高中数学必修二练习册答案

合集下载

人教A版高中数学必修第二册强化练习题-专题强化练5-复数四则运算的综合应用(含答案)

人教A版高中数学必修第二册强化练习题-专题强化练5-复数四则运算的综合应用(含答案)

人教A版高中数学必修第二册专题强化练5 复数四则运算的综合应用1.(2024山东菏泽月考)已知i为虚数单位,复数z满足|z+2i|=|z|,则z的虚部为( )A.-1B.1C.iD.-i2.(2024福建福州期中)已知复数z满足|z|=2,则|z+3+4i|的最小值是( )A.3B.4C.5D.68.(2024河北张家口期中)已知在复数范围内,关于x的一元二次方程x2-2x+k=0(k∈R)有两个虚数根z1和z2,若|z1-z2|=2,且z1的虚部为正数.(1)求实数k的值;(2)求z1z2+的值.答案与分层梯度式解析专题强化练5 复数四则运算的综合应用1.B2.A3.ACD4.BCD5.BC1.B 设z=a+bi(a,b ∈R),则z =a-bi,因为|z+2i|=|z|,所以|a+(b+2)i|=|a+bi|,可得a 2+(b+2)2=a 2+b 2,解得b=-1,所以复数z 的虚部为-b=1.故选B.2.A |z|=2表示复数z 在复平面内对应的点的集合是以原点O 为圆心,2为半径的圆,|z+3+4i|=|z-(-3-4i)|表示圆上的点到点(-3,-4)(记为A)的距离,易得|OA|=32+42=5>2,所以|z+3+4i|的最小值是|OA|-2=3.故选A.3.ACD ∵-2<b<2,∴Δ=b 2-4<0,∴方程x 2+bx+1=0的根为x=-b ±4−b 2i2,不妨设z 1=-b2+4−b 22i,z 2=-b 2-4−b 22i,则z 1=z 2,A正确;|z 1|=|z 2正确;易得z 1z 2=1,∴z 1z 2=z 21z1z 2=z 21=b 2-22-b 4−b22i,当b≠0时,z 1z 2∉R,B 错误;当b=1时,z 1=-12+32i,z 2=-12-32i,计算得z 21=-12-32i=z 2,z 22=z 1,∴z 31=z 1z 2=1,z 32=z 1z 2=1,D 正确.故选ACD.4.BCD 设z 1=a+bi,z 2=c+di,a,b,c,d ∈R,则z 21=(a+bi)2=a 2-b 2+2abi,|z 1|2=a 2+b 2,当b≠0时,z 21≠|z 1|2,A 不正确;因为z 1·z 2=(a+bi)(c+di)=(ac-bd)+(ad+bc)i,所以z 1·z 2=(ac-bd)-(ad+bc)i,又z 1·z 2=(a-bi)(c-di)=(ac-bd)-(ad+bc)i,所以z 1·z 2=z 1·z 2,B 正确;|z 1z 2|=|(a+bi)(c+di)|=|(ac-bd)+(ad+bc)i|=(ac -bd )2+(ad +bc )2=a 2c 2+b 2d 2+a 2d 2+b 2c 2,|z 1|·|z 2|=a 2+b 2·c 2+d 2=(a 2+b 2)(c 2+d 2)=a 2c 2+b 2d 2+a 2d 2+b 2c 2,所以|z 1z 2|=|z 1|·|z 2|,C 正确;z 1z 1=a +b i a -b i =(a +b i)2(a -b i)(a +b i)=a 2-b 2+2abi a 2+b 2,z 21|z 1|2=(a +b i)2a 2+b 2=a 2-b 2+2abi a 2+b 2,所以z 1z 1=z 21|z 1|2,D正确.故选BCD.规律总结 关于复数有以下几个常用结论,在小题中可以直接使用,提高解题速度.(1)z1·z2=z1·z2=z1z2(z2≠0);(3)|z1z2|=|z1||z2|;(4)zz=z2|z|2(z≠0).5.BC 设z=a+bi(a,b∈R),由z2+z+1=0得(a+bi)2+(a+bi)+1=0,即(a2-b2+a+1)+(2ab+b)i=0,所以a2-b2+a+1=0,2ab+b=0,解得a=−12,b=32或a=−12,b=−32, z=-1+3i z=-1-3i,6.7.z1因为∠AOB∈[0,π],所以∠AOB=π4.8.解析 (1)设z1=a+bi(a,b∈R,b>0),则z2=a-bi,故z1+z2=2a=2,所以a=1,因为|z1-z2|=2,所以|2bi|=2,即4b2=4,解得b=1或b=-1(舍去).故z1=1+i,z2=1-i,所以k=z1z2=2.(2)因为z1z2=1+i1−i=i,i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i,n∈N,所以z1z2+=i+i2+i3+…+i2 025=(i-1-i+1)×506+i=i.。

(人教版新课标)高中数学必修2所有课时练习(含答案可编辑)

(人教版新课标)高中数学必修2所有课时练习(含答案可编辑)

第一章空间几何体课时作业(一)棱柱、棱锥、棱台的结构特征姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.从长方体的一个顶点出发的三条棱上各取一点E,F,G,过此三点作长方体的截面,那么截去的几何体是()A.三棱柱B.三棱锥C.四棱柱D.四棱锥答案: B2.下列说法中正确的是()①一个棱柱至少有五个面;②用一个平面去截棱锥,底面和截面之间的部分叫棱台;③棱台的侧面是等腰梯形;④棱柱的侧面是平行四边形.A.①④B.②③C.①③D.②④解析:因为棱柱有两个底面,因此棱柱的面数由侧面个数决定,而侧面个数与底面多边形的边数相等,故面数最少的棱柱为三棱柱,有五个面,①正确;②中的截面与底面不一定平行,故②不正确;由于棱台是由棱锥截来的,而棱锥的所有侧棱不一定相等,所以棱台的侧棱不一定都相等,即不一定是等腰梯形,③不正确;由棱柱的定义知④正确,故选A.答案: A3.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A.20 B.15C.12 D.10解析:正五棱柱任意不相邻的两条侧棱可确定一个平面,每个平面可得到正五棱柱的两条对角线,五个平面共可得到10条对角线,故选D.答案: D4.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北,现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到右侧的平面图形,则标“△”的面的方位是()A.南B.北C.西D.下解析:将所给图形还原为正方体,如图所示,最上面为△,最左面为东,最里面为上,将正方体旋转后让东面指向东,让“上”面向上可知“△”的方位为北.故选B.答案: B二、填空题(每小题5分,共10分)5.如图,正方形ABCD中,E,F分别为CD,BC的中点,沿AE,AF,EF将其折成一个多面体,则此多面体是________.解析:此多面体由四个面构成,故为三棱锥,也叫四面体.答案:三棱锥(也可答四面体)6.下列命题中,真命题有________.①棱柱的侧面都是平行四边形;②棱锥的侧面为三角形,且所有侧面都有一个公共点;③棱台的侧面有的是平行四边形,有的是梯形;④棱台的侧棱所在直线均相交于同一点;⑤多面体至少有四个面.解析:棱柱是由一个平面多边形沿某一方向平移而形成的几何体,因而侧面是平行四边形,故①对.棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因而其侧面均是三角形,且所有侧面都有一个公共点,故②对.棱台是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶点),故③错④对.⑤显然正确.因而真命题有①②④⑤.答案:①②④⑤三、解答题(每小题10分,共20分)7.(1)如图所示的几何体是不是棱台?为什么?(2)如图所示的几何体是不是锥体?为什么?解析:(1)①②③都不是棱台.因为①和③都不是由棱锥所截得的,故①③都不是棱台;虽然②是由棱锥所截得的,但截面不和底面平行,故不是棱台.只有用平行于棱锥底面的平面去截棱锥,底面与截面之间的部分才是棱台.(2)都不是.棱锥定义中要求各侧面有一个公共顶点.图①中侧面ABC与CDE没有公共顶点,故该几何体不是锥体;图②中侧面ABE与面CDF没有公共点,故该几何体不是锥体.8.判断下列语句的对错.(1)一个棱锥至少有四个面;(2)如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等;(3)五棱锥只有五条棱;(4)用与底面平行的平面去截三棱锥,得到的截面三角形和底面三角形相似.解析:(1)正确.(2)不正确.四棱锥的底面是正方形,它的侧棱可以相等,也可以不相等.(3)不正确.五棱锥除了五条侧棱外,还有五条底边,故共有10条棱.(4)正确.尖子生题库☆☆☆9.(10分)在如图所示的三棱柱ABC-A1B1C1中,请连接三条线,把它分成三部分,使每一部分都是一个三棱锥.解析:如图,连接A1B,BC1,A1C,则三棱柱ABC-A1B1C1被分成三部分,形成三个三棱锥,分别是A1-ABC,A1-BB1C1,A1-BCC1.课时作业(二)圆柱、圆锥、圆台、球的结构特征简单组合体的结构特征姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分)1.下列四种说法①在圆柱的上、下两底面的圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下两底面的圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线相互平行.其中正确的是()A.①②B.②③C.①③D.②④解析:①所取的两点与圆柱的轴OO′的连线所构成的四边形不一定是矩形,若不是矩形,则与圆柱母线定义不符.③所取两点连线的延长线不一定与轴交于一点,不符合圆台母线的定义.②④符合圆锥、圆柱母线的定义及性质.故选D.答案: D2.下图是由选项中的哪个图形旋转得到的()解析:该组合体上部是圆锥,下部是圆台,由旋转体定义知,上部由直角三角形的直角边为轴旋转形成,下部由直角梯形垂直于底边的腰为轴旋转形成.故选A.答案: A3.如图所示为一个空间几何体的竖直截面图形,那么这个空间几何体自上而下可能是()A.梯形、正方形B.圆台、正方形C.圆台、圆柱D.梯形、圆柱解析:空间几何体不是平面几何图形,所以应该排除A、B、D.答案: C4.如图所示的几何体,关于其结构特征,下列说法不正确的是()A.该几何体是由两个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余均为三角形解析:该几何体用平面ABCD可分割成两个四棱锥,因此它是这两个四棱锥的组合体,因而四边形ABCD是它的一个截面而不是一个面.故选D.答案: D二、填空题(每小题5分,共10分)5.有下列说法:①与定点的距离等于定长的点的集合是球面;②球面上三个不同的点,一定都能确定一个圆;③一个平面与球相交,其截面是一个圆面.其中正确说法的个数为________.解析:命题①②都对,命题③中一个平面与球相交,其截面是一个圆面,③对.答案: 36.下面几何体的截面一定是圆面的是________.(填正确序号)①圆柱②圆锥③球④圆台答案:③三、解答题(每小题10分,共20分)7.如图所示几何体可看作由什么图形旋转360°得到?画出平面图形和旋转轴.解析:先画出几何体的轴,然后再观察寻找平面图形.旋转前的平面图形如下:8.如图所示的几何体是否为台体?为什么?尖子生题库☆☆☆9.(10分)一个圆台的母线长为12 cm,两底面面积分别为4π cm2和25π cm2,求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.解析:(1)圆台的轴截面是等腰梯形ABCD(如图所示).由已知可得上底一半O1A=2 cm,下底一半OB=5 cm.又因为腰长为12 cm,所以高AM=122-(5-2)2=315(cm).(2)如图所示,延长BA ,OO 1,CD ,交于点S ,设截得此圆台的圆锥的母线长为l ,则由△SAO 1∽△SBO 可得l -12l =25,解得l =20 cm.即截得此圆台的圆锥的母线长为20 cm.课时作业(三) 中心投影与平行投影空间几何体的三视图姓名______________ 班级_________学号__________一、选择题(每小题5分,共20分) 1.下列说法正确的是( ) A .矩形的平行投影一定是矩形 B .梯形的平行投影一定是梯形C .两条相交直线的平行投影可能平行D .若一条线段的平行投影是一条线段,则中点的平行投影仍为这条线段投影的中点 解析: 对于A ,矩形的平行投影可以是线段、矩形、平行四边形,主要与矩形的放置及投影面的位置有关;同理,对于B ,梯形的平行投影可以是梯形或线段;对于C ,平行投影把两条相交直线投射成两条相交直线或一条直线;D 正确。

