k k nn nn n t t n t n t n t t t t t t t t t n n ϕϕϕϕϕϕϕϕϕϕϕ⇐====⇒==/=====⨯⋅=⋅=∴==⇔=若则若设则即从而得证注或9. ,5|12344.n n n n n N n ∈+++⇔/设则(10分)证明:444449.(5)4,,1(mod5)(14).4,03,1234(1)1(2)2(3)3(4)41234(mod5).5|1234,5|1234,0,1,2,30,4;4,0,5|1234,n n n n q r q r q r q rr r r r n n n n r r r r r r r r k k n q r r r r n n r ϕ=≡≤≤=+≤≤+++≡⋅+⋅+⋅+⋅≡+++⇒++++++==∴//⇐=+++/由定理知令则若即得把代入检验可知若则易知5|1234.n n n n ∴+++/10. ()1,(,)1,:(mod )(mod ).m m a m x bam ax b m ϕ-=≡≡设是正整数证明是同余方程的解证明:()()()-110.(,)1,,1(mod ).(mod ),(,)1,(mod ).m m m a m Euler a m ax b a b m a m x a b m ϕϕϕ=≡∴≡≡=∴≡由定理则11. -121(mod ).p n p n p ≡-是模的二次非剩余的充要条件是(10分)证明:-111221122-121211.(,)1,,1(mod ),(1)(1)0(mod ),,10(mod )10(mod ),1(mod ),1(mod ).p p p p p p p n p Euler n p nnp p n p np n p n p np -----=≡∴+-≡+≡-≡≡∴≡-若则由定理是素数则或中必有一个成立是模的二次剩余的充要条件是 12. 12(mod ),(mod ),y a p y a p p ≡≡设都是模的平方剩余12(mod ),(mod ).y b p y b p p ≡≡都是模的平方非剩余121211:(mod ),(mod ),(mod ).y a a p y b b p p y a b p p ≡≡≡求证都是模的平方剩余是模的平方非剩余(10分)证明:11112222121211122212121112.1,1(mod ),1(mod ),()()1(mod ),()1(mod ),.p p p p p p p aap b bp a a b b p a b p -------≡≡≡≡-∴≡≡≡-∴由定理知得证13. 22,43,:(mod ),(mod ).p q n x p q x q p +≡≡设为两个形如的奇质数求证若无解则有两个解(10分)1-122222221-113.:,43,,,22(mod ),()1,()(-1)()() 1.(mod ),,-(mod ),(-)(mod ),-,,(mod ).p q p q p q n p q p p x p q q p q qx q p c c c p c c q p c x q p c -⋅-+∴≡∴=-==-=∴≡≡=≡/∴≡±证明均为形如的数均为奇数又无解则有解设是其一解则因为且也是其一解又因为二次同余方程至多有两个解故恰有两个解为14. 1(mod 4),(mod ).p p y a p p ≡≡设是适合的素数是模的平方剩余:(mod ).y a p p ≡-证明也是模的平方剩余(8分)121214.:41,1,1(mod ),(-)1(mod ).p p p k a p a p --=+≡≡证明令由定理知则15. 2,:141.n n m ++设是整数证明的任何奇因数都是的形式(10分)22215.:,4141.:1,41.|1,1(mod ),-1(),,4 1.m m p n p m p n n p QR p p m +++++≡-∈=+证明由于奇数都可表示成奇素数之积而且任意多个形如的整数之积也具有的形式我们只需证明若素数是的因数则具有的形式若则即由以上推论知 16. -1,1(mod )-1.p p x p p ≡若是素数则同余方程有个解(8分)16.:(),.,-1,1,2,3,,-1(mod ).Fermat p p x p p ≡证明由费马定理定理可知任意与互质的数都是它的解因此这个同余方程恰好有个不同的解即17. -1-1100101010,:9|9|.nn n n n i i N a a a a N a ==+++⋅+⇔∑设求证(8分)23111011017.101,101,101,,101(mod9),101010(mod9);n nn n n n n N a a a a a a a a ---≡≡≡≡∴=++++≡++++18. 52:641|2 1.+求证(8分)5248163232218.24,216,2256,2154,21(mod 641),210(mod 641),6412 1.≡≡≡≡≡-∴+≡∴+19. :,,()(,)([,]).m n N mn m n m n ϕϕ∈=证明若则(10分)12121219.:[,],(1).111()(1-)(1-)(1-),111([,])[,](1-)(1-)(1-),(,)[,],111()(,)[,](1-)(1-)(1-)(,)([,]).i kk kmn m n p i k mn mn p p p m n m n p p p mn m n m n mn m n m n m n m n p p p ϕϕϕϕ≤≤===∴==证明易知与有相同的素因数设它们是则20. ,,(mod ).p p a a a p ≡设是素数则对于任意的整数有(8分)120.:(,)1,,1(mod ),(()1),(mod ).(,)1,,0(mod ),p p pa p Euler a p p p a a p a p p a a a p ϕ-=≡=-∴≡>∴≡≡∴证明若由定理若则结论成立。
初等数论习题与答案、及测试卷
![初等数论习题与答案、及测试卷](https://img.taocdn.com/s3/m/28339650a517866fb84ae45c3b3567ec102ddc15.png)
初等数论习题与答案、及测试卷1 证明:n a a a ,,21 都是m 的倍数。
∴存在n 个整数n p p p ,,21使n n n m p a m p a m p a ===,,,222111又n q q q ,,,21 是任意n 个整数m p q p q q p a q a q a q n n n n )(22112211+++=+++∴即n n a q a q a q +++ 2211是m 的整数2 证:)12)(1()12)(1(-+++=++n n n n n n n )1()1()2)(1(+-+++=n n n n n n )1()1/(6),2)(1(/6+-++n n n n n n1()1()2)(1(/6+-+++∴n n n n n n从而可知12)(1(/6++n n n3 证: b a , 不全为0∴在整数集合{}Z y x by ax S ∈+=,|中存在正整数,因而有形如by ax +的最小整数00by ax +Z y x ∈?,,由带余除法有00000,)(by ax r r q by ax by ax +<≤++=+则b q y y a q x x r ∈-+-=)()(00,由00by ax +是S 中的最小整数知0=rax by ax ++∴/00 下证8P 第二题by ax by ax ++/00 (y x ,为任意整数)b by ax a by ax /,/0000++∴ ,/(00b a by ax +∴ 又有b b a a b a /),(,/),( 0/),(by ax ba +∴故),(00b a by ax =+4 证:作序列 ,23,,2,0,23,b b b b b b ---则a 必在此序列的某两项之间即存在一个整数q ,使b q a b q 212+<≤成立(i 当q 为偶数时,若.0>b 则令b q a bs a t q s 2 ,2-=-==,则有22220b t b q b q a b q a t bs a <∴<-=-==-≤若0,2+=-=-=,则同样有2b t <)(ii 当q 为奇数时,若0>b 则令b q a bs a t q s 2 1,21+-=-=+=,则有21212b t b q a b q a bs a t b ≤∴<+-=+-=-=≤-若 01,21++=-=+-=则同样有 2b t ≤综上存在性得证下证唯一性当b 为奇数时,设11t bs t bs a +=+=则b s s b t t >-=-)(11而b t t t t b t b t ≤+≤-∴≤≤1112,2矛盾故11,t t s s ==当b 为偶数时,t s ,不唯一,举例如下:此时2b 为整数 2,2),2(2212311b t b t b b b b b ≤=-+?=+=?2,2,222211b t b t t bs t bs a ≤-=+=+=5.证:令此和数为S ,根据此和数的结构特点,我们可构造一个整数M ,使MS 不是整数,从而证明S 不是整数(1)令S=n14131211+++++,取M=p k 75321-这里k 是使n k≤2最大整数,p 是不大于n 的最大奇数。
