高中数学 第三章 空间向量与立体几何章末评估验收 新人教A版选修2-1

合集下载

(人教版)高中数学选修2-1课件:第3章 空间向量与立体几何3.2.1

(人教版)高中数学选修2-1课件:第3章 空间向量与立体几何3.2.1
令 x=1 得 y=-12,z=-12. 答案: 1,-12,-12
数学 选修2-1
第三章 空间向量与立体几何
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
4.如图,正方形 ABCD 和四边形 ACEF 所在的平面互 相垂直,CE⊥AC,EF∥AC,AB= 2,CE=EF=1.
数学 选修2-1
第三章 空间向量与立体几何
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
设平面 EFBD 的一个法向量为 n=(x,y,z), ∴nn··DD→ →BE= =00 ⇔2x+x+22z=y=0,0,
y=-x, ∴z=-12x. 令 x=2,则可解得:y=-2,z=-1, ∴n=(2,-2,-1)即为所求平面 EFBD 的一个法向量.
思路点拨: 建立空间直角坐标系 → 求出相应点的坐标 → P→Q,R→S的坐标 → P→Q∥R→S ⇒ 结论
数学 选修2-1
第三章 空间向量与立体几何
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
建系如图:
则 P(3,0,1),Q(0,2,2),R(3,2,0),S(0,4,1), ∴P→Q=(-3,2,1),R→S=(-3,2,1), ∴P→Q=R→S⇒P→Q∥R→S,∴PQ∥RS.
高效测评 知能提升
1.若直线l的方向向量为a=(-1,0,2),平面α的法向量为n
=(-2,0,4),则( )
A.l∥α
B.l⊥α
C.l⊂α
D.l与α斜交
解析: ∵a=(-1,0,2),n=(-2,0,4),n=2a,∴n∥a,
∴l⊥α.
答案: B
数学 选修2-1
第三章 空间向量与立体几何

【全程复习方略】2014-2015学年高中数学 第三章 空间向量与立体几何单元质量评估课时作业 新人教A版选修2-1

【全程复习方略】2014-2015学年高中数学 第三章 空间向量与立体几何单元质量评估课时作业 新人教A版选修2-1

"【全程复习方略】2014-2015学年高中数学第三章空间向量与立体几何单元质量评估课时作业新人教A版选修2-1 "(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中不正确的是( )A.平面α的法向量垂直于与平面α共面的所有向量B.一个平面的所有法向量互相平行C.如果两个平面的法向量垂直,那么这两个平面也垂直D.如果a,b与平面α共面且n⊥a,n⊥b,那么n就是平面α的一个法向量【解析】选D.只有当a,b不共线且a∥α,b∥α时,D才正确.2.同时垂直于a=(2,2,1),b=(4,5,3)的单位向量是( )A.B.C.D.或【解析】选D.设所求向量为c=(x,y,z),由c·a=0及c·b=0及|c|=1得检验知选D.3.(2014·金华高二检测)已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a,b,c共面,则实数λ等于( )A. B. C. D.【解析】选D.易得c=t a+μb=(2t-μ,-t+4μ,3t-2μ),所以解得故选D.4.(2014·银川高二检测)已知矩形ABCD,PA⊥平面ABCD,则以下等式中可能不成立的是( )A.·=0B.·=0C.·=0D.·=0【解析】选B.选项A,⇒DA⊥平面PAB⇒DA⊥PB⇒·=0;由A可知·=0,C正确;选项D,PA⊥平面ABCD⇒PA⊥CD⇒·=0;选项B,若·=0,则BD⊥PC,又BD⊥PA,所以BD⊥平面PAC,故BD⊥AC,但在矩形ABCD中不一定有BD⊥AC,故B不一定成立.5.已知a=(cosα,1,sinα),b=(sinα,1,cosα),且a∥b,则向量a+b与a-b的夹角是( )A.90°B.60°C.30°D.0°【解析】选A.因为|a|2=2,|b|2=2,(a+b)·(a-b)=|a|2-|b|2=0,所以(a+b)⊥(a-b),故选A.【变式训练】已知A(2,-5,1),B(2,-2,4),C(1,-4,1),则与的夹角为( )A.30°B.45°C.60°D.90°【解析】选 C.=(0,3,3),=(-1,1,0).设<,>=θ,则cosθ===,所以θ=60°.6.(2014·长春高二检测)已知向量e1,e2,e3是两两垂直的单位向量,且a=3e1+2e2-e3,b=e1+2e3,则(6a)·1()2b 等于( )A.15B.3C.-3D.5【解析】选B.(6a)·1()2b=3a·b=3(3e1+2e2-e3)·(e1+2e3)=9|e1|2-6|e3|2=3.7.已知正方体ABCD-A′B′C′D′中,点F是侧面CDD′C′的中心,若=+x+y,则x-y等于( )A.0B.1C.D.-【解析】选A.如图所示,=+,所以=x+y,所以=x+y,因为=+,=,所以x=y=,x-y=0.8.(2014·安庆高二检测)如图,将边长为1的正方形ABCD沿对角线BD折成直二面角,若点P满足=-+,则||2的值为( )A. B.2 C. D.【解析】选D.过点C作CE垂直于BD,垂足为E,连接AE,则得AC=1,故三角形ABC为正三角形.||2==++-·+·-·=×1+×1+()2-×1×1×cos∠ABC=-=.9.已知A(4,1,3),B(2,-5,1),C是线段AB上一点,且=,则C点的坐标为( )A. B.C. D.【解析】选C.由题意知,2=,设C(x,y,z),则2(x-4,y-1,z-3)=(2-x,-5-y,1-z),即解得即C.10.已知△ABC的顶点A(1,-1,2),B(5,-6,2),C(1,3,-1),则AC边上的高BD的长等于( )A.3B.4C.5D.6【解析】选C.设D(x,y,z),则=(x-1,y+1,z-2),=(x-5,y+6,z-2), =(0,4,-3),因为∥,且⊥,所以解得所以||=5.【一题多解】设=λ,D(x,y,z),则(x-1,y+1,z-2)=λ(0,4,-3),所以x=1,y=4λ-1,z=2-3λ.所以=(-4,4λ+5,-3λ),又=(0,4,-3),⊥,所以4(4λ+5)-3(-3λ)=0,所以λ=-,所以=,所以||==5.11.(2014·绵阳高二检测)如图所示,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E是棱AB的中点,则点E 到平面ACD1的距离为( )A. B. C. D.【解析】选C如图,以D为坐标原点,直线DA,DC,DD1分别为x,y,z轴建立空间直角坐标系,则D1(0,0,1),E(1,1,0),A(1,0,0),C(0,2,0).从而=(1,1,-1),=(-1,2,0),=(-1,0,1),设平面ACD1的法向量为n=(a,b,c),则即得令a=2,则n=(2,1,2).所以点E到平面ACD1的距离为d===.12.(2014·荆州高二检测)如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F且EF=,则下列结论中错误的是( )A.AC⊥BEB.EF∥平面ABCDC.三棱锥A-BEF的体积为定值D.异面直线AE,BF所成的角为定值【解析】选D.因为AC⊥平面BB1D1D,又BE⊂平面BB1D1D.所以AC⊥BE,故A正确.因为B1D1∥平面ABCD,又E,F在直线D1B1上运动,所以EF∥平面ABCD,故B正确.C中由于点B到直线B1D1的距离不变,故△BEF的面积为定值,又点A到平面BEF的距离为,故V A-BEF为定值.①当点E在D1处,点F为D1B1的中点时,建立空间直角坐标系, 如图所示,可得A(1,1,0),B(0,1,0),E(1,0,1),F,所以=(0,-1,1),=,所以·=.又||=,||=,所以cos<,>===.所以此时异面直线AE与BF成30°角.②当点E为D1B1的中点,点F在B1处时,此时E,F(0,1,1).所以=,=(0,0,1),所以·=1,||==,所以cos<,>===≠,故选D.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知正方体ABCD-A′B′C′D′的棱长为a,则<,>= .【解析】=,因为△A′BD为正三角形,所以<,>=120°,即<,>=120°.答案:120°14.已知正四棱台ABCD-A1B1C1D1中,上底面A1B1C1D1边长为1,下底面ABCD边长为2,侧棱与底面所成的角为60°,则异面直线AD1与B1C所成角的余弦值为.【解析】设上、下底面中心分别为O1,O,则OO1⊥平面ABCD,以O为原点,直线BD,AC,OO1分别为x轴、y轴、z轴建立空间直角坐标系.因为AB=2,A1B1=1,所以AC=BD=2,A1C1=B1D1=,因为平面BDD1B1⊥平面ABCD,所以∠B1BO为侧棱与底面所成的角,所以∠B1BO=60°,设棱台高为h,则tan60°=,所以h=,所以A(0,-,0),D1,B1,C(0,,0),所以=,=,所以cos<,>==,故异面直线AD1与B1C所成角的余弦值为.答案:【变式训练】如图所示,在棱长为4的正方体ABCD-A1B1C1D1中,点E是棱CC1的中点,则异面直线D1E与AC 所成角的余弦值是.【解析】如图,建立空间直角坐标系,则A(4,0,0),C(0,4,0),D1(0,0,4),E(0,4,2),=(-4,4,0),=(0,4,-2).cos<,>==.所以异面直线D1E与AC所成角的余弦值为.答案:15.在三棱柱ABC-A1B1C1中,底面为棱长为1的正三角形,侧棱AA1⊥底面ABC,点D在棱BB1上,且BD=1,若AD 与平面AA1C1C所成的角为α,则sinα的值是.【解题指南】建立空间直角坐标系,求出平面AA1C1C的一个法向量n和,计算cos<n,>即可求解sin α.【解析】如图,建立空间直角坐标系,易求点D,平面AA1C1C的一个法向量n=(1,0,0),所以cos<n,>==,即sinα=.答案:16.给出命题:①在□ABCD中,+=;②在△ABC中,若·>0,则△ABC是锐角三角形;③在梯形ABCD中,E,F分别是两腰BC,DA的中点,则=(+);④在空间四边形ABCD中,E,F分别是边BC,DA的中点,则=(+).以上命题中,正确命题的序号是. 【解析】①满足向量运算的平行四边形法则,①正确;·=||·||·cosA>0⇒∠A<90°,但∠B,∠C无法确定,所以△ABC是否是锐角三角形无法确定,②错误;③符合梯形中位线的性质,正确;④如图,=+,+=++=+2=2(+)=2,则=(+),正确.答案:①③④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图,正方体ABCD-A′B′C′D′中,点E是上底面A′B′C′D′的中心,用向量,,表示向量,.【解析】=-=--+.=+=+=+=+(-)=-++.18.(12分)(2014·福州高二检测)如图所示,已知PA⊥平面ABCD,ABCD为矩形,PA=AD,M,N分别为AB,PC的中点.求证:(1)MN∥平面PAD.(2)平面PMC⊥平面PDC.【证明】如图所示,以A为坐标原点,AB,AD,AP所在的直线分别为x,y,z轴建立空间直角坐标系Axyz.设PA=AD=a,AB=b.(1)P(0,0,a),A(0,0,0),D(0,a,0),C(b,a,0),B(b,0,0).因为M,N分别为AB,PC的中点,所以M,N.所以=,=(0,0,a),=(0,a,0),所以=+.又因为MN⊄平面PAD,所以MN∥平面PAD.(2)由(1)可知:P(0,0,a),C(b,a,0),M,D(0,a,0).所以=(b,a,-a),=,=(0,a,-a).设平面PMC的法向量为n1=(x1,y1,z1),则所以令z1=b,则n1=(2a,-b,b).设平面PDC的一个法向量为n2=(x2,y2,z2),则所以令z2=1,则n2=(0,1,1).因为n1·n2=0-b+b=0,所以n1⊥n2.所以平面PMC⊥平面PDC.【知识拓展】用向量证明线面平行的主要方法(1)证明直线的方向向量与平面的法向量垂直.(2)在平面内找到一个向量与直线的方向向量是共线向量.(3)利用共面向量定理,在平面内找到两不共线向量把直线的方向向量线性表示出来.19.(12分)如图,已知平行六面体ABCD-A1B1C1D1的底面ABCD是菱形,且∠C1CB=∠C1CD=∠BCD=60°.当的值等于多少时,能使A1C⊥平面C1BD?【解析】不妨设=x,CC1=1,A1C⊥平面C1BD,则A1C⊥C1B,A1C⊥C1D,而=+,=++=++,由·=0,得(++)·(+)=-+·+·=0,注意到·+·=-,可得方程1-x2+=0,解得x=1或x=-(舍).因此,当=1时,能使A1C⊥平面C1BD.20.(12分)(2013·上海高考)如图,在长方体ABCD-A′B′C′D′中,AB=2,AD=1,AA′=1,证明直线BC′平行于平面D′AC,并求直线BC′到平面D′AC的距离.【解析】如图,建立空间直角坐标系,可得有关点的坐标为A(1,0,1),B(1,2,1), C(0,2,1),C′(0,2,0),D′(0,0,0).则=(1,0,1),=(0,2,1),设平面D′AC的法向量n=(u,v,w),由n⊥,n⊥,所以n·=0,n·=0,即解得u=2v,w=-2v,取v=1,得平面D′AC的一个法向量n=(2,1,-2).因为=(-1,0,-1),所以n·=0,所以n⊥.又BC′不在平面D′AC内,所以直线BC′与平面D′AC平行.由=(1,0,0),得点B到平面D′AC的距离d===,所以直线BC′到平面D′AC的距离为.21.(12分)(2014·广东高考)四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF.(2)求二面角D-AF-E的余弦值.【解题指南】(1)采用几何法较为方便,证AD⊥平面PCD⇒CF⊥AD,又CF⊥AF⇒CF⊥平面ADF.(2)采用向量法较为方便,以D为原点建立空间直角坐标系,设DC=2,计算出DE,EF的值,得到A,C,E,F的坐标,注意到为平面ADF的一个法向量.【解析】(1)因为四边形ABCD为正方形,所以AD⊥DC.又PD⊥平面ABCD,AD⊂平面ABCD,所以PD⊥AD,DC∩PD=D,所以AD⊥平面PCD.又CF⊂平面PCD,所以CF⊥AD,而AF⊥PC,即AF⊥FC,又AD∩AF=A,所以CF⊥平面ADF.(2)以D为原点,DP,DC,DA分别为x,y,z轴建立空间直角坐标系,设DC=2,由(1)知PC⊥DF,即∠CDF=∠DPC=30°,有FC=DC=1,DF=FC=,DE=DF=,EF=DE=,则D(0,0,0),E,F,A(0,0,2),C(0,2,0),=,=,=,设平面AEF的法向量为n=(x,y,z),由得取x=4,有y=0,z=,n=(4,0,),又平面ADF的一个法向量=,所以cos<n,>===-,所以二面角D-AF-E的余弦值为.【变式训练】(2014·北京高二检测)如图,四边形ABCD是正方形,EA⊥平面ABCD,EA∥PD,AD=PD=2EA=2,F,G,H 分别为PB,EB,PC的中点.(1)求证:FG∥平面PED.(2)求平面FGH与平面PBC所成锐二面角的大小.(3)在线段PC上是否存在一点M,使直线FM与直线PA所成的角为60°?若存在,求出线段PM的长;若不存在,请说明理由.【解析】(1)因为F,G分别为PB,BE的中点,所以FG∥P E.又FG⊄平面PED,PE⊂平面PED,所以FG∥平面PED.(2)因为EA⊥平面ABCD,EA∥PD,所以PD⊥平面ABCD,所以PD⊥AD,PD⊥CD.又因为四边形ABCD是正方形,所以AD⊥CD.如图,建立空间直角坐标系,因为AD=PD=2EA=2,所以D,P,A,C,B,E(2,0,1).因为F,G,H分别为PB,EB,PC的中点,所以F,G,H(0,1,1).所以=,=.设n1=(x1,y1,z1)为平面FGH的一个法向量,则即再令y1=1,得n1=(0,1,0).=(2,2,-2),=(0,2,-2).设n2=(x2,y2,z2)为平面PBC的一个法向量,则即令z2=1,得n2=(0,1,1).所以所以平面FGH与平面PBC所成锐二面角的大小为.(3)假设在线段PC上存在一点M,使直线FM与直线PA所成角为60°.依题意可设=λ,其中0≤λ≤1.由=(0,2,-2),则=(0,2λ,-2λ).又因为=+,=(-1,-1,1),所以=(-1,2λ-1,1-2λ).因为直线FM与直线PA所成角为60°,=(2,0,-2),所以=,即=,解得λ=.所以=,=.所以在线段PC上存在一点M,使直线FM与直线PA所成角为60°,此时PM的长度为.22.(12分)四棱锥P-ABCD中,底面ABCD是一个平行四边形,PA⊥底面ABCD,=(2,-1,-4),=(4,2,0),=(-1,2,-1).(1)求四棱锥P-ABCD的体积.(2)对于向量a=(x1,y1,z1),b=(x2,y2,z2),c=(x3,y3,z3),定义一种运算:(a×b)·c=x1y2z3+x2y3z1+x3y1z2-x1y3z2-x2y1z3-x3y2z1.试计算(×)·的绝对值的值;说明其与四棱锥P-ABCD体积的关系,并由此猜想向量这一运算(×)·的绝对值的几何意义.【解析】(1)设<,>=θ,则cosθ==.所以sinθ=.所以V=S□ABCD||=||||sinθ||=16.(2)=|-4-32+0-0-4-8|=48,它是四棱锥P-ABCD体积的3倍.猜想:在几何上可表示以AB,AD,AP为棱的平行六面体的体积(或以AB,AD,AP为棱的直四棱柱的体积).【技法点拨】向量法在数形结合思想中的应用向量是有效沟通“数”与“形”的桥梁.在学习中我们一定要充分理解向量概念及向量运算的几何意义,从而有效利用向量工具解决实际问题.如对空间直线的向量表示,应明确空间直线是由空间一点及直线的方向向量惟一确定.。

