2010届高三物理一轮复习学案电磁感应

合集下载

高考物理一轮复习 第十章 第2讲 法拉第电磁感应定律 自感现象教案 新人教版-新人教版高三全册物理教

高考物理一轮复习 第十章 第2讲 法拉第电磁感应定律 自感现象教案 新人教版-新人教版高三全册物理教

第2讲 法拉第电磁感应定律 自感现象考点1 法拉第电磁感应定律的理解和应用1.法拉第电磁感应定律的理解(1)感应电动势的大小由线圈的匝数和穿过线圈的磁通量的变化率ΔΦΔt 共同决定,而与磁通量Φ的大小、变化量ΔΦ的大小没有必然联系.(2)磁通量的变化率ΔΦΔt 对应Φ­t 图线上某点切线的斜率.2.应用法拉第电磁感应定律的三种情况(1)磁通量的变化是由面积变化引起时,ΔΦ=B ·ΔS ,则E =n B ΔSΔt ; (2)磁通量的变化是由磁场变化引起时,ΔΦ=S ·ΔB ,则E =nS ·ΔBΔt; (3)磁通量的变化是由面积和磁场共同变化引起时,则根据定义,ΔΦ=|Φ末-Φ初|,E =n|B 2S 2-B 1S 1|Δt ≠n |ΔB ΔS |Δt.1.(2018·全国卷Ⅲ)(多选)如图甲,在同一平面内固定有一长直导线PQ 和一导线框R ,R 在PQ 的右侧.导线PQ 中通有正弦交流电i ,i 的变化如图乙所示,规定从Q 到P 为电流正方向.导线框R 中的感应电动势( AC )A .在t =T 4时为零B .在t =T 2时改变方向C .在t =T2时最大,且沿顺时针方向D .在t =T 时最大,且沿顺时针方向解析:本题考查楞次定律的应用及法拉第电磁感应定律.由i ­t 图象可知,在t =T4时,Δi Δt =0,此时穿过导线框R 的磁通量的变化率ΔΦΔt=0,由法拉第电磁感应定律可知,此时导线框R 中的感应电动势为0,选项A 正确;同理在t =T 2和t =T 时,Δi Δt 为最大值,ΔΦΔt为最大值,导线框R 中的感应电动势为最大值,不改变方向,选项B 错误;根据楞次定律,t =T2时,导线框R 中的感应电动势的方向为顺时针方向,而t =T 时,导线框R 中的感应电动势的方向为逆时针方向,选项C 正确,选项D 错误.2.如图甲所示,用一根横截面积为S 、电阻率为ρ的硬质导线做成一个半径为r 的圆环,ab 为圆环的直径.在ab 的右侧存在一个足够大的匀强磁场,t =0时刻磁场方向垂直于竖直圆环平面向里,磁场磁感应强度B 随时间t 变化的关系如图乙所示,则0~t 1时间内( D )A .圆环中产生感应电流的方向为逆时针B .圆环中产生感应电流的方向先顺时针后是逆时针C .圆环一直具有扩X 的趋势D .圆环中感应电流的大小为B 0rS4t 0ρ解析:磁通量先向里减小再向外增大,由楞次定律“增反减同”可知,线圈中的感应电流方向为一直为顺时针,故A 、B 错误;由楞次定律的“来拒去留”可知,0~t 0为了阻碍磁通量的减小,线圈有扩X 的趋势,t 0~t 1为了阻碍磁通量的增大,线圈有缩小的趋势,故C 错误;由法拉第电磁感应定律,得E =ΔBS 2Δt =B 0πr 22t 0,感应电流I =E R =B 0πr 22t 0·Sρ×2πr=B 0rS4t 0ρ,故D 正确. 3.(2019·某某某某质检)如图甲所示,导体棒MN 置于水平导轨上,P 、Q 之间有阻值为R 的电阻,PQNM 所围的面积为S ,不计导轨和导体棒的电阻.导轨所在区域内存在沿竖直方向的磁场,规定磁场方向竖直向上为正,在0~2t 0时间内磁感应强度的变化情况如图乙所示,导体棒MN 始终处于静止状态.下列说法正确的是( D )A .在0~t 0和t 0~2t 0内,导体棒受到导轨的摩擦力方向相同B .在t 0~2t 0内,通过电阻R 的电流方向为P 到QC .在0~t 0内,通过电阻R 的电流大小为2B 0SRt 0D .在0~2t 0内,通过电阻R 的电荷量为B 0S R解析:本题考查法拉第电磁感应定律的图象问题,定性分析加定量计算可快速求解.由图乙所示图象可知,0~t 0内磁感应强度减小,穿过回路的磁通量减小,由楞次定律可知,为阻碍磁通量的减少,导体棒具有向右的运动趋势,导体棒受到向左的摩擦力,在t 0~2t 0内,穿过回路的磁通量增加,为阻碍磁通量的增加,导体棒有向左的运动趋势,导体棒受到向右的摩擦力,在两时间段内摩擦力方向相反,故A 错误;由图乙所示图象可知,在t 0~2t 0内磁感应强度增大,穿过闭合回路的磁通量增大,由楞次定律可知,感应电流沿顺时针方向,通过电阻R 的电流方向为Q 到P ,故B 错误;由图乙所示图象,应用法拉第电磁感应定律可得,在0~t 0内感应电动势E 1=ΔΦΔt =S ·ΔB Δt =B 0S t 0,感应电流为I 1=E 1R =B 0S Rt 0,故C 错误;由图乙所示图象,应用法拉第电磁感应定律可得,在0~2t 0内通过电阻R 的电荷量为q 1=N ΔΦR=2B 0S -B 0S R =B 0SR,故D 正确.应用电磁感应定律需注意的三个问题(1)公式E =n ΔΦΔt 求解的是一个回路中某段时间内的平均电动势,在磁通量均匀变化时,瞬时值才等于平均值.(2)利用公式E =nS ΔBΔt 求感应电动势时,S 为线圈在磁场X 围内的有效面积.(3)通过回路截面的电荷量q 仅与n 、ΔΦ和回路电阻R 有关,与时间长短无关,与Φ是否均匀变化无关.推导如下:q =I Δt =n ΔΦΔtR Δt =n ΔΦR.考点2 导体切割磁感线产生的感应电动势考向1 平动切割1.计算公式:E =BLv 或E =BLv sin θ. 2.E =Blv 的三个特性(1)正交性:本公式要求磁场为匀强磁场,而且B 、l 、v 三者互相垂直.(2)有效性:公式中的l 为导体棒切割磁感线的有效长度.下图中,导体棒的有效长度为ab 间的距离.(3)相对性:E =Blv 中的速度v 是导体棒相对磁场的速度,若磁场也在运动,应注意速度间的相对关系.(2019·某某某某统考)(多选)半径为a 右端开小口的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0.圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B .杆在圆环上以速度v 平行于直径CD 向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O 开始,杆的位置由θ确定,如图所示.则( )A .θ=0时,杆产生的电动势为2BavB .θ=π3时,杆产生的电动势为3BavC .θ=0时,杆受的安培力大小为2B 2av(π+2)R 0D .θ=π3时,杆受的安培力大小为3B 2av(5π+3)R 0[审题指导] (1)导体棒长度指处在磁场中的长度,称为有效长度.θ=0和θ=π3时二者不同.(2)先计算感应电动势,再计算感应电流,最后计算安培力.【解析】 当θ=0时,杆产生的电动势E =BLv =2Bav ,故A 正确;当θ=π3时,根据几何关系得出此时导体棒的有效切割长度为a ,所以杆产生的电动势为E =Bav ,故B 错误;当θ=0时,由于单位长度电阻均为R 0,所以电路中总电阻为(2+π)aR 0,所以杆受的安培力大小为F =BIL =B ·2a 2Bav (2+π)aR 0=4B 2av (2+π)R 0,故C 错误;当θ=π3时,电路中总电阻为⎝⎛⎭⎪⎫1+5π3aR 0,所以杆受的安培力大小为F ′=BI ′L ′=3B 2av (3+5π)R 0,故D 正确.【答案】 AD1.(2019·某某某某模拟)如图所示,一对光滑的平行金属导轨(电阻不计)固定在同一水平面内,导轨足够长且间距为L ,左端接有阻值为R 的电阻,一质量为m 、长度为L 的匀质金属棒cd 放置在导轨上,金属棒的电阻为r ,整个装置置于方向竖直向上的匀强磁场中,磁场的磁感应强度为B .金属棒在水平向右的外力作用下,由静止开始做加速度大小为a 的匀加速直线运动,经过的位移为s 时,则( C )A .金属棒中感应电流方向由d 到cB .金属棒产生的感应电动势为BL asC .金属棒中感应电流为BL 2asR +rD .水平拉力F 的大小为B 2L 22asR +r解析:根据楞次定律可知电流I 的方向从c 到d ,故A 错误;设金属棒cd 的位移为s 时速度为v ,则有v 2=2as ,金属棒产生的电动势为E =BLv =BL 2as ,故B 错误;金属棒中感应电流的大小为I =ER +r,解得I =BL 2asR +r,故C 正确;金属棒受到的安培力大小为f =BIL ,根据牛顿第二定律可得F -f =ma ,联立解得F =B 2L 22asR +r+ma ,故D 错误.考向2 导体棒转动切割磁感线当导体棒在垂直于磁场的平面内绕一端以角速度ω匀速转动时,产生的感应电动势为E =Bl v =12Bl 2ω,如图所示.如图,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .下列判断正确的是( )A .U a >U c ,金属框中无电流B .U b >U c ,金属框中电流方向沿a —b —c —aC .U bc =-12Bl 2ω,金属框中无电流D .U bc =12Bl 2ω,金属框中电流方向沿a —c —b —a[审题指导] (1)金属框在转动过程中,磁通量不变,无感应电流产生. (2)金属框bc 边和ac 边都在切割磁感线,所以有感应电动势.【解析】 穿过金属框的磁通量始终为零,没有发生变化,故金属框中无电流,B 、D 项错误;bc 边切割磁感线的等效速度为12lω,根据右手定则U b <U c ,故U bc =-12Bl 2ω,C 项正确;ac 边切割磁感线,根据右手定则得U a <U c ,A 项错误.【答案】 C2.(2018·全国卷Ⅰ)如图,导体轨道OPQS 固定,其中PQS 是半圆弧,Q 为半圆弧的中点,O 为圆心.轨道的电阻忽略不计.OM 是有一定电阻、可绕O 转动的金属杆,M 端位于PQS 上,OM 与轨道接触良好.空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B .现使OM 从OQ 位置以恒定的角速度逆时针转到OS 位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B 增加到B ′(过程Ⅱ).过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则B ′B等于( B )A.54B.32C.74D .2 解析:本题考查法拉第电磁感应定律及电荷量公式.由公式E =ΔΦΔt ,I =ER ,q =It 得q =ΔΦR ,设半圆弧半径为r ,对于过程Ⅰ,q 1=B ·πr 24·R ,对于过程Ⅱ,q 2=(B ′-B )·πr22R ,由q 1=q 2得,B ′B =32,故B 项正确.四种求电动势的方法考点3 自感现象涡流考向1 通电自感与断电自感1.自感现象的四大特点(1)自感电动势总是阻碍导体中原电流的变化.(2)通过线圈中的电流不能发生突变,只能缓慢变化.(3)电流稳定时,自感线圈就相当于普通导体.(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.2.自感中“闪亮”与“不闪亮”问题电流突然增大,灯泡立刻变亮,然后逐12开关S1瞬间,灯A1突然闪亮,然后逐渐变暗;闭合开关S2,灯A2逐渐变亮,而另一个相同的灯A3立刻变亮,最终A2与A3的亮度相同.下列说法正确的是( C )A.图1中,A1与L1的电阻值相同B.图1中,闭合S1,电路稳定后,A1中电流大于L1中电流C.图2中,变阻器R与L2的电阻值相同D.图2中,闭合S2瞬间,L2中电流与变阻器R中电流相等解析:本题考查自感现象判断.在图1中断开S1瞬间,灯A1突然闪亮,说明断开S1前,L1中的电流大于A1中的电流,故L1的阻值小于A1的阻值,A、B选项均错误;在图2中,闭合S2瞬间,由于L2的自感作用,通过L2的电流很小,D错误;闭合S2后,最终A2与A3亮度相同,说明两支路电流相等,故R与L2的阻值相同,C项正确.2.(2019·某某模拟)在如图所示的电路中,S闭合时流过线圈L的电流是2 A,流过灯泡A的电流是1 A.将S突然断开,则S断开前后,能正确反映流过灯泡的电流I随时间t变化关系的是图中的( D )解析:当电键断开时,由于线圈中自感电动势阻碍电流减小,线圈中的电流逐渐减小,线圈与灯泡A构成回路,所以灯泡中的电流与线圈中电流大小相等,灯泡中电流也逐渐减小,但与断开前方向相反.故D正确,A、B、C错误.分析自感现象的两点注意(1)断电自感现象中灯泡是否“闪亮”的判断:关键在于对电流大小的分析,只有断电瞬间通过灯泡的电流比原来大,灯泡才先闪亮后慢慢熄灭.(2)断电自感现象中电流方向是否改变的判断:与线圈在同一支路的用电器的电流方向不变,与线圈不在同一支路的用电器中的电流方向改变.考向2 对涡流的考查3.(多选)1824年,法国科学家阿拉果完成了著名的“圆盘实验”.实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图所示,实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后.下列说法正确的是( AB )A.圆盘上产生了感应电动势B.圆盘内的涡电流产生的磁场导致磁针转动C.在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化D.圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动解析:小磁针在圆盘所在处形成的磁场是非匀强磁场,圆盘可以等效为许多环形闭合线圈,圆盘转动过程中,穿过每个环形闭合线圈的磁通量不断地发生变化,在每一环形线圈上产生电动势和涡电流,A正确;环形线圈随圆盘转动,由楞次定律可知,线圈会受到小磁针施加的阻碍相对运动的力,根据牛顿第三定律可知,小磁针会受到与线圈即圆盘转动方向相同的力的作用,此力来源于电磁感应形成的涡电流,而不是自由电子随圆盘转动形成的电流,B正确,D错误.从圆盘的整个盘面上看,圆盘转动过程中穿过整个圆盘的磁通量不变,C 错误.4.扫描隧道显微镜(STM)可用来探测样品表面原子尺度上的形貌.为了有效隔离外界振动对STM的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图所示.无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及左右振动的衰减最有效的方案是( A )解析:本题考查电磁阻尼.若要有效衰减紫铜薄板上下及左右的微小振动,则要求施加磁场后,在紫铜薄板发生上下及左右的微小振动时,穿过紫铜薄板横截面的磁通量都能发生变化.由选项图可知只有A满足要求,故选A.对安培力是动力、阻力的理解技巧电磁阻尼是安培力总是阻碍导体运动的现象,电磁驱动是安培力使导体运动起来的现象,但实质上均是感应电流使导体在磁场中受到安培力.学习至此,请完成课时作业34。