《初等数论(闵嗣鹤、严士健-高等教育出版社)》习题解答 (整理精华版)
![《初等数论(闵嗣鹤、严士健-高等教育出版社)》习题解答 (整理精华版)](https://img.taocdn.com/s3/m/ce740043fe4733687e21aa7d.png)
|t | b , , 如此类推知: 2 22
| tn 1 | | tn 2 | |t | |b| 2 n n 1 2 2 2 2
而 b 是一个有限数,n N , 使 tn 1 0
(a, b) (b, t ) (t , t1 ) (t1 , t2 ) (tn , tn 1 ) (tn , 0) tn ,存在其求法为: (a, b) (b, a bs ) (a bs, b (a bs ) s1 )
a1 , a2 , an | a1 |,| a2 | ,| an |
证:设 [a1 , a2 , , an ] m1 ,则 ai | m1 (i 1, 2, , n)
《初等数论》习题解答
∴ | ai || m1 (i 1, 2, , n) 又设 [| a1 |,| a2 |, ,| an |] m2
《初等数论》习题解答
(76501,9719) (9719, 76501 9719 7) (8468,9719 8468) (1251,8468 1251 6) (3,1) 1
4.证明本节(1)式中的 n
log b log 2
证:由 P3§1 习题 4 知在(1)式中有
0 rn 1 rn 1
rn 1 rn 2 r b 2 n11 n ,而 rn1 2 2 2 2
b , 2n b , n 2
n log 2 b
log b log b ,即 n log 2 log 2
§3 整除的进一步性质及最小公倍数
an p n an 1 p n 1q a1 pq n 1 a0 q n 0
初等数论习题
![初等数论习题](https://img.taocdn.com/s3/m/6551a8076c85ec3a87c2c56f.png)
初等数论练习题1、()=320011 ()10,()=107137 ()2。
2、()=531404 ()10,()=1021580()8 3、比较()21011011与()41203的大小。
4、求证:对于任意整数n m ,,必有1616+≠-n m 。
5、如果n 是一个自然数,则()1+n n 是 (填“奇数”或“偶数”)6、若b a ,两数的和与积均为偶数,则b a ,的奇偶性是 。
7、若a 除以b 商c 余r ,则am 除以bm 商 余 。
8、设4>n ,且()()2434+-n n ,求n 。
9、设()223b a +,证明a 3且b 310证明:若()()pq mn p m +-,则()()np mq p m +-。
11、若23++n m 是偶数,试判定()()200311+--n m 是奇数还是偶数。
12、求证:若b a ,a b ,则b a ±=。
11、设b a ,是正整数,且b a ≤,若5776=ab ,()31,=b a ,求b a ,。
13、设b a ,是正整数,且b a ≤,若50=+b a ,()5,=b a ,求b a ,。
14、如果p 是素数,a 是整数,则有()1,=p a 或者____ ___ 15、()=204,360 ,[]=204,360 。
16、若()()24,4,==b a ,则()=+4,b a 。
17、写出1500的标准分解式是,60480的标准分解式为 18、541是 。
(填“质数”或“合数”)19、设()1,=n m ,求证:()()()n d m d mn d =,()()()n S m S mn S =。
20、计算()430d ,()430S 。
21、求!100末尾0的个数。
22、求13除486的余数。
23、写出模9的一个完全剩余系,使其中每个数都是奇数。
24、写出模9的一个完全剩余系,使其中每个数都是偶数。
25、若()1,=m a ,求证:若x 通过模m 的简化剩余系,则ax 通过模m 的简化剩余系。
初等数论练习题及答案
![初等数论练习题及答案](https://img.taocdn.com/s3/m/bd219a325fbfc77da369b1c0.png)
初等数论练习题一一、填空题1、τ(2420)=27;ϕ(2420)=_880_2、设a ,n 是大于1的整数,若a n -1是质数,则a=_2.3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}.4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。
5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。
.6、分母是正整数m 的既约真分数的个数为_ϕ(m )_。
78、⎪⎭⎫ ⎝⎛10365 =-1。
9、若p 是素数,则同余方程x p - 1≡1(mod p )的解数为二、计算题1、解同余方程:3x 2+11x -20≡0 (mod 105)。
解:因105 = 3⋅5⋅7,同余方程3x 2+11x -20≡0 (mod 3)的解为x ≡1 (mod 3),同余方程3x 2+11x -38 ≡0 (mod 5)的解为x ≡0,3 (mod 5),同余方程3x 2+11x -20≡0 (mod 7)的解为x ≡2,6 (mod 7),故原同余方程有4解。
作同余方程组:x ≡b 1 (mod 3),x ≡b 2 (mod 5),x ≡b 3 (mod 7),其中b 1 = 1,b 2 = 0,3,b 3 = 2,6,由子定理得原同余方程的解为x ≡13,55,58,100 (mod 105)。
2、判断同余方程x 2≡42(mod 107)是否有解?11074217271071107713231071107311072107710731072107732107422110721721107213)(=∴-=-=-==-=-=-==⨯⨯≡-•--•-)()()()(),()()()(),()())()(()(解: 故同余方程x 2≡42(mod 107)有解。
3、求(127156+34)28除以111的最小非负余数。
解:易知1271≡50(mod 111)。
(完整版)初等数论练习题答案
![(完整版)初等数论练习题答案](https://img.taocdn.com/s3/m/6a7c7f840912a216147929d7.png)
初等数论练习题一一、填空题1、d(2420)=12;(2420)=_880_ϕ2、设a,n 是大于1的整数,若a n -1是质数,则a=_2.3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}.4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。
5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。
.6、分母是正整数m 的既约真分数的个数为_ϕ(m )_。
7、18100被172除的余数是_256。
8、 =-1。
⎪⎭⎫⎝⎛103659、若p 是素数,则同余方程x p - 1 ≡1(mod p )的解数为 p-1 。
二、计算题1、解同余方程:3x 2+11x -20 ≡ 0 (mod 105)。
解:因105 = 3⋅5⋅7,同余方程3x 2+11x -20 ≡ 0 (mod 3)的解为x ≡ 1 (mod 3),同余方程3x 2+11x -38 ≡ 0 (mod 5)的解为x ≡ 0,3 (mod 5),同余方程3x 2+11x -20 ≡ 0 (mod 7)的解为x ≡ 2,6 (mod 7),故原同余方程有4解。