高中数学选修2-1(人教A版)第三章空间向量与立体几何3.1知识点总结含同步练习及答案

高中数学选修2-1(人教A版)第三章空间向量与立体几何3.1知识点总结含同步练习及答案

描述:高中数学选修2-1(人教A版)知识点总结含同步练习题及答案第三章 空间向量与立体几何 3.1 空间向量及其运算一、学习任务1. 了解空间向量与平面向量的联系与区别;了解向量及其运算由平面向空间推广的过程.2. 了解空间向量、共线向量、共面向量等概念;理解空间向量共线、共面的充要条件;了解空间向量的基本定理及其意义;理解空间向量的正交分解及其坐标表示.3. 理解空间向量的线性运算及其性质;理解空间向量的坐标运算.4. 理解空间向量的夹角的概念;理解空间向量的数量积的概念、性质和运算律;掌握空间向量的数量积的坐标形式;能用向量的数量积判断两非零向量是否垂直.二、知识清单空间向量的概念与表示空间向量的坐标运算三、知识讲解1.空间向量的概念与表示空间向量的概念及表示方法与平面向量一样,在空间,我们把具有大小和方向的量叫做空间向量(space vector),向量的大小叫做向量的长度或模(modulus).向量可以用有向线段来表示,也可用 , 等表示,还可以用有向线段的起点与终点字母表示,如 .长度为 的向量叫做零向量(zero vector),记为 .模为 的向量称为单位向量(unitvector).与向量 长度相等而方向相反的向量,称为 的相反向量,记为 .方向相同且模相等的向量称为相等向量(equal vector).空间向量的加减运算①空间向量的加减运算满足三角形法则和平行四边形法则;②空间向量的加 减运算满足交换律及结合律:,.空间向量的数乘运算与平面向量一样,实数 与空间向量 的乘积 仍然是一个向量,称为向量的数乘(multiplication of vector by scalar).当 时, 与向量 方向相同;当 时, 与向量 方向相反; 的长度是 的长度的 倍.空间向量的数乘运算满足分配律及结合律:分配律:,结合律:.空间向量基本定理(1)如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量(colliner vectors)或平行向量(parallel vectors).a →b →AB −→−00→1a →a →−a →+=+a →b →b →a →(+)+=+(+)a →b →c →a →b →c →λa →λa →λ>0λa →a →λ<0λa →a →λa →a →|λ|λ(+)=λ+λa →b→a →b →λ(μ)=(λμ)a →a →vector).(1);(2);(3)AP N A 1,则 ∠BA =∠DA =A 1A 16013−−√23−−√高考不提分,赔付1万元,关注快乐学了解详情。

高中数学 第三章第1节空间向量及其运算知识精讲 理 新人教版A版选修2-1

高中数学 第三章第1节空间向量及其运算知识精讲 理 新人教版A版选修2-1

高二数学选修2-1第三章第1节空间向量及其运算人教新课标A 版(理)一、学习目标:1. 理解空间向量的概念,了解共线或平行向量的概念,掌握其表示方法;会用图形说明空间向量的加法、减法、数乘向量及它们的运算律;能用空间向量的运算意义及运算律解决简单的立体几何中的问题.2. 理解共线向量的定理及其推论.3. 掌握空间向量的夹角和模的概念及其表示方法;掌握两个向量数量积的概念、性质和计算方法及运算律;掌握两个向量数量积的主要用途,会用它解决立体几何中的一些简单问题.4. 掌握空间向量的正交分解,空间向量的基本定理及其坐标表示;掌握空间向量的坐标运算的规律;会根据向量的坐标,判断两个向量共线或垂直.二、重点、难点:重点:空间向量的加减与数乘运算及运算律,空间直线、平面的向量参数方程及线段中点的向量公式,点在已知平面内的充要条件,两个向量的数量积的计算方法及其应用,空间向量的基本定理、向量的坐标运算.难点:由平面向量类比学习空间向量,对点在已知平面内的充要条件的理解与运用,向量运算在几何证明与计算中的应用,理解空间向量的基本定理.三、考点分析:本讲知识主要为由平面向量类比学习空间向量的概念及其基本运算,涉及到空间向量中的共线向量和共面向量,以及空间向量的基本定理和空间向量的坐标运算.数量积的运用,是我们学习的重点.一、空间向量的概念:模(或长度)为0的向量称为零向量;模为1的向量称为单位向量.与向量a 长度相等且方向相反的向量称为a 的相反向量,记作a -.方向相同且模相等的向量称为相等向量.二、空间向量的加法和减法、数乘运算1. 求两个向量和的运算称为向量的加法,它遵循平行四边形法则.2. 求两个向量差的运算称为向量的减法,它遵循三角形法则.3. 实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反;当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.三、共线向量与共面向量1. 向量共线的充要条件:对于空间任意两个向量a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.2. 向量共面定理:平行与同一平面的向量是共面向量.四、向量的数量积1. 已知两个非零向量a 和b ,在空间任取一点O ,作a OA =,b OB =,则∠AOB 称为向量a ,b 的夹角,记作,a b 〈〉.两个向量夹角的取值范围是:[],0,a b π〈〉∈.2. 对于两个非零向量a 和b ,若,2a b π〈〉=,则向量a ,b 互相垂直,记作a b ⊥.3. 已知两个非零向量a 和b ,则cos ,a b a b 〈〉称为a ,b 的数量积,记作a b ⋅.即cos ,a b a b a b ⋅=〈〉.零向量与任何向量的数量积为0.五、空间向量的坐标表示和运算设()111,,a x y z =,()222,,b x y z =,则 1. ()121212,,a b x x y y z z +=+++. 2. ()121212,,a b x x y y z z -=---. 3. ()111,,a x y z λλλλ=. 4. 121212a b x x y y z z ⋅=++.5. 若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=.6. 若0b ≠,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===.7. 222111a a a x y z =⋅=++.8. 121212222222111222cos ,a b a b a bx y z x y z⋅〈〉==++⋅++.9. ()111,,x y z A ,()222,,x y z B ,则()()()222212121d x x y y z z AB =AB =-+-+-知识点一 空间向量的概念的运用例1、与向量(1,3,2)a =-平行的一个向量的坐标是( )A .(31,1,1) B .(-1,-3,2) C .(-21,23,-1)D .(2,-3,-22)思路分析:1)题意分析:本题主要考查共线向量的概念的运用.2)解题思路:利用共线向量的概念,如果b a b a b λ=⇔≠//,0,那么说向量→→b a ,共线.也可观察坐标的系数是不是成比例.解答过程:解析:向量的共线和平行是一样的,可利用空间向量共线定理写成数乘的形式. 即b a b a b λ=⇔≠//,0,因为(1,3,2)a =-=-2(-21,23,-1),故答案为C . 解题后的思考:对于空间共线向量的判定,要么利用坐标对应成比例,要么利用向量的线性关系来判定.例2、在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11B A =a ,11D A =b ,A A 1=c ,则下列向量中与MB 1相等的向量是( )A .++-2121B .++2121 C .c b a +-2121D .c b a +--2121思路分析:1)题意分析:本题考查的是基本的向量相等与向量的加法,考查学生的空间想象能力. 2)解题思路:把未知向量表示为已知向量,可利用三角形或平行四边形法则解决.用向量的方法处理立体几何问题,使复杂的线面空间关系代数化.解答过程:解析:)(21111BC BA A A BM B B MB ++=+==+21(-+)=-21+21+.故选A . 解题后的思考:对于空间向量的线性表示,我们本着把所求的向量与已知向量尽量放在一个封闭图形中的原则,再结合向量的加法得到.例3、在下列条件中,使M 与A 、B 、C 一定共面的是 ( )A .OM --=2B .213151++=C .=++MC MB MA 0D .=+++OC OB OA OM 0 思路分析:1)题意分析:本题主要考查共面向量的概念的运用.2)解题思路:空间的四点P 、A 、B 、C 共面只需满足,OC z OB y OA x OP ++=且1=++z y x 即可,或者AC y AB x AP +=.解答过程:由于空间的四点P 、A 、B 、C 共面只需满足,OC z OB y OA x OP ++=且1=++z y x 即可,首先判定A ,B ,D 项都不符合题意,由排除法可知只有选C .利用向量的加法和减法我们可以把+-+-=++)()(OM OB OM OA MC MB MA03)()(=-++=-OM OC OB OA OM OC ,)(31++=,显然满足题意. 解题后的思考:对空间向量的共面问题,我们只需利用课本中的两个结论判定即可.,z y x ++=且1=++z y x 或,y x +=都可判定P ,A ,B ,C 共面.例4、①如果向量,a b 与任何向量都不能构成空间向量的一组基底,那么,a b 的关系是不共线;②,,,O A B C 为空间四点,且向量,,OA OB OC 不构成空间的一个基底,那么点,,,O A B C 一定共面;③已知向量,,a b c 是空间的一个基底,则向量,,a b a b c +-也是空间的一个基底. 其中正确的命题是( )A .①②B .①③C .②③D .①②③ 思路分析:1)题意分析:本题考查空间向量的基底.2)解题思路:结合空间向量基底的概念,我们逐一的判定.解答过程:命题①中,由于,a b 与任何向量都共面,说明,a b 是共线向量.因此①是错误的.命题②中,由四点确定的、共起点的三个向量不能构成基底,说明了这四点是共面的,因此②是正确的.命题③中,要判定三个向量是否可构成基底,关键是看这三个向量是不是不共面,共面与是共面的,,→→→→→→-+b a b a b a ,因此③是正确的.选C .解题后的思考:理解空间向量的基底是由不共面的四点,或者说不共面的三个向量构成的.知识点二 空间向量的坐标运算的运用例5、在ΔABC 中,已知)0,4,2(=AB ,)0,3,1(-=BC ,则∠ABC =___.思路分析:1)题意分析:本题考查用向量数量积求夹角.2)解题思路:首先要注意夹角的概念,是共起点,因此在求角的时候,要注意向量的方向,否则容易出错.解答过程:(2,4,0),(1,3,0),BA BC =--=-2cos ,2||||2510BA BC BA BC BA BC ⋅∴===-⋅ ∴∠ABC =145°解题后的思考:向量夹角的求解是高考中的常考题型,因此,同学们要注意准确运用.例6、已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5). ⑴求以向量AC AB ,为一组邻边的平行四边形的面积S ;⑵若向量a 分别与向量AC AB ,垂直,且|a |=3,求向量a 的坐标思路分析:1)题意分析:本题综合运用向量的数量积来判定垂直,求解夹角.2)解题思路:首先分析平行四边形的面积实际上是三角形面积的2倍,于是可转化为求三角形的面积,需先结合数量积求出夹角的余弦值,然后得到夹角的正弦值,再求面积;求向量的坐标,一般是先设出其坐标,然后结合已知条件,列出关系式,进而求解.解答过程:⑴21||||cos ),2,3,1(),3,1,2(==∠∴-=--=AC AB AC AB BAC AC AB . ∴∠BAC =60°,3760sin ||||==∴ AC AB S . ⑵设a =(x ,y ,z ),则,032=+--⇒⊥z y x AB a33||,023222=++⇒==+-⇒⊥z y x a z y x AC a解得x =y =z =1或x =y =z =-1,∴a =(1,1,1)或a =(-1,-1,-1).解题后的思考:向量的数量积是高考中的一个热点话题,出题形式较灵活,只要同学们抓住数量积解决的问题一般是有关夹角、距离的问题这个本质即可.例7、如图所示,直三棱柱ABC —A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.(1)求的长;(2)求cos<11,CB BA >的值; (3)求证:M C B A 11⊥思路分析:1)题意分析:本题主要考查空间向量的概念及其运算的基本知识.考查空间两向量垂直的充要条件.2)解题思路:先建立空间直角坐标系,然后写出坐标,利用坐标的运算进行求解. 解答过程:如图,建立空间直角坐标系O -xyz .(1)解:依题意得B (0,1,0)、N (1,0,1) ∴|BN |=3)01()10()01(222=-+-+-.(2)解:依题意得A 1(1,0,2)、B (0,1,0)、C (0,0,0)、B 1(0,1,2) ∴1BA ={1,-1,2},1CB ={0,1,2},1BA ·1CB =3,|1BA |=6,|1CB |=5∴cos<1BA ,1CB >=30101||||1111=⋅⋅CB BA CB BA .(3)证明:依题意,得C 1(0,0,2)、M (21,21,2),B A 1={-1,1,-2},MC 1={21,21,0}.∴B A 1·M C 1=-2121++0=0,∴B A 1⊥M C 1.解题后的思考:对于空间中的角和垂直的判定,如果不能直接利用定义,我们可以运用代数的方法,结合坐标运算进行.例8、已知正方体''''ABCD A B C D -的棱长为a ,M 为'BD 的中点,点N 在'A C '上,且|'|3|'|A N NC =,试求MN 的长.思路分析:1)题意分析:本题考查向量的概念及向量的坐标运算,求解有关距离的问题.2)解题思路:对于空间向量的距离的求解,可借助于向量的数量积的性质来解,也可利用坐标运算进行求解.解答过程: 以D 为原点,建立如图所示的空间直角坐标系.因为正方体棱长为a ,所以B (a ,a ,0),A'(a ,0,a ),'C (0,a ,a ),'D (0,0,a ).由于M 为'BD 的中点,取''A C 的中点O',所以M (2a ,2a ,2a ),O'(2a ,2a,a ).因为|'|3|'|A N NC =,所以N 为''A C 的四等分点,从而N 为''O C 的中点,故N (4a ,34a ,a ).根据空间两点间的距离公式,可得22236||()()()242424a a a a a MN a a =-+-+-=.解题后的思考:本题是求解空间几何体中距离的问题,我们一般利用坐标的运算进行求解.解题关键是能把坐标准确地表示出来.小结:通过以上的典型例题,同学们应熟练掌握以下基本概念:共线向量与共面向量,空间向量的基底,以及运用向量的坐标运算解决有关的距离和夹角问题.注意处理以上问题的两个方法:向量法与坐标法.空间向量及其运算是解决立体几何的一种重要工具,同学们要理解基本概念,并能对比平面向量进行加、减运算和数乘运算及数量积的运算和应用.数量积问题是向量问题中经常考查的知识点,要能灵活解决有关的夹角和距离问题,从而为后面的学习打下坚实的基础.一、预习新知本讲学习了空间向量的概念及其基本运算,那么能否利用向量解决空间中有关角与距离的问题呢?二、预习点拨探究与反思:探究任务一:用空间向量解决立体几何中有关角的问题 【反思】(1)如何用向量表示线面角、二面角及异面直线所成的角 (2)具体的求角的公式应如何怎么表示?探究任务二:用空间向量解决立体几何中有关距离的问题 【反思】(1)如何用空间向量表示空间的点线的距离、异面直线的距离、线面的距离、面面的距离?(2)求解距离的具体的计算公式是什么?(答题时间:50分钟)一、选择题1.下列命题正确的是( )A .若a 与b 共线,b 与c 共线,则a 与c 共线B .向量,,a b c 共面就是它们所在的直线共面C .零向量没有确定的方向D .若//a b ,则存在唯一的实数λ使得a b λ=2. 已知A (-1,-2,6),B (1,2,-6),O 为坐标原点,则向量OA OB 与的夹角是( )A .0B .2πC .πD .32π 3. 已知空间四边形ABCO 中,c OC ,b OB ,a OA ===,点M 在OA 上,且OM =2MA ,N 为BC 中点,则MN =( )A .c b a 213221+- B .c b a 212132++- C .c b a 212121-+ D .c b a 213232-+4. 设A 、B 、C 、D 是空间不共面的四点,且满足000=⋅=⋅=⋅AD AB ,AD AC ,AC AB ,则△BCD 是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定5. 空间四边形OABC 中,OB =OC ,∠AOB =∠AOC =60°,则cos BC ,OA =( ) A .21B .22C .-21D .06. 已知A (1,1,1)、B (2,2,2)、C (3,2,4),则△ABC 的面积为( ) A .3B .32C .6D .267. 已知),,2(),,1,1(t t b t t t a =--=,则||b a -的最小值为( ) A .55 B .555 C .553 D .511二、填空题8.若)1,3,2(-=a ,)3,1,2(-=b ,则以b a ,为邻边的平行四边形的面积为 . 9.已知空间四边形OABC ,其对角线为OB 、AC ,M 、N 分别是对边OA 、BC 的中点,点G 在线段MN 上,且GN MG 2=,现用基组{}OC OB OA ,,表示向量OG ,有OG =x OC z OB y OA ++,则x 、y 、z 的值分别为 .10.已知点A (1,-2,11)、B (4,2,3),C (6,-1,4),则△ABC 的形状是 . 11.已知向量)0,3,2(-=a ,)3,0,(k b =,若b a ,成120°的角,则k = .三、解答题12.如图,在空间直角坐标系中BC =2,原点O 是BC 的中点,点A 的坐标是(21,23,0),点D 在平面yOz 上,且∠BDC =90°,∠DCB =30°.(1)求向量OD 的坐标;(2)设向量AD 和BC 的夹角为θ,求cos θ的值13.四棱锥P -ABCD 中,底面ABCD 是一个平行四边形,AB =(2,-1,-4),AD =(4,2,0),AP =(-1,2,-1). (1)求证:PA ⊥底面ABCD ; (2)求四棱锥P -ABCD 的体积;(3)对于向量a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),c =(x 3,y 3,z 3),定义一种运算:(a ×b )·c =x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1,试计算(AB ×AD )·AP 的绝对值的值;说明其与四棱锥P -ABCD 体积的关系,并由此猜想向量这一运算(AB ×AD )·AP 的绝对值的几何意义.14.若四面体对应棱的中点间的距离都相等,证明这个四面体的对棱两两垂直.1.C ;解析:由于选项A 中当b =→0时,就不符合题意,因此A 错误.选项B ,向量共面,但向量所在的直线不一定共面,可以是平行.选项D ,应说明b ≠→0. 2.C ;解析:||||cos b a ⋅=θ,计算结果为-1.3.B ;解析:显然OA OC OB OM ON MN 32)(21-+=-=. 4.B ;解析:过点A 的棱两两垂直,通过设棱长、应用余弦定理可得△BCD 为锐角三角形. 5.D ;解析:先建立一组基向量OC OB OA ,,,再处理⋅的值. 6.D ;解析:应用向量的运算,显然><⇒>=<AC AB AC AB ,sin ,cos ,从而得><=S ,sin ||||21. 7.C ;解析:利用向量数量积的性质求解模的平方的最小值,然后再开方即可得到. 8.56;解析:72||||,cos -=>=<b a ,得753,sin >=<b a ,从而可得结果.9.313161、、; 解析:OM ON OA MN OA MG OM OG 313161]21)(21[3221)(32213221++=-++=-+=+=+= 10.直角三角形;解析:利用空间两点间的距离公式得:222||||||AC BC AB +=.11.39-;解析:219132,cos 2-=+=>=<k k b a ,得39±=k . 12.解:(1)过D 作DE ⊥BC ,垂足为E ,在Rt △BDC 中,由∠BDC =90°,∠DCB =30°,BC =2,得BD =1,CD =3,∴DE =CD ·sin30°=23. OE =OB -BE =OB -BD ·cos60°=1-2121=. ∴D 点坐标为(0,-23,21),即向量的坐标为(0,-23,21). (2)依题意:)()()(0,1,0,0,1,0,0,21,23=-==, 所以)()(0,2,0,23,1,23=-=--=-=OB OC BC OA OD AD .设向量和BC 的夹角为θ,则cos θ222222020)23()1()23(0232)1(023||||++⋅+-+-⨯+⨯-+⨯-=⋅BC AD BC AD 1051-=. 13.(1)证明:∵AB AP ⋅=-2-2+4=0,∴AP ⊥AB . 又∵AD AP ⋅=-4+4+0=0,∴AP ⊥AD .∵AB 、AD 是底面ABCD 上的两条相交直线,∴PA ⊥底面ABCD . (2)解:设AB 与AD 的夹角为θ,则 cos θ1053416161428||||=+⋅++-=⋅AD AB AD ABABCD P V -=31|AB |·|AD |·sin θ·|AP |=161411059110532=++⋅-⋅ (3)解:|(AB ×AD )·AP |=|-4-32-4-8|=48,它是四棱锥P -ABCD 体积的3倍.猜测:|(AB ×AD )·AP |在几何上可表示以AB 、AD 、AP 为棱的平行六面体的体积(或以AB 、AD 、AP 为棱的直四棱柱的体积). 14.证明:如图,设321,,r SC r SB r SA ===,则SN SM SH SG SF SE ,,,,,分别为121r ,)(2132r r +,)(2121r r +,321r ,)(2131r r +,221r ,由条件EF =GH =MN 得: 223123212132)2()2()2(r r r r r r r r r -+=-+=-+展开得313221r r r r r r ⋅=⋅=⋅∴0)(231=-⋅r r r ,∵1r ≠,23r r -≠, ∴1r ⊥(23r r -),即SA ⊥BC .同理可证SB ⊥AC ,SC ⊥AB .。