高考物理一轮复习专题27法拉第电磁感应定律(原卷版+解析)

高考物理一轮复习专题27法拉第电磁感应定律(原卷版+解析)

专题27 法拉第电磁感应定律目录题型一实验:探究影响感应电流方向的因素 (1)题型二感应电流的产生和方向判断 (4)题型三楞次定律推论的应用 (6)题型四“三定则、一定律”的应用 (9)题型五法拉第电磁感应定律的理解及应用 (10)题型六导体切割磁感线产生的感应电动势 (13)类型1 平动切割磁感线 (14)类型2 转动切割磁感线 (15)类型3 有效长度问题 (16)题型六自感现象 (17)题型一实验:探究影响感应电流方向的因素1.实验设计如图2所示,通过将条形磁体插入或拔出线圈来改变穿过螺线管的磁通量,根据电流表指针的偏转方向判断感应电流的方向。

2.实验结论当穿过线圈的磁通量增加时,感应电流的磁场与原磁场的方向相反;当穿过线圈的磁通量减小时,感应电流的磁场与原磁场的方向相同。

3.注意事项实验前应首先查明电流表中电流的流向与电流表指针偏转方向之间的关系,判断的方法是:采用如图所示的电路,把一节干电池与电流表及线圈串联,由于电流表量程较小,所以在电路中应接入限流变阻器R,电池采用旧电池,开关S采用瞬间接触,记录指针偏转方向。

【例1】探究感应电流方向的实验所需器材包括:条形磁体、电流表、线圈、导线、一节干电池(用来查明线圈中电流的流向与电流表中指针偏转方向的关系).(1)实验现象:如图所示,在四种情况下,将实验结果填入下表.①线圈内磁通量增加时的情况①线圈内磁通量减少时的情况请填写表格中的空白项.(2)实验结论:当穿过闭合线圈的磁通量增加时,感应电流的磁场与原磁场方向________(选填“相同”或“相反”).(3)总结提炼:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的________.(4)拓展应用:如图所示是一种延时继电器的示意图.铁芯上有两个线圈A和B.线圈A和电源连接,线圈B与直导线ab构成一个闭合回路.弹簧K与衔铁D相连,D的右端触头C 连接工作电路(未画出).开关S闭合状态下,工作电路处于导通状态.S断开瞬间,延时功能启动,此时直导线ab中电流方向为________(选填“a到b”或“b到a”).说明延时继电器的“延时”工作原理:________.【例2】在“探究电磁感应的产生条件”的实验中,先按如图甲所示连线,不通电时,电流计指针停在正中央,闭合开关S时,观察到电流表指针向左偏。

高考物理一轮总复习专题10电磁感应第2讲法拉第电磁感应定律自感涡流课后提能演练

高考物理一轮总复习专题10电磁感应第2讲法拉第电磁感应定律自感涡流课后提能演练

专题十 第2讲知识巩固练1.如图甲所示,100匝的线圈(图中只画了2匝)两端A 、B 与一个理想电压表相连.线圈内有指向纸内方向的匀强磁场,线圈中的磁通量在按图乙所示规律变化.下列说法正确的是( )A .A 端应接电压表正接线柱,电压表的示数为150 VB .A 端应接电压表正接线柱,电压表的示数为50.0 VC .B 端应接电压表正接线柱,电压表的示数为150 VD .B 端应接电压表正接线柱,电压表的示数为50.0 V【答案】B 【解析】线圈相当于电源,由楞次定律可知A 相当于电源的正极,B 相当于电源的负极,故A 应该与理想电压表的正接线柱相连.由法拉第电磁感应定律得E =nΔΦΔt =100×0.15-0.10.1V =50.0 V ,电压表的示数为50.0 V ,故B 正确.2.如图所示,闭合导线框的质量可以忽略不计,将它从如图所示的位置匀速拉出匀强磁场.若第一次用0.3 s 时间拉出,外力所做的功为W 1,通过导线截面的电荷量为q 1;第二次用0.9 s 时间拉出,外力所做的功为W 2,通过导线截面的电荷量为q 2,则( )A .W 1<W 2,q 1<q 2B .W 1<W 2,q 1=q 2C .W 1>W 2,q 1=q 2D .W 1>W 2,q 1>q 2【答案】C 【解析】第一次用0.3 s 时间拉出,第二次用0.9 s 时间拉出,两次速度比为3∶1,由E =BLv ,两次感应电动势比为3∶1,两次感应电流比为3∶1,由于F 安=BIL ,两次安培力比为3∶1,由于匀速拉出匀强磁场,所以外力比为3∶1,根据功的定义W =Fx ,所以W 1∶W 2=3∶1;根据电量q =I Δt ,感应电流I =E R ,感应电动势E =ΔΦΔt ,得q =ΔΦR,所以q 1∶q 2=1∶1,故W 1>W 2,q 1=q 2.故C 正确.3.(2021年龙岩二模)如图所示,abcd 为水平放置的平行“”形光滑金属导轨,导轨间距为l ,电阻不计.导轨间有垂直于导轨平面向下的匀强磁场,磁感应强度大小为B .金属杆放置在导轨上,与导轨的接触点为M 、N ,并与导轨成θ角.金属杆以ω 的角速度绕N 点由图示位置匀速转动到与导轨ab 垂直,转动过程中金属杆与导轨始终接触良好,金属杆单位长度的电阻为r .则在金属杆转动的过程中( )A .M 、N 两点电势相等B .金属杆中感应电流的方向由N 流向MC .电路中感应电流的大小始终为Bl ω2rD .电路中通过的电荷量为Bl2r tan θ【答案】A 【解析】根据题意可知,金属杆MN 为电源,导轨为外电路,由于导轨电阻不计,外电路短路,M 、N 两点电势相等,A 正确;转动过程中磁通量减小,根据楞次定律可知金属杆中感应电流的方向是由M 流向N ,B 错误;由于切割磁场的金属杆长度逐渐变短,感应电动势逐渐变小,回路中的感应电流逐渐变小,C 错误;因为导体棒MN 在回路中的有效切割长度逐渐减小,所以接入电路的电阻逐渐减小,不能根据q =ΔΦR计算通过电路的电荷量,D 错误.4.(多选)如图所示的电路中,电感L 的自感系数很大,电阻可忽略,D 为理想二极管,则下列说法正确的有( )A .当S 闭合时,L 1立即变亮,L 2逐渐变亮B .当S 闭合时,L 1一直不亮,L 2逐渐变亮C .当S 断开时,L 1立即熄灭,L 2也立即熄灭D .当S 断开时,L 1突然变亮,然后逐渐变暗至熄灭 【答案】BD5.(2021年莆田质检)(多选)如图甲所示,边长为L 的正方形单匝线框水平放置,左侧一半置于沿竖直方向的匀强磁场中,线框的左侧接入电阻R ,右侧接入电容器,其余电阻不计.若磁场的磁感应强度B 随时间t 的变化规律如图乙所示(规定竖直向下为正方向),则在0~2t 0时间内( )A .电容器a 板带负电B .线框中磁通量变化为零C .线框中产生的电动势为B 0L 22t 0D .通过电阻R 的电流为B 0L 22Rt 0【答案】AC 【解析】由题图可知在0~t 0时间内磁场向上减小,根据楞次定律,可知线圈中产生逆时针方向的充电电流,则电容器a 板带负电,A 正确;因磁感应强度的变化率不为零,则线框中磁通量变化不为零,B 错误;线框中产生的电动势E =ΔΦΔt =ΔB ·12L2Δt =B 0L 22t 0,C 正确;因电动势恒定,则回路中只有瞬时的充电电流,电容器充电完毕后,回路中电流变为零,D 错误.6.(多选)如图所示,半径为2r 的弹性螺旋线圈内有垂直纸面向外的圆形匀强磁场区域,磁场区域的半径为r ,已知弹性螺旋线圈的电阻为R ,线圈与磁场区域共圆心,则以下说法正确的是( )A .保持磁场不变,线圈的半径由2r 变到3r 的过程中,有顺时针的电流B .保持磁场不变,线圈的半径由2r 变到0.5r 的过程中,有逆时针的电流C .保持半径不变,使磁场随时间按B =kt 变化,线圈中的电流为k πr 2RD .保持半径不变,使磁场随时间按B =kt 变化,线圈中的电流为2k πr2R【答案】BC 【解析】在线圈的半径由2r 变到3r 的过程中,穿过线圈的磁通量不变,则线圈内没有感应电流,故A 错误;当线圈的半径由2r 变到0.5r 的过程中,穿过线圈的磁通量减小,根据楞次定律,则有逆时针的电流,故B 正确;保持半径不变,使磁场随时间按B =kt 变化,根据法拉第电磁感应定律,有E =ΔB Δt ·πr 2=k πr 2,因此线圈中的电流I =E R=k πr 2R,故C 正确,D 错误. 7.(2021年株洲质检) 零刻度在表盘正中间的电流计,非常灵敏,通入电流后,线圈所受安培力和螺旋弹簧的弹力作用达到平衡时,指针在示数附近的摆动很难停下,使读数变得困难.在指针转轴上装上的扇形铝框或扇形铝板,在合适区域加上磁场,可以解决此困难.下列方案合理的是( )A BC D【答案】D 【解析】当指针向左偏转时,铝框或铝板可能会离开磁场,产生不了涡流,起不到电磁阻尼的作用,指针不能很快停下,A、C方案不合理,A、C错误;磁场在铝框中间,当指针偏转角度较小时,铝框不能切割磁感线,不能产生感应电流,起不到电磁阻尼的作用,指针不能很快停下,B错误,D正确.8.(2021年郑州模拟)(多选)涡流检测是工业上无损检测的方法之一.如图所示,线圈中通以一定频率的正弦式交变电流,靠近待测工件时,工件内会产生涡流,同时线圈中的电流受涡流影响也会发生变化.下列说法正确的是( )A.涡流的磁场总是要阻碍穿过工件磁通量的变化B.涡流的频率等于通入线圈的交变电流的频率C.通电线圈和待测工件间存在恒定的作用力D.待测工件可以是塑料或橡胶制品【答案】AB综合提升练9.(多选)如图甲所示,螺线管内有一平行于轴线的磁场,规定图中箭头所示方向为磁感应强度B的正方向,螺线管与U形导线框cdef相连,导线框cdef内有一半径很小的金属圆环L,圆环面积为S,圆环与导线框cdef在同一平面内.当螺线管内的磁感应强度随时间按图乙所示规律变化时,下列说法正确的是( )A .在t 1时刻,金属圆环L 内的磁通量最大,最大值Φm =B 0S B .在t 2时刻,金属圆环L 内的磁通量最大C .在t 1~t 2时间内,金属圆环L 有扩张的趋势D .在t 1~t 2时间内,金属圆环L 内有顺时针方向的感应电流 【答案】BD10.(多选)空间有磁感应强度为B 的有界匀强磁场区域,磁场方向如图所示,有一边长为L 、电阻为R 、粗细均匀的正方形金属线框abcd 置于匀强磁场区域中,ab 边跟磁场的右边界平行,若金属线框在外力作用下以速度v 向右匀速运动,下列说法正确的是( )A .当ab 边刚离开磁场时,cd 边两端的电压为3BLv4B .从ab 边到磁场的右边界至cd 边离开磁场的过程中,外力所做的功为B 2L 3vRC .从ab 边到磁场的右边界至cd 边离开磁场的过程中,外力做功的功率为B 2L 2vRD .从ab 边到磁场的右边界至cd 边离开磁场的过程中,通过线框某一截面的电量为BL 2R【答案】ABD 【解析】当ab 边刚离开磁场时,线框只有cd 边切割磁感线,产生的电动势为E =BLv ,cd 边为等效电源,两端的电压为闭合电路的路端电压,电路等价为四个电阻串联,cd 边为一个内阻R 4,外电路为三个R 4的电阻,故有U dc =E R 4+3R 4×3·R 4=3BLv4,故A正确;从ab 边到磁场的右边界至cd 边离开磁场的匀速过程,产生的恒定电流为I =E R,由动能定理W F 外-W F 安=0,由功的定义W F 安=F 安·L =BIL ·L ,可解得W F 外=B BLv R L 2=B 2L 3vR ,故B 正确;由能量守恒定律P F 外·t -P F 安·t =0,可得P F 外=P F 安=F 安·v =B BLv R L ·v =B 2L 2v 2R,故C 错误;根据电量的定义q =I ·Δt ,I =ER,E =ΔΦΔt ,联立可得q =ΔΦR,从ab 边到磁场的右边界到cd 边离开磁场的过程中,磁通量的变化量为ΔΦ=B ΔS =BL 2,可得q=BL 2R,故D 正确. 11.如图所示,匀强磁场的磁感应强度方向竖直向上,大小为B 0,用电阻率为ρ,横截面积为S 的导线做成的边长为l 的正方形线框abcd 水平放置,OO ′为过ad 、bc 两边中点的直线,线框全部都位于磁场中.现把线框右半部分固定不动,而把线框左半部分以OO ′为轴向上转动60°,如图中虚线所示.(1)求转动过程中通过导线横截面的电荷量;(2)若转动后磁感应强度随时间按B =B 0+kt 变化(k 为常量),求出磁场对线框ab 边的作用力大小随时间变化的关系式.解:(1)线框在转动过程中产生的平均感应电动势 E =ΔΦΔt=B 0·12l 2cos 60°Δt=B 0l 24Δt, ①在线框中产生的平均感应电流I =E R,② R =ρ4l S,③ 转动过程中通过导线横截面的电荷量q =I Δt , ④ 联立①~④解得q =B 0lS16ρ.⑤(2)若转动后磁感应强度随时间按B =B 0+kt 变化,在线框中产生的感应电动势大小E =ΔB ·S Δt=⎝ ⎛⎭⎪⎫12l 2cos 60°+l 22ΔB Δt=3l24k ,⑥在线框中产生的感应电流I =E R,⑦线框ab 边所受安培力的大小F =BIl ,⑧联立⑥~⑧解得F =(B 0+kt )3kl 2S16ρ.。