作同余方程组:x ≡ b 1 (mod 3),x ≡ b 2 (mod 5),x ≡ b 3 (mod 7),其中b 1 = 1,b 2 = 0,3,b 3 = 2,6,由孙子定理得原同余方程的解为x ≡ 13,55,58,100 (mod 105)。
2、判断同余方程x 2≡42(mod 107)是否有解?11074217271071107713231071107311072107710731072107732107422110721721107213)(=∴-=-=-==-=-=-==⨯⨯≡-∙--∙-()()()(),()()()(,(()()(()(解: 故同余方程x 2≡42(mod 107)有解。
《初等数论》习题集及答案
![《初等数论》习题集及答案](https://img.taocdn.com/s3/m/1e00e27f3d1ec5da50e2524de518964bcf84d265.png)
《初等数论》习题集及答案《初等数论》习题集第1章第 1 节1. 证明定理1。
2. 证明:若m - p ∣mn + pq ,则m - p ∣mq + np 。
3. 证明:任意给定的连续39个自然数,其中至少存在一个自然数,使得这个自然数的数字和能被11整除。
4. 设p 是n 的最小素约数,n = pn 1,n 1 > 1,证明:若p >3n ,则n 1是素数。
5. 证明:存在无穷多个自然数n ,使得n 不能表示为a 2 + p (a > 0是整数,p 为素数)的形式。
第 2 节1. 证明:12∣n 4 + 2n 3 + 11n 2 + 10n ,n ∈Z 。
2. 设3∣a 2 + b 2,证明:3∣a 且3∣b 。
3. 设n ,k 是正整数,证明:n k 与n k + 4的个位数字相同。
4. 证明:对于任何整数n ,m ,等式n 2 + (n + 1)2 = m 2 + 2不可能成立。
5. 设a 是自然数,问a 4 - 3a 2 + 9是素数还是合数?6. 证明:对于任意给定的n 个整数,必可以从中找出若干个作和,使得这个和能被n 整除。
第 3 节1. 证明定理1中的结论(ⅰ)—(ⅳ)。
2. 证明定理2的推论1, 推论2和推论3。
3. 证明定理4的推论1和推论3。
4. 设x ,y ∈Z ,17∣2x + 3y ,证明:17∣9x + 5y 。
5. 设a ,b ,c ∈N ,c 无平方因子,a 2∣b 2c ,证明:a ∣b 。
6. 设n 是正整数,求1223212C ,,C ,C -n n n n 的最大公约数。
第 4 节1. 证明定理1。
2. 证明定理3的推论。
3. 设a ,b 是正整数,证明:(a + b )[a , b ] = a [b , a + b ]。
4. 求正整数a ,b ,使得a + b = 120,(a , b ) = 24,[a , b ] = 144。
5. 设a ,b ,c 是正整数,证明:),)(,)(,(),,(],][,][,[],,[22a c c b b a c b a a c c b b a c b a =。
初等数论作业汇总
![初等数论作业汇总](https://img.taocdn.com/s3/m/c92c88660b1c59eef8c7b402.png)
一、选择题1、如果a|b,b|c,则(C )。
A:a=c B:a=-c C:a|c D:c|a2、360与200的最大公约数是(D )。
A:10 B:20 C:30 D:403、如果a|b,b|a ,则(C )。
A:a=b B:a=-b C:a=b或a=-b D:a,b的关系无法确定4、-4除-39的余数是(C )。
A:3 B:2 C:1 D:05、设n,m为整数,如果3整除n,3整除m,则9(A )mn。
A:整除B:不整除C:等于D:小于6、整数6的正约数的个数是(D )。
A:1 B:2 C:3 D:47、如果5|n ,7|n,则35(D )n 。
A:不整除B:等于C:不一定D:整除8、288与158的最大公约数是(A)。
A:2 B:4 C:6 D:89、-337被4除余数是(D )。
A:0 B:1 C:2 D:310、两个整数的公因数是它们的最大公因数的(A)。
A:因数B:倍数C:和D:差11、小于40的素数的个数(D)。
A:10 B:9 C:8 D:1212、定方程525x+231y=210(A )。
A:有解B:无解C:有正整数解D:有负整数解13、因为(D ),所以不定方程12x+15y=7没有解。
A:7不整除(12,15)B:7不整除[12,15] C:[12,15]不整除7 D:(12,15)不整除7二、填空题(1)模7的最小非负完全剩余系是0,1,2,3,4,5,6 .142535036021020252510100736025202545(2){-3.8} = 0.2 ;[-4.38] = -5 . (3)890的标准分解式是 2×5×89 .(4)16除-81的商是 -6 ,余数是 15 . (5)(1516,600)= 4 .(6)不定方程ax + by = c (其中a ,b ,c 是整数)有整数解的充要条件是 c b a ),(. (7)710被11除的余数是 1 .(8)340的十进位表示中的个位数字是 1 . (1)98!的末尾有_______22________个零。
初等数论习题集答案
![初等数论习题集答案](https://img.taocdn.com/s3/m/bbb6574ebb1aa8114431b90d6c85ec3a87c28bf7.png)
初等数论习题集答案初等数论习题集答案数论作为数学的一个分支,研究的是整数的性质和关系。
初等数论是数论中的一个重要分支,它主要研究整数的基本性质和简单的数学关系。
在学习初等数论的过程中,习题集是一个非常好的辅助工具,通过解答习题可以加深对数论知识的理解和掌握。
本文将为大家提供一些初等数论习题的答案,希望对大家的学习有所帮助。
1. 证明:若a和b是整数,且a|b,则|a|≤|b|。
证明:根据整除的定义,如果a|b,那么存在一个整数k,使得b=ak。
由此可得:|b|=|ak|=|a||k|。
由于k是一个整数,所以|k|≥1,因此有|b|≥|a|。
2. 证明:若a、b和c是整数,且a|b,b|c,则a|c。
证明:根据整除的定义,如果a|b,那么存在一个整数k1,使得b=ak1。
同理,如果b|c,那么存在一个整数k2,使得c=bk2。
将b的表达式代入c的表达式中,得到c=(ak1)k2=ak1k2。
由此可见,c也是a的倍数,即a|c。
3. 证明:如果一个整数能被2和3整除,那么它一定能被6整除。
证明:假设一个整数能被2和3整除,那么可以分别表示为2m和3n,其中m和n是整数。
将2m和3n相加得到2m+3n=6(m/2+n/3),由此可见,这个整数可以被6整除。
4. 证明:如果一个整数的平方是偶数,那么这个整数本身就是偶数。
证明:假设一个整数的平方是偶数,那么可以表示为n^2=2m,其中n和m是整数。
如果n是奇数,那么可以表示为n=2k+1,其中k是整数。
将n代入n^2=2m中,得到(2k+1)^2=4k^2+4k+1=2(2k^2+2k)+1,由此可见,这个整数的平方是奇数,与题设矛盾。
因此,假设不成立,这个整数本身一定是偶数。
5. 证明:对于任意的正整数n,n^2+n+1一定不能被2整除。
证明:假设n^2+n+1能被2整除,那么可以表示为n^2+n+1=2m,其中n和m是整数。
将n^2+n+1拆开得到n(n+1)+1=2m,由此可见,左边是一个奇数加上1,得到一个偶数。
初等数论习题
![初等数论习题](https://img.taocdn.com/s3/m/5163ffe576c66137ef06197f.png)
第三章 5 1.说明221能否被64僅除.解依次计算同余式 6. 例1 设m > 0是偶数,{ a1, a2, , am }与{b1, b2, , bm }都是模m 的完全 剩余系,证明: 4, 24 16, 28 256, 216=65536 154, 1 (mod 641)。
、5 22 232 1542=23716 因此 2 1 0(mod641),即641I22 1 2.求n 解有71 因此,若 则n 7 现在77 ( 1)7 即n 的个位数是 一般地,若求 求出整数k ,使 求出正整数r , r < k , a ba * r (mod m)。
例3 求(25733 46)26被50除的余数。