(人教版)高中数学选修2-1课件:第3章 空间向量与立体几何3.2.2

(人教版)高中数学选修2-1课件:第3章 空间向量与立体几何3.2.2
[思路点拨] 建系 → 求点B,C,E坐标

求A→E,B→C的坐标

cos
θ=
→→ AE·BC →→
|AE||BC|
→ 求θ
数学 选修2-1
第三章 空间向量与立体几何
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
如图所示,建立空间直角坐标系,则 B(2,0,0),
C(2,2 2,0),E(1, 2,1),A→E=(1, 2,1),
数学 选修2-1
第三章 空间向量与立体几何
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
2.用向量法求二面角的步骤 (1)寻求平面 α,β 的法向量 u,v. (2)利用公式 cos〈u,v〉=|uu|·|vv|,求出法向量 u,v 的夹 角 φ.
数学 选修2-1
第三章 空间向量与立体几何
1.已知二面角 α-l-β 等于 θ,异面直线 a,b 满足 a
⊂α,b⊂β,且 a⊥l,b⊥l,则 a,b 所成的角等于( )
A.θ
B.π-θ
C.π2-θ 解析: 答案:
D.θ 或 π-θ 应考虑 0≤θ≤π2与π2<θ≤π 两种情况. D
数学 选修2-1
第三章 空间向量与立体几何
自主学习 新知突破
数学 选修2-1
第三章 空间向量与立体几何
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(3)平面 α 的法向量 n 与 AB 所成的锐角 θ1 的余角 θ 就是 直线 AB 与平面 α 所成的角.
(4)斜线和它在平面内的射影所成的角(即斜线与平面所 成的角)是斜线和这个平面内所有直线所成角中最小的角.

2018-2019学年高中数学 第三章 空间向量与立体几何章末整合提升优质课件 新人教A版选修2-1

2018-2019学年高中数学 第三章 空间向量与立体几何章末整合提升优质课件 新人教A版选修2-1

专题四 ⇨利用空间向量求空间角
(1)求两异面直线所成的角 设 a、b 分别是异面直线 l1,l2 上的方向向量,θ 为 l1,l2 所成 |cos〈a,b〉|=||aa|·|bb||.
(2)求直线与平面所成的角 设 l 为平面 α 的斜线,a 为直线的方向向量,n 为平面 α 的法 所成的角,则 sinθ=|cos〈a,n〉|=||aa|·|nn||. (3)求二面角 设 n1、n2 分别是平面 α、β 的法向量,二面角为 θ,则 θ=〈 -〈n1,n2〉(需要根据具体图形判断是相等还是互补).
∴a=(1, 2, 3),b=(1,0, 3) ∴cos〈a,b〉=|aa|·|bb|= 16+×32= 36.
专题三 ⇨利用空间向量解决平行与垂直问题
空间中的平行与垂直关系,是高考的重点题型, 的线面平行与垂直关系,使用向量将几何证明 为纯代数运算,使问题得以简化.
典例 4 如下图,长方体 ABCD-A1B1C1D1 中,E、F 分别是 A1B 上的点,且 D1E=2EB1,BF=2FA1.
(2)已知 a+b=(2, 2,2 3),a-b=(0, 2,0),则 cos〈a
A.
6 3
B.
6 6
C.13
D.16
[解析] (1)∵b=12x-2a ∴x=2b+4a =2(-4,-3,-2)+4(2,3,-4) =(-8,-6,-4)+(8,12,-16) =(0,6,-20) (2)a+b=(2, 2,2 3),a-b=(0, 2,0)
新课标导学
数学
选修2-1 ·人教A版
第三章 空间向量与立体几何
章末整合提升
1
知识网
2
知识整
3
专题突
知识网络

高中数学选修2-1(人教A版)第三章空间向量与立体几何3.1知识点总结含同步练习及答案

高中数学选修2-1(人教A版)第三章空间向量与立体几何3.1知识点总结含同步练习及答案

描述:例题:高中数学选修2-1(人教A版)知识点总结含同步练习题及答案第三章 空间向量与立体几何 3.2 立体几何中的向量方法一、学习任务1. 理解直线的方向向量与平面的法向量的意义;会用待定系数法求平面的法向量.2. 能用向量语言表述线线、线面、面面的垂直和平行关系.3. 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理);能用向量方法判断一些简单的空间线面的平行和垂直关系.4. 能用向量方法解决线线、线面、面面的夹角的计算问题;体会向量方法在研究几何问题中的作用.二、知识清单异面直线所成的角 线面角 二面角三、知识讲解1.异面直线所成的角设直线 是异面直线,过空间一点 分别作直线 的平行线 ,我们把直线 所成的锐角或直角叫做异面直线 所成的角,或异面直线 的夹角.a ,b O a ,b ,a ′b ′,a ′b ′a ,b a ,b 如图,在正方体 中,求:(1)异面直线 与 所成的角;(2) 与 所成的角.解:(1)因为 ,而 ,所以 ,即 与 所成角为 .(2)如下图,连接 ,,因为 ,所以 与 所成的角即为 与 所成的角.又 ,所以 为正三角形,所以 和 所成的角为 ,即 与 所成的角为 .ABCD −A 1B 1C 1D 1AB A 1D 1A D 1D C 1∥AB A 1B 1⊥A 1D 1A 1B 1⊥AB A 1D 1AB A 1D 190∘A B 1B 1D 1A ∥D B 1C 1A B 1A D 1D C 1A D 1A =A =D 1B 1B 1D 1△AB 1D 1A D 1A B 160∘A D 1DC 160∘A1D平面平行,或在平面内,则称直线和平面所成的角是AP P求直线 与 平面∠AP B=∠APRt△AP D描述:例题:3.二面角从一条直线出发的两个半平面所组成的图形叫做二面角(dihedral angle).这条直线叫做二面角的棱,这两个半平面叫做二面角的面.棱 、面分别为 , 的二面角记作二面角.有时为了方便,也可在 , 内(棱以外的半平面部分)分别取点 , ,将这个二面角记作二面角.如果棱记作 ,那么这个二面角记作二面角或.在二面角的棱上任取一点,以点为垂足,在半平面和内分别作垂直于棱的射线和,则射线和构成的叫做二面角的平面角.两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.AB αβα−AB −βαβP Q P −AB −Q l α−l −βP −l −Q α−l −βl O O αβl OA OB OA OB ∠AOB 如图,在正方体 中,,,, 分别是 ,, 和 的中点.(1)求证:;(2)求二面角 的平面角的正切值.解:(1)因为 , 均为所在棱的中点,所以 .而 ,所以 .又因为 , 均为所在棱的中点,所以 和 均为等腰直角三角形.所以 ,所以 , ,故.而 ,所以 .(2)在平面 中,过点 作 于点 ,连接 .由(1)知 ,又 ,所以 .ABCD −A 1B 1C 1D 1E F M N A 1B 1BC C 1D 1B 1C 1平面 MNF ⊥平面 ENF M −EF −N N F NF ⊥平面 A 1B 1C 1D 1MN ⊂平面 A 1B 1C 1D 1NF ⊥MN M E △MN C 1△NE B 1∠MN =∠NE =C 1B 145∘∠MNE =90∘MN ⊥NE MN ⊥平面 NEF MN ⊂平面 MNF 平面 MNF ⊥平面 NEF NEF N NG ⊥EF G MG MN ⊥平面 NEF EF ⊂平面 NEF MN ⊥EFEF ⊥ MNGM−EF−N||n。

高中数学 第三章 空间向量与立体几何本章小结学案(含解析)新人教A版选修2-1-新人教A版高二选修2

高中数学 第三章 空间向量与立体几何本章小结学案(含解析)新人教A版选修2-1-新人教A版高二选修2

第三章 本章小结专题一 空间向量的线性运算选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的基本要求.解题时应结合已知和所求观察图形,联想相关的运算法则和公式等,就近表示所需的向量,再对照目标,将不符合目标要求的向量作新的调整,如此反复,直到所有向量都符合目标要求.[例1] 如图所示,平行六面体A 1B 1C 1D 1­ABCD ,M 分AC →成的比为12,N 分A 1D →成的比为2,设AB →=a ,AD →=b ,AA 1→=c ,试用a 、b 、c 表示MN →.【分析】 要用a 、b 、c 表示MN →,只需结合图形,充分运用空间向量加法和数乘向量的运算律即可.【解】 如上图,连接AN ,则MN →=MA →+AN →,由已知四边形ABCD 是平行四边形, 故AC →=AB →+AD →=a +b ,又MA →=-13AC →=-13(a +b ).由已知,N 分A 1D →成的比为2,故AN →=AD →+DN →=AD →-ND →=AD →-13A 1D →=13(c +2b ).于是MN →=MA →+AN →=-13(a +b )+13(c +2b )=13(-a +b +c ). 【点评】 用已知向量表示未知向量,一定要结合图形,以图形为指导是解题的关键. 专题二 空间向量与线面位置关系证明平行问题,除了应用传统的线面平行的判定定理外,还可以利用向量共线及平面的法向量进行证明.证明垂直问题,除了应用传统的垂直问题的判定定理外,还可利用向量数量积进行判断,是非常有效的方法.【例2】 如图,在矩形ABCD 中AB =2BC ,P 、Q 分别为线段AB 、CD 的中点,EP ⊥平面ABCD .(1)求证:AQ ∥平面CEP ; (2)求证:平面AEQ ⊥平面DEP .【分析】 证明线面平行问题,可以利用与平面内的直线平行进行判定,也可以利用直线与平面的法向量垂直,也可用传统方法求证.面面垂直可以利用面面垂直的判定定理求证,也可用向量法求证.同时,也可用两平面的法向量垂直求证.【证法一】 (1)∵EP ⊥矩形ABCD 所在的平面,且P 、Q 均为AB ,DC 的中点,∴PQ ⊥AB ,故以P 为坐标原点,以PA ,PQ ,PE 分别为x 轴,y 轴,z 轴建系如右图所示.令AB =2,PE =a ,则A (1,0,0),Q (0,1,0),E (0,0,a ), C (-1,1,0).∴AQ →=(-1,1,0),PC →=(-1,1,0), ∴AQ →=PC →,∴AQ →∥PC →,∴AQ ∥PC .∵AQ ⊄平面EPC ,PC ⊂平面EPC ,∴AQ ∥平面EPC . (2)∵D (1,1,0),E (0,0,a ) ∴PD →=(1,1,0),PE →=(0,0,a ),∴AQ →·PD →=(-1,1,0)·(1,1,0)=-1+1=0, AQ →·PE →=(-1,1,0)·(0,0,a )=0. ∴AQ →⊥PD →,AQ →⊥PE →,即AQ ⊥PD ,AQ ⊥PE , ∴AQ ⊥平面EPD ,∵AQ ⊂平面AEQ , ∴平面AEQ ⊥平面DEP . 【证法二】 传统法.(1)在矩形ABCD 中,AP =PB ,DQ =QC ,∴AP 綊QC , ∴四边形AQCP 为平行四边形,∴CP ∥AQ . ∵CP ⊂平面CEP ,AQ ⊄平面CEP ,∴AQ ∥平面CEP . (2)∵EP ⊥平面ABCD ,AQ ⊂平面ABCD ,∴AQ ⊥EP . ∵AB =2BC ,P 为AB 中点,∴AP =AD . 连接PQ ,则ADQP 为正方形,∴AQ ⊥DP . ∵EP ∩DP =P ,∴AQ ⊥平面DEP . ∵AQ ⊂平面AEQ ,∴平面AEQ ⊥平面DEP . 专题三 空间向量与空间角1.纵观近几年高考发现,对于空间角的考查,每年都有.不论在选择,还是填空中均有考查,而解答题中更是考查重点,因此空间角必是高考的一个生长点.2.对于空间角中线线角、线面角及二面角,一是利用传统解法,如平移法,利用定义求解等,但向量法求解更能体现解题的优越性.【例3】 如图所示,在长方体ABCD ­A 1B 1C 1D 1中,AB =5,AD =8,AA 1=4,M 为B 1C 1上一点且B 1M =2,点N 在线段A 1D 上,A 1D ⊥AN .(1)求cos 〈A 1D →,AM →〉;(2)求直线AD 与平面ANM 所成角的正弦值.【解】 (1)建立空间直角坐标系(如右图).∵AM →=(5,2,4),A 1D →=(0,8,-4).∴AM →·A 1D →=0+16-16=0, ∴AM →⊥A 1D →.∴cos 〈A 1D →,AM →〉=0.(2)∵A 1D ⊥AM ,A 1D ⊥AN ,∴A 1D ⊥平面AMN , ∴A 1D →=(0,8,-4)是平面ANM 的一个法向量. 又AD →=(0,8,0),|A 1D →|=45,|AD →|=8,A 1D →·AD →=64, ∴cos 〈A 1D →,AD →〉=6445×8=25=255.∴AD 与平面AMN 所成角的正弦值为255.【例4】 如图,在直三棱柱ABC ­A 1B 1C 1中,平面A 1BC ⊥侧面A 1ABB 1.(1)求证:AB ⊥BC ;(2)若直线AC 与平面A 1BC 所成的角为θ,二面角A 1­BC ­A 的大小为φ,试判断θ与φ的大小关系,并予以证明.【解】 (1)如下图,过点A 在平面A 1ABB 1内作AD ⊥A 1B 于D ,则由平面A 1BC ⊥侧面A 1ABB 1,且平面A 1BC ∩侧面A 1ABB 1=A 1B ,得AD ⊥平面A 1BC .又BC ⊂平面A 1BC ,∴AD ⊥BC .∵三棱柱ABC ­A 1B 1C 1是直三棱柱,则AA 1⊥底面ABC , ∴AA 1⊥BC .又AA 1∩AD =A ,从而BC ⊥侧面A 1ABB 1. 又AB ⊂侧面A 1ABB 1,故AB ⊥BC .(2)由(1)知,AB ⊥BC . 在直三棱柱ABC ­A 1B 1C 1中,BB 1⊥平面ABC ,BA ,BC ⊂平面ABC ,∴BB 1⊥BA ,BB 1⊥BC .以点B 为坐标原点,以BC ,BA ,BB 1所在的直线分别为x 轴、y 轴、z 轴,建立如右图所示的空间直角坐标系,设AA 1=a ,AC =b ,AB =c ,则B (0,0,0),A (0,c,0),C (b 2-c 2,0,0),A 1(0,c ,a ),B 1(0,0,a ),于是BC →=(b 2-c 2,0,0),AB 1→=(0,-c ,a ),AC →=(b 2-c 2,-c,0),AA 1→=(0,0,a ).设平面A 1BC 的一个法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BC →=0,得⎩⎨⎧cy +az =0,b 2-c 2x =0,可取n =(0,-a ,c ),于是n ·AC →=ac >0,则AC →与n 的夹角β为锐角,则β与θ互为余角,∴sin θ=cos β=n ·AC →|n |·|AC →|=acb a 2+c 2.∵BC ⊥平面A 1ABB 1,∴BC ⊥A 1B ,又BC ⊥AB ,∴∠A 1BA 即为二面角A 1­BC ­A 的平面角,即∠A 1BA =φ. ∴cos φ=BA 1→·BA →|BA 1→|·|BA →|=c a 2+c 2,∴sin φ=aa 2+c2 .∵c <b ,∴ac b a 2+c 2<aa 2+c2, 即sin θ<sin φ,又θ,φ∈(0,π2),∴θ<φ.【点评】 要建立空间直角坐标系,先要有三条互相垂直且交于一点的直线. 专题四 利用空间向量解决探索存在性问题存在性问题要在一定条件下论证会不会出现某个结论.这类题型常以适合某种条件的结论“存在”、“不存在”、“是否存在”等语句表述,解答这类问题,一般要先对结论作出肯定存在的假设,然后由此肯定的假设出发,结合已知条件进行推理论证,若推导出合理的结论,则存在性也随之解决;若推导出矛盾,则否定了存在性.【例5】 如图,四棱锥P ­ABCD 中,AB ∥DC ,∠ADC =π2,AB =AD =12CD =2,PD =PB =6,PD ⊥BC .(1)求证:平面PBD ⊥平面PBC ;(2)在线段PC 上是否存在点M ,使得平面ABM 与平面PBD 所成锐二面角为π3?若存在,求CM CP的值;若不存在,说明理由.【解】 (1)证明:因为四边形ABCD 为直角梯形, 且AB ∥DC ,AB =AD =2,∠ADC =π2,所以BD =22,又因为CD =4,∠BDC =π4.根据余弦定理得BC =22, 所以CD 2=BD 2+BC 2,故BC ⊥BD .又因为BC ⊥PD ,PD ∩BD =D ,且BD ,PD ⊂平面PBD , 所以BC ⊥平面PBD ,又因为BC ⊂平面PBC ,所以平面PBC ⊥平面PBD . (2)由(1)得平面ABCD ⊥平面PBD ,设E 为BD 的中点,连接PE ,因为PB =PD =6, 所以PE ⊥BD ,PE =2,又平面ABCD ⊥平面PBD , 平面ABCD ∩平面PBD =BD ,所以PE ⊥平面ABCD .如图,以A 为原点分别以AD →,AB →和垂直平面ABCD 的方向为x ,y ,z 轴正方向,建立空间直角坐标系Axyz ,则A (0,0,0),B (0,2,0),C (2,4,0),D (2,0,0),P (1,1,2),假设存在M (a ,b ,c )满足要求,设CMCP=λ(0≤λ≤1),即CM →=λCP →,所以M (2-λ,4-3λ,2λ),易得平面PBD 的一个法向量为BC →=(2,2,0).设n→=(x ,y ,z )为平面ABM 的一个法向量,AB →=(0,2,0),AM →=(2-λ,4-3λ,2λ).由⎩⎪⎨⎪⎧n →·AB →=0n →·AM →=0得⎩⎪⎨⎪⎧2y =02-λx +4-3λy +2λz =0,不妨取n→=(2λ,0,λ-2).因为平面PBD 与平面ABM 所成的锐二面角为π3,所以|4λ|224λ2+λ-22=12, 解得λ=23,λ=-2(不合题意舍去).故存在M 点满足条件,且CM CP =23.。