高三第一轮复习电磁感应复习教案

高三第一轮复习电磁感应复习教案

高三第一轮复习电磁感应复习教案TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】第九章 电磁感应电磁感应 楞次定律一、电磁感应现象1.产生感应电流的条件感应电流产生的条件是:穿过闭合电路的磁通量发生变化。

以上表述是充分必要条件。

不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。

当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。

这个表述是充分条件,不是必要的。

在导体做切割磁感线运动时用它判定比较方便。

2.感应电动势产生的条件。

感应电动势产生的条件是:穿过电路的磁通量发生变化。

这里不要求闭合。

无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。

这好比一个电源:不论外电路是否闭合,电动势总是存在的。

但只有当外电路闭合时,电路中才会有电流。

二、右手定则伸开右手,使大拇指与四指在同一个平面内,并跟四指垂直,让磁感线穿过手心,使大拇指指向导体的运动方向,这时四指所指的方向就是感应电流的方向。

三、楞次定律1.楞次定律——感应电流总具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

( 阻碍 原磁场增加时,反抗, 原磁场减小时,补充 )R 第3课2.对“阻碍”意义的理解:(1)阻碍原磁场的变化。

“阻碍”不是阻止,而是“延缓”(2)阻碍的是原磁场的变化,而不是原磁场本身,如果原磁场不变化,即使它再强,也不会产生感应电流.(3)阻碍不是相反.当原磁通减小时,感应电流的磁场与原磁场同向,以阻碍其减小;当磁体远离导体运动时,导体运动将和磁体运动同向,以阻碍其相对运动.(4)由于“阻碍”,为了维持原磁场变化,必须有外力克服这一“阻碍”而做功,从而导致其它形式的能转化为电能.因此楞次定律是能量转化和守恒定律在电磁感应中的体现.3.楞次定律的具体应用从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。

高考物理一轮复习课件电磁感应不等距双杆有外力

高考物理一轮复习课件电磁感应不等距双杆有外力

知两金属棒位于两导轨间部分的电阻均为R=1.0Ω;金属棒与导轨间的动摩擦
因数μ=0.2,且与导轨间的最大静摩擦力等于滑动摩擦力。取重力加速度大小g=10m/s2。
①在t=0时刻,用垂直于金属棒的水平外力F向右拉金属棒cd,使其从静止开始沿导轨以
a=5.0m/s2的加速度做匀加速直线运动,金属棒cd运动多长时间金属棒ab开始运动?
BL1q m1v1
Ft m1v1 m2v2
能量关系: t
WF
1 2
m1v12
1 2
m2v22
Q
电磁感应 — 双杆模型(不等距有外力)
相关知识:
2.双杆放置同一磁场中(杆1杆2都受恒力且F2>F1,不计摩擦,初状态都静止):
L1 F1
B
电路分析: I BL2v2 BL1v1 B L2v2 L1v1 +B L2a2 L1a1 t
R1 R2
R1 R2
L2
F2
受力及加速度分析:
a1
F安1 m1
F1
a2
F2
F安2 m2
F安1 L1 F安2 L2
1
2
v
2
最终加速度关系:
L2a2 L1a1
1
运动性质:
杆1:先做反向加速度a减小加速运动,再做反向加速度a增大的减速速
运动及正向加速度a增大加速运动,最终匀加速直线运动;
O
t 杆2:加速度a减小的加速直线运动,最终匀加速直线运动;
时金属棒cd的速度变为v0=30m/s,经过一段时间金属棒cd停止运动,求金属棒ab停止运动后金属棒cd运动的距离。

mg
B
BL2at 2R
L1
总结: t 2s

人教版高考总复习一轮物理精品课件 第11单元 电磁感应 生活中的电磁感应问题(科学态度与责任)

人教版高考总复习一轮物理精品课件 第11单元 电磁感应 生活中的电磁感应问题(科学态度与责任)

1 2 3 4
m/s。
m/s2。
(3)由上述分析可知,每一个线圈进入磁场的过程中,减震器速度减小量
Δv=0.4 m/s
5
线圈的个数为 N= =12.5
0.4
则需要13个线圈,只有进入磁场的线圈产生热量,线圈产生的热量等于动能
的减少量。
第一个线圈恰好完全进入磁场时v1=v-Δv=4.6 m/s
最后一个线圈刚进入磁场时v13=0.2 m/s
即断开,故C正确,D错误。
1 2 3 4
2.(2023浙江宁波模拟)电磁减震器是利用电磁感应原理的一种新型智能化
汽车独立悬架系统。某同学也设计了一个电磁阻尼减震器,图为其简化的
原理图。该减震器由绝缘滑动杆及固定在杆上的多个相互紧靠的相同矩
形线圈组成,滑动杆及线圈的总质量m=1.0 kg。每个矩形线圈abcd匝数
·
L=
安=nBIL=nB·
R
R
F安
刚进入磁场减速瞬间减震器的加速度大小为 a=
m
=
n2 B2 L2 v
=4
mR
(2)设向右为正方向,对减震器进行分析,由动量定理 I=Δp 可得
2 2
2
n B L v
F 安 t=解得
R
n2 B2 L2
·
t=·
2d=mv'-mv0
R
2n2 B2 L2 d
v'=v0- mR =0.2
1mv2 -1mv 2
1
2
2
因此 k= 1
=96。
mv13 2
2
1 2 3 4
3.(2023浙江宁波开学考试)基于电磁阻尼设计的电磁缓冲器是应用于车辆
上以提高运行安全性及乘坐舒适程度的辅助制动装置。其电磁阻尼作用

物理学案 人教版高考一轮复习第10章电磁感应学案及实验教学

物理学案 人教版高考一轮复习第10章电磁感应学案及实验教学

第2讲 法拉第电磁感应定律 自感 涡流一、法拉第电磁感应定律 1.感应电动势(1)概念:在电磁感应现象中产生的电动势。

(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。

(3)方向判断:感应电动势的方向用楞次定律或右手定则判断。

2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。

(2)公式:E =n ΔΦΔt,其中n 为线圈匝数。

(3)感应电流与感应电动势的关系:遵守闭合电路的欧姆定律,即I =ER +r 。

3.导体切割磁感线的情形(1)若B 、l 、v 相互垂直,则E =Blv 。

(2)v ∥B 时,E =0。

二、自感、涡流 1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感。

(2)自感电动势①定义:在自感现象中产生的感应电动势叫作自感电动势。

②表达式:E =L ΔIΔt。

(3)自感系数L①相关因素:与线圈的大小、形状、匝数以及是否有铁芯有关。

②单位:亨利(H),1 mH =10-3H,1 μH=10-6H 。

2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生感应电流,这种电流像水的漩涡,所以叫涡流。

授课提示:对应学生用书第196页命题点一 对法拉第电磁感应定律的理解及应用 自主探究1.感应电动势的决定因素(1)由E =n ΔΦΔt 知,感应电动势的大小由穿过电路的磁通量的变化率ΔΦΔt 和线圈匝数n 共同决定,磁通量Φ较大或磁通量的变化量ΔΦ较大时,感应电动势不一定较大。

(2)ΔΦΔt 为单匝线圈产生的感应电动势大小。

2.法拉第电磁感应定律的三个特例(1)回路与磁场垂直的面积S 不变,磁感应强度发生变化,则ΔΦ=ΔB·S,E =n ΔBΔt S 。

(2)磁感应强度B 不变,回路与磁场垂直的面积发生变化,则ΔΦ=B·ΔS,E =nB ΔSΔt。

(3)磁通量的变化是由面积和磁场变化共同引起时,则ΔΦ=Φ末-Φ初,E =n B 2S 2-B 1S 1Δt ≠n ΔB·ΔSΔt。

高考物理一轮复习 第十章 电磁感应 第1讲 电磁感应现象 楞次定律练习(含解析)新人教版-新人教版高

高考物理一轮复习 第十章 电磁感应 第1讲 电磁感应现象 楞次定律练习(含解析)新人教版-新人教版高

第1讲电磁感应现象楞次定律一、单项选择题:在每一小题给出的四个选项中,只有一项为哪一项符合题目要求的。

1.如下列图,一水平放置的N匝矩形线框面积为S,匀强磁场的磁感应强度为B,方向斜向上,与水平面成30°角,现假设使矩形框以左边的一条边为轴转到竖直的虚线位置,如此此过程中磁通量的改变量的大小是( C )A.3-12BS B.3+12NBSC.3+12BS D.3-12NBS[解析] sin θ磁通量与匝数无关,Φ=BS中,B与S必须垂直。

初态Φ1=B cos θ·S,末态Φ2=-B cos θ·S,磁通量的变化量大小ΔΦ=|Φ2-Φ1|=|BS(-cos 30°-sin30°)|=3+12BS,所以应选C项。

2.(2020·浙江诸暨模拟)有人设计了一种储能装置:在人的腰部固定一块永久磁铁,N 极向外;在手臂上固定一个金属线圈,线圈连接着充电电容器。

当手不停地前后摆动时,固定在手臂上的线圈能在一个摆动周期内,两次扫过别在腰部的磁铁,从而实现储能。

如下说法正确的答案是( D )A.该装置违反物理规律,不可能实现B.此装置会使手臂受到阻力而导致人走路变慢C.在手摆动的过程中,电容器极板的电性不变D.在手摆动的过程中,手臂受到的安培力方向交替变化[解析] D.在手摆动的过程中,线圈交替的进入或者离开磁场,使穿过线圈的磁通量发生变化,因而会产生感应电流,从而实现储能,该装置符合法拉第电磁感应定律,可能实现,选项A错误;此装置不会影响人走路的速度,选项B错误;在手摆动的过程中,感应电流的方向不断变化,如此电容器极板的电性不断改变。

选项C错误;在手摆动的过程中,感应电流的方向不断变化,手臂受到的安培力方向交替变化。

选项D正确。

3.如下列图,通电导线MN与单匝矩形线圈abcd共面,位置靠近ab且与线圈相互绝缘。

当MN中电流突然减小时,线圈所受安培力的合力方向( B )A.向左B.向右C.垂直纸面向外D.垂直纸面向里[解析] 解法一:当MN中电流突然减小时,单匝矩形线圈abcd垂直纸面向里的磁通量减小,根据楞次定律,线圈abcd中产生的感应电流方向为顺时针方向,由左手定如此可知ab边与cd边所受安培力方向均向右,所以线圈所受安培力的合力方向向右,B正确。