3•注: (i ) (丘) (iii) 4. 77的个位数• 3, 77 77 72 1,74 1 (mod 10), r (mod 4), 7r (mod10)1 3。
3 (mod 4),所以由上式得到 b c aa*k对模m 的同余,可分以下步骤进行: 1 (mod m);使得 b*c r (mod k); 解(25733 46)26 (733 4)26 = [7 (72)16 4]26 [7 ( 1)16 4]26 = (7 4)26 326 = 3 (35)5 3 ( 7)5 = 3 7 (72)221 29 (mod 50),即所求的余数是 29。
5.证明2x2-5y2=7没有整数解. 证明:设原方程有整数解X , y,则y 不是偶数 y 1(mod2),令 y 2n 1,n Z y 2 1 4n(n 1) y 2 1(mod8) 2x 2 5y 2 2x 2 5 7(mod8) 2 2x 12 4(mod8) x 2 2(mod 4),但这是不可能的,因此方程无整数解。
{a1 b1, a2 b2, , am bm }不是模 m 的完全剩余系。
7.例2设A = {x1, x2,, xm }是模m 的一个完全剩余系,以{x }表示x 的小数部分,证明:若(a, m) = 1,则“疋为X J 4、{-} (m 1)i 1m丿 2508. 例 1 求 13 ?(mod 5)解:这里 m 5,a 13,由欧拉定理,13 (5) 134 1(mod5), 则1350=13412+2= (134)12(13)2 132 169 4(mod5) 或者,用费马定理,这里 p 5,a 13,,135 13(mod5), 则 1350= (135)10 1310 (135)29.例 3 设{x1, x2,…,x (m)}是模(x1x2…x (m))*2 1 (mod m)。
初等数论练习题一(含答案)
![初等数论练习题一(含答案)](https://img.taocdn.com/s3/m/61132b118bd63186bdebbcaf.png)
《初等数论》期末练习二一、单项选择题1、=),0(b ( ).A bB b -C bD 02、如果1),(=b a ,则),(b a ab +=( ).A aB bC 1D b a +3、小于30的素数的个数( ).A 10B 9C 8D 74、如果)(mod m b a ≡,c 是任意整数,则A )(mod m bc ac ≡B b a =C (mod )ac bc m ≡/D b a ≠5、不定方程210231525=+y x ( ).A 有解B 无解C 有正数解D 有负数解6、整数5874192能被( )整除.A 3B 3与9C 9D 3或97、如果a b ,b a ,则( ).A b a =B b a -=C b a ≥D b a ±=8、公因数是最大公因数的( ).A 因数B 倍数C 相等D 不确定9、大于20且小于40的素数有( ).A 4个B 5个C 2个D 3个10、模7的最小非负完全剩余系是( ).A -3,-2,-1,0,1,2,3B -6,-5,-4,-3,-2,-1C 1,2,3,4,5,6D 0,1,2,3,4,5,611、因为( ),所以不定方程71512=+y x 没有解.A [12,15]不整除7B (12,15)不整除7C 7不整除(12,15)D 7不整除[12,15]12、同余式)593(mod 4382≡x ( ).A 有解B 无解C 无法确定D 有无限个解二、填空题1、有理数ba ,0,(,)1ab a b <<=,能写成循环小数的条件是( ). 2、同余式)45(mod 01512≡+x 有解,而且解的个数为( ). 3、不大于545而为13的倍数的正整数的个数为( ).4、设n 是一正整数,Euler 函数)(n ϕ表示所有( )n ,而且与n ( )的正整数的个数.5、设b a ,整数,则),(b a ( )=ab .6、一个整数能被3整除的充分必要条件是它的( )数码的和能被3整除.7、+=][x x ( ).8、同余式)321(mod 75111≡x 有解,而且解的个数( ).9、在176与545之间有( )是17的倍数.10、如果0 ab ,则),](,[b a b a =( ).11、b a ,的最小公倍数是它们公倍数的( ).12、如果1),(=b a ,那么),(b a ab +=( ).三、计算题1、求24871与3468的最小公倍数?2、求解不定方程2537107=+y x .(8分)3、求⎪⎭⎫ ⎝⎛563429,其中563是素数. (8分) 4、解同余式)321(mod 75111≡x .(8分)5、求[525,231]=?6、求解不定方程18116=-y x .7、判断同余式)1847(mod 3652≡x 是否有解?8、求11的平方剩余与平方非剩余.四、证明题1、任意一个n 位数121a a a a n n -与其按逆字码排列得到的数n n a a a a 121- 的差必是9的倍数.(11分)2、证明当n 是奇数时,有)12(3+n .(10分)3、一个能表成两个平方数和的数与一个平方数的乘积,仍然是两个平方数的和;两个能表成两个平方数和的数的乘积,也是一个两个平方数和的数.(11分)4、如果整数a 的个位数是5,则该数是5的倍数.5、如果b a ,是两个整数,0 b ,则存在唯一的整数对r q ,,使得r bq a +=,其中b r ≤0.《初等数论》期末练习二答案一、单项选择题1、C2、C3、A4、A5、A6、B7、D8、A9、A 10、D 11、B 12、B二、填空题1、有理数ba ,1),(,0=b a b a ,能写成循环小数的条件是( 1)10,(=b ). 2、同余式)45(mod 01512≡+x 有解,而且解的个数为( 3 ). 3、不大于545而为13的倍数的正整数的个数为( 41 ).4、设n 是一正整数,Euler 函数)(n ϕ表示所有( 不大于 )n ,而且与n ( 互素 )的正整数的个数.5、设b a ,整数,则),(b a ( ],[b a )=ab .6、一个整数能被3整除的充分必要条件是它的( 十进位 )数码的和能被3整除.7、+=][x x ( }{x ).8、同余式)321(mod 75111≡x 有解,而且解的个数( 3 ).9、在176与545之间有( 12 )是17的倍数.10、如果0 ab ,则),](,[b a b a =( ab ).11、b a ,的最小公倍数是它们公倍数的( 因数 ).12、如果1),(=b a ,那么),(b a ab +=( 1 ).三、计算题1、求24871与3468的最小公倍数?解:因为(24871,3468)=17所以[24871,3468]= 17346824871⨯=5073684 所以24871与3468的最小公倍数是5073684。
《初等数论》复习练习
![《初等数论》复习练习](https://img.taocdn.com/s3/m/e6d6a8e3360cba1aa811dadb.png)
《初等数论》复习练习1. 求24871与3468的最大公因数?2. [24871,3468]=?3.求[525,231]=?4.找出100以内的质数5.证明对于任意整数n ,数62332n n n ++是整数.6.求解不定方程并求出正整数解:1)、144219=+y x2)、18176=-y x .3).求不定方程471325=++zy x 的整数解。
7、解同余式(组) (1) ⎪⎩⎪⎨⎧≡≡≡)9(mod 3)8(mod 2)7(mod 1x x x8、求3643的末两位数码.9.求84965除以13的余数。
10.n=9450,求n 的标准分解式,并求τ(n ),σ(n ),φ(n )。
11.求2004!的末尾有多少个连续的零。
12.判断x=1*1996+2*1996+3*1996+…1996*1996除以9余几?13.判断359是否是质数。
14.M=8,写出M 的一个完全剩余系。
15.X 是方程X2+X-1=0的根,求[X]及{X}16. 欧拉函数)(n 的值,n=1,2,3,4,5,6,7,8,9,1017、如果整数a 的个位数是5,则该数是5的倍数.18.128*935*874*(),要使这个乘积的最后4个数字都是0,说明()最小应填什么数。