人教版高中数学高一下册选择性必修第二册《导数练习》含答案

人教版高中数学高一下册选择性必修第二册《导数练习》含答案

再练一课(范围:§5.1~§5.2)1.(多选)自变量x 从x 0变化到x 1时,函数值的增量与相应自变量的增量之比是( )A .从x 0到x 1的平均变化率B .在x =x 1处的变化率C .点(x 0,f (x 0))与点(x 1,f (x 1))连线的斜率D .在区间[x 0,x 1]上的导数答案 AC解析 Δy Δx =f (x 1)-f (x 0)x 1-x 0表示函数从x 0到x 1的平均变化率,也表示点(x 0,f (x 0))与点(x 1,f (x 1))连线的斜率.2.已知物体的运动方程为s =t 2+3t,则物体在t =2时的瞬时速度为( ) A.194 B.174 C.154 D.134答案 D解析 ∵s ′=2t -3t 2,∴s ′|t =2=4-34=134. 3.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为( )A .4B .-14C .2D .-12答案 A解析 ∵f ′(x )=g ′(x )+2x ,∴f ′(1)=g ′(1)+2=2+2=4.4.对于函数f (x )=e x x 2+ln x -2k x,若f ′(1)=1,则实数k 等于( ) A.e 2 B.e 3 C .-e 2 D .-e 3答案 A解析 因为f ′(x )=e x (x -2)x 3+1x +2k x 2, 所以f ′(1)=-e +1+2k =1,解得k =e 2,故选A.5.若曲线y =ln x 在点M 处的切线过原点,则该切线的斜率为( )A .1B .eC .-1e D.1e答案 D解析 设M (x 0,ln x 0),由y =ln x 得y ′=1x(x >0), 所以切线斜率为k =0=1|,x x y'x 0= 所以切线方程为y -ln x 0=1x 0(x -x 0). 由题意得0-ln x 0=1x 0(0-x 0), 即ln x 0=1,所以x 0=e.所以k =1x 0=1e,故选D. 6.已知f (x )=f ′(1)x+4x ,则f ′(1)=________. 答案 2解析 因为f (x )=f ′(1)x+4x , 所以f ′(x )=-f ′(1)x 2+4, 所以f ′(1)=-f ′(1)12+4,即f ′(1)=2. 7.若某物体做运动方程为s =(1-t )2(位移单位:m ,时间单位:s)的直线运动,则其在t =1.2 s 时的瞬时速度v 为________ m/s.答案 0.4解析 ∵s =t 2-2t +1,∴s ′=2t -2,∴v =s ′|t =1.2=2×1.2-2=0.4(m/s).8.设a ∈R ,函数f (x )=e x +a ·e -x 的导函数f ′(x )是奇函数,若曲线y =f (x )的一条切线的斜率是32,则a =________,切点的横坐标为________. 答案 1 ln 2解析 由题意可得,f ′(x )=e x -a e x 是奇函数,∴f ′(0)=1-a =0,∴a =1,∴f (x )=e x +1e x ,f ′(x )=e x -1e x .∵曲线y =f (x )的一条切线的斜率是32,∴32=e x -1e x ,可得e x =2(舍负),∴x =ln 2.9.求下列函数的导数:(1)f (x )=13x 3-12x 4+6; (2)f (x )=(5x -4)cos x ;(3)f (x )=ln (2x )x. 解 (1)f ′(x )=⎝⎛⎭⎫13x 3-12x 4+6′=x 2-2x 3. (2)f ′(x )=[(5x -4)cos x ]′=5cos x -5x sin x +4sin x .(3)f ′(x )=[ln (2x )]′×x -[ln (2x )]×(x )′x 2=1-ln (2x )x 2. 10.已知a >0,f (x )=ax 2-2x +1+ln(x +1),l 是曲线y =f (x )在点P (0,f (0))处的切线,求切线l 的方程.解 ∵f (x )=ax 2-2x +1+ln(x +1),∴f (0)=1,又f ′(x )=2ax -2+1x +1,∴f ′(0)=-1, ∴切点P 的坐标为(0,1),切线l 的斜率为-1,∴切线l 的方程为x +y -1=0.11.已知二次函数f (x )=ax 2+bx +c 的导数为f ′(x ),f ′(0)>0,且对于任意实数x 有f (x )≥0,则f (1)f ′(0)的最小值为( ) A .3 B.52 C .2 D.32答案 C解析 f ′(0)=b >0.对于任意实数x 有f (x )≥0,故⎩⎪⎨⎪⎧a >0,Δ=b 2-4ac ≤0,则2ac ≥b ,因此f (1)f ′(0)=a +c b +1≥2.当且仅当a =c =b 2时,取等号. 12.若函数f (x )=(x -1)(x -2)(x -3)(x -4)(x -5),且f ′(x )是函数f (x )的导函数,则f ′(1)等于( )A .24B .-24C .10D .-10答案 A解析 ∵f ′(x )=(x -1)′·(x -2)(x -3)(x -4)(x -5)+[(x -2)(x -3)(x -4)(x -5)]′·(x -1),∴f ′(1)=(1-2)×(1-3)×(1-4)×(1-5)=24.故选A.13.若函数f (x )=-1b e ax (a >0,b >0)的图象在x =0处的切线与圆x 2+y 2=1相切,则a +b 的最大值为( )A .4B .22C .2D.2答案 D解析 函数的导数为f ′(x )=-1be ax ·a , 所以f ′(0)=-1b e 0·a =-a b, 即在x =0处的切线斜率k =-a b, 又f (0)=-1b e 0=-1b, 所以切点坐标为⎝⎛⎭⎫0,-1b , 所以切线方程为y +1b =-a bx ,即ax +by +1=0. 圆心到直线ax +by +1=0的距离d =1a 2+b 2=1, 即a 2+b 2=1,所以a 2+b 2=1≥2ab ,即0<ab ≤12. 又a 2+b 2=(a +b )2-2ab =1,所以(a +b )2=2ab +1≤1+1=2,即0<a +b ≤2,当且仅当a =b =22时等号成立, 所以a +b 的最大值是2,故选D.14.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为________. 答案 2解析 令y ′=2x -1x=1,解得x =1⎝⎛⎭⎫x =-12舍去, 故当点P 坐标为(1,1)时,它到已知直线的距离最小,最小距离为d =|1-1-2|2= 2.15.曲线y =e 2x cos 3x 在点(0,1)处的切线与过点(2,3)的直线l 垂直,则直线l 的方程为________________.答案 x +2y -8=0解析 由题意知y ′=(e 2x )′cos 3x +e 2x (cos 3x )′=2e 2x cos 3x +3(-sin 3x )·e 2x=2e 2x cos 3x -3e 2x sin 3x ,所以曲线在(0,1)处的切线的斜率为k =y ′|x =0=2.所以直线l 的斜率为-12,直线l 的方程为y -3=-12·(x -2),即x +2y -8=0. 16.已知函数f (x )=x 3-3x 及曲线y =f (x )上一点P (1,-2),过点P 作直线l .(1)若直线l 与曲线y =f (x )相切于点P ,求直线l 的方程;(2)若直线l 与曲线y =f (x )相切,且切点异于点P ,求直线l 的方程.解 (1)由f (x )=x 3-3x ,得f ′(x )=3x 2-3.过点P 且以P (1,-2)为切点的直线l 的斜率为f ′(1)=0,故所求直线l 的方程为y =-2.(2)设过点P (1,-2)的直线l 与曲线y =f (x )相切于点(x 0,x 30-3x 0).由f ′(x 0)=3x 20-3,得直线l 的方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0).又直线l 过点P (1,-2),所以-2-(x 30-3x 0)=(3x 20-3)(1-x 0),即(x 0-1)2(x 0+2)=3(x 20-1)(x 0-1),解得x 0=1(舍去)或x 0=-12, 故直线l 的斜率k =-94, 故直线l 的方程为y -(-2)=-94(x -1), 即9x +4y -1=0.。