人教版物理大一轮复习 第14课时 电磁感应

人教版物理大一轮复习 第14课时 电磁感应

第14课时 电磁感应高考题型1 楞次定律与法拉第电磁感应定律的应用1.感应电流方向的判断(1)楞次定律:一般用于线圈面积不变,磁感应强度发生变化的情形. (2)右手定则:一般用于导体棒切割磁感线的情形. 2.楞次定律中“阻碍”的主要表现形式 (1)阻碍原磁通量的变化——“增反减同”; (2)阻碍物体间的相对运动——“来拒去留”; (3)使线圈面积有扩大或缩小的趋势——“增缩减扩”; (4)阻碍原电流的变化(自感现象)——“增反减同”. 3.求感应电动势的方法 (1)法拉第电磁感应定律:E =n ΔΦΔt ⎩⎨⎧S 不变时,E =nS ΔBΔt (感生电动势)B 不变时,E =nB ΔSΔt (动生电动势)(2)导线棒垂直切割磁感线:E =BL v .(3)导体棒绕与磁场平行的轴匀速转动E =12BL 2ω.(4)线圈绕与磁场垂直的轴匀速转动e =nBSωsin ωt . 考题示例例1 (2020·江苏卷·3)如图1所示,两匀强磁场的磁感应强度B 1和B 2大小相等、方向相反.金属圆环的直径与两磁场的边界重合.下列变化会在环中产生顺时针方向感应电流的是( )图1A .同时增大B 1减小B 2 B .同时减小B 1增大B 2C .同时以相同的变化率增大B 1和B 2D .同时以相同的变化率减小B 1和B 2答案 B解析 若同时增大B 1减小B 2,则穿过环向里的磁通量增大,根据楞次定律,感应电流产生的磁场方向向外,由安培定则,环中产生的感应电流是逆时针方向,故选项A 错误;同理可推出,选项B 正确,C 、D 错误.例2 (2019·江苏卷·14)如图2所示,匀强磁场中有一个用软导线制成的单匝闭合线圈,线圈平面与磁场垂直.已知线圈的面积S =0.3 m 2、电阻R =0.6 Ω,磁场的磁感应强度B =0.2 T .现同时向两侧拉动线圈,线圈的两边在Δt =0.5 s 时间内合到一起.求线圈在上述过程中图2(1)感应电动势的平均值E ;(2)感应电流的平均值I ,并在图中标出电流方向; (3)通过导线横截面的电荷量q . 答案 (1)0.12 V(2)0.2 A 电流方向见解析图 (3)0.1 C 解析 (1)感应电动势的平均值E =ΔФΔt磁通量的变化ΔФ=B ΔS联立可得E =B ΔSΔt ,代入数据得E =0.12 V ;(2)平均电流I =ER代入数据得I =0.2 A(电流方向见图);(3)电荷量q =I Δt 代入数据得q =0.1 C 命题预测1.(多选)(2020·江苏南京、盐城市一模)如图3甲所示,a 、b 两个绝缘金属环套在同一个光滑的铁芯上.在t=0时刻,a、b两环处于静止状态,a环中的电流i随时间t的变化规律如图乙所示.下列说法中正确的是()图3A.t2时刻两环相互吸引B.t3时刻两环相互排斥C.t1时刻a环的加速度为零D.t4时刻b环中感应电流最大答案ACD解析在t2时刻与t3时刻,a环中的电流均处于减小阶段,根据楞次定律可知,两环的电流方向相同,则两环相互吸引,故A正确,B错误.a中电流产生磁场,磁场的变化使b中产生电流,才使两环相互作用,在题图乙中,“变化最快”即曲线的斜率最大.t1时刻曲线的斜率为0,这个瞬间磁场是不变化的,因此两环没有作用力,则加速度为零,故C正确.虽然t4时刻a环中的电流为零,但是根据该时刻对应的电流的曲线的斜率最大,即该时刻磁通量变化率最大,故t4时刻b环中感应电动势最大,则b环中感应电流最大,故D正确.2.(多选)(2020·江苏苏锡常镇二模)如图4甲所示,水平放置的平行金属导轨左端连接一个平行板电容器C和一个定值电阻R,导体棒MN放在导轨上且与导轨接触良好.装置放于垂直导轨平面的磁场中,磁感应强度B的变化情况如图乙所示(垂直纸面向外为磁感应强度的正方向),MN始终保持静止.不计电容器充电时间,则在0~t2时间内,下列说法正确的是()图4A.电阻R两端的电压大小始终不变B.电容器C的a板先带正电后带负电C.MN棒所受安培力的大小始终不变D.MN棒所受安培力的方向先向右后向左答案AD解析由题图乙知,磁感应强度均匀变化,根据法拉第电磁感应定律可知,回路中产生恒定的感应电动势,电路中电流恒定,电阻R两端的电压恒定,故A正确;根据楞次定律可知,通过电阻R的电流一直向下,电容器C的a板电势较高,一直带正电,故B错误;MN中感应电流方向一直向上,由左手定则可知,MN所受安培力的方向先向右后向左,故D 正确;根据安培力公式F=BIL,I、L不变,因为磁感应强度变化,MN所受安培力的大小变化,故C错误.高考题型2电磁感应中的图像问题1.电磁感应中的图像问题常见形式常见的有磁感应强度、磁通量、感应电动势、感应电流、速度、安培力等随时间或位移的变化图像.2.解答此类问题应注意以下几个方面(1)把握三个关注:(2)掌握两个常用方法,可快速准确地解题①排除法:定性分析电磁感应过程中某个物理量的变化趋势、变化快慢,特别是分析物理量的方向(正负),排除错误的选项.这种方法能快速解决问题,但不一定对所有问题都适用.②函数关系法:根据题目所给的条件写出物理量之间的函数关系,再对图像作出判断,这种方法得到的结果准确、详细,但不够简捷.考题示例例3(2018·全国卷Ⅱ·18)如图5,在同一水平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l,磁感应强度大小相等、方向交替向上向下.一边长为32l的正方形金属线框在导轨上向左匀速运动.线框中感应电流i随时间t变化的正确图线可能是()图5答案 D解析设线路中只有一边切割磁感线时产生的感应电流为i.线框位移等效电路的连接电流0~l2I=2i(顺时针) l2~l I=0l~3l2I=2i(逆时针)3l2~2l I=0由分析知,选项D符合要求.命题预测3.(2020·江苏苏州市调研)如图6所示,在自行车车轮的辐条上固定有一个小磁铁,前叉上相应位置(纸面外侧)处安装了小线圈,在车前进车轮转动过程中线圈内会产生感应电流,从垂直于纸面向里看,下列i-t图像中正确的是(逆时针方向为正)()图6答案 D解析磁铁靠近线圈时,线圈中向外的磁通量增大,根据楞次定律可知感应电流产生的磁场向里,根据安培定则可知线圈中感应电流方向为顺时针方向(负方向);当磁铁离开线圈时,线圈中向外的磁通量减小,根据楞次定律可知感应电流产生的磁场向外,根据安培定则可知线圈中感应电流方向为逆时针方向(正方向),A、B、C错误,D正确.4.(2020·江苏无锡市期末)有一匀强磁场的磁感应强度B随时间t的变化关系如图7甲所示的匀强磁场.现有如图乙所示的直角三角形导线框abc水平放置,放在匀强磁场中保持静止不动,t=0时刻,磁感应强度B的方向垂直纸面向里,设产生的感应电流i顺时针方向为正,竖直边ab所受安培力F的方向水平向左为正.则下面关于F和i随时间t变化的图像正确的是()图7答案 A解析 在0~3 s 时间内,磁感应强度随时间线性变化,由法拉第电磁感应定律可知,感应电动势恒定,回路中感应电流恒定,由F =BIL 可知,安培力与磁感应强度成正比,又由楞次定律判断出回路中感应电流的方向应为顺时针方向,即正方向, 0~2 s 内安培力水平向右,为负方向, 2~3 s 内安培力水平向左,为正方向,在3~4 s 时间内,磁感应强度恒定,感应电动势等于零,感应电流为零,安培力等于零,同理可判断出4~7 s 内的安培力变化情况,故B 、C 错误,A 正确;0~3 s 时间内,磁感应强度随时间线性变化,由法拉第电磁感应定律可知,感应电动势恒定,回路中感应电流恒定,故D 错误.5.(多选)(2020·东北三省四市教研联合体模拟)如图8所示,光滑平行金属导轨MN 、PQ 放置在同一水平面内,M 、P 之间接一定值电阻R ,金属棒ab 垂直导轨放置,金属棒和导轨的电阻均不计,整个装置处在竖直向上的匀强磁场中.t =0时对金属棒施加水平向右的外力F ,使金属棒由静止开始做匀加速直线运动.下列关于通过金属棒的电流i 、通过导轨横截面的电荷量q 、拉力F 和拉力的功率P 随时间变化的图像,正确的是( )图8答案 AC解析 由题意可知,金属棒由静止开始做匀加速直线运动,则有:x =12at 2,v =at ,根据法拉第电磁感应定律得:E =BL v =BLat ,则感应电流i =E R =BLaR t ,故A 正确;根据E =ΔΦΔt ,I =E R 和q =I Δt ,得q =ΔΦR ,而ΔΦ=B ΔS =BLx =12BLat 2,故q =BLa 2R t 2,故B 错误;根据牛顿第二定律有:F -F 安=ma ,F 安=BiL =B 2L 2aR t ,解得:F =ma +B 2L 2aR t ,故C 正确;根据P =F v , 得P =F v =ma 2t +B 2L 2a 2Rt 2,故D 错误. 高考题型3 电磁感应中的动力学与能量问题1.电磁感应中的动力学与能量问题常出现的两个模型一是线框进出磁场;二是导体棒切割磁感线运动.两类模型都综合了电路、动力学、能量知识,有时还会与图像结合,所以解题方法有相通之处.可参考下面的解题步骤:2.求解焦耳热Q 的三种方法(1)焦耳定律:Q =I 2Rt ,适用于电流、电阻不变; (2)功能关系:Q =W 克服安培力,电流变不变都适用;(3)能量转化:Q =ΔE (其他能的减少量),电流变不变都适用. 考题示例例4 (2020·江苏卷·14)如图9所示,电阻为0.1 Ω的正方形单匝线圈abcd 的边长为0.2 m ,bc 边与匀强磁场边缘重合.磁场的宽度等于线圈的边长,磁感应强度大小为0.5 T ,在水平拉力作用下,线圈以8 m/s 的速度向右穿过磁场区域.求线圈在上述过程中图9(1)感应电动势的大小E ; (2)所受拉力的大小F ; (3)感应电流产生的热量Q . 答案 (1)0.8 V (2)0.8 N (3)0.32 J解析 (1)线圈切割磁感线产生的感应电动势E =Bl v 代入数据得E =0.8 V(2)线圈中产生的感应电流I =ER拉力的大小等于安培力F =BIl 解得F =B 2l 2vR代入数据得F =0.8 N (3)运动时间t =2lv 根据焦耳定律有Q =I 2Rt 联立可得Q =2B 2l 3vR代入数据解得Q =0.32 J例5 (多选)(2018·江苏卷·9)如图10所示,竖直放置的“”形光滑导轨宽为L ,矩形匀强磁场Ⅰ、Ⅱ的高和间距均为d ,磁感应强度为B .质量为m 的水平金属杆由静止释放,进入磁场Ⅰ和Ⅱ时的速度相等.金属杆在导轨间的电阻为R ,与导轨接触良好,其余电阻不计,重力加速度为g .金属杆( )图10A .刚进入磁场Ⅰ时加速度方向竖直向下B .穿过磁场Ⅰ的时间大于在两磁场之间的运动时间C .穿过两磁场产生的总热量为4mgdD .释放时距磁场Ⅰ上边界的高度h 可能小于m 2gR 22B 4L 4答案 BC解析 穿过磁场Ⅰ后,金属杆在磁场之间做加速运动,在磁场Ⅱ上边缘速度大于从磁场Ⅰ出来时的速度,即进入磁场Ⅰ时速度等于进入磁场Ⅱ时速度,大于从磁场Ⅰ出来时的速度.金属杆在磁场Ⅰ中做减速运动,加速度方向向上,A 错. 金属杆在磁场Ⅰ中做减速运动,由牛顿第二定律知 ma =BIL -mg =B 2L 2vR-mg ,a 随着减速过程逐渐变小,即在前一段做加速度减小的减速运动;在磁场之间做加速度为g 的匀加速直线运动,两个过程位移大小相等,由v -t 图像(可能图像如图所示)可以看出前一段用时多于后一段用时,B 对. 由于进入两磁场时速度相等,由动能定理知, mg ·2d -W 安1=0, W 安1=2mgd .即通过磁场Ⅰ产生的热量为2mgd ,故穿过两磁场产生的总热量为4mgd ,C 对. 设刚进入磁场Ⅰ时速度为v ,则由机械能守恒定律知mgh =12m v 2, 进入磁场时ma =BIL -mg =B 2L 2v R-mg , 解得v =m (a +g )R B 2L 2, 联立解得h =m 2(a +g )2R 22B 4L 4g >m 2gR 22B 4L4,D 错. 命题预测6.(多选)(2020·江西上铙市高三一模)如图11所示,虚线框内有垂直纸面向里的匀强磁场,磁感应强度为B ,磁场区域上下宽度为l ;质量为m 、边长为l 的正方形线圈abcd 平面保持竖直,ab 边保持水平的从距离磁场上边缘一定高度处由静止下落,以速度v 进入磁场,经过一段时间又以相同的速度v 穿出磁场,不计空气阻力,重力加速度为g .下列说法正确的是( )图11A .线圈的电阻R =B 2l 2v mgB .进入磁场前线圈下落的高度h =v 22gC .穿过磁场的过程中,线圈电阻产生的热量Q =2mglD .线圈穿过磁场所用时间t =l v答案 ABC解析 由题意可知,线圈进入磁场和穿出磁场时速度相等,说明线圈在穿过磁场的过程中做匀速直线运动,则mg =F 安=BIl =B 2l 2v R ,R =B 2l 2v mg,所以A 正确;线圈在进入磁场前做自由落体运动,由动能定理得mgh =12m v 2,进入磁场前线圈下落的高度为h =v 22g,所以B 正确;线圈在穿过磁场的过程中克服安培力做功转化为焦耳热,又安培力与重力平衡,则穿过磁场的过程中线圈电阻产生的热量为Q =mg ·2l =2mgl ,所以C 正确;根据线圈在穿过磁场过程中做匀速运动,可得线圈穿过磁场的时间为t =2l v ,所以D 错误.7.(2020·江苏南京、盐城、一模)如图12所示,闭合矩形线框abcd 可绕其水平边ad 转动,ab 边长为x ,bc 边长为L 、质量为m ,其他各边的质量不计,线框的电阻为R .整个线框处在竖直向上的磁感应强度为B 的匀强磁场中.现给bc 边一个方向与bc 边、磁场的方向均垂直的初速度v ,经时间t ,bc 边上升到最高处,ab 边与竖直线的最大偏角为θ,重力加速度为g .