19. [x]=9,[y]=10,[z]=11,求[x+y-z]的值20.若今天是星期二,那么从今天起再过22010天是星期几?为什么?设A=2010∵(2,7)=1,∴由费马小定理,26≡1(mod7),2010=6×333+2≡2(mod6) ∴A=6q+2,2A =26q+2=26q 22≡22(mod7)≡4(mod7)故是星期六参考解答:1.解:24871=7×11×17×19,3468=22×3×172∴(24871,3468)=17.2.由上题得[24871,3468]=2×2×3×7×17×17×19=5073684.3.由上题的方法 ,或用短除法求得,[525,231]=11×21×25=5775。
02013初等数论练习题及答案
![02013初等数论练习题及答案](https://img.taocdn.com/s3/m/1dc5a673336c1eb91a375de2.png)
02013初等数论练习题及答案初等数论练习题一一、填空题1、?(2420)=27;?(2420)=_880_2、设a,n是大于1的整数,若an-1是质数,则a=_2.3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}.4、同余方程9x+12≡0(mod 37)的解是x≡11(mod 37)。
5、不定方程18x-23y=100的通解是x=900+23t,y=700+18t t?Z。
.6、分母是正整数m的既约真分数的个数为_?(m)_。
7、18100被172除的余数是_256 。
8、??65?? = -1 。
?103?9、若p是素数,则同余方程x p ? 1 ?1(mod p)的解数为 p-1 。
二、计算题1、解同余方程:3x2?11x?20 ? 0 (mod 105)。
解:因105 = 3?5?7,同余方程3x2?11x?20 ? 0 (mod 3)的解为x ? 1 (mod 3),同余方程3x2?11x?38 ? 0 (mod 5)的解为x ? 0,3 (mod 5),同余方程3x2?11x?20 ? 0 (mod 7)的解为x ? 2,6 (mod 7),故原同余方程有4解。
作同余方程组:x ? b1 (mod 3),x ? b2 (mod 5),x ? b3 (mod 7),其中b1 = 1,b2 = 0,3,b3 = 2,6,孙子定理得原同余方程的解为x ? 13,55,58,100 (mod 105)。
2、判断同余方程x2≡42(mod 107)是否有解?237)1071071071071073?1107?17?1107?1 ??23107271072221,1,?221107107331077742??11072?3?7解:(42)??28除以111的最小非负余数。
解:易知1271≡50。
502 ≡58, 503 ≡58×50≡14,509≡143≡80知5028 ≡3×50≡803×50≡803×50≡68×50≡70 从而5056 ≡16。
初等数论练习题一
![初等数论练习题一](https://img.taocdn.com/s3/m/9ca8d924ba0d4a7303763a1f.png)
三、计算题
1、求24871与3468的最小公倍数?
2、求解不定方程107x・37y=25.(8分)
3、求429,其中563是素数.(8分)
(563
4、解同余式111x三75(mod321) .( 8 分)
5、求[525,231]=?
6、求解不定方程6x_11y=18.
4、如果整数a的个位数是5,则该数是5的倍数.
5、 如果a,b是两个整数,b '0,则存在唯一的整数对q, r,使得a=bq,r,其中0_r b无限个解
、填空题
1、有理数-,0:::a:::b,(a,b)=1,能写成循环小数的条件是(
b
2、 同余式12x V5三0(mod45)有解,而且解的个数为().
3、 不大于545而为13的倍数的正整数的个数为().
4、 设n是一正整数,Euler函数::(n)表示所有()n,而且与n(
大于20且小于40的素数有(
4个B5个C2个
是
-6,
12x15^7没有解.
B
D
-3, -2,-1,0,1,2,3 B
因为(),所以不定方程
[12,15]不整除7
7不整除(12,15)
(12,15)不整除7
7不整除[12,15]
0,1,2,3,4, 5, 6
12、
同余式
2
x三438(mod 593)(
有解B无解
整数5874192能被(
3 B 3与9
C有正数解)整除.
9
7、
如果ba,a b,
).
a =b B
公因数是最大公因数的(
因数B倍数C
初等数论复习题题库及答案
![初等数论复习题题库及答案](https://img.taocdn.com/s3/m/d442f5bb6529647d2728527f.png)
《初等数论》本科一 填空题(每空2分)1.写出30以内的所有素数 2,3,5,7,11,13,17,19,23,29 .2.,(,)(,)(,)a b a b a b a b =设是任意两个不为零的整数,则 1 . 3.若,a b 是非零整数,则a 与b 互素的充要条件是存在整数,x y ,适1ax by +=4.写出180的标准分解式是 22235⋅⋅ ,其正约数个数有 (2+1)(2+1)(1+1)=18个.5.,1,2,,a b a b 设与是正整数则在中能被整除的整数恰有 []ab个.6.设,a b 是非零整数,c 是整数,方程ax by c +=有整数解(,x y )的充要条件是 (,)|a b c7. 若整数集合A 是模m 的完全剩余系,则A 中含有 m 个整数.8.ϕ(3)= 2 ;ϕ(4)= 2 .9.当p 素数时,(1)()p ϕ= 1p - ;(2)()k p ϕ= 1k k p p -- . 10.(),(,)1,1m m a m a ϕ=-≡设是正整数则 0 (m o d ).m 11.,,p p a a a -≡设是素数则对于任意的整数有 0 (m o d ).p 12.已知235(mod7)x +≡,则x ≡ 1 (m o d 7). 13.同余方程22(mod 7)x ≡的解是 4(mod7) . 14.同余方程2310120(mod 9)x x ++≡的解是 .X=6. . 15.(,)1n p =若,n p 是模的二次剩余的充要条件是 -121(mod ).p n p ≡ . 16.(,)1n p =若,n p 是模的二次非剩余的充要条件是 -121(mod ).p np ≡- .17.3()=5 -1 ; 4()=51 .18.,p 设是奇素数则2()p= 218(1).p --.19.,p 设是奇素数则1()p = 1 ;-1()p = -12(-1).p .20. 5()=9 1 ; 2()=45-1 .二 判断题(判断下列结论是否成立,每题2分).1. ||,|a b a c x y Z a bx cy ⇒∈+且对任意的有.成立2. (,)(,),[,][,]a b a c a b a c ==若则.不成立3. 23|,|a b a b 若则.不成立4.(mod ),0,(mod ).a b m k k N ak bk mk ≡>∈⇒≡ 成立5.(mod )(mod ).ac bc m a b m ≡⇒≡ 不成立6. 22(mod ),(mod )(mod )a b m a b m a b m ≡≡≡-若则或至少有一个成立. 不成立 7. 222(mod ),(mod )a b m a b m ≡≡若则.不成立8. 若x 通过模m 的完全剩余系,则x b +(b 是整数)通过模m 的完全剩余系. 成立 9. 1212{,,,}{,,,}.m m a a a b b b 若与都是模m 的完全剩余系不成立1122{,,,}.m m a b a b a b m +++则也是模的完全剩余系不成立10.若(,)1a m =,x 通过模m 的简化剩余系,则ax b +也通过模m 的简化剩余系. 不成立 11.12121212,,(,)1,()()().m m N m m m m m m ϕϕϕ∈==若则 成立12. 同余方程24330(mod15)x x -+≡和同余方程2412120(mod15)x x +-≡是同解的. 成立13. (mod ).ax b m ax my b ≡+=同余方程等价于不定方程成立14. 2,(mod ),() 1.am x a m m≡=当是奇素数时若有解则成立15. 2,()1,(mod ).am x a m m=≡当不是奇素数时若则方程一定有解不成立三 计算题1. (1859,1573)-求.(6分)解:1.(1859,1573)(1859,1573)(286,1573)(286,15732865)(286,143)(0,143)143-===-⨯===2.求 [-36,108,204].(8分)解:22232232.