高二数学(人教A版)选修2-1课件第三章 空间向量与立体几何

高二数学(人教A版)选修2-1课件第三章 空间向量与立体几何

(5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题.
6.运用空间向量求空间角 (1)求两异面直线所成角 a· b 利用公式 cos〈a,b〉= , |a|· |b| 但务必注意两异面直线所成角 θ
(3)求二面角 用向量法求二面角也有两种方法: 一种方法是利用平面角 的定义, 在两个面内先求出与棱垂直的两条直线对应的方向向 量, 然后求出这两个方向向量的夹角, 由此可求出二面角的大 小;另一种方法是转化为求二面角的两个面的法向量的夹角, 它与二面角的大小相等或互补.

7.运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、 点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度, 因此也就是 这两点对应向量的模.
二、利用空间向量求空间角 (1)求两异面直线所成的角 设 a,b 分别是异面直线 l1,l2 上的方向向量,θ 为 l1,l2 |a· b| 所成的角,则 cosθ=|cos〈a,b〉|=|a||b|. (2)求直线与平面所成的角 设 l 为平面 α 的斜线,a 为直线的方向向量,n 为平面 α 的法向量,θ 为 l 与 α 所成的角,则 sinθ=|cos〈a,n〉|= |a· n| . |a||n|
成才之路· 数学
人教A版 ·选修2-1
路漫漫其修远兮 吾将上下而求索
第三章
空间向量与立体几何
第三章
章末归纳总结
知识梳理
1.空间向量的概念及其运算与平面向量类似,向量加、 减法的平行四边形法则, 三角形法则以及相关的运算律仍然成 立.空间向量的数量积运算、共线向量定理、共面向量定理都 是平面向量在空间中的推广, 空间向量基本定理则是向量由二 维到三维的推广.

2020_2021学年高中数学第3章空间向量与立体几何能力检测含解析新人教A版选修2_1

2020_2021学年高中数学第3章空间向量与立体几何能力检测含解析新人教A版选修2_1

第三章能力检测(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,满分60分)1.设{a,b,c}是空间一个基底,则一定可以与向量p=a+b,q=a-b构成空间的另一个基底的向量是( )A.a B.bC.c D.a或b【答案】C【解析】向量p,q均与a,b共面,所以只能与c组成基底.2.已知空间直角坐标系中点A(1,0,0),B(2,0,1),C(0,1,2),则平面ABC的一个法向量为( )A.(-1,-3,2) B.(1,3,-1)C.(1,3,1) D.(-1,3,1)【答案】B【解析】AB→=(1,0,1),AC→=(-1,1,2),设平面ABC的一个法向量为n=(x,y,z),则n·AB→=x+z=0,n·AC→=-x+y+2z=0,n=(1,3,-1)为平面ABC的法向量.故选B.3.设A,B,C,D是空间不共面的四点且满足AB→·AC→=0,AB→·AD→=0,AC→·AD→=0,则△BCD是( )A.钝角三角形B.直角三角形C.锐角三角形D.不确定【答案】C【解析】由AB→·AC→=0,AB→·AD→=0,AC→·AD→=0,可知AB→⊥AC→,AB→⊥AD→,AC→⊥AD→,即三棱锥ABCD的三侧棱两两垂直,则其底面为锐角三角形.4.已知向量a=(0,2,1),b=(-1,1,-2),则a与b的夹角为( )A .0°B .45°C .90°D .180°【答案】C【解析】cos 〈a ,b 〉=a ·b |a ||b |=2-25·6=0,∴a 与b 的夹角为90°.5.(2019年陕西西安期末)已知空间四边形ABCD 的每条边和对角线的长都等于t ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →等于( )A .32t 2 B .34t 2C .12t 2D .14t 2【答案】D【解析】设AB →=a ,AC →=b ,AD →=c ,则|a|=|b|=|c|=t ,且a ,b ,c 三向量两两夹角为60°.又AE →=12(a +b ),AF →=12c ,故AE →·AF →=12(a +b )·12c =14(a ·c +b ·c )=14(t 2cos 60°+t 2cos60°)=14t 2.6.已知直线l 过定点A (2,3,1),且n =(0,1,1)为直线l 的一个方向向量,则点P (4,3,2)到直线l 的距离为( )A.2 B.102 C.22 D.322【答案】D【解析】PA =(-2,0,-1),|PA |=5,PA ·n |n |=-22,则点P 到直线l 的距离为|PA |2-⎪⎪⎪⎪⎪⎪PA ·n |n |2=5-12=322.7.空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA →上且OM →=2MA →,N 为BC 中点,则MN →等于( )A .12a -23b +12cB .-23a +12b +12cC .12a +12b -23cD .23a +23b -12c【答案】B【解析】如图,MN →=MO →+OC →+CN →=23AO →+OC →+12CB →=-23a +c +12(b -c )=-23a +12b +12c .8.(2019年黑龙江哈尔滨模拟)已知空间向量a =(2,-1,2),b =(2,2,1),则以a ,b 为邻边的平行四边形的面积为( )A .652B .65C .4D .8【答案】B【解析】|a|=3,|b|=3,而a ·b =4=|a||b |·cos 〈a ,b 〉,∴cos 〈a ,b 〉=49,故sin〈a ,b 〉=1-⎝ ⎛⎭⎪⎫492=659,于是以a ,b 为邻边的平行四边形的面积为S =|a||b |sin 〈a ,b 〉=3×3×659=65.故选B .9.已知e 1,e 2,e 3是空间中不共面的三个向量,若a =e 1+e 2+e 3,b =e 1-e 2-e 3,c =e 1+e 2,d =e 1+2e 2+3e 3且d =x a +y b +z c ,则x ,y ,z 分别为( )A .52,-12,-1B .52,12,1C .-52,12,1D .-52,-12,-1【答案】A【解析】d =x a +y b +z c =(x +y +z )e 1+(x -y +z )e 2+(x -y )e 3=e 1+2e 2+3e 2,由空间向量基本定理,空间任一向量都可以用一个空间基底唯一表示,从而得到⎩⎪⎨⎪⎧x +y +z =1,x -y +z =2,x -y =3.解得x =52,y =-12,z =-1.故选A .10.(2019年河北石家庄模拟)在正三棱柱ABC -A 1B 1C 1中,已知AB =2,CC 1=2,则异面直线AB 1和BC 1所成角的正弦值为( )A .1B .77C .12D .32【答案】A【解析】取线段A 1B 1,AB 的中点分别为O ,D ,则OC 1⊥平面ABB 1A 1,∴可以以OB 1→,OC 1→,OD →的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系O -xyz ,如图,则A (-1,0,2),B 1(1,0,0),B (1,0,2),C 1(0,3,0),∴AB 1→=(2,0,-2),BC 1→=(-1,3,-2).∵AB 1→·BC 1→=(2,0,-2)·(-1,3,-2)=0,∴AB 1→⊥BC 1→,即异面直线AB 1和BC 1所成的角为直角,则其正弦值为1.故选A .11.(多选题)已知点P是平行四边形ABCD所在的平面外一点,若AB=(2,-1,-4),AD=(4,2,0),AP=(-1,2,-1),则下列结论正确的是( )A.AP⊥ABB.AP⊥ADC.AP是平面ABCD的法向量D.AP∥BD【答案】ABC【解析】∵AB·AP=0,AD·AP=0,∴AB⊥AP,AD⊥AP,则A,B正确.又AB与AD不平行,∴AP是平面ABCD的法向量,则C正确.∵BD=AD-AB=(2,3,4),AP =(-1,2,-1),∴BD与AP不平行,故D错误.12.(多选题)已知E,F分别是正方体ABCDA1B1C1D1的棱BC和CD的中点,则( )A.A1D与B1D1是异面直线B.A1D与EF所成角的大小为45°C.A 1F 与平面B 1EB 所成角的余弦值为13D.二面角CD 1B 1B 的余弦值为63【答案】AD【解析】易知A 正确;如图,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.设正方体棱长为1,则D (0,0,0),A (1,0,0),B (1,1,0),E ⎝ ⎛⎭⎪⎫12,1,0,F ⎝ ⎛⎭⎪⎫0,12,0,A 1(1,0,1).对于B ,∵A 1D =(-1,0,-1),EF =⎝ ⎛⎭⎪⎫-12,-12,0,∴|A 1D |=(-1)2+0+(-1)2=2,|EF |=⎝ ⎛⎭⎪⎫-122+⎝ ⎛⎭⎪⎫-122+0=22,A 1D ·EF =12+0+0=12,故cos 〈A 1D ,EF 〉=A 1D ·EF|A 1D |·|EF |=12,可知向量A 1D 与EF 的夹角为60°,所以A 1D与EF 所成角的大小为60°,B 错误;对于C ,∵AB ⊥平面B 1C 1CB ,∴AB 是平面B 1EB 的法向量,∵AB =(0,1,0),A 1F =⎝ ⎛⎭⎪⎫-1,12,-1,∴|AB |=1,|A 1F |=32,A 1F ·AB =12,故cos 〈A 1F ,AB 〉=13,∴A 1F 与平面B 1EB 所成角的余弦值为223,C 错误;对于D ,∵AC 1⊥平面B 1D 1C ,∴AC 1是平面B 1D 1C 的法向量,又AC 为平面B 1D 1B 的法向量,故AC 1与AC 所成的角等于二面角C -D 1B 1-B ,∵AC 1=(-1,1,1),AC =(-1,1,0),则|AC 1|=3,|AC |=2,AC 1·AC =2,∴cos 〈AC 1,AC 〉=63,∴二面角C -D 1B 1-B 的余弦值为63,D 正确.二、填空题(本大题共4小题,每小题5分,满分20分)13.(2017年上海)如图,以长方体ABCDA1B1C1D1的顶点D为坐标原点,过点D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若向量DB1→的坐标为(4,3,2),则向量AC1→的坐标是________.【答案】(-4,3,2)【解析】由DB1→的坐标为(4,3,2),可得A(4,0,0),C(0,3,0),D1(0,0,2),则C1(0,3,2),∴AC1→=(-4,3,2).14.已知平面α经过点O(0,0,0)且e=(1,1,1)是α的法向量,M(x,y,z)是平面α内任意一点,则x,y,z满足的关系式是__________________.【答案】x+y+z=0【解析】OM→·e=(x,y,z)·(1,1,1)=x+y+z=0.15.已知向量a=(3,5,-4),b=(2,1,8),则3a-2b=,a与b所成角的余弦值为.【答案】(5,13,-28) -7138 230【解析】3a -2b =3(3,5,-4)-2(2,1,8)=(5,13,-28).a ·b =(3,5,-4)·(2,1,8)=3×2+5×1-4×8=-21,|a|=32+52+(-4)2=50,|b|=22+12+82=69,∴cos 〈a ,b 〉=a ·b|a||b|=-2150×69=-7138230.16.(2019年吉林长春期末)在三棱锥PABC 中,PA ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,PA =2,则直线PA 与平面DEF 所成角的正弦值为________.【答案】55【解析】以A 为原点,AB ,AC ,AP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.由AB =AC =1,PA =2,得A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝ ⎛⎭⎪⎫12,0,0,E ⎝ ⎛⎭⎪⎫12,12,0,F ⎝ ⎛⎭⎪⎫0,12,1.∴PA →=(0,0,-2),DE →=⎝ ⎛⎭⎪⎫0,12,0,DF →=⎝ ⎛⎭⎪⎫-12,12,1.设平面DEF 的法向量为n =(x ,y ,z ),由⎩⎨⎧n ·DE→=0,n ·DF→=0,得⎩⎪⎨⎪⎧y =0,-x +y +2z =0.取z =1,则n =(2,0,1).设直线PA 与平面DEF 所成的角为θ,则sin θ=|PA →·n ||PA →||n |=55.∴直线PA 与平面DEF 所成角的正弦值为55.三、解答题(本大题共6小题,满分70分)17.(10分)设向量a =(3,5,-4),b =(2,1,8),计算3a -2b ,a ·b ,并确定λ,μ的关系,使λa +μb 与z 轴垂直.解:3a -2b =3(3,5,-4)-2(2,1,8)=(9,15,-12)-(4,2,16)=(5,13,-28).a ·b =(3,5,-4)·(2,1,8)=6+5-32=-21.由(λa +μb )·(0,0,1)=(3λ+2μ,5λ+μ,-4λ+8μ)·(0,0,1)=-4λ+8μ=0,得-λ+2μ=0.∴当λ,μ满足-λ+2μ=0时,可使λa +μb 与z 轴垂直.18.(12分)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)求a 和b 的夹角的余弦值;(2)若向量k a +b 与k a -2b 互相垂直,求k 的值.解:a =(-1+2,1-0,2-2)=(1,1,0),b =(-3+2,0-0,4-2)=(-1,0,2). (1)cos θ=a ·b|a |·|b |=-1+0+02×5=-1010.∴a 和b 的夹角的余弦值为-1010.(2)k a +b =(k ,k,0)+(-1,0,2)=(k -1,k,2),k a -2b =(k ,k,0)-(-2,0,4)=(k +2,k ,-4).∴(k -1,k,2)·(k +2,k ,-4) =(k -1)(k +2)+k 2-8 =0. 即2k 2+k -10=0.∴k =-52或k =2. 19.(12分)(2019年福建龙岩期末)如图,在多面体ABCA 1B 1C 1中,四边形A 1ABB 1是正方形,AB =AC ,BC =2AB ,B 1C 1綊12BC ,二面角A 1ABC 是直二面角.求证:(1)A 1B 1⊥平面AA 1C ; (2)AB 1∥平面A 1C 1C .证明:(1)∵二面角A 1ABC 是直二面角,四边形A 1ABB 1为正方形,∴AA 1⊥平面BAC . 又∵AB =AC ,BC =2AB ,∴∠CAB =90°,即CA ⊥AB . ∴AB ,AC ,AA 1两两互相垂直.建立如图所示的空间直角坐标系Axyz ,设AB =2,则A (0,0,0),B 1(0,2,2),A 1(0,0,2),C (2,0,0),C 1(1,1,2).∴A 1B 1→=(0,2,0),A 1A →=(0,0,-2),AC →=(2,0,0).设平面AA 1C 的一个法向量n =(x ,y ,z ),则⎩⎨⎧n ·A 1A →=0,n ·AC→=0,即⎩⎪⎨⎪⎧-2z =0,2x =0,即⎩⎪⎨⎪⎧x =0,z =0.取y =1,则n =(0,1,0). ∴A 1B 1→=2n ,即A 1B 1→∥n . ∴A 1B 1⊥平面AA 1C .(2)易知AB 1→=(0,2,2),A 1C 1→=(1,1,0),A 1C →=(2,0,-2). 设平面A 1C 1C 的一个法向量m =(x 1,y 1,z 1),则⎩⎨⎧m ·A 1C 1→=0,m ·A 1C →=0,即⎩⎪⎨⎪⎧x 1+y 1=0,2x 1-2z 1=0.令x 1=1,则y 1=-1,z 1=1,即m =(1,-1,1). ∴AB 1→·m =0×1+2×(-1)+2×1=0.∴AB 1→⊥m .又AB1⊄平面A1C1C,∴AB1∥平面A1C1C.20.(12分)如图,在四棱锥PABCD中,底面ABCD是直角梯形,∠ADC=90°,AB∥CD,AB=2CD.平面PAD⊥平面ABCD,PA=PD,点E在PC上,DE⊥平面PAC.(1)求证:PA⊥平面PCD;(2)设AD=2,若平面PBC与平面PAD所成的二面角为45°,求DE的长.【解析】(1)证明:由DE⊥平面PAC,得DE⊥PA.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊥AD,所以CD⊥平面PAD.所以CD⊥PA.又CD∩DE=D,所以PA⊥平面PCD.(2)解:取AD的中点O,连接PO.因为PA=PD,所以PO⊥AD.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以PO⊥平面ABCD,以O为坐标原点建立如图所示的空间直角坐标系Oxyz,由(1)得PA⊥PD,由AD=2得PA=PD=2,PO=1.设CD=a,则P(0,0,1),D(0,1,0),C(a,1,0),B(2a,-1,0),则BC=(-a,2,0),PC=(a,1,-1).设m =(x ,y ,z )为平面PBC 的法向量,由⎩⎨⎧m ·BC =0,m ·PC =0,得⎩⎪⎨⎪⎧-ax +2y =0,ax +y -z =0.令x =2,则y =a ,z =3a ,故m =(2,a,3a )为平面PBC 的一个法向量. 由(1)知n =DC =(a,0,0)为平面PAD 的一个法向量.由|cos 〈m ,n 〉|=m ·n|m ||n |=|2a |a10a 2+4=22,解得a =105,即CD =105.所以在Rt △PCD 中,PC =2155. 由等面积法可得DE =CD ·PDPC =33.21.(12分)(2019年广东广州期末)如图,平面ABDE ⊥平面ABC ,△ABC 是等腰直角三角形,AC =BC =4,四边形ABDE 是直角梯形,BD ∥AE ,BD ⊥BA ,BD =12AE =2,O ,M分别为CE ,AB 的中点.(1)求异面直线AB 与CE 所成角的大小; (2)求直线CD 与平面ODM 所成角的正弦值.解:(1)∵DB ⊥BA ,平面ABDE ⊥平面ABC ,平面ABDE ∩平面ABC =AB ,DB ⊂平面ABDE ,∴DB ⊥平面ABC .∵BD ∥AE ,∴EA ⊥平面ABC .如图,以C 为坐标原点,分别以CA ,CB 所在直线为x 轴,y 轴,以过点C 且与EA 平行的直线为z 轴,建立空间直角坐标系.∵AC =BC =4,BD =12AE =2,∴C (0,0,0),A (4,0,0),B (0,4,0),E (4,0,4). ∴AB →=(-4,4,0),CE →=(4,0,4). ∴cos 〈AB →,CE →〉=-1642×42=-12.∴AB 与CE 所成角的大小为π3.(2)由(1)知O (2,0,2),D (0,4,2),M (2,2,0),∴CD →=(0,4,2),OD →=(-2,4,0),MD →=(-2,2,2). 设平面ODM 的法向量为n =(x ,y ,z ),则由⎩⎨⎧n ·OD→=0,n ·MD→=0,得⎩⎪⎨⎪⎧-2x +4y =0,-2x +2y +2z =0.令x =2,则y =1,z =1,则n =(2,1,1). 设直线CD 与平面ODM 所成的角为θ,则sin θ=|cos 〈n ,CD →〉|=|CD →·n ||CD →||n |=3010.∴直线CD 与平面ODM 所成角的正弦值为3010.22.(12分)(2020年福建泉州模拟)如图1,在四边形ABCD 中,AD ∥BC ,∠BAD =90°,AB =23,BC =4,AD =6,E 是AD 上的点,AE =13AD ,P 为BE 的中点,将△ABE 沿BE折起到△A 1BE 的位置,使得A 1C =4,如图2.(1)求证:平面A 1CP ⊥平面A 1BE ; (2)求二面角BA 1PD 的余弦值.【解析】(1)证明:如图,连接AP ,PC .∵在四边形ABCD 中,AD ∥BC ,∠BAD =90°,AB =23,BC =4,AD =6,E 是AD上的点,AE =13AD ,P 为BE 的中点,∴BE =4,∠ABE =30°,∠EBC =60°,BP =2. ∴PC =23.∴BP 2+PC 2=BC 2.∴BP ⊥PC .∵A 1P =AP =2,A 1C =4,∴A 1P 2+PC 2=A 1C 2. ∴PC ⊥A 1P .∵BP ∩A 1P =P ,∴PC ⊥平面A 1BE . ∵PC ⊂平面A 1CP ,∴平面A 1CP ⊥平面A 1BE .(2)解:如图,以P 为坐标原点,PB 所在直线为x 轴,PC 所在直线为y 轴,过P 作平面BCDE 的垂线为z 轴,建立空间直角坐标系,则A 1(-1,0,3),P (0,0,0),D (-4,23,0),∴PA 1=(-1,0,3), PD =(-4,23,0).设平面A 1PD 的法向量为m =(x ,y ,z ),则⎩⎨⎧m ·PA 1=0,m ·PD =0,即⎩⎪⎨⎪⎧-x +3z =0,-4x +23y =0.取x =3,得m =(3,2,1).易知平面A 1PB 的一个法向量n =(0,1,0), 则cos 〈m ,n 〉=m ·n |m||n|=22.由图可知二面角BA 1PD 是钝角, ∴二面角BA 1PD 的余弦值为-22.。