高中数学必修二答案(共7篇)

高中数学必修二答案(共7篇)

高中数学必修二答案(共7篇)高中数学必修二答案(一): 高一数学必修一必修二课后习题答案习题1-11.右2.14/33.768习题1-21.第一象限不一定可能超过360度2.⑴305 度42分第四象限⑵35度8分第一象限⑶249度30分第三象限⑷123度3.⑴-660度;-300度;60度⑵-45度;-405度;315度⑶-136度42分;223度18分;-496度42分⑷-585度;-225度;135度希望对你有些帮助不把分赏给我你就对不起我了哦,我找了很久的高中数学必修二答案(二): 高中数学必修二关于直线的倾斜角斜率直线l的方程为y=xtanα+2,则(A)α一定是直线的倾斜角(B)α一定不是直线的倾斜角(C)π-α一定是直线的倾斜角(D)α不一定是直线的倾斜角D倾斜角要求在[0,π)高中数学必修二答案(三): 高中数学必修二习题《两点间的距离》、《点到直线的距离》、《两条平行直线间的距离》,就是它们求与直线L:5x-12y+6=0平行且与L的距离为2的直线的方程.求求大家了,有答有赏!5x-12y+4=0 5x-12y+8=0高中数学必修二答案(四): 高中数学必修二的内容【高中数学必修二答案】高中数学必修2知识点一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.当时,;当时,;当时,不存在.②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.⑤一般式:(A,B不全为0)注意:各式的适用范围特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中.(6)两直线平行与垂直当,时,;注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否. (7)两条直线的交点相交交点坐标即方程组的一组解.方程组无解;方程组有无数解与重合(8)两点间距离公式:设是平面直角坐标系中的两个点,则(9)点到直线距离公式:一点到直线的距离(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解.二、圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形.(3)求圆方程的方法:一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆.注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线圆的辅助线一般为连圆心与切线或者连圆心与弦中点三、立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(3)棱台:几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度.3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;②原来与y轴平行的线段仍然与y平行,长度为原来的一半.4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和.(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)(3)柱体、锥体、台体的体积公式(4)球体的表面积和体积公式:V= ; S=4、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.应用:判断直线是否在平面内用符号语言表示公理1:公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a,记作α∩β=a.符号语言:公理2的作用:①它是判定两个平面相交的方法.②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点.③它可以判断点在直线上,即证若干个点共线的重要依据.公理3:经过不在同一条直线上的三点,有且只有一个平面.推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.公理3及其推论作用:①它是空间内确定平面的依据②它是证明平面重合的依据公理4:平行于同一条直线的两条直线互相平行空间直线与直线之间的位置关系① 异面直线定义:不同在任何一个平面内的两条直线② 异面直线性质:既不平行,又不相交.③ 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线④ 异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.求异面直线所成角步骤:A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.B、证明作出的角即为所求角C、利用三角形来求角(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.(8)空间直线与平面之间的位置关系直线在平面内——有无数个公共点.三种位置关系的符号表示:aα a∩α=A a‖α(9)平面与平面之间的位置关系:平行——没有公共点;α‖β相交——有一条公共直线.α∩β=b5、空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.线线平行线面平行线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.线面平行线线平行(2)平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.(线线平行→面面平行),(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)7、空间中的垂直问题(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直. (2)垂直关系的判定和性质定理①线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.②面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.9、空间角问题(1)直线与直线所成的角①两平行直线所成的角:规定为.②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角.③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角.(2)直线和平面所成的角①平面的平行线与平面所成的角:规定为. ②平面的垂线与平面所成的角:规定为.③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”.在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线. (3)二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.③直二面角:平面角是直角的二面角叫直二面角.两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角④求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角高中数学必修二答案(五): 求学海导航高一数学必修2答案全部谁有高一必修2数学的学海导航练习册的答案..即高中新课标同步攻略...首都师范大学出版社出的【高中数学必修二答案】我有,给个邮箱地址,发给你ps 实物我还要用,没有扫描仪,只能用相机拍下来o(∩_∩)o~高中数学必修二答案(六): 高中数学必修1第二章函数末的复习题二A组的答案亲,我们没有答案的,你有什么问题直接发,我们才能给你解答高中数学必修二答案(七): 人教A版高中数学必修二习题4.1 A组 T6 B组人教A版高中数学必修二习题4.1 A组6、△ABC的顶点B、C的坐标分别是(-3,-1),(2,1),顶点A在圆(x+2)2+(y-4)2=4上运动,求△ABC的重心G的轨迹方程.设顶点A为(x,y),重心G为(E,F),所以:E=(-3+2+x)/3=(x-1)/3,得:x=3E+1F=(-1+1+y)/3,得:Y=3F把X,Y代入圆中:(3E+1+2)^+(3F-4)^2=4所以△ABC的重心G的轨迹方程为 (3X+3)^2+(3Y-4)^2=4B组2、长为2a的线段AB的两个端点A和B分别在x轴和y轴上滑动,求线段AB的中点的轨迹方程.令AB中点为M根据直角三角形斜边上的中线等于斜边的一半,在直角三角形OAB中,OM=AB/2=a根据圆的定义,M的轨迹是以O为圆心,a为半径的圆 (除去与坐标轴的4个交点)轨迹方程为x^2+y^2=a^2(x≠0,±a)高中数学必修二教案高中数学必修二电子书。

高中数学必修二练习题(人教版,附答案)

高中数学必修二练习题(人教版,附答案)

高中数学必修二练习题(人教版,附答案)本文适合复习评估,借以评价学习成效。

一、选择题 1. 已知直线经过点A(0,4)和点B (1,2),则直线AB 的斜率为( )A.3B.-2C. 2D. 不存在2.过点且平行于直线的直线方程为( )A .B .C . D . 3. 下列说法不正确的是( ) A. 空间中,一组对边平行且相等的四边形是一定是平行四边形; B .同一平面的两条垂线一定共面; C. 过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内; D. 过一条直线有且只有一个平面与已知平面垂直.4.已知点、,则线段的垂直平分线的方程是( )A .B .C .D . 5. 研究下在同一直角坐标系中,表示直线与的关系6. 已知a 、b 是两条异面直线,c∥a,那么c 与b 的位置关系( )A.一定是异面B.一定是相交C.不可能平行D.不可能相交 7. 设m、n 是两条不同的直线,是三个不同的平面,给出下列四个命题: ①若,,则②若,,,则 ③若,,则④若,,则 其中正确命题的序号是( ) (A)①和②(B)②和③(C)③和④(D)①和④8. 圆与直线的位置关系是( ) A.相交 B.相切 C.相离 D.直线过圆心9. 两圆相交于点A(1,3)、B(m,-1),两圆的圆心均在直线x-y+c=0上,则m+c的值为()A.-1 B.2 C.3 D.0 10. 在空间四边形ABCD各边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF、GH相交于点P,那么( ) A.点P必在直线AC上 B.点P必在直线BD上 C.点P必在平面DBC内 D.点P必在平面ABC外 11. 若M、N分别是△ABC边AB、AC的中点,MN与过直线BC的平面β的位置关系是(C )A.MN∥βB.MN与β相交或MNβC. MN∥β或MNβD. MN∥β或MN与β相交或MNβ 12. 已知A、B、C、D是空间不共面的四个点,且AB⊥CD,AD⊥BC,则直线BD与AC(A )A.垂直B.平行C.相交D.位置关系不确定 二填空题13.已知A(1,-2,1),B(2,2,2),点P在z轴上,且|PA|=|PB|,则点P的坐标为;14.已知正方形ABCD的边长为1,AP⊥平面ABCD,且AP=2,则PC=;15.过点(1,2)且在两坐标轴上的截距相等的直线的方程 ___________; 16.圆心在直线上的圆C 与轴交于两点,,则圆C的方程为.三解答题 17(12分) 已知△ABC三边所在直线方程为AB:3x+4y+12=0,BC:4x-3y+16=0,CA:2x+y-2=0 求AC边上的高所在的直线方程. 18(12分)如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE 的中点,求证:(1) FD∥平面ABC;(2) AF⊥平面EDB. 19(12分)如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点, (1)求证:平面A B1D1∥平面EFG;(2)求证:平面AA1C⊥面EFG. 20 (12分)已知圆C同时满足下列三个条件:①与y轴相切;②在直线y=x上截得弦长为2;③圆心在直线x-3y=0上. 求圆C的方程. 设所求的圆C与y轴相切,又与直线交于AB,2分)设有半径为3的圆形村落,A、B两人同时从村落中心出发,B向北直行,A先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B相遇.设A、B两人速度一定,其速度比为3:1,问两人在何处相遇?22(14分)已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点. (1)当l经过圆心C时,求直线l的方程; (2)当弦AB被点P平分时,写出直线l的方程; (3) 当直线l的倾斜角为45度时,求弦AB的长. 一、选择题(5’×12=60’)(参考答案)题号123456789101112答案B A D B C C A A C A C A 二、填空题:(4’×4=16’) (参考答案)13. (0,0,3) 14. 15 y=2x或x+y-3=0 16. (x-2)2+(y+3)2=5三解答题 17(12分) 解:由解得交点B(-4,0),. ∴AC边上的高线BD的方程为. 18(12分) 解: (1)取AB的中点M,连FM,MC, ∵F、M分别是BE、BA的中点∴FM∥EA, FM=EA ∵ EA、CD都垂直于平面ABC ∴CD∥EA∴CD∥FM 又 DC=a, ∴ FM=DC ∴四边形FMCD是平行四边形 ∴FD∥MC FD∥平面ABC (2)因M是AB的中点,△ABC是正三角形,所以CM⊥AB 又CM⊥AE,所以CM⊥面EAB, CM⊥AF,FD⊥AF, 因F是BE的中点, EA=AB所以AF⊥EB.19解:略20解: ∵圆心C 在直线上,∴圆心C(3a,a),又圆 与y轴相切,∴R=3|a|. 又圆心C到直线y-x=0的距离 在Rt△CBD 中,. ∴圆心的坐标C分别为(3,1)和(-3,-1),故所求圆的方程为 或.21解 解:如图建立平面直角坐标系,由题意可设A、B两人速度分别为3v千米/小时,v千米/小时,再设出发x0小时,在点P改变方向,又经过y0小时,在点Q处与B相遇. 则P、Q两点坐标为(3vx0, 0),(0,vx0+vy0). 由|OP|2+|OQ|2=|PQ|2知,………………3分 (3vx0)2+(vx0+vy0)2=(3vy0)2, 即. ……①………………6分 将①代入……………8分 又已知PQ与圆O相切,直线PQ在y轴上的截距就是两个相遇的位置. 设直线相切, 则有……………………11分 答:A、B 相遇点在离村中心正北千米处………………12分22解: (1)已知圆C :的圆心为C(1,0),因直线过点P、C,所以直线l的斜率为2, 直线l的方程为y=2(x-1),即 2x-y-20. (2)当弦AB被点P平分时,l⊥PC,直线l 的方程为, 即 x+2y-6=0 (3)当直线l的倾斜角为45度时,斜率为1,直线l的方程为y-2=x-2 ,即 x-y=0 圆心C到直线l 的距离为,圆的半径为3, 弦AB的长为.。