[36,108,204][36,108,204],3623,10823,2042317,[36,108,204]23171836.-==⨯=⨯=⨯⨯∴=⨯⨯=3. 求(125,17),以及x ,y ,使得125x +17y =(125,17).(10分)解:3.651,16-56-(17-26)36-173(125-177)-173125-2217.1253-17221,3,-22.x y =+==⨯=⨯=⨯⨯=⨯⨯∴⨯⨯===由等式起逐步回代得4. 求整数x ,y ,使得1387x -162y =(1387,162).(10分)解:4.9421,19-429-4(11-9)59-4115(20-11)-411520-911520-9(71320)322097132(91-71)97132914171329141(16291)73914116273(13878162)41162731387625162.1=⨯+=⨯=⨯=⨯⨯=⨯⨯=⨯⨯=⨯⨯-⨯=⨯-⨯=⨯-⨯=⨯-⨯=⨯-⨯-=⨯-⨯=⨯-⨯-⨯=⨯-⨯∴由等式起逐步回代得38773162625 1.⨯-⨯=5. 12!.分解为质因数乘积(8分)6. ,10|199!k k 求最大的正整数使.(8分)7. [1].100++求(10分) 8. 81743.x y +=求方程的整数解(6分)9. 19201909.x y +=求方程的正整数解(10分)10. 求方程111x -321y =75的整数解.(10分) 11. 12310661.x x x ++=求方程15的整数解(8分) 12. 361215.x y z ++=求不定方程的整数解(8分)13. 237.x y z ++=求不定方程的所有正整数解(8分)14. 19,2,3 5.30将写成三个分数之和它们的分母分别是和(10分) 15. 222370.x y x y +--=求方程的整数解(6分) 16. 331072.x y +=求方程的整数解(8分)17. 5()4.xy yz zx xyz ++=求方程的正整数解(10分)18. 4063().求的个位数字与最后两位数字十进制(10分)19. 67(mod 23).x ≡解同余方程(8分) 20. 12150(mod 45).x +≡解同余方程(8分)21. 2(mod 3)3(mod 5).2(mod 7)x x x ≡⎧⎪≡⎨⎪≡⎩解同余式组(6分)22. 43()0(mod35),()289.f x f x x x x ≡=+++解同余式(10分) 23. 765:2720(mod5).x x x x --++≡解同余方程(6分)24. .求出模23的所有二次剩余和二次非剩余(8分)25. 25(mod11).x ≡判断方程有没有解(6分)26. 2563,429(mod563).x ≡已知是素数判定方程是否有解(8分) 27. 3求以为其二次剩余的全体素数.(8分)28. 10173:(1)();(2)().1521计算(8分) 29. (300).ϕ计算(6分)30. 3(mod8)11(mod 20).1(mod15)x x x ≡⎧⎪≡⎨⎪≡⎩解同余式组(10分)四 证明题1、,,,, 1.:|,|,|.a b x y ax by a n b n ab n +=设是两个给定的非零整数且有整数使得求证若则(6分)证明:1.()|,|.n n ax by nax nbyab na ab nb ab n =+=+∴又2.121212,,,,0,.4|.n n n a a a a a a a a a n n +++==设是整数且则(8分)证明:1212121231122.,,,,,,0,2.,,,.,,2(2).-,(-1),,.,,,,4.n n n i n n n n a a a a a a n a a a a a i n a a a a n a a a n +++=∴≤≤+++=∴若是奇数则都是奇数则不可能即在中至少有一个偶数如果只有一个偶数不妨设为则不整除由知左边是个奇数的和右边是偶数这是不可能的在中至少有两个偶数即3. 任给的五个整数中,必有三个数之和被3整除.(8分)证明:1231231231231231233.3,03,1,2,3,4,5.(1)0,1,2,0,1,2,3()3.(2)0,1,2,,(0,12),3()3.i i i i i i i a q r r i r r r r a a a q q q r r r r r r r a a a q q q r =+≤<====++=+++====++=+++设若在中数都出现不妨设则成立若在中数至少有一个不出现则至少有三个取相同的值令或则成立4. 22,,9|,3|(,).a b a ab b a b ++设是整数且则(8分)证明:2222224.9,9()3,3()3,3(),3,9(),93,3,33.3,3,3.3.3,3.3(,).a ab b a b ab a b ab a b a b a b ab ab a b a a b b b a b a a b ++∴-+∴-+∴-∴-∴-∴∴∴-∴-∴或若若故5. 设,a b 是正整数,证明()[,][,]a b a b a b a b +=+.(8分)证明:()5.()[,](),(,)(,)()[,](,),(,)(,),()[,](,),()[,],(,)ab b a b a b a b a b a a b a b b a b b a b b a b b a b a b b a b b a b a b b a b b a b a b ++=+⋅=⋅+=+++=∴+=++=+∴而即结论成立6. (mod ),0,,(mod ).nna b m n n N a b m ≡>∈≡当时又则(6分)证明:123216.(mod ),,()(),,(mod ).n n n n n n n n n n a b m m a b a b a b a a b a b b m a b a b m ----≡∴--=-++++∴-≡又即7. 12{,,,},{}.m A x x x m x x =设是模的一个完全剩余系以表示的小数部分11:(,)1,{}(-1).2mi i ax b a m m m =+==∑证明若则(10分) 证明:1211111117.2,{,,,},(1),1(1)1{}{}{}{}.22m i mm mm m i i j j j j ax b ax b ax b m ax b km j j m ax b j j j j m m m k m m m m m m --=====++++=+≤≤+--=+====⋅=∑∑∑∑∑由定理知也是模的一个完全剩余系可设从而8. ,:n N ∈设证明1()2,2k n n n k N ϕ==∈的充要条件是.(10分)证明:-1-118.2,(2)2(1-)2.22(),2,2|,21()()()(2)(2)()2()2,222(),1,.(()112)k k k k k k k k k nn nn n t t n t n t n t t t t t t t t t n n ϕϕϕϕϕϕϕϕϕϕϕ⇐====⇒==/=====⨯⋅=⋅=∴==⇔=若则若设则即从而得证注或9. ,5|12344.n n n n n N n ∈+++⇔/设则(10分)证明:444449.(5)4,,1(mod5)(14).4,03,1234(1)1(2)2(3)3(4)41234(mod5).5|1234,5|1234,0,1,2,30,4;4,0,5|1234,n n n n q r q r q r q rr r r r n n n n r r r r r r r r k k n q r r r r n n r ϕ=≡≤≤=+≤≤+++≡⋅+⋅+⋅+⋅≡+++⇒++++++==∴//⇐=+++/由定理知令则若即得把代入检验可知若则易知5|1234.n n n n ∴+++/10. ()1,(,)1,:(mod )(mod ).m m a m x bam ax b m ϕ-=≡≡设是正整数证明是同余方程的解证明:()()()-110.(,)1,,1(mod ).(mod ),(,)1,(mod ).m m m a m Euler a m ax b a b m a m x a b m ϕϕϕ=≡∴≡≡=∴≡由定理则11. -121(mod ).p n p n p ≡-是模的二次非剩余的充要条件是(10分)证明:-111221122-121211.