2019-2020学年人教A版高中数学选修2-1 章末评估验收(三) Word版含答案

2019-2020学年人教A版高中数学选修2-1 章末评估验收(三) Word版含答案

章末评估验收(三)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a ,b ,c 是不共面的三个向量,则能构成一个基底的一组向量是( ) A .2a ,a -b ,a +2b B .2b ,b -a ,b +2a C .a ,2b ,b -c D .c ,a +c ,a -c答案:C2.空间直角坐标中A (1,2,3),B (-1,0,5),C (3,0,4),D (4,1,3),则直线AB 与CD 的位置关系是( )A .平行B .垂直C .相交但不垂直D .无法确定 解析:因为AB →=(-2,-2,2),CD →=(1,1,-1), 又因为AB →=-2CD →,所以AB →∥CD →,即AB ∥CD .答案:A3.已知a =(2x ,1,3),b =(1,-2y ,9),如果a 与b 为共线向量,则( ) A .x =1,y =1 B .x =12,y =-12 C .x =16,y =-32 D .x =-16,y =32答案:C4.已知a =3i +2j -k ,b =i -j +2k ,则5a 与3b 的数量积等于( ) A .-15 B .-5 C .-3D .-1解析:a =(3,2,-1),b =(1,-1,2),所以5a ·3b =15a ·b =-15. 答案:A5.已知a ·b =0,|a |=2,|b |=3,且(3a +2b )·(λa -b )=0,则λ等于( ) A.32B .-32C .±32D .1答案:A6.已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A .(-1,1,0) B .(1,-1,0) C .(0,-1,1)D .(-1,0,1)解析:利用向量数量积公式的变形公式cos 〈a ,b 〉=a·b|a||b|求向量的夹角,各项逐一验证.选项B 中cos 〈a ,b 〉=a·b |a||b|=1×12×2=12,所以〈a ,b 〉=60°.答案:B7.在平行六面体ABCD -EFGH 中,若AG →=xAB →-2yBC →+3zDH →,则x +y +z 等于( )A.76B.23C.56D .1解析:AG →=AB →+BC →+DH →,又AG →=xAB →-2yBC →+3zDH →,则x =1,y =-12,z =13,则x +y +z =1-12+13=56,故选C.答案:C8.如图,在正方体ABCD ­A 1B 1C 1D 1中,以D 为原点建立空间直角坐标系,E 为BB 1的中点,F 为A 1D 1的中点,则下列向量中,能作为平面AEF 的法向量的是( )A .(1,-2,4)B .(-4, 1,-2)C .(2,-2,1)D .(1,2,-2)答案:B9.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,向量BA1→与向量AC →所成的角为( )A .60°B .150°C .90°D .120°解析:由条件知,|BA1→|=2a ,|AC →|=2a ,BA1→·AC →=(AA1→-AB →)·(AB →+AD →)=AA1→·AB →-|AB →|2+AA1→·AD →-AB →·AD →=-|AB →|2-AB →·AD →=-a 2,所以cos 〈BA1→,AC →〉=BA1→·AC →|BA1→||AC →|=-a22a·2a =-12.所以向量BA1→与AC →所成的角为120°,故选D.答案:D10.已知a +b +c =0,|a |=2,|b |=3,|c |=4,则向量a 与b 之间的夹角〈a ,b 〉为( ) A .30° B .45° C .60°D .以上都不对解析:由已知a +b +c =0,得a +b =-c ,则(a +b )2=|a |2+|b |2+2a ·b =|c |2,由此可得a ·b =32.从而cos 〈a ,b 〉=a·b |a||b|=14.结合选项易知选D.答案:D11.如图,在正方体ABCD ­A1B 1C 1D 1中,下面结论错误的是( )A .BD ∥平面CB 1D 1 B .AC 1⊥BDC .AC 1⊥平面CB 1D 1 D .向量AD →与CB1→的夹角为60°答案:D12.二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为( )A .150°B .45°C .60°D .120°解析:由条件,知CA →·AB →=0,AB →·BD →=0,CD →=CA →+AB →+BD →.所以|CD →|2=|CA →|2+|AB →|2+|BD →|3+2CA →·AB →+2AB →·BD →+2CA →·BD →=62+42+82+2×6×8cos 〈CA →,BD →〉=(217)2,所以cos 〈CA →, BD →〉=-12,〈CA →,BD →〉=120°,所以二面角的大小为60°.答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知a =(2,-1,0),b =(k ,0, 1),若〈a ,b 〉=120°,则k =________.解析:因为cos 〈a ,b 〉=a·b |a||b|=2k 5×k2+1=-12<0,所以k <0,且k 2=511.所以k =-5511.答案:-551114.已知a =(x ,2,-4),b =(-1,y ,3),c =(1,-2,z ),且a ,b ,c 两两垂直,则(x ,y ,z )=________.答案:(-64,-26,-17)15.非零向量e 1,e 2不共线,使ke 1+e 2与e 1+ke 2共线的k 的值是________.解析:若ke 1+e 2与e 1+ke 2共线,则ke 1+e 2=λ(e 1+ke 2),所以⎩⎪⎨⎪⎧k =λ,λk =1,所以k =±1.答案:±116.在正三棱柱ABC -A 1B 1C 1中,所有棱长均为1,则点B 1到平面ABC 1的距离为________. 解析:建立如图所示的空间直角坐标系,则C (0,0,0),A ⎝⎛⎭⎪⎫32,12,0, B (0,1,0),B 1(0,1,1),C 1(0,0,1),则C1A →=⎝ ⎛⎭⎪⎫32,12,-1,C1B1→=(0,1,0),C1B →=(0,1,-1),设平面ABC 1的法向量为n =(x ,y ,1),则有⎩⎪⎨⎪⎧C1A →·n=0,C1B →·n=0.解得n =⎝ ⎛⎭⎪⎫33,1,1,则d =|C1B1→·n||n|=113+1+1=217. 答案:217三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知四边形ABCD 的顶点分别是A (3,-1,2),B (1,2,-1),C (-1,1,-3),D (3,-5,3).求证:四边形ABCD 是一个梯形.证明:因为AB →=(1,2,-1)-(3,-1,2)=(-2,3,-3),CD →=(3,-5,3)-(-1,1,-3)=(4,-6,6),因为-24=3-6=-36,所以AB →和CD →共线,即AB ∥CD .又因为AD →=(3,-5,3)-(3,-1,2)=(0,-4,1),BC →=(-1,1,-3)-(1,2,-1)=(-2,-1,-2),因为0-2≠-4-1≠1-2,所以AD →与BC →不平行,所以四边形ABCD 为梯形.18.(本小题满分12分)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)求a 和b 的夹角θ的余弦值;(2)若向量ka +b 与ka -2b 互相垂直,求k 的值.解:a =AB →=(-1,1,2)-(-2,0,2)=(1,1,0), b =AC →=(-3,0,4)-(-2,0,2)=(-1,0,2).(1)cos θ=a·b |a||b|=-1+0+02×5=-1010,所以a 与b 的夹角θ的余弦值为-1010. (2)ka +b =(k ,k ,0)+(-1,0,2)=(k -1,k ,2),ka -2b =(k ,k ,0)-(-2,0,4)=(k +2,k ,-4),所以(k -1,k ,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0. 即2k 2+k -10=0,所以k =-52或k =2.19.(本小题满分12分)如图,在直三棱柱ABC ­A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4.(1)证明:AC ⊥BC 1;(2)求二面角C 1­AB ­C 的余弦值大小.解:直三棱柱ABC ­A 1B 1C 1中,AC =3,BC =4,AB =5,故AC ,BC ,CC 1两两垂直,建立空间直角坐标系(如图),则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4).(1)证明:AC →=(-3,0,0),BC1→=(0,-4,4), 所以AC →·BC1→=0.故AC ⊥BC 1.(2)解:平面ABC 的一个法向量为m =(0,0,1),设平面C 1AB 的一个法向量为n =(x ,y ,z ),AC1→=(-3,0,4),AB →=(-3,4,0), 由⎩⎨⎧n·AC1→=0,n·AB →=0.得⎩⎪⎨⎪⎧-3x +4z =0,-3x +4y =0,令x =4,则y =3,z =3,n =(4,3,3), 故cos 〈m ,n 〉=334=33434.即二面角C 1­AB ­C 的余弦值为33434. 20.(本小题满分12分)如图,在直三棱柱ABC -A 1B 1C 1中,AC =3,AB =5,BC =4,AA 1=4,点D 是AB 的中点.(1)求证:AC ⊥BC 1; (2)求证:AC 1∥平面CDB 1.证明:因为直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5,所以AC ,BC ,C 1C 两两垂直.如图,以C 为坐标原点,直线CA ,CB ,CC 1分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4),D ⎝ ⎛⎭⎪⎫32,2,0.(1)因为AC →=(-3,0,0),BC1→=(0,-4,4), 所以AC →·BC1→=0,所以AC ⊥BC 1.(2)因为CB 1与C 1B 的交点为E ,所以E (0,2,2).因为DE →=⎝ ⎛⎭⎪⎫-32,0,2,AC1→=(-3,0,4), 所以DE →=12AC1→,所以DE →∥AC1→.因为DE ⊂平面CDB 1,AC 1⊄平面CDB 1, 所以AC 1∥平面CDB 1.21.(本小题满分12分)如图,在Rt △ABC 中,AB =BC =4,点E 在线段AB 上.过点E 作EF ∥BC 交AC 于点F ,将△AEF 沿EF 折起到△PEF 的位置(点A 与P 重合),使得∠PEB =60°.(1)求证:EF ⊥PB .(2)试问:当点E 在线段AB 上移动时,二面角P ­FC ­B 的平面角的余弦值是否为定值?若是,求出其定值;若不是,说明理由.(1)证明:在Rt △ABC 中,因为EF ∥BC ,所以EF ⊥AB ,所以EF ⊥EB ,EF ⊥EP , 又因为EB ∩EP =E ,EB ,EP ⊂平面PEB ,所以EF ⊥平面PEB . 又因为PB ⊂平面PEB ,所以EF ⊥PB .(2)解:在平面PEB 内,过点P 作PD ⊥BE 于点D , 由(1)知EF ⊥平面PEB ,所以EF ⊥PD ,又因为BE ∩EF =E ,BE ,EF ⊂平面BCFE ,所以PD ⊥平面BCFE . 在平面PEB 内过点B 作直线BH ∥PD ,则BH ⊥平面BCFE .如图所示,以B 为坐标原点,BC →,BE →,BH →的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.设PE =x (0<x <4),又因为AB =BC =4, 所以BE =4-x ,EF =x . 在Rt △PED 中,∠PED =60°, 所以PD =32x ,DE =12x ,所以BD =4-x -12x =4-32x , 所以C (4,0,0),F (x ,4-x ,0),P ⎝⎛⎭⎪⎫0,4-32x ,32x . 从而CF →=(x -4,4-x ,0),CP →=⎝⎛⎭⎪⎫-4,4-32x ,32x .设n 1=(x 0,y 0,z 0)是平面PCF 的一个法向量,所以⎩⎨⎧n1·CF →=0,n1·CP →=0,即⎩⎪⎨⎪⎧x0(x -4)+y0(4-x )=0,-4x0+⎝ ⎛⎭⎪⎫4-32x y0+32xz0=0,所以⎩⎨⎧x0-y0=0,3y0-z0=0,取y 0=1,得n 1=(1,1,3)是平面PFC 的一个法向量. 又平面BFC 的一个法向量为n 2=(0,0,1), 设二面角P ­FC ­B 的平面角为α, 则cos α=|cos 〈n 1,n 2〉|=⎪⎪⎪⎪⎪⎪n1·n2|n1||n2|=155. 因此当点E 在线段AB 上移动时,二面角P ­FC ­B 的平面角的余弦值为定值,且定值为155. 22.(本小题满分12分)如图,四边形ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF ∥DE ,DE =3AF ,BE 与平面ABCD 所成的角为60°.(1)求证:AC ⊥平面BDE ; (2)求二面角F ­BE ­D 的余弦值;(3)设点M 是线段BD 上一个动点,试确定点M 的位置,使得AM ∥平面BEF ,并证明你的结论. (1)证明:因为DE ⊥平面ABCD ,所以DE ⊥AC , 因为四边形ABCD 是正方形,所以AC ⊥BD , 又DE ∩BD =D ,所以AC ⊥平面BDE . (2)解:因为DE ⊥平面ABCD ,所以∠EBD 就是BE 与平面ABCD 所成的角,即∠EBD =60°, 所以ED BD=3.由AD =3,得DE =36,AF =6.如图,分别以DA ,DC ,DE 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (3,0,0),F (3,0,6),E (0,0,36),B (3,3,0),C (0,3,0),所以BF →=(0,-3,6),EF →=(3,0,-26).设平面BEF 的一个法向量为n =(x ,y ,z ),则⎩⎨⎧n·BF →=0,n·EF →=0,即⎩⎨⎧-3y +6z =0,3x -26z =0.令z =6,则n =(4,2,6). 因为AC ⊥平面BDE ,所以CA →=(3,-3,0)为平面BDE 的一个法向量, 所以cos 〈n ,CA →〉=n·CA →|n||CA →|=626×32=1313.故二面角F ­BE ­D 的余弦值为1313. (3)解:依题意,设M (t ,t ,0)(t >0),则AM →=(t -3,t ,0),因为AM ∥平面BEF ,所以AM →·n =0,即4(t -3)+2t =0,解得t =2.所以点M 的坐标为(2,2,0),此时DM →=23DB →,所以点M 是线段BD 上靠近点B 的三等分点.。