人教版高中数学必修二教材课后习题答案及解析

人教版高中数学必修二教材课后习题答案及解析

精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档'⅛.⅛∣ U s≡ 回 * ⅛峦讯Ilr÷ 训ft⅛W⅛SWH*JF⅛⅛⅛⅛k⅛i⅛fca Jff ⅛M⅛l i I∏⅛⅛^M FI即題电楼册Jff論草审誓⅛r測帝诩J 芹觀用菲劳口刚门)孫屮i⅛⅛⅛^f?⅛M⅛⅛t^f6> t V⅞⅛J M-J l⅛ JV^U⅛ J 写⅛Iiir起草轴JV r窮阜常爭叩HT—悌*皐垂聚草阖睡谦Hf/覃甲HH燈l⅛JVJ¾⅞φtfl⅛⅛*⅛f⅛≡ψ-f∏W⅛3}⅛⅛⅞ 业* 阳堕壬卑卑掘卿麴电(D ⅛3XP=G—佔一刊⅛i^⅛^1f⅛=⅛⅛1⅛S⅛⅛ JH ^>vi<ε*>)3 *∖X^riI花一=广T "出瞬时単⅛rτn⅛②“①甲前山乃用帀4总才吕)y艸讯询n甲川讪i 2—HW3⅛B⅛ff^*σr^)⅛⅛⅛U3 W V⅛l⅛(3),o∙ U C I Z⅛⅛t f⅛⅛'tv r)z-[ <⅛i l⅛¼tyJV r UU∖∙*1 “旳・11YΛ t '6 璋-寡:幵仙⅛i?Jf厘爪吾(Q T r⅛≡⅛⅛ ι>tf>o畔ι>^>0甲•盟漏∣⅛[Q巧修(「【)甲晉牡血一【)+;W-Dy V *鬧嘅丽(-^ *1 )蒔("T 1 料?I r M -⑴T- (F 「广=Kf 1/ •暈両拠MFM手【I P}片和评沖(^-O - ^L-O)/ = E- 1)* “ ⅞r覽丽轴口]狛f1 √ ⅞r⅞¾at Λ+x^∕⅜ ^¾⅛π⅞∣pj¾⅛>⅞ι⅛⅛⅞⅞也鄂GTirO巾刼酬Ey書J戸T卩啊・丁Jv刃K •丁田丿号却<7呼网护F祁冷⅛TFH JV =∣J<∕R V J Hy衍丨= Iffdl + I Od! ≡ MB⅜φs∕z⅞t(jc-t)+t(r-i)Z + 止土竺二U广+ "一Ij亠屮产十√<+^Λ囲i JV - O0 ⅛Uc∕i- Vrf ∣F∕d∣+ kΛ∕ ■;SΨXW≡O = I-¢-^3 ft≡5'θ=s-γ^P=£盅FqOh【【-1C十丄记IIlHHU捕精品文档精品文档精品文档精品文档精品文档。

人教版高中数学必修第二册8.2立体图形的直观图(1) 同步练习(含答案)

人教版高中数学必修第二册8.2立体图形的直观图(1) 同步练习(含答案)

人教版高中数学必修第二册8.2立体图形的直观图(1)同步练习(学生版)一、基础达标1.用斜二测画法画水平放置的平面图形的直观图,对其中的线段说法不正确的是()A.原来相交的仍相交B.原来垂直的仍垂直C.原来平行的仍平行D.原来共点的仍共点2.关于用斜二测画法得直观图,下列说法正确的是()A.等腰三角形的直观图仍为等腰三角形B.正方形的直观图为平行四边形C.梯形的直观图可能不是梯形D.正三角形的直观图一定为等腰三角形3.如图所示为一个平面图形的直观图,则它的实际形状四边形ABCD为()A.平行四边形B.梯形C.菱形D.矩形4.用斜二测画法画水平放置的△ABC时,若∠A的两边平行于x轴、y轴,且∠A=90°,则在直观图中∠A′等于()A.45°B.135°C.45°或135°D.90°5.如图所示是水平放置的三角形的直观图,A′B′∥y′轴,则原图中△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形6.如图为一平面图形的直观图的大致图形,则此平面图形可能是()7.下列说法正确的个数是()①相等的角在直观图中对应的角仍然相等;②相等的线段在直观图中对应的线段仍然相等;③最长的线段在直观图中对应的线段仍最长;④线段的中点在直观图中仍然是线段的中点.A.1B.2C.3D.48.如图,平行四边形O′P′Q′R′是四边形OPQR的直观图,若O′P′=3,O′R′=1,则原四边形OPQR的周长为________.9.如图所示的直观图△A′O′B′,其平面图形的面积为________.10.如图所示是水平放置三角形的直观图,D是△ABC的BC边中点,AB,BC分别与y′轴、x′轴平行,则原三角形中三条线段AB,AD,AC中,最长的线段是________,最短的线段是________.11.画出水平放置的四边形OBCD(如图所示)的直观图.二、能力提升12.如图,在斜二测画法下,两个边长为1的正三角形ABC的直观图不是全等三角形的一组是()13.一个水平放置的平面图形的斜二测直观图是直角梯形ABCD,如图所示,∠ABC=45°,AB=AD=1,DC⊥BC,原平面图形的面积为________.14.在如图的直观图中,四边形O′A′B′C′为菱形且边长为2cm,则在xOy坐标系中原四边形OABC为________(填形状),面积为________cm2.15.在水平放置的平面α内有一个边长为1的正方形A′B′C′D′,如图,其中的对角线A′C′在水平位置,已知该正方形是某个四边形用斜二测画法画出的直观图,试画出该四边形的真实图形并求出其面积.人教版高中数学必修第二册8.2立体图形的直观图(1)同步练习(教师版)一、基础达标1.用斜二测画法画水平放置的平面图形的直观图,对其中的线段说法不正确的是()A.原来相交的仍相交B.原来垂直的仍垂直C.原来平行的仍平行D.原来共点的仍共点答案B解析根据斜二测画法,原来垂直的未必垂直.2.关于用斜二测画法得直观图,下列说法正确的是()A.等腰三角形的直观图仍为等腰三角形B.正方形的直观图为平行四边形C.梯形的直观图可能不是梯形D.正三角形的直观图一定为等腰三角形答案B3.如图所示为一个平面图形的直观图,则它的实际形状四边形ABCD为()A.平行四边形B.梯形C.菱形D.矩形答案D解析因为∠D′A′B′=45°,由斜二测画法规则知∠DAB=90°,又因四边形A′B′C′D′为平行四边形,所以原四边形ABCD为矩形.4.用斜二测画法画水平放置的△ABC时,若∠A的两边平行于x轴、y轴,且∠A=90°,则在直观图中∠A′等于()A.45°B.135°C.45°或135°D.90°答案C解析在画直观图时,∠A′的两边依然分别平行于x′轴、y′轴,而∠x′O′y′=45°或135°. 5.如图所示是水平放置的三角形的直观图,A′B′∥y′轴,则原图中△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形答案B解析∵A′B′∥y′,所以由斜二测画法可知在原图形中BA⊥AC,故△ABC是直角三角形. 6.如图为一平面图形的直观图的大致图形,则此平面图形可能是()答案C解析根据该平面图形的直观图,该平面图形为一个直角梯形,且在直观图中平行于y′轴的边与底边垂直.7.下列说法正确的个数是()①相等的角在直观图中对应的角仍然相等;②相等的线段在直观图中对应的线段仍然相等;③最长的线段在直观图中对应的线段仍最长;④线段的中点在直观图中仍然是线段的中点.A.1B.2C.3D.4答案A解析①②③错误,④正确.8.如图,平行四边形O′P′Q′R′是四边形OPQR的直观图,若O′P′=3,O′R′=1,则原四边形OPQR的周长为________.答案10解析由四边形OPQR的直观图可知原四边形是矩形,且OP=3,OR=2,所以原四边形OPQR的周长为2×(3+2)=10.9.如图所示的直观图△A′O′B′,其平面图形的面积为________.答案6=解析由直观图可知其对应的平面图形AOB中,∠AOB=90°,OB=3,OA=4,∴S△AOB1OA·OB=6.210.如图所示是水平放置三角形的直观图,D是△ABC的BC边中点,AB,BC分别与y′轴、x ′轴平行,则原三角形中三条线段AB ,AD ,AC 中,最长的线段是________,最短的线段是________.答案AC AB解析由条件知,原平面图形中AB ⊥BC ,从而AB <AD <AC .11.画出水平放置的四边形OBCD (如图所示)的直观图.解(1)过点C 作CE ⊥x 轴,垂足为E ,如图(1)所示,画出对应的x ′轴、y ′轴,使∠x ′O ′y ′=45°,如图(2)所示.(2)如图(2)所示,在x ′轴上取点B ′,E ′,使得O ′B ′=OB ,O ′E ′=OE ;在y ′轴上取一点D ′,使得O ′D ′=12OD ;过E ′作E ′C ′∥y ′轴,使E ′C ′=12EC .(3)连接B ′C ′,C ′D ′,并擦去x ′轴与y ′轴及其他一些辅助线,如图(3)所示,四边形O ′B ′C ′D ′就是所求的直观图.二、能力提升12.如图,在斜二测画法下,两个边长为1的正三角形ABC 的直观图不是全等三角形的一组是()答案C13.一个水平放置的平面图形的斜二测直观图是直角梯形ABCD ,如图所示,∠ABC =45°,AB =AD =1,DC ⊥BC ,原平面图形的面积为________.答案2+22解析过A 作AE ⊥BC ,垂足为E ,又∵DC ⊥BC 且AD ∥BC ,∴ADCE 是矩形,∴EC =AD =1,由∠ABC =45°,AB =AD =1知BE =22,∴原平面图形是梯形且上下两底边长分别为1和1+22,高为2,∴原平面图形的面积为12×1+1+222=2+22.14.在如图的直观图中,四边形O ′A ′B ′C ′为菱形且边长为2cm ,则在xOy 坐标系中原四边形OABC 为________(填形状),面积为________cm 2.答案矩形8解析由题意,结合斜二测画法可知,四边形OABC 为矩形,其中OA =2cm ,OC =4cm ,∴四边形OABC 的面积S =2×4=8cm 2.15.在水平放置的平面α内有一个边长为1的正方形A ′B ′C ′D ′,如图,其中的对角线A ′C ′在水平位置,已知该正方形是某个四边形用斜二测画法画出的直观图,试画出该四边形的真实图形并求出其面积.解四边形ABCD 的真实图形如图所示,∵A′C′在水平位置,A′B′C′D′为正方形,∴∠D′A′C′=∠A′C′B′=45°,∴在原四边形ABCD中,DA⊥AC,AC⊥BC,∵DA=2D′A′=2,AC=A′C′=2,=AC·AD=22.∴S四边形ABCD。