(,)1,,1(mod ),(1)(1)0(mod ),,10(mod )10(mod ),1(mod ),1(mod ).p p p p p p p n p Euler n p nnp p n p np n p n p np -----=≡∴+-≡+≡-≡≡∴≡-若则由定理是素数则或中必有一个成立是模的二次剩余的充要条件是 12. 12(mod ),(mod ),y a p y a p p ≡≡设都是模的平方剩余121211:(mod ),(mod ),(mod ).y a a p y b b p p y a b p p ≡≡≡求证都是模的平方剩余是模的平方非剩余(10分)证明:11112222121211122212121112.1,1(mod ),1(mod ),()()1(mod ),()1(mod ),.p p p p p p p a a p b b p a a b b p a b p -------≡≡≡≡-∴≡≡≡-∴由定理知得证13. 22,43,:(mod ),(mod ).p q n x p q x q p +≡≡设为两个形如的奇质数求证若无解则有两个解(10分)14. 1(mod 4),(mod ).p p y a p p ≡≡设是适合的素数是模的平方剩余:(mod ).y a p p ≡-证明也是模的平方剩余(8分)15. 2,:141.n n m ++设是整数证明的任何奇因数都是的形式(10分) 16. -1,1(mod )-1.p p x p p ≡若是素数则同余方程有个解(8分) 17. -1-1100101010,:9|9|.nn n n n i i N a a a a N a ==+++⋅+⇔∑设求证(8分)18. 52:641|2 1.+求证(8分)19. :,,()(,)([,]).m n N mn m n m n ϕϕ∈=证明若则(10分) 20. ,,(mod ).p p a a a p ≡设是素数则对于任意的整数有(8分)。
(完整版)初等数论练习题二(含答案)
![(完整版)初等数论练习题二(含答案)](https://img.taocdn.com/s3/m/46236f50ba0d4a7303763a76.png)
《初等数论》期末练习一、单项选择题1 如果 ba , a b ,则().A a b Bab2、如果 3n , 5n ,贝U 15 (A 整除B 不整除 C3、 在整数中正素数的个数( ).A 有1个B 有限多C 无限多D 不一定4、 如果a b (modm ) ,c 是任意整数 贝UA ac bc(modm)B a bC ac bc(mod m) Dab5、 如果(),则不定方程ax by c 有解.A (a,b) cB c(a, b)C a cD (a, b)a6、 整数5874192能被()整除.A 3B 3 与 9C 9D 3 或 97、 如果 2n , 15n ,贝U 30( ) n . A 整除 B 不整除 C 等于 D 不一定& 大于10且小于30的素数有(). A 4个 B 5个 C 6个 D 7个9、 模5的最小非负兀全剩余系是( ). A -2,-1,0,1,2 B -5,-4,-3,-2,-1 C 1,2,3,4,5 D 0,1,2,3,4 10、 整数637693能被()整除. A 3 B 5 C 7 D 9二、填空题1、素数写成两个平方数和的方法是(). 2、 同余式ax b O (modm )有解的充分必要条件是().8、 如果同余式ax b O (modm )有解,则解的个数(). 9、 在176与545之间有()是13的倍数.10、 如果 ab 0 则[a,b ](a,b )=( ). Cab Dab )n . 等于 D 不一定 3、 如果a,b 是两个正整数,则不大于 4、 如果p 是素数,a 是任意一个整数 5、 a,b 的公倍数是它们最小公倍数的6、 如果a,b 是两个正整数,则存在a 而为b 的倍数的正整数的个数为 ().,则a 被p 整除或者().(). )整数 q, r ,使 a bq r, 0 r b. y 2有( ).11、如果(a,b) 1,那么(ab,a b)=().二、计算题1、求[136,221,391]=?2、求解不定方程9x 21y 144.3、解同余式12x 15 0(mod45).4294、求——,其中563是素数.(8分)5635、求[24871,3468]=?6、求解不定方程6x 17y 18.7、解同余式111x 75(mod321).8、求17的平方剩余与平方非剩余.四、证明题1、证明对于任意整数2n nn,数3 23—是整数.62、证明相邻两个整数的立方之差不能被5整除.3、证明形如4n 1的整数不能写成两个平方数的和4、如果整数a的个位数是5,则该数是5的倍数.5、证明相邻两个偶数的乘积是8的倍数.初等数论期末练习一答案、单项选择题1、D.2、A3、C4、A5、A6、B7、A8、C9、D 10、C二、填空题1、 素数写成两个平方数和的方法是(唯一的)2、 同余式ax b 0(modm)有解的充分必要条件是 ((a,m)b ).3、 如果a,b 是两个正整数,则不大于a 而为b 的倍数的正整数的个数为 ([-]). b4、 如果p 是素数,a 是任意一个整数,则a 被p 整除或者(与p 互素).5、 a,b 的公倍数是它们最小公倍数的(倍数).6、 如果a,b 是两个正整数,则存在(唯一)整数q, r ,使a bq r, 0 r b.7、 设p 是素数,则不定方程p x 2 y 2有(唯一解 ).8、 如果同余式ax b 0(mod m)有解,则解的个数((a, m)).9、 在176与545之间有(28 )是13的倍数.10、 如果 ab 0 则[a,b](a,b)=( ab ).11、 如果(a,b) 1,那么(ab, a b)=(1). 三、计算题1、求[136,221,391]=? ( 8 分) 解[136,221,391]=[[136,221],391]=[1768,391] 1768 391 17=104 391 =40664.解:因为(9,21)=3, 3144,所以有解;化简得3x 7y 48 ;考虑 3x 7y 1,有 x 2, y 1,所以原方程的特解为 x 96, y 48,因此,所求的解是 x 96 7t, y 48 3t,t Z 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业次数:学号姓名作业成绩第0章序言及预备知识第一节序言(1)1、数论人物、资料查询:(每人物写600字左右的简介)(1)华罗庚2、理论计算与证明:(1是无理数。
(2)Show that there are infinitely many Ulam numbers3、用Mathematica 数学软件实现A Ulam number is a member of an which was devised byand published in in 1964. The standard Ulam sequence (the (1, 2-Ulam sequence starts with U 1=1 and U 2=2 being the first two Ulam numbers. Then for n > 2, U n is defined to bethe smallest that is the sum of two distinct earlier terms in exactly one way 。