求t 时间内:图12(1)线框中感应电动势的最大值;(2)流过线框导体截面的电荷量;(3)线框中感应电流的有效值.答案 (1)BL v (2)Blx sin θR (3)m [v 2-2gx (1-cos θ)]2Rt 解析 (1)开始时bc 边速度最大且速度方向与磁感应强度方向垂直,感应电动势最大,则有E max =BL v(2)根据电荷量的计算公式可得q =I t根据闭合电路欧姆定律可得I =ER根据法拉第电磁感应定律可得E =ΔΦt =BLx sin θt 解得q =BLx sin θR(3)根据能量守恒定律可得12m v 2=mgx (1-cos θ)+Q 根据焦耳定律Q =I 有2Rt解得I 有=m [v 2-2gx (1-cos θ)]2Rt. 8.(2020·湖南3月模拟)如图13所示,两根足够长的光滑直金属导轨MN 、PQ 平行固定在倾角为θ的绝缘斜面上,两导轨间距为L ,导轨的电阻不计.导轨顶端M 、P 两点间接有滑动变阻器和阻值为R 的定值电阻.一根质量为m 、电阻不计的均匀直金属杆ab 放在两导轨上,与导轨垂直且接触良好.空间存在磁感应强度大小为B 、方向垂直斜面向下的匀强磁场.调节滑动变阻器的滑片,使得滑动变阻器接入电路的阻值为2R ,让ab 由静止开始沿导轨下滑.不计空气阻力,重力加速度大小为g .图13(1)求ab 下滑的最大速度v m ;(2)求ab 下滑的速度最大时,定值电阻上消耗的电功率P ;(3)若在ab 由静止开始至下滑到速度最大的过程中,定值电阻上产生的焦耳热为Q ,求该过程中ab 下滑的距离x 以及通过滑动变阻器的电荷量q .答案 见解析解析 (1)ab 下滑的速度最大时,其切割磁感线产生的感应电动势为:E =BL v m ,此时通过定值电阻的电流为:I =E R +2R, ab 杆所受安培力大小为:F 安=BIL ,由受力平衡得mg sin θ=BIL ,联立解得:v m =3mgR sin θB 2L 2; (2)由电功率公式有:P =I 2R ,解得:P =m 2g 2R sin 2θB 2L 2; (3)由题意滑动变阻器接入电路的阻值为2R ,为定值电阻的2倍,根据焦耳定律可知,滑动变阻器上产生的焦耳热为2Q ;由能量守恒定律可得:mgx sin θ=12m v m 2+Q +2Q , 解得:x =9m 2gR 2sin θ2B 4L 4+3Q mg sin θ; 在ab 由静止开始至下滑到速度最大的过程中,穿过回路的磁通量的变化为:ΔΦ=BLx ,设ab 由静止开始至下滑到速度最大所用时间为Δt ,在该过程中,回路产生的平均感应电动势为E =ΔΦΔt 根据闭合电路欧姆定律可得,在该过程中,通过回路的平均感应电流为I =E 3R, 又q =I ·Δt 联立解得:q =3m 2gR sin θ2B 3L 3+BLQ mgR sin θ. 专题强化练保分基础练1.(2020·江苏扬州市期末)穿过某闭合回路的磁通量Φ随时间t 变化的图像如下图所示,可使回路中感应电流先增大后减小且方向不变的是( )答案 C解析 要使回路中感应电流先增大后减小且方向不变,则要求电动势先增大后减小且方向不变,A 、B 项两图回路在前半段时间内磁通量Φ随时间t 变化的图像的斜率为定值,电动势为定值;在后半段时间内磁通量Φ随时间t 变化的图像的斜率为也为定值,电动势为定值,故A 、B 错误;C 项图中磁通量Φ随时间t 变化的图像的斜率先变大后变小,所以感应电动势先变大后变小,且斜率始终为正值,电动势方向不变,故C 正确;D 项图中磁通量Φ随时间t 变化的图像的斜率大小先变小后变大,则电动势先变小后变大,且斜率的正负值变化,即电动势方向变化,故D 错误.2.(多选)(2020·江苏南通、泰州市期末)如图1所示,一条形磁铁竖直放置(上端为N 极),金属线圈从磁铁正上方某处下落,经条形磁铁A 、B 两端时速度分别为v 1、v 2,线圈中的电流分别为I 1、I 2,线圈在运动过程中保持水平,则( )图1A .I 1和I 2的方向相同B .I 1和I 2的方向相反C .I 1∶I 2=v 12∶v 22D .I 1∶I 2=v 1∶v 2答案 BD解析 金属线圈经条形磁铁A 、B 两端时,磁通量先向上增大后向上减小,依据楞次定律“增反减同”,可知感应电流产生的磁场方向先向下,后向上,根据右手螺旋定则可知,则I 1和I 2感应电流的方向先顺时针,后逆时针(从上向下看),即它们的方向相反,故A 错误,B 正确; 根据法拉第电磁感应定律及闭合电路欧姆定律有I =E R =BL v R即I 与v 成正比,故C 错误,D 正确.3.(多选)(2020·江苏常州市期末)如图2所示,钳型电流表是一种穿心式电流互感器,选择量程后,将一根通电导线夹入钳中,就可以读出导线中的电流.该电流表( )图2 A .可以测直流电流B .可以测交流电流C .量程旋钮旋到大量程时接入电路的线圈匝数变多D .量程旋钮旋到大量程时接入电路的线圈匝数变少答案 BC解析 电流互感器是根据电磁感应原理制成的,只能测量交流电流,不能测量直流电流,选项A 错误,B 正确;根据I 1I 2=n 2n 1可知,n 1和I 2一定,则当I 1变大时n 2要增大,则量程旋钮旋到大量程时接入电路的线圈匝数变多,选项C正确,D错误.4.(多选)(2020·山东潍坊市二模)如图3甲,螺线管内有平行于轴线的外加磁场,以图中箭头所示方向为其正方向.螺线管与导线框abcd相连,导线框内有一闭合小金属圆环,圆环与导线框在同一平面内.当螺线管内的磁感应强度B随时间t按图乙所示规律变化时()图3A.在0~t1时间内,环有收缩趋势B.在t1~t2时间内,环有扩张趋势C.在t1~t2时间内,环内有逆时针方向的感应电流D.在t2~t3时间内,环内有逆时针方向的感应电流答案BC解析在0~t1时间内,B均匀增加,则在线圈中产生恒定的感生电动势,在导线框dcba中形成稳定的电流,故此时环中无感应电流产生,环也没有收缩趋势,选项A错误;在t1~t2时间内,B的变化率逐渐减小,则螺线管中的感应电流方向为从下到上且逐渐减小,在导线框abcd中的磁通量为向外减小,穿过环的磁通量向外减小,根据楞次定律可知,环内有逆时针方向的感应电流,且有扩张趋势,选项B、C正确;在t2~t3时间内,B的方向向下,且B 的变化率逐渐减小,则螺线管中的感应电流方向为从上到下且逐渐减小,在导线框abcd中的磁通量为向里减小,穿过环的磁通量向里减小,根据楞次定律可知,环内有顺时针方向的感应电流,选项D错误.5.(2020·云南昆明市高三“三诊一模”测试)如图4甲所示,单匝矩形金属线框abcd处在垂直于线框平面的匀强磁场中,线框面积S=0.3 m2,线框连接一个阻值R=3 Ω的定值电阻,其余电阻不计,线框的cd边位于磁场边界上.取垂直于纸面向外为磁感应强度B的正方向,磁感应强度B随时间t变化的图像如图乙所示.下列说法正确的是()图4A .在0~0.4 s 内,线框中感应电流沿逆时针方向B .在0.4~0.8 s 内,线框有扩张的趋势C .在0~0.8 s 内,线框中的感应电流为0.1 AD .在0~0.4 s 内,ab 边所受安培力保持不变答案 C解析 由题图乙所示图线可知,在0~0.4 s 内,磁感应强度垂直于纸面向里,磁感应强度减小,则穿过线框的磁通量减小,由楞次定律可知,感应电流沿顺时针方向,故A 错误. 由题图乙所示图线可知,在0.4~0.8 s 内,穿过线框的磁通量增加,由楞次定律可知,线框有收缩的趋势,故B 错误.由题图乙所示图线可知,在0~0.8 s 内,线框产生的感应电动势为:E =ΔΦΔt =ΔB Δt S =0.4-(-0.4)0.8×0.3 V =0.3 V , 线框中的感应电流为:I =E R =0.33A =0.1 A ,故C 正确. 在0~0.4 s 内,线框中的感应电流I 保持不变,由题图乙所示图线可知,磁感应强度B 大小不断减小,由F =ILB 可知,ab 边所受安培力不断减小,故D 错误.6.(2020·江苏苏州市调研)如图5所示,两个相同的灯泡a 、b 和电阻不计的线圈L (有铁芯)与电源E 连接,下列说法正确的是( )图5A .开关S 闭合瞬间,a 灯发光,b 灯不发光B .开关S 闭合,a 灯立即发光,后逐渐变暗并熄灭C .开关S 断开,b 灯“闪”一下后熄灭D .开关S 断开瞬间,a 灯左端的电势高于右端电势答案 B解析 闭合开关S 瞬间,两小灯泡均有电流流过,同时发光,A 错误;闭合开关S 瞬间,a 灯立即发光,根据楞次定律可知线圈中产生的阻碍原电流变大的感应电流逐渐减小至0,因为a 灯和线圈并联,所以通过线圈的电流逐渐增大,通过a 灯的电流逐渐减小,亮度逐渐减小,因为线圈电阻不计,所以稳定时a 灯被短路,最后熄灭,B 正确;断开开关瞬间,b 灯断路无电流流过,立即熄灭,C 错误;断开开关瞬间,根据楞次定律可知,通过线圈的电流向右,所以线圈右端电势高于左端,所以a 灯右端的电势高于左端,D 错误.7.(多选)如图6甲所示,导线制成的等边三角形OMN 放置在水平桌面上,竖直向下的匀强磁场穿过桌面.剪下MN 间的导线,向左平移到O 点,现使其在水平外力F 作用下紧贴MON 向右匀速运动,从O 点开始计时,磁感应强度B 随时间t 的变化关系如图乙所示,导线未脱离MON 之前,外力F 、导线与MON 构成的闭合电路的电动势E 、电路中的电流I 、外力的功率P 与时间t 变化的关系正确的是( )图6A .F ∝t 2B .E ∝t 2C .I ∝tD .P ∝t 3答案 BCD解析 由题图乙知,磁感应强度B =kt ,由几何知识可知,导线切割磁感线的有效长度为l =2v t tan 30°=233v t , 设导线单位长度电阻为R ,回路总电阻为R 总=3lR =23v tR电动势E =Bl v =233k v 2t 2∝t 2,B 正确; I =E R 总=k v t 3R∝t ,C 正确; 由题意知F =F 安=BIl =239Rk 2v 2t 3∝t 3,A 错误; P =F v =239Rk 2v 3t 3∝t 3,D 正确. 8.(2020·江苏苏锡常镇一模)据报道,我国华中科技大学的科学家创造了脉冲平顶磁场磁感应强度超过60 T 的世界纪录,脉冲平顶磁场兼具稳态和脉冲两种磁场的优点,能够实现更高的强度且在一段时间保持很高的稳定度.如图7甲所示,在磁场中有一匝数n =10的线圈,线圈平面垂直于磁场,线圈的面积为S =4×10-4 m 2,总电阻为R =60 Ω.如图乙为该磁场磁感应强度的变化规律,设磁场方向向上为正,求:图7(1)t =0.5×10-2 s 时,线圈中的感应电动势大小;(2)在0~2×10-2 s 过程中,通过线圈横截面的电荷量;(3)在0~3×10-2 s 过程中,线圈产生的热量.答案 (1)24 V (2)4×10-3 C (3)0.192 J解析 (1)由E =n ΔB ΔtS 得E =10×601×10-2×4×10-4=24 V (2)在0~1×10-2 s 过程中,由I =E R 得I =0.4 A在1×10-2 s ~2×10-2 s 过程中,线圈中电流为0,由q =I Δt 可知,流过线圈的电荷量为q =0.4×1×10-2 C =4×10-3 C(3)由Q =I 2Rt 得,0~3×10-2 s 过程中,线圈产生的热量为Q =0.42×60×2×10-2 J =0.192 J.争分提能练9.(2020·江苏南泰扬徐淮连宿二模)如图8甲所示,虚线右侧有一方向垂直纸面的有界匀强磁场,磁场的磁感应强度随时间t 变化关系如图乙所示(取磁场垂直纸面向里的方向为正方向),固定的闭合导线框一半在磁场内.从t =0时刻开始,下列关于线框中感应电流i 、线框ab 边受到的安培力F 随时间t 变化图像中,可能正确的是(取线框中逆时针方向的电流为正,安培力向右为正方向)( )图8答案 B解析 由题图可知,在0~T 2内线圈中磁感应强度的变化率相同,故0~T 2内电流的方向相同,由楞次定律可知,电路中电流方向为逆时针,即电流为正方向;在T 2~T 内线圈中磁感应强度的变化率相同,故T 2~T 内电流的方向相同,由楞次定律可知,电路中电流方向为顺时针,即电流为负方向;根据法拉第电磁感应定律有E =ΔB Δt ·S 2,则感应电流为i =E R =ΔB Δt ·S 2R由题图可知两段时间内的磁感应强度大小相等,故两段时间内的感应电流大小相等,故A 错误,B 正确;由上分析可知,一个周期内电路的电流大小恒定不变,根据F =BIL 可知F 与B 成正比,则在0~T 4内磁场垂直纸面向外减小,电流方向由b 到a ,根据左手定则可知,线框ab 边受到的安培力F 方向向右,为正方向,大小随B 均匀减小;在T 4~T 2内磁场垂直纸面向里增大,电流方向由b 到a ,根据左手定则可知,线框ab 边受到的安培力F 方向向左,为负方向,大小随B 均匀增大;在T 2~3T 2内磁场垂直纸面向里减小,电流方向由a 到b ,根据左手定则可知,线框ab 边受到的安培力F 方向向右,为正方向,大小随B 均匀减小;在3T 2~T 内磁场垂直纸面向外增大,电流方向由a 到b ,根据左手定则可知,线框ab 边受到的安培力F 方向向左,为负方向,大小随B 均匀增大,故C 、D 错误.10.(多选)如图9所示,Ⅰ、Ⅱ两条虚线之间存在匀强磁场,磁场方向与竖直纸面垂直.一个质量为m 、边长为L 的正方形导体框,在此平面内沿竖直方向运动,t =0时刻导体框的上半部分恰好进入磁场,速度为v 0.经历一段时间后,当导体框上半部分恰好出磁场时,速度为零.此后导体框下落,再经历一段时间到达初始位置.不计空气阻力,则导体框( )图9A .在上升过程中的加速度一直大于g。