高中数学 第三章 空间向量与立体几何章末复习课 新人教A版选修2-1

高中数学 第三章 空间向量与立体几何章末复习课 新人教A版选修2-1

【金版学案】2016-2017学年高中数学 第三章 空间向量与立体几何章末复习课 新人教A 版选修2-1[整合·网络构建][警示·易错提醒]1.几种空间向量之间的区别与联系(1)a 与其相反向量-a 为共线向量(平行向量).(2)相等向量为共线向量(平行向量),但共线向量(平行向量)不一定为相等向量. (3)若两个非零向量共线,则这两个向量所在的直线可能平行,也可能重合,空间中任意两个向量都是共面的,这些概念一定要准确理解.2.向量的数量积运算与实数的乘法运算的不同点 (1)a ·b =0 a =0或b =0. (2)a ·c =a ·b c =b .(3)(a ·b )c a ·(b ·c ) (4)a ·b =ka =kb ⎝⎛⎭⎪⎫或b =k a.3.向量共线充要条件及注意点(1)对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb . (2)注意点:l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP →=OA →+ta .(3)坐标表示下的向量平行条件.设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R),这一形式不能等价于a 1b 1=a 2b 2=a 3b 3,只有在向量b 与三个坐标轴都不平行时才可以这样写.4.向量共面充要条件及注意点(1)若两个向量a ,b 不共线,则向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =xa +yb .(2)注意点:①空间一点P 位于平面ABC 内的充要条件是存在有序实数对(x ,y ),使AP →=xAB →+yAC →; ②空间任意一点O 和不共线的三点A ,B ,C ,满足向量关系式OP →=xOA →+yOB →+zOC →(其中x +y +z =1),则点P 与点A ,B ,C 共面.5.利用向量法求空间角的注意事项(1)利用向量法求空间角时,要注意空间角的取值范围与向量夹角取值范围的区别.例如,若△ABC 的内角∠BAC =θ,则BA →与AC →夹角为π-θ,而非θ.(2)特别地,二面角的大小等于其法向量的夹角或其补角,到底等于哪一个,要根据题目的具体情况看二面角的大小.(3)对所用的公式要熟练,变形时运用公式要正确并注意符号等细节,避免出错.专题一 空间向量及其运算空间向量及其运算的知识与方法与平面向量及其运算类似,是平面向量的拓展,主要考查空间向量的共线与共面以及数量积运算,是用向量法求解立体几何问题的基础.[例1] 沿着正四面体O ­ABC 的三条棱OA →、OB →、OC →的方向有大小等于1、2和3的三个力f 1,f 2,f 3.试求此三个力的合力f 的大小以及此合力与三条棱所夹角的余弦值.解:如图所示,用a ,b ,c 分别代表棱OA →、OB →、OC →上的三个单位向量,则f 1=a ,f 2=2b ,f 3=3c , 则f =f 1+f 2+f 3=a +2b +3c ,所以|f |2=(a +2b +3c )(a +2b +3c )=|a |2+4|b |2+9|c |2+4a ·b +6a ·c +12b ·c =14+4cos 60°+6cos 60°+12cos 60°=14+2+3+6=25,所以|f |=5,即所求合力的大小为5.且cos 〈f ,a 〉=f ·a |f |·|a |=|a |2+2a ·b +3a ·c5=1+1+325=710,同理可得:cos 〈f ,b 〉=45,cos 〈f ,c 〉=910.归纳升华空间向量的运算有加、减、数乘和数量积的运算,有三角形法则、平行四边形法则、首尾相接的多边形法则,通过这些运算可以对向量多项式进行化简、整理、求值,可以用来解决共线、共面、平行、垂直等问题,向量运算是解决数学问题的重要工具,应该熟练掌握,灵活运用.在不利于建立空间直角坐标系的情况下,选择恰当的基底,通过基向量的运算解决数学问题是十分有效的数学方法,应当高度重视.[变式训练] 如图,在四棱锥S ­ABCD 中,底面ABCD 是边长为1的正方形,S 到A 、B 、C 、D 的距离都等于2.给出以下结论:①SA →+SB →+SC →+SD →=0;②SA →+SB →-SC →-SD →=0;③SA →-SB →+SC →-SD →=0;④SA →·SB →=SC →·SD →;⑤SA →·SC →=0.其中正确结论的序号是________.解析:容易推出:SA →-SB →+SC →-SD →=BA →+DC →=0,所以③正确;又因为底面ABCD 是边长为1的正方形,SA =SB =SC =SD =2,所以SA →·SB →=2×2×cos ∠ASB ,SC →·SD →=2×2×cos ∠CSD ,而∠ASB =∠CSD ,于是SA →·SB →=SC →·SD →,因此④正确,其余三个都不正确,故正确结论的序号是③④.答案:③④专题二 利用空间向量证明空间中的位置关系用向量作为工具来研究几何,真正把几何的形与代数中的数有机结合,给立体几何的研究带来了极大的便利.利用空间向量可以方便地论证空间中的一些线面位置关系,如线面平行、线面垂直、面面平行、面面垂直等.[例2] 正方体ABCD ­A 1B 1C 1D 1中,E 、F 分别是BB 1、CD 的中点,求证:平面AED ⊥平面A 1FD 1.证明:如图,建立空间直角坐标系D ­xyz .设正方体棱长为1,则E ⎝ ⎛⎭⎪⎫1,1,12、D 1(0,0,1),F ⎝ ⎛⎭⎪⎫0,12,0、A (1,0,0). 所以DA →=(1,0,0)=D 1A 1→,DE →=⎝⎛⎭⎪⎫1,1,12,D 1F →=⎝⎛⎭⎪⎫0,12,-1.设m =(x 1,y 1,z 1),n =(x 2,y 2,z 2)分别是平面AED 和A 1FD 1的一个法向量, 由⎩⎨⎧m ·DA →=0,m ·DE →=0⇒⎩⎪⎨⎪⎧x 1=0,x 1+y 1+12z 1=0. 令y 1=1,得m =(0,1,-2).又由⎩⎨⎧n ·D 1A 1→=0,n ·D 1F →=0⇒⎩⎪⎨⎪⎧x 2=0,12y 2-z 2=0.令z 2=1,得n =(0,2,1).因为m ·n =(0,1,-2)×(0,2,1)=0, 所以m ⊥n ,故平面AED ⊥平面A 1FD 1. 归纳升华1.证明两条直线平行,只需证明这两条直线的方向向量是共线向量. 2.证明线面平行的方法:(1)证明直线的方向向量与平面的法向量垂直;(2)证明平面内存在一个向量与已知直线的方向向量共线. 3.证明面面平行的方法:(1)转化为线线平行或线面平行处理; (2)证明两个平面的法向量是共线向量.4.证明线线垂直的方法是证明这两条直线的方向向量互相垂直. 5.证明线面垂直的方法:(1)证明直线的方向向量与平面的法向量是共线向量;(2)证明直线的方向向量与平面内的两个不共线的向量互相垂直. 6.证明面面垂直的方法:(1)转化为线线垂直或线面垂直处理; (2)证明两个平面的法向量互相垂直.[变式训练] 如图所示,已知PA ⊥平面ABCD ,ABCD 为矩形,PA =AD ,M ,N 分别为AB ,PC 的中点.求证:(1)MN ∥平面PAD ; (2)平面PMC ⊥平面PDC .证明:(1)如图所示,以A 为坐标原点,AB ,AD ,AP 所在的直线分别为x ,y ,z 轴建立空间直角坐标系A ­xyz .设PA =AD =a ,AB =b ,则有P (0,0,a ),A (0,0,0),D (0,a ,0),C (b ,a ,0),B (b ,0,0).因为M ,N 分别为AB ,PC 中点,所以M ⎝ ⎛⎭⎪⎫b 2,0,0,N ⎝ ⎛⎭⎪⎫b 2,a 2,a2. 所以MN →=⎝ ⎛⎭⎪⎫0,a 2,a 2. 法一:AP →=(0,0,a ),AD →=(0,a ,0), 所以MN →=12AD →+12AP →.又因为MN ⊄平面PAD ,所以MN ∥平面PAD . 法二:易知AB →为平面PAD 的一个法向量. AB →=(b ,0,0),所以AB →·MN →=0,所以AB →⊥MN →, 又MN ⊄平面PAD ,所以MN ∥平面PAD .(2)由(1)可知:P (0,0,a ),C (b ,a ,0),M ⎝ ⎛⎭⎪⎫b2,0,0,D (0,a ,0). 所以PC →=(b ,a ,-a ),PM →=⎝ ⎛⎭⎪⎫b 2,0,-a ,PD →=(0,a ,-a ).设平面PMC 的一个法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n 1·PC →=0⇒bx 1+ay 1-az 1=0n 1·PM →=0⇒b2x 1-az 1=0, 所以⎩⎪⎨⎪⎧x 1=2a b z 1y 1=-z 1,令z 1=b,则n 1=(2a ,-b ,b ). 设平面PDC 的一个法向量为n 2=(x 2,y 2,z 2), 则⎩⎨⎧n ·PC →=0⇒bx 2+ay 2-az 2=0n 2·PD →=0⇒ay 2-az 2=0,所以⎩⎪⎨⎪⎧x 2=0,y 2=z 2,令z 2=1,则n 2=(0,1,1),因为n 1·n 2=0-b +b =0,所以n 1⊥n 2. 所以平面PMC ⊥平面PDC . 专题三 利用空间向量求空间角空间角包括:异面直线所成的角(线线角)、直线与平面所成的角(线面角)、二面角(面面角).用向量法求空间角,把复杂的作角、证明、求角问题代数化,降低了思维难度,是近年来高考的一个方向.[例3] 如图①,在△ABC 中,∠ABC =60°,∠BAC =90°,AD 是BC 边上的高.沿AD 把△ABD 折起,得如图②所示的三棱锥,其中∠BDC =90°.(1)证明:平面ABD ⊥平面BDC ;(2)设E 为BC 的中点,求AE →与DB →夹角的余弦值. (1)证明:因为折起前AD 是BC 边上的高, 所以当△ABD 折起后,AD ⊥DC ,AD ⊥DB .又因为DB ∩DC =D ,所以AD ⊥平面BDC . 因为AD ⊂平面ABD ,所以平面ABD ⊥平面BDC .(2)解:由∠BDC =90°及(1),知DA ,DB ,DC 两两垂直.不妨设|DB |=1,以D 为坐标原点,以DB ,DC ,DA 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,易得D (0,0,0),B (1,0,0),C (0,3,0),A (0,0,3).因为E 为BC 中点,所以E ⎝ ⎛⎭⎪⎫12,32,0. 所以AE →=⎝ ⎛⎭⎪⎫12,32,-3, DB →=(1,0,0).所以cos(AE →,DB →)=AE →·DB→|AE →||DB →|=12224×1=2222. 故AE →与DB →夹角的余弦值是2222.归纳升华1.(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2所成的角θ满足cos θ=|cos 〈m 1,m 2〉|.(2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α所成的角θ满足sin θ=|cos 〈m ,n 〉|.(3)求二面角的大小:①如图①,AB ,CD 是二面角α­l ­β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.②如图②③,n 1,n 2分别是二面角α­l ­β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或π-cos 〈n 1,n 2〉.2.对于折叠问题,应注意确定图形在折起前后不变的量,如角的大小不变、线段长度不变、线线关系不变,然后根据折叠后所得几何体的特征建立空间直角坐标系,进一步用坐标法解决相关问题.[变式训练] 如图①,在等腰直角三角形ABC 中,∠A =90°,BC =6,D ,E 分别是AC ,AB 上的点,CD =BE =2,O 为BC 的中点.将△ADE 沿DE 折起,得到如图②所示的四棱锥A ′­BCDE ,其中A ′O = 3.图① 图②(1)证明:A ′O ⊥平面BCDE ;(2)求二面角A ′­CD ­B 的平面角的余弦值. (1)证明:由题意,易得OC =3,AC =32,AD =2 2. 连接OD ,OE ,在△OCD 中,由余弦定理可得OD =OC 2+CD 2-2OC ·CD cos 45°= 5.由翻折不变性可知A ′D =22, 所以A ′O 2+OD 2=A ′D 2, 所以A ′O ⊥OD .同理可证A ′O ⊥OE ,又OD ∩OE =O , 所以A ′O ⊥平面BCDE .(2)解:法一:过O 作OH ⊥CD 交CD 的延长线于H ,连接A ′H ,如图③.图③因为A ′O ⊥平面BCDE . 所以A ′H ⊥CD ,所以∠A ′HO 为二面角A ′­CD ­B 的平面角. 结合OC =3,∠BCD =45°,得OH =322,从而A ′H =OH 2+OA ′2=302. 所以cos ∠A ′HO =OH A ′H =155,所以二面角A ′­CD ­B 的平面角的余弦值为155. 法二(向量法).以O 点为原点,建立空间直角坐标系O ­xyz 如图④所示,图④则A ′(0,0,3),C (0,-3,0),D (1,-2,0),所以CA ′→=(0,3,3),DA →′=(-1,2,3).设n =(x ,y ,z )为平面A ′CD 的法向量,则⎩⎨⎧n ·CA ′→=0,n ·DA ′→=0,即⎩⎨⎧3y +3z =0,-x +2y +3z =0,解得⎩⎨⎧y =-x ,z =3x , 令x =1,得n =(1,-1,3),即n =(1,-1,3)为平面A ′CD 的一个法向量. 由(1)知,OA ′→=(0,0,3)为平面CDB 的一个法向量,所以cos 〈n ,OA ′→〉=n ·OA ′→|n ||OA ′→|=33×5=155,即二面角A ′­CD ­B 的平面角的余弦值为155. 专题四 探索性问题探索性问题即在一定条件下论证会不会出现某个结论.这类题型常以适合某种条件的结论“存在”“不存在”“是否存在”等语句表述.解答这类问题,一般要先对结论作出肯定的假设,然后由此肯定的假设出发,结合已知条件进行推理论证.若导出合理的结论,则存在性也随之解决;若导出矛盾,则否定了存在性.[例4] 如图,四棱锥S ­ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD .(2)若SD ⊥平面PAC ,求二面角P ­AC ­D 的大小.(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面PAC .若存在,求SE ∶EC 的值?若不存在,试说明理由.(1)证明:连接BD ,设AC 交BD 于点O ,由题意知SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O ­xyz ,如图,设底面边长为a ,则高SO =62a .于是S ⎝ ⎛⎭⎪⎫0,0,62a , D ⎝ ⎛⎭⎪⎫-22a ,0,0,C ⎝ ⎛⎭⎪⎫0,22a ,0,B ⎝ ⎛⎭⎪⎫22a ,0,0, OC →=⎝ ⎛⎭⎪⎫0,22a ,0,SD →=⎝ ⎛⎭⎪⎫-22a ,0,-62a ,OC →·SD →=0,故OC ⊥SD . 从而AC ⊥SD .(2)解:由题意知,平面PAC 的一个法向量DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,平面DAC 的一个法向量OS →=⎝⎛⎭⎪⎫0,0,62a .设所求二面角为θ,则cos θ=OS →·DS →|OS →||DS →|=32,故所求二面角P ­AC ­D 的大小为30°.(3)解:存在.假设在侧棱SC 上存在一点E ,使BE ∥平面PAC . 由(2)知DS →是平面PAC 的一个法向量.且DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS →=⎝ ⎛⎭⎪⎫0,-22a ,62a ,BC →=⎝ ⎛⎭⎪⎫-22a ,22a ,0,设CE →=tCS →,则BE →=BC →+CE →=BC →+tCS →=⎝ ⎛⎭⎪⎫-22a ,22a (1-t ),62at 由BE →·DS →=0,得t =13. 即当SE ∶EC =2∶1时,BE →⊥DS →.而BE ⊄平面PAC ,故BE ∥平面PAC .归纳升华在立体几何中,经常会遇到点、线、面处在什么位置时结论成立,或某一结论成立时需要具备什么条件,或某一结论在某一条件下,某个元素在某个位置时是否成立等类似的问题.这些问题都属探索性问题,解决这些问题仅凭几何手段有时会十分困难,我们借助向量将“形”转化为“数”,把点、线、面的位置数量化,通过代数式的运算就可得出相应的结论.这样可以把许多几何问题进行类化,公式化,使问题的解决变得有“法”可依,有路可寻.[变式训练] 如图①所示,直角梯形ABCD 中,∠BCD =90°,AD ∥BC ,AD =6,DC =BC =3.过点B 作BE ⊥AD 于点E ,P 是线段DE 上的一个动点.将△ABE 沿BE 向上折起,使平面AEB ⊥平面BCDE ,连结PA ,PC ,AC (如图②).图① 图②(1)取线段AC 的中点Q ,问:是否存在点P ,使得PQ ∥平面AEB ?若存在,求出PD 的长;若不存在,请说明理由.(2)当EP =23ED 时,求平面AEB 和平面APC 所成的锐二面角的余弦值. 解:(1)存在.当P 为DE 的中点时,满足PQ ∥平面AEB .如图,取AB 的中点M ,连接EM ,QM .由Q 为AC 的中点,得MQ ∥BC ,且MQ =12BC , 又PE ∥BC ,且PE =12BC , 所以PE ∥MQ ,PE =MQ ,所以四边形PEMQ 为平行四边形,故ME ∥PQ .又PQ ⊄平面AEB ,ME ⊂平面AEB ,所以PQ ∥平面AEB .从而存在点P ,使得PQ ∥平面AEB ,此时PD =32. (2)由平面AEB ⊥平面BCDE ,交线为BE ,且AE ⊥BE ,所以AE ⊥平面BCDE .又BE ⊥DE ,以E 为原点,分别以EB →,ED →,EA →为x 轴、y 轴、z 轴的正方向建立空间直角坐标系(如图),则E (0,0,0),B (3,0,0),A (0,0,3),P (0,2,0),C (3,3,0).所以PC →=(3,1,0),PA →=(0,-2,3).平面AEB 的一个法向量n 1=(0,1,0),设平面APC 的法向量为n 2=(x ,y ,z ),由⎩⎨⎧n 2·PC →=0,n 2·PA →=0,得⎩⎪⎨⎪⎧3x +y =0,-2y +3z =0. 取y =3,得n 2=(-1,3,2),所以cos 〈n 1,n 2〉=31×14=31414, 即平面AEB 和平面APC 所成的锐二面角的余弦值为31414. 专题五 转化与化归思想空间向量的坐标及运算为解决立体几何中的夹角、距离、垂直、平行等问题提供了工具,因此我们要善于把这些问题转化为向量的夹角、模、垂直、平行等问题,利用向量方法解决.将几何问题化归为向量问题,然后利用向量的性质进行运算和论证,再将结果转化为几何问题.这种“从几何到向量,再从向量到几何”的思想方法,在本章尤为重要.[例5] 如图所示,在矩形ABCD 中,AB =4,AD =3,沿对角线AC 折起,使D 在平面ABC 上的射影E 恰好在AB 上,求二面角B ­AC ­D 的余弦值.解:如图所示,作DG ⊥AC 于G ,BH ⊥AC 于H ,在Rt △ADC 中,AC =AD 2+CD 2=5,cos ∠DAC =AD AC =35. 在Rt △ADG 中,AG =AD cos ∠DAC =3×35=95,DG =AD 2-AG 2=125,同理cos ∠BCA =35,CH =95,BH =125, 因为AD →·BC →=(AE →+ED →)·BC →=AE →·BC →+ED →·BC →=0,所以GD →·HB →=(GA →+AD →)·(HC →+CB →)=GA →·HC →+GA →·CB →+AD →·HC →+AD →·CB →=-95×95+95×3×35+3×95×35+0=8125, 又|GD →|·|HB →|=14425,所以cos 〈GD →,HB →〉=916, 即所求二面角B ­AC ­D 的余弦值为916. 归纳升华1.转化与化归思想在立体几何中的应用.在立体几何中,体现转化与化归思想的问题有:(1)把立体几何问题转化为向量问题,通过空间向量的运算求出立体几何的问题.(2)立体几何问题之间的转化,例如:①空间图形问题转化为平面几何问题;②线面角、二面角转化为平面角;③空间各种距离之间的相互转化等.这些都体现了转化与化归的思想.2.本例中,求二面角的大小,通过作出垂直于棱的两个向量,转化为求这两个向量的夹角,但应注意两向量的始点应在二面角的棱上.[变式训练] 已知ABCD 是边长为4的正方形,E ,F 分别是AD ,AB 的中点,GC 垂直于ABCD 所在的平面,且GC =2,求点B 到平面FEG 的距离.解:法一:如图,以C 为坐标原点,CD ,CB ,CG 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则G (0,0,2),B (0,4,0),A (4,4,0),D (4,0,0),E (4,2,0),F (2,4,0),故GE →=(4,2,-2),GF →=(2,4,-2).设n 0=(x ,y ,z )是平面EFG 的单位法向量,则有⎩⎪⎨⎪⎧|n 0|2=1,n 0·GE →=0,n 0·GF →=0,所以⎩⎪⎨⎪⎧x 2+y 2+z 2=1,2x +y -z =0,x +2y -z =0.取z >0,得x =y =111,z =311.所以n 0=111(1,1,3).又因为GB →=(0,4,-2),所以d =|n 0·GB →|= ⎪⎪⎪⎪⎪⎪111(1,1,3)·(0,4,-2)=21111, 即点B 到平面FEG 的距离为21111. 法二:设点B 到平面FEG 的距离为h .因为四边形ABCD 为正方形,E ,F 分别为DA ,AB 的中点,所以CE =CF =2 5. 所以GE =GF =26,EF =2 2.所以S △GEF =12×22×24-2=211. 因为V B ­FEG =V G ­BEF (等体积转化),所以13×211h =13×⎝ ⎛⎭⎪⎫12×2×2×2. 所以h =211=21111.。