高中数学必修二练习题及答案解析.doc

高中数学必修二练习题及答案解析.doc

高中数学必修二练习题及答案解析时间120分钟,满分150分。

一、选择题1.若直线a和b没有公共点,则a与b的位置关系是A.相交B.平行C.异面D.平行或异面2.平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为A. 3B. 4C. 5D. 63.已知平面a和直线1,则a内至少有一条直线与1A.平行B.相交C.垂直D.异面4.长方体ABCD-A1B1C1D1中,异面直线AB, A1D1 所成的角等于A. 30°B. 45°C. 60°D. 90°5.对两条不相交的空间直线a与b,必存在平面a , 使得A. a? a , b? aB. a? a , b〃 aC. a± a , b± aD. a? a , b± a6.下面四个命题:若直线a, b异面,b, c异面,则a, c异面;若直线a, b相交,b, c相交,则a, c相交;若a〃b,则a, b与c所成的角相等;若a_Lb, b±c,则a〃c.其中真命题的个数为A. 4B. 3C. 2D. 17.在正方体ABCD-A1B1C1D1中,E, F分别是线段A1B1, B1C1上的不与端点重合的动点,如果A1E-B1F,有下面四个结论:EFXAA1;②EF//AC;③EF与AC异面;④EF〃平面ABCD.其中一定正确的有A.①②B.②③C.②④D.①④8.设a, b为两条不重合的直线,a, B为两个不重合的平面,下列命题中为真命题的是A.若a, b与a所成的角相等,则a〃bB.若a〃 ci , b〃 B , ci 〃 B,贝U a〃bC.若a?ct , b?B , a//b,贝I] a 〃 BD.若a_L ci , b± B , a _L B,则a_Lb9.已知平面ci上平面B , Q C B =1,点AC a , A?l, 直线AB//1,直线AC±1,直线m〃a, n〃 B ,则下列四种位置关系中,不一定成立的是A. AB〃mB. AC±mC. AB〃BD. AC± B10.)已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么直线AE与D1F所成角的余弦值为43A. — B. .533C. 4D. -511.已知三棱锥D—ABC的三个侧面与底面全等,且AB = AC = 3, BC = 2,则以BC为棱,以面BCD与面BCA为面的二面角的余弦值为11A. B. C. 0D. -212.如图所示,点P在正方形ABCD所在平面外,PA_L平面ABCD, PA=AB,则PB与AC所成的角是A.90°B. 60°C. 45°D. 30°二、填空题13.下列图形可用符号表示为14.正方体ABCD-A1B1C1D1 中,二面角C1-AB-C 的平面角等于.15.设平面a 〃平面B , A, CC ci , B, DC B ,直线AB与CD交于点S,且点S位于平面a, B之间,AS = 8, BS = 6, CS = 12,则SD=.16.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:AC±BD;AACD是等边三角形;AB与平面BCD成60°的角;AB与CD所成的角是60° .其中正确结论的序号是.三、解答题17.如下图,在三棱柱ABC-A1B1C1中,AABC与AA1B1C1都为正三角形且AA1±面ABC, F、Fl分别是AC,A1C1的中点.求证:平面AB1F1 〃平面C1BF;平面AB1F11 平面ACC1A1.[分析]本题可以根据面面平行和面面垂直的判定定理和性质定理,寻找使结论成立的充分条件.18.如图所示,在四棱锥P—ABCD中,PA_L平面ABCD, AB = 4, BC = 3, AD = 5, ZDAB= ZABC = 90° , E 是CD的中点.证明:CD 平面PAE;若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.19.如图所示,边长为2的等边APCD所在的平面垂直于矩形ABCD所在的平面,BC = 2, M为BC的中点.证明:AM1PM;求二面角P-AM—D的大小.20.如图,棱柱ABC-A1B1C1的侧面BCC1B1是菱形, B1CXA1B证明:平面AB1C1平面A1BC1;设D是A1C1上的点,且A1B〃平面B1CD,求AID DC1 的值.221.如图,AABC 中,AC = BC = 2, ABED 是边长为1的正方形,平面ABEDX底面ABC,若G, F分别是EC, BD的中点.求证:GF〃底面ABC;一、选择题1、给出的下列命题中,正确命题的个数是梯形的四个顶点在同一平面内②三条平行直线必共面③有三个公共点的两个平面必重合④每两条都相交且交点各不相同的四条直线一定共面A.1B.C.D.参考答案与解析:思路解析:逐个对各选项分析:梯形是一个平面图形,所以其四个顶点在同一个平面内,①对;两条平行直线是可以确定一个平面的,三条平行直线有可能确定三个平面,②错;三个公共点可以同在两个相交平面的公共直线上,③错;设这四条直线分别为11、12、13、14,取其中两条相交直线11和12,则它们可确定一个平面Q,取13,设其与11、12的交点分别为A、B,则由题意知这两点不同,且AE 11, 12,所以有A、BC ci ,从而13£ a ;同理可证明14F Q .所以每两条都相交且交点各不相同的四条直线一定共面,④对.答案:B主要考察知识点:空间直线和平面2、如图2-1-17,空间四边形SABC中,各边及对角线长都相等,若E、F分别为SC、AB的中点,那么异面直线EF与SA所成的角等于A.90°B. 60°C. 45°D. 30°图2-1-17参考答案与解析:思路解析:求EF与SA所成的角,可把SA平移,使其角的顶点在EF上,为此取SB的中点G,连结GE、GF、BE、AE.由三角形中位线定理得GE二BC, GF-SA,且GF//SA,所以ZGFE就是EF与SA所成的角.若设此空间四边形边长为a,那么GF=GE二a, EA二a, EF二成的角为45° .答案:Ca,因此Z\EFG为等腰直角三角形,ZEFG-450,所以EF与SA所主要考察知识点:空间直线和平面3、如果直线a 〃平面Q,那么直线a与平面a内的A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交参考答案与解析:思路解析:利用线面平行的定义.直线a〃平面Q,则a与a无公共点,与a内的直线当然均无公共点.答案:D主要考察知识点:空间直线和平面4、若点M在直线a上,a在平面a内,则M、a、a间的上述关系可记为A. M G a, a G ciB. a, aC. Ma, a aD. Ma, a a a参考答案与解析:B主要考察知识点:空间直线和平面5、在空间四边形ABCD的边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF与HG交于点M,贝UA.M 一定在直线AC上B.M 一定在直线BD上C.M可能在AC±,也可能在BD上D.M不在AC±,也不在BD上参考答案与解析:A 主要考察知识点:空间直线和平面6、下列说法正确的是A.三点确定一个平面B.四边形一定是平面图形C.梯形一定是平面图形D.平面a和平面B有不同在一条直线上的三个交点参考答案与解析:解析:A错,不共点的三点;B错,如空间四边形;D错,两平面的三个交点在同一直线上.答案:C主要考察知识点:空间直线和平面7、若点M在直线a上,a在平面a内,则M, a, a间的上述关系可记为A. M G a, a G aB. M £ a,c. , D.,参考答案与解析:解析:要明确数学符号语言的表示.答案:B主要考察知识点:空间直线和平面8、异面直线是指A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线参考答案与解析:解析:A错,有可能平行;B错,有可能平行或相交;C错,有可能平行或相交;D正确.主要考察知识点:空间直线和平面9、若a〃 a , b〃 Q ,则直线a、b的位置关系是A.平行B.相交C.异面D. A、B、C均有可能参考答案与解析:解析:平行、相交、异面都有可能,此题的难点在于可能选平行,易和平行公理混淆.答案:D主要考察知识点:空间直线和平面10、下列命题:若直线1平行于平面。