高三物理一轮复习第9章电磁感应交变电流实验14探究感应电流方向的规律课件

高三物理一轮复习第9章电磁感应交变电流实验14探究感应电流方向的规律课件

图3
【解析】 (1)探究电磁感应现象的实验电路分两部分,电源、开关、滑动 变阻器、原线圈组成闭合电路,检流计与副线圈组成另一个闭合电路;电路图 如图所示;
(2)在实验过程中,除了查清流入检流计电流方向与指针偏转方向之间的关 系之外,还应查清原线圈 L1 与副线圈 L2 的绕制方向.由电路图可知,闭合开关 之前,应将滑动变阻器的滑动头 P 处于右端,此时滑动变阻器接入电路的阻值 最大.
精选最新中小学教学课件
20
尖子生好方法:听课时应该始终跟着老师的节奏,要善于抓住老师讲解中的关键词,构建自己的知识结构。利用老师讲课的间隙,猜想老师还会讲什么,会怎样讲, 怎样讲会更好,如果让我来讲,我会怎样讲。这种方法适合于听课容易分心的同学。
2019/5/21
精选最新中小学教学课件
19
thank
you!
2019/5/21
二、同步听课法
有些同学在听课的过程中常碰到这样的问题,比如老师讲到一道很难的题目时,同学们听课的思路就“卡壳“了,无法再跟上老师的思路。这时候该怎么办呢?
如果“卡壳”的内容是老师讲的某一句话或某一个具体问题,同学们应马上举手提问,争取让老师解释得在透彻些、明白些。
如果“卡壳”的内容是公式、定理、定律,而接下去就要用它去解决问题,这种情况下大家应当先承认老师给出的结论(公式或定律)并非继续听下去,先把问题记 下来,到课后再慢慢弄懂它。
【导学号:81370351】
图4 A.如果磁铁的下端是 N 极,则磁铁正在远离线圈 B.如果磁铁的下端是 S 极,则磁铁正在远离线圈 C.如果磁铁的下端是 N 极,则磁铁正在靠近线圈 D.如果磁铁的下端是 S 极,则磁铁正在靠近线圈
AD [根据题图甲,可以知道电流表的指针向电流流入的方向偏转,螺线管 相当于一个电源,电源的正极在上端.根据安培定则,螺线管上端是 S 极.如 果磁铁的下端是 N 板,则磁铁正在远离线圈;如果磁铁的下端是 S 极,则磁铁 正在靠近线圈,故 A、D 正确.]

高中物理一轮复习教案电磁感应中的电路与图象问题2

高中物理一轮复习教案电磁感应中的电路与图象问题2
小结
作业:课时作业
教后
反思
审核人签字:年月日
4.解决图象问题的一般步骤
(1)明确图象的种类,即是B-t图象还是Φ-t图象,或者E-t图象、I-t图象等.
(2)分析电磁感应的具体过程.
(3)用右手定则或楞次定律欧姆定律、牛顿定律等规律写出函数关系式.
(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等.
(6)画图象或判断图象.
5.主要题型
(1)图象的选择(如例1)
(2)图象的转换(如跟踪训练2-2)
(3)图象的应用(如例3)
由给定的有关图象分析电磁感应过程,求解相应的物理量
(2013·全国新课标Ⅰ·17)如图,在水平面(纸面)内有三根相同的均匀金属棒ab、ac和MN,其中ab、ac在a点接触,构成“V”字型导轨.空间存在垂直于纸面的均匀磁场.用力使MN向右匀速运动,从图示位置开始计时,运动中MN始终与∠bac的平分线垂直且和导轨保持良好接触.下列关于回路中电流i与时间t的关系图线,可能正确的是()
富县高级中学集体备课教案
年级:高三理科目:物理授课人:
课题
电磁感应中的电路与图象问题1
第课时
三维目
1、电磁感应中的电路问题
2、电磁感应中的图像问题
重点
1、电磁感应中的电路问题
2、电磁感应中的图像问题
中心发
言人
陈熠
难点
1、电磁感应中的电路问题
2、电磁感应中的图像问题
教具
课型
课时安排
课时
教法
学法
个人主页
答案:A
如图甲所示,不计电阻的平行金属导轨竖直放置,导轨间距为L=1 m,上端接有电阻R=3 Ω,虚线OO′下方是垂直于导轨平面的匀强磁场.现将质量m=0.1 kg、电阻r=1 Ω的金属杆ab从OO′上方某处垂直导轨由静止释放,杆下落过程中始终与导轨保持良好接触,杆下落过程中的v-t图象如图乙所示.(取g=10 m/s2)求:

届高考物理一轮总复习(固考基+抓细节+重落实)9-1 电磁感应现象 楞次定律课件(含13高考、14模拟)

届高考物理一轮总复习(固考基+抓细节+重落实)9-1 电磁感应现象 楞次定律课件(含13高考、14模拟)

【解析】
从东往西,车把切割地磁场的竖直分量,由
右手定则知左车把电势高,而辐条切割水平分量,B 端电势 高,即 A、D 正确.
【答案】
AD
电磁感应现象发生的条件
1.磁通量的物理意义 (1)磁通量可以理解为穿过某一面积的磁感线的条数. (2)同一平面,当它跟磁场方向垂直时,磁通量最大;当 它跟磁场方向平行时,磁通量为零;当正向穿过线圈平面的 磁感线条数和反向穿过的一样多时,磁通量为零.
【答案】 B
3.(多选)如图是验证楞次定律实验的示意图,竖直放置 的线圈固定不动,将磁铁从线圈上方插入或拔出,线圈和电 流表构成的闭合回路中就会产生感应电流.各图中分别标出 了磁铁的极性、磁铁相对线圈的运动方向以及线圈中产生的 感应电流的方向的情况,其中表示正确的是( )
【解析】 先根据楞次定律“来拒去留”判断线圈的 N 极和 S 极.A 中线圈上端为 N 极,B 中线圈上端为 N 极,C 中线圈上端为 S 极,D 中线圈上端为 S 极,再根据安培定则 确定感应电流的方向,A、B 错误,C、D 正确.
【审题指导】 能够引起线圈 B 中磁通量发生变化的因 素有三点: (1)电键的闭合和断开. (2)电键闭合后,线圈 A 插入或拔出. (3)电键闭合后,滑片 P 左、右滑动.
【解析】 电键闭合后,线圈 A 插入或拔出都会引起穿 过线圈 B 的磁通量发生变化,从而电流计指针偏转,选项 A 正确;线圈 A 插入线圈 B 中后,电键闭合和断开的瞬间,线 圈 B 的磁通量会发生变化, 电流计指针会偏转, 选项 B 错误; 电键闭合后,滑动变阻器的滑片 P 无论匀速滑动还是加速滑 动, 都会导致线圈 A 的电流发生变化, 线圈 B 的磁通量变化, 电流计指针都会发生偏转,选项 C、D 错误.

高中物理一轮复习教案电磁感应现象 楞次定律1

 高中物理一轮复习教案电磁感应现象 楞次定律1
教具
课型
课时安排
课时
教法
学法
个人主页








第九章 电磁感应
考纲展示
要求
电磁感应现象

磁通量

法拉第电磁感应定律

楞次定律

自感、涡流
Ⅰ热Leabharlann 视角1.考情分析:本章是高考的必考内容,在历年高考中所占分值较高,考查的题型一般多为选择题,也有计算题,考查的难度中等,试题的综合程度较高.
2.高考热点:
(1)条件:
(2)特例:闭合电路的一部分导体在磁场内做切割磁感线的运动.
3.产生电磁感应现象的实质
4.能量转化
发生电磁感应现象时,机械能或其他形式的能转化为电能.
小结
作业:基础自测
教后
反思
审核人签字:年月日
富县高级中学集体备课教案
年级:高三理科目:物理授课人:
课题
第一讲电磁感应现象楞次定律
第课时
三维目
1、电磁感应现象及本质
2、会用楞次定律判断感应电流的方向
3、用右手定则感应电流的方向
重点
1、电磁感应现象及本质
2、会用楞次定律判断感应电流的方向
3、用右手定则感应电流的方向
中心发
言人
陈熠
难点
会用楞次定律判断感应电流的方向
预计2015年高考仍将以电磁感应的产生条件,感应电动势和感应电流的计算和图象表达为主.
结合新技术,对科技类问题的建模,运用力学和电学知识解决电磁感应类的问题,复习时应予以高度关注.
第1讲 电磁感应现象 楞次定律
1.定义
2.公式:Φ=BS.

高三物理第一轮复习教学案(电磁感应)原创的

高三物理第一轮复习教学案(电磁感应)原创的

高三物理总复习教案十三、电磁感应第一课时:电磁感应现象 楞次定律一、知识要点:1.电磁感应现象及产生感应电流的条件:2.感应电流的方向确定――楞次定律:(1)阻碍的是原磁通量的变化,而不是原磁场本身,如果原磁通不变化,即使它再强,也不会产生感应电流.(2)阻碍不是相反.当原磁通减小时,感应电流的磁场与原磁场同向,以阻碍其减小;当磁体远离导体运动时,导体运动,将和磁体运动同向,以阻碍其相对运动.(3)由于“阻碍”,为了维持原磁通的变化,必须有外力克服这一“阻碍”做功,从而导致其它形式的能转化为电能.因此楞次定律是能量转化和守恒定律在电磁感应中的体现.3.楞次定律的应用步骤:①确定原磁场方向; ②判定原磁通如何变化;③确定感应电流的磁场方向(增反减同);④根据安培定则判定感应电流的方向。

二、例题分析:1.【96全国】一平面线圈用细杆悬于P 点,开始时细杆处于水平位置,释放后让它在如图所示的匀强磁场中运动,已知线圈平面始终与纸面垂直,当线圈第一次通过位置Ⅰ和位置Ⅱ时,顺着磁场的方向看去,线圈中的感应电流的方向分别为:【 】位置Ⅰ 位置ⅡA .逆时针方向 逆时针方向B .逆时针方向 顺时针方向C .顺时针方向 顺时针方向D .顺时针方向 逆时针方向2.如图所示,ab 是一个可绕垂直于纸面的轴O 转动的闭合矩形导线框,当滑动变阻器的滑片P 自左向右滑动时,从纸外向纸内看,线框ab 将:【 】A .保持静止不动B .逆时针转动C .顺时针转动D .发生转动,但电源极性不明,无法确定转动方向3.如图所示装置中,cd 杆原来静止。

当ab 杆做如下那些运动时,cd 杆将向右移动?【 】A .向右匀速运动B .向右加速运动C .向左加速运动D .向左减速运动4.如图所示,O 1O 2是矩形导线框abcd 的对称轴,其左方有匀强磁场。

以下哪些情况下abcd 中有感应电流产生?方向如何? A .将abcd 向纸外平移 B .将abcdC .将abcd 以ab 为轴转动60°D .将abcd 以cd5.如图所示,有两个同心导体圆环。