高中数学第三章空间向量与立体几何1空间向量及其运算1空间向量及其加减法2课件新人教A版选修2

高中数学第三章空间向量与立体几何1空间向量及其运算1空间向量及其加减法2课件新人教A版选修2

于平面MAB内的充要 条件是存在有序实数

对(x,y),使 MP
= x MA+y MB ,
或对空间任意一点O
若在l上取 AB =a,则①式可化 来说,有 OP =OM

OP= OA +t AB.
+xMA+ y MB .
小结
1.λa是一个向量.当λ=0或a=0时,λa=0. 2.平面向量的数乘运算的运算律推广到空间向量的数乘运 算,结论仍然成立. 3.共线向量的充要条件及其推论是证明共线(平行)问题的重 要依据,条件b≠0不可遗漏.
4.直线的方向向量是指与直线平行或共线的向量.一条 直线的方向向量有无限多个,它们的方向相同或相反.
5.共面向量的充要条件给出了空间平面的向量表示式, 说明空间中任意一个平面都可以由一点及两个不共线的平面 向量表示出来.另外,还可以用OP =xOA+yOB+zOC ,且 x +y+z=1 判断 P,A,B,C 四点共面.
跟踪训练
5.在下列条件中,使 M 与 A,B,C 一定共面的是( ) A.OM =3OA-2OB-OC B.OM +OA+OB+OC =0 C. MA+ MB+ MC =0 D.OM =14OB-OA+12OC 解析:∵ MA+ MB+ MC =0, ∴ MA=- MB- MC , ∴M 与 A,B,C 必共面.
DF =-CF

将②代入①中,两式相加得 2 EF = AD+ BC .
所以 EF =12 AD+12BC ,即 EF 与 BC , AD共面.
[一点通] 利用向量法证明向量共面问题,关键是熟练 进行向量的表示,恰当应用向量共面的充要条件.解答本 题实质上是证明存在实数 x,y 使向量 EF =x AD+yBC 成 立,也就是用空间向量的加、减法则及运算律,结合图形, 用 AD, BC 表示 EF .

人教新课标版数学高二-数学选修2-1练习第三章《空间向量与立体几何》章末检测

人教新课标版数学高二-数学选修2-1练习第三章《空间向量与立体几何》章末检测

章末检测一、选择题1.对于向量a 、b 、c 和实数λ,下列命题中真命题是( )A .若a·b =0,则a =0或b =0B .若λa =0,则λ=0或a =0C .若a 2=b 2,则a =b 或a =-bD .若a·b =a·c ,则b =c2.已知平面α和平面β的法向量分别为m =(3,1,-5),n =(-6,-2,10),则( ) A .α⊥βB .α∥βC .α与β相交但不垂直D .以上都不对3.已知向量a =(0,2,1),b =(-1,1,-2),则a 与b 的夹角为( )A .0°B .45°C .90°D .180°4.如图,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB →=a ,AD → =b ,AA 1→=c ,则用向量a ,b ,c 可表示向量BD 1→等于( ) A .a +b +c B .a -b +c C .a +b -cD .-a +b +c5.若平面α的法向量为n ,直线l 的方向向量为a ,直线l 与平面α的夹角为θ,则下列关系式成立的是( )A .cos θ=n·a|n||a |B .cos θ=|n·a||n||a |C .sin θ=n·a|n||a |D .sin θ=|n·a||n||a |6.设A 、B 、C 、D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,则△BCD 是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定7.在以下命题中,不.正确的个数为( )①|a |-|b |=|a +b |是a ,b 共线的充要条件; ②对a ∥b ,则存在唯一的实数λ,使a =λb ;③对空间任意一点O 和不共线的三点A ,B ,C ,若OP →=2OA →-2OB →-OC →,则P ,A ,B ,C 四点共面; ④|(a·b )·c |=|a|·|b|·|c |. A .2B .3C .4D .18.已知四边形ABCD 为矩形,PA ⊥平面ABCD ,连接AC ,BD ,PB ,PC , PD ,则下列各组向量中,数量积不一定为零的是( )A.PC →与BD →B.DA →与PB →C.PD →与AB →D.PA →与CD →9.设E ,F 是正方体AC 1的棱AB 和D 1C 1的中点,在正方体的12条面对角线中,与截面A 1ECF 成60°角的对角线的数目是( )A .0B .2C .4D .610.如图,AB =AC =BD =1,AB ⊂面M ,AC ⊥面M ,BD ⊥AB , BD 与面M 成30°角,则C 、D 间的距离为( )A .1B .2 C. 2D. 311.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC 、AD的中点,则AE →·AF →的值为( )A .a 2B.12a 2 C.14a 2 D.34a 2 12.如图所示,在三棱柱ABC —A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线 EF 和BC 1的夹角是( )A .45°B .60°C .90°D .120°二、填空题13.已知P 和不共线三点A ,B ,C 四点共面且对于空间任一点O ,都有OP →=2OA →+OB→+λOC →,则λ=________.14.已知A (2,1,0),点B 在平面xOz 内,若直线AB 的方向向量是(3,-1,2),则点B 的坐标是_______________________.15.平面α的法向量为m =(1,0,-1),平面β的法向量为n =(0,-1,1),则平面α与平面β所成二面角的大小为______.16.如图所示,已知二面角α—l —β的平面角为θ (θ∈⎝⎛⎭⎫0,π2), AB ⊥BC ,BC ⊥CD ,AB 在平面N 内,BC 在l 上,CD 在平面M 内,若AB =BC =CD =1,则AD 的长为________. 三、解答题17.已知四棱锥P —ABCD 的底面是平行四边形,如图,M 是PC 的中 点,问向量PA →、MB →、MD →是否可以组成一个基底,并说明理由. 18.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 、N 分别是C 1D 1, AB 的中点,E 在AA 1上且AE =2EA 1,F 在CC 1上且CF =12FC 1,试证明ME ∥NF .19.如图,在棱长为1的正方体ABCD —A 1B 1C 1D 1中,P 是侧棱CC 1上 一点,CP =m .试确定m 使得直线AP 与平面BDD 1B 1所成角为60°. 20.已知长方体ABCD —A 1B 1C 1D 1,AB =2,AA 1=1,直线BD 与平面AA 1B 1B 所成的角为30°,F 为A 1B 1的中点.求二面角A —BF —D 的余弦值. 21.如图,在四棱锥P -ABCD 中,底面是边长为23的菱形,∠BAD =120°,且PA ⊥平面ABCD ,PA =26,M ,N 分别为PB ,PD 的中点.(1)证明:MN ∥平面ABCD ;(2)过点A 作AQ ⊥PC ,垂足为点Q ,求二面角A -MN -Q 的平 面角的余弦值.22.如图所示,在正方体ABCD —A 1B 1C 1D 1中,E 是棱DD 1的中点. (1)求直线BE 和平面ABB 1A 1所成的角的正弦值;(2)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的 结论.答案1.B 2.B 3.C 4.D 5.D 6.B 7.C 8.A 9.C 10.C 11.C 12.B 13.-2 14.(5,0,2) 15.60°或120° 16.3-2cos θ17.解 PA →、MB →、MD →不可以组成一个基底,理由如下:连接AC 、BD 相交于点O ,∵ABCD 是平行四边形, ∴O 是AC 、BD 的中点,在△BDM 中,MO →=12(MD →+MB →),在△PAC 中,M 是PC 的中点,O 是AC 的中点,则MO →=12PA →,即PA →=MD →+MB →,即DA →与MD →、MB →共面.∴PA →、MB →、MD →不可以组成一个基底. 18.证明 由平行六面体的性质ME →=MD 1→+D 1A 1→+A 1E → =12C 1D 1→-AD →+13A 1A → =-12AB →-AD →-13AA 1→,NF →=NB →+BC →+CF → =12AB →+AD →+13CC 1→ =12AB →+AD →+13AA 1→, ∴ME →=-NF →,又M ,E ,N ,F 不共线, ∴ME ∥NF .19.解 建立如图所示的空间直角坐标系,则A (1,0,0),B (1,1,0),P (0,1,m ),C (0,1,0),D (0,0,0),B 1(1,1,1), D 1(0,0,1).则BD →=(-1,-1,0),BB 1→=(0,0,1),AP →=(-1,1,m ), AC →=(-1,1,0).又由AC →·BD →=0,AC →·BB 1→=0知, AC →为平面BB 1D 1D 的一个法向量. 设AP 与平面BB 1D 1D 所成的角为θ, 则sin θ=|cos 〈AP →,AC →〉|=|AP →·AC →||AP →||AC →|=22+m 2·2 依题意得22+m 2·2=sin 60°=32,解得m =63. 故当m =63时,直线AP 与平面BDD 1B 1所成角为60°. 20.解 以点A 为坐标原点建立如图所示的空间直角坐标系,由已知AB =2,AA 1=1,可得 A (0,0,0),B (2,0,0),F (1,0,1).又AD ⊥平面AA 1B 1B ,从而直线BD 与平面AA 1B 1B 所成的角为∠DBA =30°,又AB =2,∴AD =233,从而易得D ⎝⎛⎭⎫0,233,0.易知平面AA 1B 1B 的一个法向量为m =(0,1,0),设n =(x ,y ,z )是平面BDF 的一个法向量,BF →=(-1,0,1),BD →=⎝⎛⎭⎫-2,233,0,则⎩⎪⎨⎪⎧n ·BF →=0n ·BD →=0,即⎩⎪⎨⎪⎧-x +z =0-2x +233y =0,令z =1,可得n =(1,3,1), ∴cos 〈m ,n 〉=m·n|m||n |=155. 即二面角A —BF —D 的余弦值为155. 21.(1)证明 连接BD ,因为M ,N 分别是PB ,PD 的中点,所以MN 是△PBD 的中位线, 所以MN ∥BD .又因为MN ⊄平面ABCD ,BD ⊂平面ABCD ,所以MN ∥平面ABCD .(2)解 连接AC 交BD 于O ,以O 为原点,OC ,OD 所在直线 为x ,y 轴,建立空间直角坐标系Oxyz ,如图所示. 在菱形ABCD 中,∠BAD =120°, 得AC =AB =23,BD =3AB =6. 又因为PA ⊥平面ABCD , 所以PA ⊥AC .在直角△PAC 中, AC =23,PA =26,AQ ⊥PC , 得QC =2,PQ =4. 由此知各点坐标如下:A (-3,0,0),B (0,-3,0),C (3,0,0),D (0,3,0)P (-3,0,26), M ⎝⎛⎭⎫-32,-32,6,N ⎝⎛⎭⎫-32,32,6,Q ⎝⎛⎭⎫33,0,263.设m =(x ,y ,z )为平面AMN 的法向量, 由AM →=⎝⎛⎭⎫32,-32,6,AN →=⎝⎛⎭⎫32,32,6知⎩⎨⎧32x -32y +6z =0,32x +32y +6z =0.取z =-1,得m =(22,0,-1). 设n =(x ,y ,z )为平面QMN 的法向量,由QM →=⎝⎛⎭⎫-536,-32,63,QN →=⎝⎛⎭⎫-536,32,63知 ⎩⎨⎧-536x -32y +63z =0,-536x +32y +63z =0.取z =5,得n =(22,0,5). 于是cos 〈m ,n 〉=m ·n |m |·|n |=3333.所以二面角A -MN -Q 的平面角的余弦值为3333. 22.解 设正方体的棱长为1.如图所示,以AB →,AD →,AA 1→为单位正交基底建立空间直角坐标系Oxyz .(1)依题意,得B (1,0,0),E ⎝⎛⎭⎫0,1,12,A (0,0,0),D (0,1,0), 所以BE →=⎝⎛⎭⎫-1,1,12,AD →=(0,1,0). 在正方体ABCD —A 1B 1C 1D 1中, 因为AD ⊥平面ABB 1A 1,所以AD →是平面ABB 1A 1的一个法向量. 设直线BE 和平面ABB 1A 1所成的角为θ,则sin θ=|BE →·AD →||BE →|·|AD →|=132×1=23.故直线BE 和平面ABB 1A 1所成的角的正弦值为23.(2)在棱C 1D 1上存在点F ,使B 1F ∥平面A 1BE . 证明如下:依题意,得A 1(0,0,1),BA 1→=(-1,0,1),BE →=⎝⎛⎭⎫-1,1,12. 设n =(x ,y ,z )是平面A 1BE 的一个法向量,则由n ·BA 1→=0,n ·BE →=0,得⎩⎪⎨⎪⎧-x +z =0,-x +y +12z =0. 所以x =z ,y =12z .取z =2,得n =(2,1,2).设F 是棱C 1D 1上的点,则F (t,1,1) (0≤t ≤1).又B 1(1,0,1),所以B 1F →=(t -1,1,0).而B 1F ⊄平面A 1BE ,于是B 1F ∥平面A 1BE ⇔B 1F →·n =0⇔(t -1,1,0)·(2,1,2)=0⇔2(t -1)+1=0⇔t =12⇔F 为棱C 1D 1的中点.这说明在棱C 1D 1上存在点F (C 1D 1的中点),使B 1F ∥平面A 1BE .。