高中数学必修二练习册答案

高中数学必修二练习册答案
当截距不为 时,设 或 过点 ,
则得 ,或 ,即 ,或
这样的直线有 条: , ,或 。
4.解:设直线为 交 轴于点 ,交 轴于点 ,
得 ,或
解得 或
,或 为所求。
第三章 直线和方程[综合训练B组]
一、选择题
1.B线段 的中点为 垂直平分线的 ,
2.A
3.B令 则
4.C由 得 对于任何 都成立,则
5.B
3.D垂直于同一条直线的两条直线有三种位置关系
4.B连接 ,则 垂直于平面 ,即 ,而 ,
5.D八卦图可以想象为两个平面垂直相交,第三个平面与它们的交线再垂直相交
6.C当三棱锥 体积最大时,平面 ,取 的中点 ,
则△ 是等要直角三角形,即
二、填空题
1.异面或相交就是不可能平行
2. 直线 与平面 所成的 的角为 与 所成角的最小值,当 在 内适当旋转就可以得到 ,即 与 所成角的的最大值为
⑶两条直线都和第三条直线垂直,则这两条直线三种位置关系都有可能
⑷一条直线和一个平面内无数条直线没有公共点,则这条直线也可在这个平面内
2. D对于前三个,可以想象出仅有一个直角的平面四边形沿着非直角所在的对角线翻折;对角为直角的平面四边形沿着非直角所在的对角线翻折;在翻折的过程中,某个瞬间出现了有三个直角的空间四边形
3.解:令 则 可看作圆 上的动点到点 的连线的斜率
而相切时的斜率为 , 。
4.解:(1) ①; ②;
② ①得: 为公共弦所在直线的方程;
(2)弦长的一半为 ,公共弦长为 。
第四章 圆和方程[提高训练C组]
一、选择题
1.C由平面几何知识知 的垂直平分线就是连心线
2.B对 分类讨论得两种情况3.C

人教版高中数学必修二教材课后习题答案及解析【精品】

人教版高中数学必修二教材课后习题答案及解析【精品】

•教材习题解答练习0M1.⑴(6“21 略,瓷⑴四梭柱(闍略打(引匮锥与半除俎成的向单组命怵(圏略X (3)13棱柱与珠组成的简单组台体(图略门(4>«个麗台组合而成的筒单姐台■体(图略】.x(i)Ea^(~視图略儿(幼四十黑柱组成的简单爼合怵(三视国略几4三楼耗.•敦材习也孵答⑴如图1-2 - 3 -门/13听小'yA.「门如1痢11 门2 3H t圈1 i所示’14图I 2 3 19点评木懸舟省工州图卅的二P见却询制法.2. <1)三懂拄H刀isfn〔希四fttt*⑴)四磧柱与恫柱组合血磴的简羊组合林.証略*札卷5用B组1:略:签咯*乳此題菩徐不唯一冷一种省秦擡樹15个4、止方体齟會閔施的他单址合怩+如RJ1 - 2 - 3 2L♦教材习题擀答练习(『)1,解:设圆锥的底面半径为严母线畏沟h別由JS意得乂岡讹的削山111科图为T-J.-1-K J. (1 S 皿即I A捋◎代入①式得Q=3JI F.畀。