2010届高考物理第一轮复习精品教案: 电磁感应

2010届高考物理第一轮复习精品教案: 电磁感应

课题:电磁感应类型:复习课目的要求:重点难点:教具:过程及内容:电磁感应现象愣次定律第1课基础知识一、电磁感应1.电磁感应现象只要穿过闭合回路的磁通量发生变化,闭合回路中就有电流产生,这种利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流.2.产生感应电流的条件:闭合回路中磁通量发生变化3.引起磁通量变化的常见情况①闭合电路中的部分导线做切割磁感线运动导致Φ变化;②线圈在磁场中转动导致Φ变化③磁感应强度随时间或位置变化,或闭合回路变化导致Φ变化注意:磁通量的变化,应注意方向的变化,如某一面积为S的回路原来的感应强度垂直纸面向里,如下图,后来磁感应强度的方向恰好与原来相反,那么回路中磁通量的变化最为2BS,而不是零.4.产生感应电动势的条件:无论回路是否闭合,只要穿过线圈的磁通量发生变化,线圈中就有感应电动势产生,产生感应电动势的那部分导体相当于电源.电磁感应现象的实质是产生感应电动势,如果回路闭合,那么有感应电流,如果回路不闭合,那么只能出现感应电动势,而不会形成持续的电流.我们看变化是看回路中的磁通量变化,而不是看回路外面的磁通量变化[例1]线圈在长直导线电流的磁场中,作如下图的运动:A向右平动;B向下平动,C、绕轴转动〔ad边向外〕,D、从纸面向纸外作平动,E、向上平动〔E线圈有个缺口〕,判断线圈中有没有感应电流?解析:A.向右平移,穿过线圈的磁通量没有变化,故A线圈中没有感应电流;B.向下平动,穿过线圈的磁通量减少,必产生感应电动势和感应电流;C.绕轴转动.穿过线圈的磁通量变化〔开始时减少〕,必产生感应电动势和感应电流;D.离纸面向外,线圈中磁通量减少,故情况同BC;E.向上平移,穿过线圈的磁通量增加,故产生感应电动势,但由于线圈没有闭合电路,因而无感应电流因此,判断是否产生感应电流关键是分清磁感线的疏密分布,进而判断磁通量是否变化.答案:BCD中有感应电流[例2]如下图,当导线MN中通以向右方向电流的瞬间,那么cd中电流的方向〔 B 〕A.由C向dB.由d向CC.无电流产生D.AB两情况都有可能解析:当MN中通以如图方向电流的瞬间,闭合回路abcd中磁场方向向外增加,那么根据楞次定律,感应电流产生磁场的方向应当垂直纸面向里,再根据安培定那么可知,cd中的电流的方向由d到C,所以B结论正确.二、感应电流方向的判定1.右手定那么:伸开右手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿过手心,手掌所在平面跟磁感线和导线所在平面垂直,大拇指指向导线运动的方向, 四指所指的方向即为感应电流方向.[例3]图中为地磁场磁感线的示意图,在南半球地磁场的竖直分量向上,飞机在南半球上空匀速飞行,机翼保持水平,飞机高度不变,由于地磁场的作用,金属机翼上有电势差.设飞行员左方机翼末端处的电势为U1,右方机翼末端处的电势为U2〔〕A.假设飞机从西往东飞,U1比U2高;B.假设飞机从东往西飞,U2比U1高;C.假设飞机从南往北飞,U1比U2高;D.假设飞机从北往南飞,U2比U1高;解析:在地球南半球,地磁场在竖直方向上的分量是向上的,飞机在空中水平飞行时,飞行员的右手掌向上,大姆指向前〔飞行方向〕,那么其余四指指向了飞行员的左侧,就是感应电流的方向,而右手定那么判断的是电源内部的电流方向,故飞行员右侧的电势总比左侧高,与飞行员和飞行方向无关.应选项B、D正确。

高三物理一轮复习“法拉第电磁感应定律中的电路问题”教学探究

高三物理一轮复习“法拉第电磁感应定律中的电路问题”教学探究

高三物理一轮复习“法拉第电磁感应定律中的电路问题”教学探究一、教学目标设定知识与技能:熟练掌握法拉第电磁感应定律的内容及表达式(E=nΔtΔΦ),理解其物理意义。

能够运用法拉第电磁感应定律分析并解决电路中的感应电动势问题。

理解并掌握感应电流的产生条件及方向判断(楞次定律或右手定则)。

过程与方法:通过案例分析,培养学生将理论知识应用于解决实际问题的能力。

通过小组讨论和合作学习,促进学生之间的交流与合作,共同解决问题。

引导学生运用数学工具(如微积分思想)分析电磁感应中的电路问题,提高综合应用能力。

情感态度与价值观:激发学生对物理学的兴趣,培养探索未知、勇于挑战的科学精神。

培养学生的逻辑思维能力和严谨的科学态度,注重实验证据和理论推导的结合。

二、教学内容分析法拉第电磁感应定律:回顾法拉第电磁感应实验,理解感应电动势的产生原理。

讲解法拉第电磁感应定律的表达式及其物理意义,强调磁通量变化率与感应电动势之间的正比关系。

感应电流的产生条件与方向判断:分析感应电流产生的条件(磁通量发生变化)。

讲解楞次定律的内容及应用,理解感应电流总是阻碍引起感应电流的磁通量的变化。

介绍右手定则作为判断感应电流方向的简便方法,并比较其与楞次定律的异同。

电路中的电磁感应问题:分析含有电磁感应元件的电路结构,理解感应电动势在电路中的作用。

讲解如何运用法拉第电磁感应定律和电路定律(欧姆定律、闭合电路欧姆定律等)联合求解电路中的电流、电压等物理量。

引入动态电路分析,讨论磁通量变化率变化时电路中各物理量的变化情况。

三、教学方法与策略理论讲授与案例分析相结合:通过理论讲授使学生掌握法拉第电磁感应定律的基本概念和原理。

结合具体案例进行分析,帮助学生理解并应用所学知识解决实际问题。

实验演示与探究:利用实验器材演示电磁感应现象,增强学生的直观感受。

引导学生设计并进行简单的电磁感应实验,探究感应电动势与磁通量变化率之间的关系。

小组讨论与合作学习:组织学生进行小组讨论,分享各自的学习心得和解题经验。

高中物理高考 】高考物理一轮复习学案 10 3 电磁感应定律的综合运用 有解析

高中物理高考 】高考物理一轮复习学案  10 3 电磁感应定律的综合运用 有解析

【备考2022】高考物理一轮复习学案10.3 电磁感应定律的综合运用(2)右手定则的研究对象为闭合回路的一部分导体,适用于一段导线在磁场中做切割磁感线运动。

2.对电源的理解(1)在电磁感应现象中,产生感应电动势的那部分导体相当于电源,如切割磁感线的导体棒、有磁通量变化的线圈等,这种电源将其他形式的能转化为电能。

(2)判断感应电流和感应电动势的方向,都是把相当于电源的部分根据右手定则或楞次定律判定的。

实际问题中应注意外电路电流由高电势处流向低电势处,而内电路则相反。

3.导体棒在匀强磁场运动过程中的变与不变(1)外电阻的变与不变若外电路由无阻导线和定值电阻构成,导体棒运动过程中外电阻不变;若外电路由考虑电阻的导线组成,导体棒运动过程中外电阻改变。

(2)内电阻与电动势的变与不变切割磁感线的有效长度不变,则内电阻与电动势均不变。

反之,发生变化。

处理电磁感应区别安培定则、左手定则、右手定则的关键是抓住因果关系(1)因电而生磁(I→B)→安培定则(判断电流周围磁感线的方向)。

(2)因动而生电(v、B→I感)→右手定则(闭合回路的部分导体切割磁感线产生感应电流)。

(3)因电而受力(I、B→F安)→左手定则(磁场对电流有作用力)。

核心素养二对电路的理解(1)内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成。

(2)在闭合电路中,相当于“电源”的导体两端的电压与真实的电源两端的电压一样,等于路端电压,而不等于感应电动势。

核心素养三图像问题2.解决图像问题的一般步骤(1)明确图像的种类,即是B­t图像还是Φ­t图像,或者E­t图像、I­t图像等。

(2)分析电磁感应的具体过程。

(3)用右手定则或楞次定律确定方向对应关系。

(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式。

(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等。

高三物理一轮复习专题 法拉第电磁感应定律知识点总结

高三物理一轮复习专题  法拉第电磁感应定律知识点总结

课题:电磁感应类型:复习课电磁感应现象愣次定律一、电磁感应1.电磁感应现象只要穿过闭合回路的磁通量发生变化,闭合回路中就有电流产生,这种利用磁场产生电流的现象叫做电磁感应。

产生的电流叫做感应电流.2.产生感应电流的条件:只要闭合回路中磁通量发生变化即△Φ≠0,闭合电路中就有感应电流产生.3. 磁通量变化的常见情况(Φ改变的方式):①线圈所围面积发生变化,闭合电路中的局部导线做切割磁感线运动导致Φ变化;其实质也是 B 不变而 S增大或减小②线圈在磁场中转动导致Φ变化。

线圈面积与磁感应强度二者之间夹角发生变化。

如匀强磁场中转动的矩形线圈就是典型。

③B 随 t(或位置)变化,磁感应强度是时间的函数;或闭合回路变化导致Φ变化(Φ改变的结果):磁通量改变的最直接的结果是产生感应电动势,假设线圈或线框是闭合的.那么在线圈或线框中产生感应电流,因此产生感应电流的条件就是:穿过闭合回路的磁通量发生变化.4.产生感应电动势的条件:无论回路是否闭合,只要穿过线圈的磁通量发生变化,线圈中就有感应电动势产生,产生感应电动势的那局部导体相当于电源.电磁感应现象的实质是产生感应电动势,如果回路闭合,那么有感应电流,如果回路不闭合,那么只能出现感应电动势,而不会形成持续的电流.我们看变化是看回路中的磁通量变化,而不是看回路外面的磁通量变化二、感应电流方向的判定1.右手定那么:伸开右手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿过手心,手掌所在平面跟磁感线和导线所在平面垂直,大拇指指向导线运动的方向, 四指所指的方向即为感应电流方向(电源).用右手定那么时应注意:①主要用于闭合回路的一局部导体做切割磁感线运动时,产生的感应电动势与感应电流的方向判定,②右手定那么仅在导体切割磁感线时使用,应用时要注意磁场方向、运动方向、感应电流方向三者互相垂直.③当导体的运动方向与磁场方向不垂直时,拇指应指向切割磁感线的分速度方向.④假设形成闭合回路,四指指向感应电流方向;假设未形成闭合回路,四指指向高电势.⑤“因电而动〞用左手定那么.“因动而电〞用右手定那么.⑥应用时要特别注意:四指指向是电源内部电流的方向(负→正).因而也是电势升高的方向;即:四指指向正极。

2010届高三物理一轮复习电磁感应经典练习

2010届高三物理一轮复习电磁感应经典练习

2010届高三物理一轮复习 电磁感应经典练习(含答案)1.绕有线圈的铁芯直立在水平桌面上,铁芯上套着一个铝环,线圈与电源、电键相连,如图所示.线圈上端与电源正极相连,闭合电键的瞬间,铝环向上跳起.若保持电键闭合,则 ( )A .铝环不断升高B .铝环停留在某一高度C .铝环跳起到某一高度后将回落D .如果电源的正、负极对调,观察到的现象不变2.如图所示,矩形闭台线圈放置在水平薄板上,有一块蹄形磁铁如图所示置于平板的正下方(磁极间距略大于矩形线圈的宽度)当磁铁匀速向右通过线圈时,线圈仍静止不动,那么线圈受到薄扳的摩擦力方向和线圈中产生感应电流的方向(从上向下看)是( ) A 摩擦力方向一直向左 B 摩擦力方向先向左、后向或右C .感应电流的方向顺时针→逆时针→逆时针→顺时针D .感应电流的方向顺时针→逆时针3.如图所示,A 为水平放置的橡胶圆盘,在其侧面带有负电荷─Q ,在A 正上方用丝线悬挂一个金属圆环B (丝线未画出),使B 的环面在水平面上与圆盘平行,其轴线与橡胶盘A 的轴线O 1O 2重合。

现使橡胶盘A 由静止开始绕其轴线O 1O 2按图中箭头方向加速转动,则( )A .金属圆环B 有扩大半径的趋势,丝线受到拉力增大 B .金属圆环B 有缩小半径的趋势,丝线受到拉力减小C .金属圆环B 有扩大半径的趋势,丝线受到拉力减小D .金属圆环B 有缩小半径的趋势,丝线受到拉力增大4.如图所示,一矩形线框竖直向上进入有水平边界的匀强磁场,磁场方向垂直纸面向里,线框在磁场中运动时只受重力和磁场力,线框平面始终与磁场方向垂直。

向上经过图中1、2、3位置时的速率按时间依次为v 1、v 2、v 3,向下经过图中2、1位置时的速率按时间依次为v 4、v 5,下列说法中一定正确的是( )A .v 1>v 2B .v 2=v 3C .v 2=v 4D .v 4<v 512 3 v 1v 2 v 3 v 4 v 5线圈铁芯铝电源Babcde fFr5.如图所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直导轨所在平面,金属棒ab 可沿导轨自由滑动.导轨一端连接一个定值电阻R,导轨电阻可忽略不计.现将金属棒沿导轨由静止向右拉.若保持拉力恒定,当速度为v 时,加速度为1a ,最终以速度2v 做匀速运动;若保持拉力的功率恒定,当速度为v 时,加速度为2a ,最终也以速度2v 做匀速运动,则( ) A.21a a =B.21a 2a =C.21a 3a =D.21a 4a =6.如图所示,平行导轨水平放置,匀强磁场的方向垂直于导轨平面, 两金属棒a 、b 和轨道组成闭合电路,用水平恒力F 向右拉a ,使a 、b 分别以a v 和b v 的速度向右匀速运动,若a 棒与轨道间的滑动摩擦力为f ,则回路中感应电流的功率为( )A.a FvB.b FvC. a (F f )v -⋅D. a b (F f )(v v )-⋅-7.如图所示,足够长的光滑平行金属导轨cd 和ef ,水平放置且相距L ,在其左端各固定一个半径为r 的四分之三金属光滑圆环,两圆环面平行且竖直。