By the definition, 3=1+2 is an Ulam number; and 4=1+3 is an Ulam number (The sum 4=2+2 doesn't count because the previous terms must be distinct. The integer 5 is not an Ulam number because 5=1+4=2+3. The first few terms are1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53, 57, 62, 69, 72, 77,82, 87, 97, 99(1)Find the first 200 Ulam numbers(2)What conjectures can you make about the number of Ulam numbers less than an integer ?n Do your computations support these conjetures?作业次数:学号姓名作业成绩第2节序言(2)1、数论人物、资料查询:(每人物写600字左右的简介)(2)陈景润2、理论计算与证明:(1)用数学归纳法证明:! n n n ≤(2)用数学归纳法证明:2!(n n n ≤≥4 3、用Mathematica 数学软件实现The problem, also known as the Collatz problem, the Syracuse problem, Kakutani's problem, Hasse's algorithm, and Ulam's problem, concerns the behavior of the iterates of the function which takes odd integers to and even integers n to +3x 1n 3n +12n . The +3x 1 Conjecture asserts that, starting from any positive integer, repeated iteration of this function eventually produces the value 1.n 参考文献:Jeffrey C. Lagarias, "The 3x 1+ problem and its generalizations".初等数论练习册作业次数:学号姓名作业成绩第3节预备知识1、数论人物、资料查询:(每人物写600字左右的简介)(1)王小云(山东大学)(2)The tower of Hanoi2、理论计算与证明:(1)设n f 是第n 个Fabonacci 数,,则11F 10⎛⎞=⎜⎝⎠⎟1n 1F n n n n f f f f +−⎛⎞=⎜⎟⎝⎠(2)求证:212232122... n n n f f f f f f f −+++=3、用Mathematica 数学软件实现(The tower of Hanoi puzzle)The Tower of Hanoi or Towers of Hanoi is a mathematical game or puzzle. It consists of three rods, and a number of disks of different sizes which can slide onto any rod. The puzzle starts with the disks in a neat stack in ascending order of size on one rod, the smallest at the top, thus making a conical shape.The objective of the puzzle is to move the entire stack to another rod, obeying the following rules:•Only one disk may be moved at a time.• Each move consists of taking the upper disk from one of the rods and sliding it ontoanother rod, on top of the other disks that may already be present on that rod.• No disk may be placed on top of a smaller disk 参考文献:[1]、http://wipos.p.lodz.pl/zylla/games/hanoi5e.html[2]、作业次数:学号姓名作业成绩第一章整数的可除性第1节整数的整除性1、数论人物、资料查询:(每人物写600字左右的简介)(1)素数有无限个的多种证明方法.(2 欧几里德高斯2、理论计算与证明:(1)证明:3|,其中是任何整数。
(1(21 n n n ++n (2)若是形如ax (0ax by +0by +, x y 是任意整数,是两个不全为零的整数的数中的最小正数,则。
, a b 00( ax |(by ++ax by作业次数:学号姓名作业成绩第2节带余数除法、辗转相除法1、数论人物、资料查询:(每人物写600字左右的简介)(1)DONALD KUNTH2、理论计算与证明:(1)证明,其中0(, a b ax by =+000ax by +是形如ax by +(, x y 是任意整数)的整数里的最小正数,并将此结果推广到个整数的情形。
n (2)求(。
252,198 (3)设1n f +和2n f +是连续的Fibonacci 序列,,求证:1n >12(, n n f f ++=1作业次数:学号姓名作业成绩第3节最大公约数1、数论人物、资料查询:(每人物写600字左右的简介)(1)Fibonacci2、理论计算与证明:(1)证明两整数互质的充分与必要条件是:存在两个整数满足条件。
, a b , s t 1as bt +=(2)设是正整数,是大于1的整数。
证明:, m n a (, (1, 1 m n m n a a a 1−−=−。
(3)如果是正整数,则, m n (, (, m n m n f f f =。
作业次数:学号姓名作业成绩第4节最小公倍数、素数与算术基本定理1、数论人物、资料查询:(每人物写600字左右的简介)(1)ALTE SELBERG2、理论计算与证明:(1)若是素数,则是2的方幂。
2n +1n (2)设都是正整数,则, , a b c max{, , }min{, }min{, }min{, }min{, , }a b c a b c a b a c b c a b c =++−−−+ 由此证明:(, , [, , ](, (, (,abc a b c a b c a b a c b c =作业次数:学号姓名作业成绩第6节函数[x]与{x}1、数论人物、资料查询:(每人物写600字左右的简介)(1) PAUL ERDOS2、理论计算与证明:(1)求30的标准分解式。
! (2)求的末尾有多少个零?20! (3)设是任一正整数,n α是实数,证明:(i )[][]n n αα⎡⎤=⎢⎥⎣⎦(ii )11[][... [[]n n n nααα−+++++=α作业次数:学号姓名作业成绩第二章不定方程第1节二元一次不定方程1、数论人物、资料查询:(每人物写600字左右的简介)(1)整理Fermat last theorem 的历史过程2、理论计算与证明(1)解方程 1525100x y +=(2)证明:二元一次不定方程的非负整数解为, 0, 0,(, ax by N a b a b +=>>=1N ab ⎡⎤⎢⎥⎣⎦或1N ab ⎡⎤+⎢⎥⎣⎦。
(3)解方程234x y z ++=5作业次数:学号姓名作业成绩第三章同余第1节同余的概念1、数论人物、资料查询:(每人物写600字左右的简介)(1)G .L. DIRICHLET2、理论计算与证明(1)找出被2,3,5,6,7,9整除的整数的刻画.(2)设,证明: 1101010... ,09n n n n i a a a a a −−=+++≤≤011|11|(1 n i i i a a =⇔−∑(3)证明:32.641|21+作业次数:学号姓名作业成绩第1节剩余类及完全剩余系、简化剩余系1、数论人物、资料查询:(每人物写600字左右的简介)(1)DA VID HILBERT2、理论计算与证明(1)证明2(1( ( ... ( , p p p p ααϕϕϕϕ++++=p 为素数。
(2)求(200ϕ。
作业次数:学号姓名作业成绩第2节欧拉定理及费马小定理1、数论人物、资料查询:(每人物写600字左右的简介)(1)PIEERE DE FERMAT(2 ANDREW WILES2、理论计算与证明(1)设p 是素数,是整数,则.12, h h 1212( (modp p p h h h h p +≡+ (2)设n 是正整数,则. |( d nd n ϕ=∑(3 设p 是素数,如果p p p x y z +=, 证明:|p x y z +−.作业次数:学号姓名作业成绩第四章同余式第1节基本概念及一次同余式、孙子定理1、数论人物、资料查询:(每人物写600字左右的简介)(1)RSA 三个人物(2 整理 The RSA Cryptosystem2、理论计算与证明(1)解同余式(i (iii 95(iii 25(mod7x ≡ (mod25x ≡256179(mod337 x ≡ (2 设是正整数,,证明:m (, 1a m = ( 1(mod m x ba m ϕ−≡是同余式的解。