如|划t 2 220F3 1 2 3 21SirJu哉園隼的底面(8直卷为彩鬲二点评柠畫俯面堰幵国右側锥的不变关泵辰公式的应用,2 .解*机器零件的表面机pf# fti 是圆柱的«面积加上桂柱的全面积.VHIS 的側商報 Si /-2ftXXX2G- 15O!E=sl71(mm )*棱柱的它而积 > 12X j <ft-2 X 6 X -i- X 12> 12 迖孕切 ms. 2 Him )*二一牛机器的金面S=St-h*-l 579.25(mm >.JN IQ 000个零杵的全而积为15 7t?2 500 nun 15.旳2 5 m\故需锌的重虽为】$, 792 5XO P U^l t 7l kfi,点评 本IB 哮査良余儿何的驶働税求孝和鮮实际问昭及埸算能力. ♦教材习题解答K 卩}1. 刑大到原来的8倍戈2, *¥:il :A 休的钊'fO 检为尽!*球的壯栓R 舟 *点评 以上三1»常直公貳的灵活运用能力+ 习题I 3(1\JA 组1 •解’傭而都星等禮梯形・R 上底为8 cm,下底为18 cm.Wft-fc U erm 可得斜高(由『号)‘ =12, S«=5xi^^X 12=780( cm 2h答:780 cm\点评本題夸曹棱台申的庖制梯形的应用和棱幷的1W 面面祝公式+乙鸠:恤台的M Efii ft! $ ―只“+孙・/•捌台底附积节一乩亠:S,.—煮厂+R X rtl 己知得就"R )/=(r-R g :・t 七圣.恵评木题有直对iifiitt 面积、底而和、表面积概急的理解•要将三者区别幵来* 男蚪考査了解方程的能力.3.解假止方休的楼辰协•刚V 命_T x T /r "T*剩.余儿何休的V-V,.lt V "二川―彳―土才”S=inR £ = 4n/(鬻)'皿 >/.^60 OOOjr^sl04(cw- 3.解八 *= -yrK —所权播惟怖休积与霖F的几何休的林积之比为1 1二点评辰题槽査三杭惟体积的求法和"割补注”求M何住的休枳的方迭.4,当三棱柱形客器的憶面AA.B.B水平枚置时,液面部分是四棱柱形*其商为原三棱柱障寻器的髙*憫陵A-1, 乳设十底面AEC水平放置时・液而高为乩由已卿条件知•四桂柱底面与原三桂柱诧酣啣积2比为工;4•由于两种状态下我体休枳相3X8=4XAM=6-Pljt AfJC*Tftt置时*菠面高为£点评展塵考査休砂变換能力,奥註总在几何徉转换过包"「+水旳休枳妁终干变+ 5•解*由J8意*需贴瓷砖的部分为网梅柱与网複台的啊倆积之和・民心十二1> U),■,»{)- 12St>)ii;rii )*四楼合的斜离"二JltV -(迪「=5再『<m)・吕叶” =I》即打曲吃"-1 55S(cni ),故捕翼■«*的面報數为13 800+1 55»=14酹9仪“」>点评辰矚毒查倚单组合护的傭面积求法和解决致:际问題的能力氐攝示*先求出竽嚴梯形的面祝•再乘以化京到上海的铁路険长0P可•请冋学们自已完城”H W1.解,由三视图逝出它的言观国如l¥l 1 - 3 - 2 16所娠..Fl A | H| —(| f J| —.A B —C D -'- H cut ♦A t D, ■ ('i /J - A r D'™C B' 4 cm*球的苴悴为彳EF= (Hl12 cm J XI) f;「16 rm<EJf 1^(i8 rm*A L A"=B0=「|广=1」|打CTU.伍求出料棱育AHEF而上的料髙和-JP宁亍了之疗cm.再求E四債舍UF(^ Ifll上的卅高h —買”?12;' - 2 ^/7LILI+则久=用幷=% *严TWmV)■几=+卫=亠・2 -芋和冋Sn ttlf-S n KH B=<8-4) X2 X20=^480 mv 卫側” =4 XH X2()=肌0 cm . 也汁—给时”匚亠九—2(匚严p 皿亠2(工^)卞2听亠豹X !fit 12X6 = (11275 ^416)cm?=-1( 12X 8^2OX lfi+/12XSX2OX16) X 2•>=十(更7^+ 1】们rm .•5代奖杯的表而探s+ snia(1-FS H44ifiir !曲-J 12^5 -F 4 16^-1 193( m T杯的体机卩一'j 9 夕_匕|+巧.耐+较“卄=yK+64D + y (32 阿+ 416)*1067 cm\答t豐杯ffl我血枳约为I 193 g •悴积约为 1 067 cm\点评転題考煮吧察国闿想線力,运尊能力據解综合|^ 139 17题的能力.2.证期’如图1 - 3 - 2 - 17所示•因为三棱柱的侧面制是矩形•則傭面积为底乘以高.而髙相等•所以要证任意啊个侧面的面积和去于第三个侧面的tfliffi-H要证明三Stt±.底面匕任意H边的和大f第三边即可<而这是显ffi的.点评本題痔査将空佃问應转化城平丽间趣的能力.3. 为釉的直观即如阳】3 2 1SC1 >所示”三规阳如图】3 2 3S(2)所示.图】3 2 19点评本题考査画直观图和三槻图的能力,2 18(2)以直帝边为轴雌縛而戚的儿何体的直现將如阳】如用1 3 219(2)所示+汕(1〉所示.三觇图(I >iF■枫♦教材习题解答塩习参考JRIJMAffi(幼三橈柱或是三陵育t(3川j丄*{」打』川■”;(5ht・石\玄如1 舲所示,朗I 32点评 号育市三视图还原咸丈抑悶和将实詢圏同成直氐團的能力* 4.略.5”解巾癒蔥得三梭柱的底面三角形外接圆足E1拄的底面三角瑶F 卜接的亶植 是碉柱的底面直栓或母縊,植岡桂的廣面羊栓为尺"则卩=竄曙*2R=2nR' •化疋=彩. 征中股边长为s 则轧・寻—氏即 心冲・5心—%」普R . X 钳—$ 一心* 21i •芈说 0 学/?-翠 € 乩解丸求出一乍接头需要的铁皮玄「热后再计阜恵量且r rs, =n(r t +n)^=it(25+L0) XS5=1 225^(^),Z* S - lOgDQOXSj = 1Z 250 ^>()K12 25OD0()X 3t iTO 1 3】-37 &75 000(cm ) =3 797t 5(m H 7»8<m 答 制作l 万个这惮的接1需屢3缺列的铁皮. 点评 启匮考査■台需面积前求法及单经换1T 7,表面积肉为◎匸怵稅约为176,H 视图略. 8用9*<1)64;(2)S ;(3)2^;(4)24I (5)S T 48 cm cm . 10.它ff J fi'J 董面积分别对36K cm *21 JT w *里巧;B&(P>n)匚(1)三视宙如国I - 33两就.直观圏如图1 -:甘所示. 点评 程题痔查空河担象能JJ 和呦阳能力. 怕)» =8> ^0X 30X^1)60 二! 800#<CTTI 几 V^SX-j-S^n, • A=2XyX30X30X 丿30;■尸=9 0007?(cjn ). 点评 术■■卜题喝資齐面休的衣而积和休稅求沈. 〔:1 略.圏1 - U乙解 V-f '. F J? 4 XX ].[ X2;/ -63 H7h!Df ),■J2水巾球的怵积为匕 V. ■— 13 6115 几 卩“呻=期 X60K55 = 264 OOOlcm^hA V 4 200 000 2fiJ 000 200 000 = 61 ODO>43 fill. 故水槽中水不会镒昭*rm ■ 12n rm + 144J3 r cm图1 34点评示題哮育训搔方法.点评本題哮責休枳公试的求法和解窘球问赳的能力.3, 解它是由闍1恥所賦的国形L绕线f艇转而成的•其屮匸与0不相乞点评布腿韦賈观察图形的能力和魁象能力.4. 如图1 鼬”由題意得*Hd mEFF g且四边形ABCD为正方带.AOF=y(cm)t OF= /EF -OP点评考査四撓惟的休积求法和平面图形•与立体图刑z何的关系.•教材习题解答练习(P-)1.1>解汝育线sf川間两樹交•交点分别ArAJ九匚如圈? 1 1 0・则A*區C三点不在一直践上*A Ae iNF »「匸s同理廿匚i机一仏A由^.A.i二疽线可1ft定一平面. 点评本题考査公理2,2. ⑴不并面的四点町御邃4个平面.(2)共点的三旃肯线可确定1个或吕个平而.点评本地占査公理2的应用,3, (1)X (2)V (3)^/ ( Hv/(DV平面”与平面B相兗』h与君有一条公其直线二•有无数爹个公其鼠(2)在已知亘线上耽不同两点.再加上直燼外一点构成不共线三原*由您理2知确定一平潮.⑶抚两备直线t分SM -点(T同于交点)・朝构虑不其线-点・rtl公理2可知砸定一令平面.H J•三个不共耀的点•可确定一个平面•化两平而範合.1/3II 爭 1 35£ yi()O~~(cm>,* yi 00 X'.图I 361^ 2 1 1 ?21^2 I 1 23♦教材习题解答练习2J因为“与平【帀厘金乎廿吐却则^与口的也逹先糸为相交+即4与住台一节公捷点.所W(A)UD)两选项排除*苦“内存在一餐线仃与4平行.则不妨设应与“ 交J柑点•住Q内‘过O盘作亶线c#緘则由公理4可知口〃一这与口与{交于”点矛盾,所以选答索(BX点评此魁考査直线与平面的位賈关泵•同时为将来判斷直线与平面平和罢宦了基础+♦教材习题解答阁 2 ! - 4 9 点评本壮舟宜空间平而的垃国关条歴空何悴阁能力+习题2-KP.J三个平而两两相交川;么它门的交线冇-荒或三金.如盟2 1 1 9人组匕如惘2】1 10b3•门2 (梯形的h,T底平帕由平厅线定文知共而)⑵X(肖附上两点恰好为直径两端点时冷过这三点不能确定平面)[加W (由平杼公理4可得结论)(!)X 导\胡卜吋*/也无公其点)(5)X (“鼻可能平忏•也可能相交)点评木題考資平面的tt痕+空阖两直线的位罢关盘4. 【1眉£由斥面苣线所成柏定又或等角定理)⑵* (由界面直錢所虜角取垂面内蛹纽垂直的郷定)<3)2 f由公理2可得结论)〔门平行戒在平面内【5)平行或护交(仍ftl交或痒潮点评車魁考查空间购直线的位掘关乘+5. 典而点评本圍考査參理2的应用.6. 证明’ *:AA f//bK W AA'= ”用・/.四边能盘且F削为平行四边形.7J f+ 同理Ii('£ Ii\'f.AZAfJ('=Z.VB'C\二△AM 宜△ATfL”点评本趙哮査公理4蜃其应用.m直线悶购平打且不共面,一共前建三个平面•妁果三条直域交于一点剧最参确定三卜平面.8.正方休餐而所在平面分空何成27部分.点评松考査孕生的空何怨象能力TB组1.(l)C ⑵D ⑶1:点评加题考背空间想喩能力•异面育线所成角的求法.2.证明t fcM 平面ABC.所以PE甲喲Ati(\pe^.所以卩在平面ABC:与晋面«的灾红上.同理可证,Q 和R均在这条直线I:.所以畀三点共线.点评先确定一輦宜期•再证羽具他点也在这条直域上.无址明:如图2 1 I 13,11接ACEF』;几TEF井别为AB .BC点*.Jj<;DU1“r= * e『--—=■-DC DA3:A\GJL丄一1「*图2 1」】3 ▼ 3AEF# HG H EF 护HG人四边磁EWH沟梯形.二梯闿関腰£H*Ff;相空.设处点为K,VFJ/C吓閒ABJ儿AK€ 平面ABD,FGU平ffi CBDt代K€平面CBD・血平而AIH)门平而CfU)-BPtr・K13UXEH.FQ.BD交于一点K,点评木起哮艸公理2和公刊:匚♦教材丁题解答练习|P“1, ⑴平面WrVD*平面A'MLry和却平面R卍「「*平面tV”门心、平面ECC®;平面 A % £01点评頁査肓线与平面平行的判定定理.2. ££^ B/J)//平面AEf'+证闍主如图2 2 1 id■连接H打交如m连接0艮在△ dBm中・OE为三用腦耳I位线,/.()E// BO,. Z V BD, C平而AEL\()?;c 平面AEGU#晋而AEC.♦教材习题解答练习(%)UI ■错谍.反长方怦为樸型+如劇222F 分别为ATT’Uir 的中点加7TU 平面A7J7?* D\EFC T 而A f lV('t I)\A t I),/f 平而 BCCE\ EF#平面BCC.但平面 EC与平面A%" LD 中交.(2」止确.点评本題考査平面与平面平存的定文和判定定理的务fF. Z 提示,餐昜证明-VIX /f EF. \A //EH.进而可证平面AMN..「平面EFDK3」A)不止确”白怏方肚为模型*如觀22 2p14则在平面A BCD 内与BC TJ T 的所有直拔都4 * <z2与平商JXL/T 平fr + (U 于面AHCD 与甲面 /Tl1;e ___________皿:足相交的./馆〕不疋蹴以长方体为模取.如陌222st14 • ATT# 平面 A BCD〃平圏 2 2211® ABCD 与面放:「少期空.f 「[不疋确*以长方怵为摸型*如圏2 • 2亠2 • 1鉄"0'〃平面BCrB^HC// 平面A^C'D K但平面BCXTB 1与"7H :P‘相交.(b 〉平面与平面平疔的定义.A(D).点评 星题迪过对两平面平行判定的分析J 音拒学生周密分析问题的能力./J"£li f7 ’一z1序Z \Z[圈 2 22 13♦教材习题解答(1) X 同时过疋』两自线的平面不符合蚤件.(2) X "与皿内直觀有平厅和异面的曲种位置癸JK. unX胡与h可能出现w种悅胃.黄系;平厅、相交,界耐(*26”‘过“作平齒P 交* 于一虎评事馳曹查线itii的平行真系的判定礙性喷.习题2.2(l\t) .X组h(A)以怅方休为模星*如阁2 2 4 —则平面AHCD与-F ^ABB 线 D平杼・S1 网f而和交-点许廉題曹靑两平而平h■的判定.(力(D)直甥口不与世平怡则心或4与a ffi*. 点评肚题E霆也线与平而前位邀关乐.(恥(「)*:0 $PGm翼由P和H线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即 ,
2.D取 的中点 ,则 则 与 所成的角
3.C此时三个平面两两相交,且有三条平行的交线
4.C利用三棱锥 的体积变换: ,则
5.B
6. D一组对边平行就决定了共面;同一平面的两条垂线互相平行,因而共面;
这些直线都在同一个平面内即直线的垂面;把书本的书脊垂直放在桌上就明确了
二、填空题
1. 分上、中、下三个部分,每个部分分空间为 个部分,共 部分
3.C ,相切时的斜率为
4.D设圆心为
5.A圆与 轴的正半轴交于
6.D得三角形的三边 ,得 的角
二、填空题
1. ,
2.
3.相切或相交 ;
另法:直线恒过 ,而 在圆上
4. 圆心为 ,