高考物理一轮复习学案:专题16 电磁感应现象以及楞次定律的应用

高考物理一轮复习学案:专题16  电磁感应现象以及楞次定律的应用

努力必有收获,坚持必会胜利,加油向未来!高三复习专题16 电磁感应以及楞次定律应用【知识梳理】1、产生感应电流的条件:2、对“楞次定律”的理解:【题型1】感应电流有无的判断1、下列给出了与感应电流产生条件相关的四幅情景图,其中判断正确的是()A.图甲金属圆形线圈水平放置在通电直导线的正下方,增大电流,圆线圈中有感应电流B.图乙正方形金属线圈绕竖直虚线转动的过程中,正方形线圈中持续有感应电流C.图丙正电荷q顺时针做减速圆周运动过程中,同心共面金属圆圈中感应电流沿逆时针D.图丁金属杆在F作用下向右运动过程中,若磁场减弱,回路不一定会产生感应电流2、某实验装置如图所示,在铁芯P上绕着两个线圈A和B。

如果线圈A中电流i随时间t 的关系有图所示的A、B、C、D四种情况,那么在1t到2t这段时间内,哪种情况线圈B中没有感应电流()A.B.C.D.【题型2】感应电流方向判断——“增反减同”3、如图所示,导体线圈abcd与直导线在同一平面内,直导线通有恒定电流I,当线圈由左向右匀速通过直导线的过程中,线圈中感应电流的方向是()A.先abcd,再dcba,后abcdB.先abcd,再dcbaC.先dcba,再abcd,后dcbaD.一直dcba4、如图,一圆形金属环与两固定的平行长直导线在同一竖直面内,环的圆心与两导线距离相等,环的直径小于两导线间距。

两导线中通有大小相等、方向向下的电流。

下列判断正确的是()A.金属环向上运动,则环上的感应电流方向为顺时针方向B.金属环向左侧直导线靠近,则环上的感应电流方向为顺时针方向C.当两直导线中电流同时增大时,环上的感应电流方向为顺时针方向D.当右侧直导线中电流突然减小时,环上的感应电流方向为顺时针方向【题型3】楞次定律应用——“来去拘留”5、如图所示,纽扣形永磁体直径略小于铜管、塑料管内径,某同学分别同时将两个纽扣形永磁体从竖直放置的空心铜管和空心塑料管上端口处由静止释放,忽略空气阻力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010届高三物理一轮复习学案:电磁感应教学目标i .知道电磁感应现象,知道产生感应电流的条件。

2 .会运用楞次定律和左手定则判断感应电流的方向。

3 •会计算感应电动势的大小(切割法、磁通量变化法)。

4 •通过电磁感应综合题目的分析与解答,深化学生对电磁感应规律的理解与应用,使学生在建立力、电、磁三部分知识 联系的同时,再次复习力与运动、动量与能量、电路计算、安培力做功等知识,进而提高学生的综合分析能力。

教学重点、难点分析1•楞次定律、法拉第电磁感应定律是电磁感应一章的重点。

另外,电磁感应的规律也是自感、交流电、变压器等知识的 基础,因而在电磁学中占据了举足轻重的地位。

2 •在高考考试大纲中,楞次定律、法拉第电磁感应定律都属 II 级要求,每年的高考试题中都会岀现相应考题,题型也多种多样,在历年高考中,以选择、填空、实验、计算各种题型都岀现过,属高考必考内容。

同时,由电磁感应与力学、电学知 识相结合的题目更是高考中的热点内容,题目内容变化多端,需要学生有扎实的知识基础,又有一定的解题技巧,因此在复习 中要重视这方面的训练。

3 •电磁感应现象及规律在复习中并不难,但是能熟练应用则需要适量的训练。

关于楞次定律的推广含义、法拉第电磁感 应定律在应用中何时用其计算平均值、何时要考虑瞬时值等问题都需通过训练来达到深刻理解、熟练掌握的要求,因此要根据 具体的学情精心选择一些针对性强、有代表性的题目组织学生分析讨论达到提高能力的目的。

4 .电磁感应的综合问题中,往往运用牛顿第二定律、动量守恒定律、功能关系、闭合电路计算等物理规律及基本方法, 而这些规律及方法又都是中学物理学中的重点知识,因此进行与此相关的训练,有助于学生对这些知识的回顾和应用,建立各 部分知识的联系。

但是另一方面,也因其综合性强,要求学生有更强的处理问题的能力,也就成为学生学习中的难点。

5 •楞次定律、法拉第电磁感应定律也是能量守恒定律在电磁感应中的体现,因此,在研究电磁感应问题时,从能量的观点去认识问题,往往更能深入问题的本质,处理方法也更简捷, 物理”的思维更突岀,对学生提高理解能力有较大帮助,因而应成为复习的重点。

教学过程设计 一、电磁感应现象1 .产生感应电流的条件感应电流产生的条件是:穿过闭合电路的磁通量发生变化。

以上表述是充分必要条件。

不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件, 就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。

当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。

这个表述是充分条件,不是必要的。

在导体做切割磁感线运动时用它判定比较方便。

2 .感应电动势产生的条件。

感应电动势产生的条件是:穿过电路的磁通量发生变化。

这里不要求闭合。

无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。

这好比一个电源:不论外电路是否 闭合,电动势总是存在的。

但只有当外电路闭合时,电路中才会有电流。

当B 、S 、a 中有两个或三个一起变化时,就要分别计算如、©2,再求©2-奶了。

(2) 在非匀强磁场中,磁通量变化比较复杂。

有几种情况需要特别注意: ①如图所示,矩形线圈沿a T b -c 在条形磁铁附近移动,试判断穿过线圈的磁 通量如何变化?如果线圈M 沿条形磁铁轴线向右移动,穿过该线圈的磁通量如何变 化?(穿过上边线圈的磁通量由方向向上减小到零, 再变为方向向下增大; 右边3•关于磁通量变化(1) 在匀强磁场中,磁通量 ① S 、a 不变, ② B 、a 不变, ③ B 、S 不变,B 改变,这时 S 改变,这时 a 改变,这时 © =BSsin a ( a 是B 与S 的夹角),磁通量的变化△ © =△ B sin a A = AS Bsin a△ =BS (sin a^sin a i )△牢血-沏有多种形式,主要有:线圈的磁通量由方向向下减小到零,再变为方向向上增大)②如图所示,环形导线a中有顺时针方向的电流,a环外有两个同心导线圈b、c,与环形导线a在同一平面内。

当a中的电流增大时,穿过线圈b、c的磁通量各如何变化?在相同时间内哪一个变化更大?(b、c线圈所围面积内的磁通量有向里的也有向外的,但向里的更多,所以总磁通量向里,a中的电流增大时,总磁通量也向里增大。

由于穿过b线圈向外的磁通量比穿过c线圈的少,所以穿过b线圈的磁通量更大,变化也更大。

)③如图所示,虚线圆a内有垂直于纸面向里的匀强磁场,虚线圆a外是无磁场空间。

环外有两个同心c导线圈b、c,与虚线圆a在同一平面内。

当虚线圆a中的磁通量增大时,穿过线圈b、c的磁通量各如何变化?在相同时间内哪一个变化更大?(与②的情况不同,b、c线圈所围面积内都只有向里的磁通量,且大小相同。

因此穿过它们的磁通量和磁通量变化都始终是相同的。

)、楞次定律1 •楞次定律感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

楞次定律解决的是感应电流的方向问题。

它关系到两个磁场:感应电流的磁场(新产生的磁场)和引起感应电流的磁场(原来就有的磁场)。

前者和后者的关系不是同向”或反向”的简单关系,而是前者阻碍”后者变化”的关系。

在应用楞次定律时一定要注意:阻碍”不等于反向” 阻碍”不是阻止”(1)从阻碍磁通量变化”的角度来看,无论什么原因,只要使穿过电路的磁通量发生了变化,就一定有感应电动势产生。

阻碍”的不是磁感强度B,也不是磁通量而是阻碍穿过闭合回路的磁通量变化。

(2)从阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。

又由于感应电流是由相对运动引起的,所以只能是机械能转化为电能,因此机械能减少。

磁场力对物体做负功,是阻力,表现出的现象就是阻碍”相对运动。

(3)从阻碍自身电流变化”的角度来看,就是自感现象。

自感现象的应用和防止。

应用:日光灯电路图及原理:灯管、镇流器和启动器的作用<防止:定值电阻的双线绕法。

2 .右手定则。

对一部分导线在磁场中切割磁感线产生感应电流的情况,右手定则和楞次定律的结论是完全一致的。

这时,用右手定则更方便一些。

3 •楞次定律的应用及其推广楞次定律强调的是感应电流的方向,感应电流的磁场阻碍原磁通量的变化。

我们可将其含义推广为:感应电流对产生的原因(包括外磁场的变化、线圈面积的变化、相对位置的变化、导体中电流的变化等)都有阻碍作用。

因此用推广含义考虑问题可以提高运用楞次定律解题的速度和准确性。

楞次定律的应用应该严格按以下四步进行:①确定原磁场方向;②判定原磁场如何变化(增大还是减小);③确定感应电流的磁场方向(增反减同);④根据安培定则判定感应电流的方向。

【例题1】如图所示,有两个同心导体圆环。

内环中通有顺时针方向的电流,外环中原来无电流。

・当内环中电流逐渐增大时,外环中有无感应电流?方向如何?解:由于磁感线是闭合曲线,内环内部向里的磁感线条数和内环外部向外的所有磁感线条数相等,.所以外环所围面积内(这里指包括内环圆面积在内的总面积,而不只是环形区域的面积)的总磁通量''-向里、增大,所以外环中感应电流磁场的方向为向外,由安培定则,外环中感应电流方向为逆时针。

【例题2】如图所示,闭合导体环固定。

条形磁铁S极向下以初速度V o沿过导体环圆心的竖直线下落过程,导体环中的感应电流方向如何?解:从阻碍磁通量变化”来看,当条形磁铁的中心恰好位于线圈M所在的水平面时,磁铁内部向上的磁感线都穿过了线圈,而磁铁外部向下穿过线圈的磁通量最少,所以此时刻穿过线圈M的磁通量最大。

因此全过程中原磁场方向向上,先增后减,感应电流磁场方向先下后上,感应电流先顺时针后逆时针。

从“阻碍相对运动”来看,线圈对应该是先排斥(靠近阶段)后吸引(远离阶段),把条形磁铁等效为螺线管,该螺线管中的电流是从上向下看逆时针方向的,根据“同向电流互相吸引,反向电流互相排斥”,感应电流方向应该是先顺时针后逆时针的,与前一种方法的结论相同【例题3】如图所示,O 1O 2是矩形导线框abed 的对称轴,其左方有垂直于纸面向外的匀强磁场。

以下哪些情况下abed 中有感应电流产生?方向如何?A .将abed 以ed 为轴转动 60 °B .将abed 向右平移C .将abed 以ab 为轴转动60 °D .将abed 向纸外平移解:A 、B 两种情况下原磁通量向外,减少,感应电流磁场向外,感应电流方向为 abed o C 、D两种情况下穿过abed 的磁通量没有发生变化,无感应电流产生【例题4】如图所示装置中,ed 杆原来静止。

当ab 杆做如下那些运动时,ed 杆将向右移动?A •向右匀速运动B .向右加速运动C .向左加速运动D .向左减速运动解:.ab 匀速运动时,ab 中感应电流恒定,L i 中磁通量不变,穿过 L ?的磁 通量不变化,L 2中无感应电流产生,ed 保持静止,A 不正确;ab 向右加速运动 时,L 2中的磁通量向下,增大,通过ed 的电流方向向下,ed 向右移动,B 正确; 同理可得C 不正确,D 正确。

选B 、D【例题5】如图所示,当磁铁绕 O 1O 2轴匀速转动时,矩形导线框(不考虑重力)将如何运动? 解:本题分析方法很多,最简单的方法是:从阻碍相对运动”的角度来看,导线框一定会跟随条形磁铁同方向转动起来。

如果不计一切摩擦阻力,最终导线框将和磁铁转动速度无限接近到可以认为相同; 如果考虑摩擦阻力,则导线框的转速总比条形磁铁转速小些(线框始终受到安培力矩的作用,大小和摩 擦力的阻力矩相等)。

如果用阻碍磁通量变化”来分析,结论是一样的,但是叙述要复杂得多。

可见这类定性判断的题要灵活运用楞次定律的各种表达方式。

【例题6】如图所示,水平面上有两根平行导轨,上面放两根金属棒a 、b 。

当条形磁铁如图向下移动时(不到达导轨平面),a 、b 将如何移动?解:若按常规用 阻碍磁通量变化”判断,则需要根据下端磁极的极性分别进行讨论,比较繁琐。

而且在判定a 、b 所受磁场力时。

应该以磁极对它们的磁场力为主,不能以a 、b 间的磁场力为主(因 为它们的移动方向由所受的合磁场的磁场力决定,而磁铁的磁场显然是起主要作用的)。

如果注意到:磁铁向下插,通过闭合 回路的磁通量增大,由 ©=BS 可知磁通量有增大的趋势,因此S 的相应变化应该是阻碍磁通量的增加,所以 a 、b 将互相靠近这样判定比较起来就简便得多【例题7】如图所示,绝缘水平面上有两个离得很近的导体环a 、b o 将条形磁铁沿它们的正中向下移动(不到达该平面), a 、b 将如何移动?解:根据U=BS ,磁铁向下移动过程中,B 增大,所以穿过每个环中的磁通量都有增大的趋势, 由于S 不可改变,为阻碍增大,导体环应该尽量远离磁铁,所以a 、b 将相互远离。

相关文档
最新文档