5.
三、解答题
1.解:显然 为所求切线之一;另设

或 为所求。
2.解:圆心为 ,则圆心到直线 的距离为 ,半径为
得弦长的一半为 ,即弦长为 。
5. 平分平行四边形 的面积,则直线过 的中点
三、解答题
1.解:(1)把原点 代入 ,得 ;(2)此时斜率存在且不为零
即 且 ;(3)此时斜率不存在,且不与 轴重合,即 且 ;
(4) 且
(5)证明: 在直线 上

2.解:由 ,得 ,再设 ,则
为所求。
3.解:当截距为 时,设 ,过点 ,则得 ,即 ;
2.异面直线;平行四边形; ; ; 且
3.
4. 注意 在底面的射影是斜边的中点
5.
三、解答题
1.证明: , 不妨设 共面于平面 ,设
,即 ,所以三线共面
2.提示:反证法
3.略
第二章 点、直线、平面之间的位置关系[提高训练C组]
一、选择题
1.A③若 , ,则 ,而同平行同一个平面的两条直线有三种位置关系
3. 作等积变换: 而
4. 或 不妨固定 ,则 有两种可能
5. 对于(1)、平行于同一直线的两个平面平行,反例为:把一支笔放在打开的课本之间;
(2)是对的;(3)是错的;(4)是对的
三、解答题
1.证明:
2.略
第二章 点、直线、平面之间的位置关系[综合训练B组]
一、选择题
1.C正四棱柱的底面积为 ,正四棱柱的底面的边长为 ,正四棱柱的底面的对角线为 ,正四棱柱的对角线为 ,而球的直径等于正四棱柱的对角线,
3.D垂直于同一条直线的两条直线有三种位置关系
4.B连接 ,则 垂直于平面 ,即 ,而 ,
5.D八卦图可以想象为两个平面垂直相交,第三个平面与它们的交线再垂直相交
6.C当三棱锥 体积最大时,平面 ,取 的中点 ,
则△ 是等要直角三角形,即
二、填空题
1.异面或相交就是不可能平行
2. 直线 与平面 所成的 的角为 与 所成角的最小值,当 在 内适当旋转就可以得到 ,即 与 所成角的的最大值为
第四章 圆和方程 [基础训练A组]
一、选择题
1.A 关于原点 得 ,则得
2.A设圆心为 ,则
3.B圆心为
4.A直线 沿 轴向左平移 个单位得
圆 的圆心为
5.B两圆相交,外公切线有两条
6.D 的在点 处的切线方程为
二、填空题
1. 点 在圆 上,即切线为
2.
3. 圆心既在线段 的垂直平分线即 ,又在
上,即圆心为 ,
1.A恢复后的原图形为一直角梯形
2.A
3.B正方体的顶点都在球面上,则球为正方体的外接球,则 ,
4.A
5.C中截面的面积为 个单位,
6.D过点 作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,
二、填空题
1. 画出圆台,则
2. 旋转一周所成的几何体是以 为半径,以 为高的圆锥,
3. 设 ,
4. 从长方体的一条对角线的一个端点出发,沿表面运动到另一个端点,有两种方案
5.(1) (2)圆锥
6. 设圆锥的底面的半径为 ,圆锥的母线为 ,则由 得 ,
而 ,即 ,即直径为
三、解答题
1.解:
2.解:
空间几何体[提高训练C组]
一、选择题
1.A几何体是圆台上加了个圆锥,分别由直角梯形和直角三角形旋转而得
2.B从此圆锥可以看出三个圆锥,
3.D
4.D
5.C
6.A此几何体是个圆锥,
3.解:令 则 可看作圆 上的动点到点 的连线的斜率
而相切时的斜率为 , 。
4.解:(1) ①; ②;
② ①得: 为公共弦所在直线的方程;
(2)弦长的一半为 ,公共弦长为 。
第四章 圆和方程[提高训练C组]
一、选择题
1.C由平面几何知识知 的垂直平分线就是连心线
2.B对 分类讨论得两种情况3.C
4.A 5.C直线的倾斜角为 ,得等边三角形
二、填空题
1. 设圆锥的底面半径为 ,母线为 ,则 ,得 , ,得 ,圆锥的高
2.
3.
4.
5.
三、解答题
1.解:圆锥的高 ,圆柱的底面半径 ,
2.解:
第二章 点、直线、平面之间的位置关系 [基础训练A组]
一、选择题
1. A⑴两条直线都和同一个平面平行,这两条直线三种位置关系都有可能
⑵两条直线没有公共点,则这两条直线平行或异面
,或 为所求。
2.解:由 得两直线交于 ,记为 ,则直线
垂直于所求直线 ,即 ,或
,或 ,
即 ,或 为所求。
3.证明: 三点共线,


的近似值是:
4.解:由已知可得直线 ,设 的方程为
则 , 过

第三章 直线和方程[提高训练C组]
一、选择题
1.A
2.D
3.D 4.A
5.D斜率有可能不存在,截距也有可能为
如果按方案二,仓库的高变成 ,则仓库的体积
(2)如果按方案一,仓库的底面直径变成 ,半径为 .
棱锥的母线长为
则仓库的表面积
如果按方案二,仓库的高变成 .
棱锥的母线长为 则仓库的表面积
(3) ,
2.解:设扇形的半径和圆锥的母线都为 ,圆锥的半径为 ,则
; ;
第一章 空间几何体[综合训练B组]
一、选择题
6.D把 变化为 ,则
7.C
二、填空题
1. 方程 所表示的图形是一个正方形,其边长为
2. ,或
设直线为
3. 的最小值为原点到直线 的距离:
4. 点 与点 关于 对称,则点 与点
也关于 对称,则 ,得
5. 变化为
对于任何 都成立,则
三、解答题
1.解:设直线为 交 轴于点 ,交 轴于点 ,
得 ,或
解得 或
④若 , ,则 ,而同垂直于同一个平面的两个平面也可以相交
2.C设同一顶点的三条棱分别为 ,则
得 ,则对角线长为
3.B作等积变换
4.B 垂直于 在平面 上的射影
5.C
6.C取 的中点 ,取 的中点 ,
7.C取 的中点 ,则 ,在△ 中, ,
二、填空题
1. 或 分 在平面的同侧和异侧两种情况
2. 每个表面有 个,共 个;每个对角面有 个,共 个
对称的点 ,则
3.解:设圆心为 ,而圆心在线段 的垂直平分线 上,
即 得圆心为 ,
4.解:在Δ 中有 ,即当 最小时, 取最小值,而 ,
6.B 7.B
二、填空题
1. 设 则
2. ; ; 曲线 代表半圆
3.
4. 当 时, 最小,
5. 设 ,
另可考虑斜率的几何意义来做
6. 设切点为 ,则 的方程为
的方程为 ,则
三、解答题
1.解:当 时, ,表示的图形占整个图形的
而 ,表示的图形为一个等腰直角三角形和一个半圆
2.解:
可看作点 和
到直线 上的点的距离之和,作 关于直线
⑶两条直线都和第三条直线垂直,则这两条直线三种位置关系都有可能
⑷一条直线和一个平面内无数条直线没有公共点,则这条直线也可在这个平面内
2. D对于前三个,可以想象出仅有一个直角的平面四边形沿着非直角所在的对角线翻折;对角为直角的平面四边形沿着非直角所在的对角线翻折;在翻折的过程中,某个瞬间出现了有三个直角的空间四边形
数学(必修2)第一章 空间几何体 [基础训练A组]
一、选择题
1. A从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断是棱台
2.A因为四个面是全等的正三角形,则
3.B长方体的对角线是球的直径,
4.D正方体的棱长是内切球的直径,正方体的对角线是外接球的直径,设棱长是
5.D
6.D设底面边长是 ,底面的两条对角线分别为 ,而
而 即
二、填空题
1. 符合条件的几何体分别是:三棱柱,三棱锥,三棱台
2.
3. 画出正方体,平面 与对角线 的交点是对角线的三等分点,
三棱锥 的高
或:三棱锥 也可以看成三棱锥 ,显然它的高为 ,等腰三角形 为底面。
4.平行四边形或线段
5. 设 则
设 则
三、解答题
1.解:(1)如果按方案一,仓库的底面直径变成 ,则仓库的体积
6.B点 在直线 上,则过点 且垂直于已知直线的直线为所求
二、填空题
1.
2. 的倾斜角为
3. ,或

4. 5.二
三、解答题
1.解:过点 且垂直于 的直线为所求的直线,即
2.解: 显然符合条件;当 , 在所求直线同侧时,
,或
3.解:设 ,

当 时, 取得最小值,即
4.解: 可看作点
到点 和点 的距离之和,作点 关于 轴对称的点
4. 设切线为 ,则
5. 当 垂直于已知直线时,四边形 的面积最小
相关文档
最新文档