高中数学人教A版选修2-1第三章空间向量与立体几何阅读与思考向量概念的推广与应用教学课件共12张PPT含学案

高中数学人教A版选修2-1第三章空间向量与立体几何阅读与思考向量概念的推广与应用教学课件共12张PPT含学案
rrr 如果 i,j,k是空间三个两两垂直的向量, 那么,对空间任一个向量pr ,
存在一个有序实数组 x,y,z ,
使得pr
=
r xi
+
r yj
+
r zk.
x
ir ,yjr ,zkr 为向量pr 在
rrr i,j,k上的分向量.
空间向量基本定理可知,存在有序实数组
{x,y,z},使得pr =xer 1+yer 2+zer 3
z
我们把x,y,z称作向量pr 在单位正交
基底er 1,er 2,er 3 下的坐标, 记作pr =(x,y,z).
PP k
此时向量pr 的坐标恰是点P在空间直角 i O j
y
坐标系Oxyz中的坐标 x,y,z.
x
P′
由空间向量基本定理可知,空间任意一个向量
都可以用三个不共面的向量表示出来.
同学们,相信通过这些难 点突破的讲解,大家可以类比 得更顺畅一些,祝学习顺利!
由平uur面r 向量基本定理可知, 在OQ,k所确定的平面上,
z
uur uur r
存在实数z,使得OP = OQ + zk,
rr
而在i,j所确定的平面上,
k
P
Oj
y
i
x
Q
由平面向量基本定理可知,存在
有序实数对 x,y,
uur r r 使得OQ = xi + yj.
uur uur r r r r 从而OP = OQ + zk = xi + yj + zk.
有且只有一对实数
a 1e1 2e2
,1 使2
如果空间向量 p与两不共线向量 ,a 共b面,那么可将

高中数学(人教版A版选修2-1)配套课时作业:第三章 空间向量与立体几何 章末总结 Word版含答案

高中数学(人教版A版选修2-1)配套课时作业:第三章  空间向量与立体几何 章末总结 Word版含答案

章末总结知识点一 空间向量的计算空间向量及其运算的知识与方法与平面向量及其运算类似,是平面向量的拓展,主要考查空间向量的共线与共面以及数量积运算,是用向量法求解立体几何问题的基础.【例1】沿着正四面体O -ABC 的三条棱OA 、OB →、OC →的方向有大小等于1、2和3的三个力f 1,f 2,f 3.试求此三个力的合力f 的大小以及此合力与三条棱夹角的余弦值.知识点二 证明平行、垂直关系空间图形中的平行、垂直问题是立体几何当中最重要的问题之一,利用空间向量证明平行和垂直问题,主要是运用直线的方向向量和平面的法向量,借助空间中已有的一些关于平行和垂直的定理,再通过向量运算来解决.例2如图,正方体ABCD—A1B1C1D1中,M、N分别为AB、B1C的中点.(1)用向量法证明平面A1BD∥平面B1CD1;(2)用向量法证明MN⊥面A1BD.例3如图,在棱长为1的正方体ABCD—A1B1C1D1中,P是侧棱CC1上的一点,CP=m.试确定m使得直线AP与平面BDD1B1所成的角为60°.例4正方体ABCD—A1B1C1D1中,E、F分别是BB1、CD的中点,求证:平面AED⊥平面A1FD1.知识点三空间向量与空间角求异面直线所成的角、直线与平面所成的角、二面角,一般有两种方法:即几何法和向量法,几何法求角时,需要先作出(或证出)所求空间角的平面角,费时费力,难度很大.而利用向量法,只需求出直线的方向向量与平面的法向量.即可求解,体现了向量法极大的优越性.例5如图所示,在长方体ABCD—A1B1C1D1中,AB=5,AD=8,AA1=4,M为B1C1上一点且B1M=2,点N在线段A1D上,A1D⊥AN.(1)cos〈1A D,AM→〉;(2)求直线AD与平面ANM所成角的余弦值;(3)求平面ANM与平面ABCD所成角的余弦值.知识点四空间向量与空间距离近年来,对距离的考查主要体现在两点间的距离和点到平面的距离,两点间的距离可以直接代入向量模的公式求解,点面距可以借助直线的方向向量与平面的法向量求解,或者利用等积求高的方法求解.例6如图,P A⊥平面ABCD,四边形ABCD是正方形,P A=AD=2,M、N分别是AB、PC的中点.(1)求二面角P—CD—B的大小;(2)求证:平面MND⊥平面PCD;(3)求点P到平面MND的距离.章末总结重点解读例1 解如图所示,用a ,b ,c 分别代表棱OA →、OB →、OC →上的三个单位向量,则f 1=a ,f 2=2b ,f 3=3c ,则f =f 1+f 2+f 3=a +2b +3c ,∴|f |2=(a +2b +3c )(a +2b +3c )=|a |2+4|b |2+9|c |2+4a·b +6a·c +12b·c=14+4cos 60°+6cos 60°+12 cos 60°=14+2+3+6=25,∴|f |=5,即所求合力的大小为5.且cos 〈f ,a 〉=f·a |f |·|a |=|a |2+2a·b +3a·c 5=1+1+325=710, 同理可得:cos 〈f ,b 〉=45,cos 〈f ,c 〉=910. 例2 证明 (1)在正方体ABCD —A 1B 1C 1D 1中,BD →=AD →-AB →,B 1D 1→=A 1D 1→-A 1B 1→,又∵AD →=A 1D 1→,AB →=A 1B 1→,∴BD →=B 1D 1→.∴BD ∥B 1D 1.同理可证A 1B ∥D 1C ,又BD ∩A 1B =B ,B 1D 1∩D 1C =D 1,所以平面A 1BD ∥平面B 1CD 1.(2) MN →=MB →+BC →+CN →=12AB →+AD →+12(CB →+CC 1→) =12AB →+AD →+12(-AD →+AA 1→) =12AB →+12AD →+12AA 1→. 设AB →=a ,AD →=b ,AA 1→=c ,则MN →=12(a +b +c ). 又BD →=AD →-AB →=b -a ,∴MN →·BD →=12(a +b +c )(b -a )=12(b 2-a 2+c·b -c·a ). 又∵A 1A ⊥AD ,A 1A ⊥AB ,∴c·b =0,c·a =0.又|b |=|a |,∴b 2=a 2,∴b 2-a 2=0.∴MN →·BD →=0,∴MN ⊥BD .同理可证,MN ⊥A 1B ,又A 1B ∩BD =B ,∴MN ⊥平面A 1BD .例3 解 建立如图所示的空间直角坐标系, 则A (1,0,0),B (1,1,0),P (0,1,m ),C (0,1,0),D (0,0,0),B 1(1,1,1),D 1(0,0,1).则BD →=(-1,-1,0),BB 1→=(0,0,1),AP →=(-1,1,m ),AC →=(-1,1,0).又由AC →·BD →=0,AC →·BB 1→=0知,AC →为平面BB 1D 1D 的一个法向量. 设AP 与平面BB 1D 1D 所成的角为θ,则sin θ=|cos 〈AP →,AC →〉|= =22+m 2·2. 依题意得22+2m 2·2=sin 60°=32, 解得m =33. 故当m =33时,直线AP 与平面BDD 1B 1所成角为60°. 例4 证明如图,建立空间直角坐标系Dxyz .设正方体棱长为1,则E ⎝⎛⎭⎫1,1,12、D 1(0,0,1)、F ⎝⎛⎭⎫0,12,0、A (1,0,0). ∴DA →=(1,0,0)=D 1A 1→,DE →=⎝⎛⎭⎫1,1,12, D 1F →=⎝⎛⎭⎫0,12,-1. 设m =(x 1,y 1,z 1),n =(x 2,y 2,z 2)分别是平面AED 和A 1FD 1的一个法向量.⇒⎩⎪⎨⎪⎧ x 1=0x 1+y 1+12z 1=0. 令y 1=1,得m =(0,1,-2). 又由⇒⎩⎪⎨⎪⎧x 2=012y 2-z 2=0, 令z 2=1,得n =(0,2,1).∵m·n =(0,1,-2)·(0,2,1)=0,∴m ⊥n ,故平面AED ⊥平面A 1FD 1.例5 解 (1)建立空间直角坐标系(如图).则A (0,0,0),A 1(0,0,4),D (0,8,0),M (5,2,4).∴AM →=(5,2,4),A 1D →=(0,8,-4).∴AM →·A 1D →=0+16-16=0,∴AM →⊥A 1D →.∴cos 〈A 1D →,AM →〉=0.(2)∵A 1D ⊥AM ,A 1D ⊥AN ,且AM ∩AN =A , ∴A 1D →⊥平面ANM ,∴A 1D →=(0,8,-4)是平面ANM 的一个法向量.又AD →=(0,8,0),|A 1D →|=45,|AD →|=8,A 1D →·AD →=64,∴cos 〈A 1D →,AD →〉=6445×8=25=255. ∴AD 与平面ANM 所成角的余弦值为55. (3)∵平面ANM 的法向量是A 1D →=(0,8,-4),平面ABCD 的法向量是a =(0,0,1),∴cos 〈A 1D →,a 〉=-445=-55. ∴平面ANM 与平面ABCD 所成角的余弦值为55. 例6 (1)解 ∵P A ⊥平面ABCD ,由ABCD 是正方形知AD ⊥CD .∴CD ⊥面P AD ,∴PD ⊥CD .∴∠PDA 是二面角P —CD —B 的平面角. ∵P A =AD ,∴∠PDA =45°,即二面角P —CD —B 的大小为45°. (2)如图,建立空间直角坐标系,则P (0,0,2),D (0,2,0),C (2,2,0),M (1,0,0),∵N 是PC 的中点,∴N (1,1,1),∴MN →=(0,1,1),ND →=(-1,1,-1),PD →=(0,2,-2).设平面MND 的一个法向量为m =(x 1,y 1,z 1),平面PCD 的一个法向量为n =(x 2,y 2,z 2).∴m ·MN →=0,m ·ND →=0,即有⎩⎪⎨⎪⎧ y 1+z 1=0,-x 1+y 1-z 1=0. 令z 1=1,得x 1=-2,y 1=-1.∴m =(-2,-1,1).同理,由n ·ND →=0,n ·PD →=0,即有⎩⎪⎨⎪⎧-x 2+y 2-z 2=0,2y 2-2z 2=0. 令z 2=1,得x 2=0,y 2=1,∴n =(0,1,1). ∵m·n =-2×0+(-1)×1+1×1=0,∴m ⊥n .∴平面MND ⊥平面PCD .(3)设P 到平面MND 的距离为d .由(2)知平面MND 的法向量m =(-2,-1,1), ∵PD →·m =(0,2,-2)·(-2,-1,1)=-4,∴|PD →·m |=4,又|m |=-2+-2+12=6, ∴d ==46=263. 即点P 到平面MND 的距离为263.。

( 人教A版)最新高中数学选修2-1 第三章空间向量与立体几何章末优化总结课件 (共27张PPT)-

( 人教A版)最新高中数学选修2-1 第三章空间向量与立体几何章末优化总结课件 (共27张PPT)-

(1)证明:M→N=1- 42, 42,-1, O→P=0, 22,-2,O→D=- 22, 22,-2. 设平面OCD的法向量为n=(x,y,z),由n·O→P=0,n·O→D=0,

22y-2z=0,

22x+
22y-2z=0.
取z= 2,得n=(0,4, 2).
∵M→N·n=1- 42×0+ 42×4+(-1)× 2=0,∴M→N⊥n. 又MN⊄平面OCD,∴MN∥平面OCD.
如图,在四棱锥O-ABCD中,底面ABCD是边长为1的菱
形,∠ABC=
π 4
,OA⊥底面ABCD,OA=2,M为OA的中点,N为
BC的中点.
(1)证明:直线MN∥平面OCD;
(2)求异面直线AB与MD所成角的大小.
[解析] 作AP⊥CD于点P,分别以AB,AP,AO所在的直线 为x,y,z轴建立空间直角坐标系A-xyz,如图所示, 则A(0,0,0),B(1,0,0), P0, 22,0,D- 22, 22,0, O(0,0,2),M(0,0,1), N1- 42, 42,0.
已知正方体ABCD-A1B1C1D1,求证: (1)AD1∥平面BDC1; (2)A1C⊥平面BDC1.
[解析] 以D为坐标原点,建立如图所示空间直角坐标系D-xyz. 设正方体的棱长为1,则有D(0,0,0),A(1,0,0),D1(0,0,1), A1(1,0,1),C(0,1,0),B(1,1,0),C1(0,1,1), A→D1=(-1,0,1), A→1C=(-1,1,-1).
所以,n1=(2,-2,1)是平面ADC1的一个法向量. 取平面AA1B的一个法向量为n2=(0,1,0), 设平面ADC1与平面ABA1所成二面角的大小为θ.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【金版学案】2016-2017学年高中数学 第三章 空间向量与立体几何章末评估验收 新人教A 版选修2-1(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a ,b ,c 是不共面的三个向量,则能构成一个基底的一组向量是( ) A .2a ,a -b ,a +2b B .2b ,b -a ,b +2a C .a ,2b ,b -c D .c ,a +c ,a -c答案:C2.空间直角坐标中A (1,2,3),B (-1,0,5),C (3,0,4),D (4,1,3),则直线AB 与CD 的位置关系是( )A .平行B .垂直C .相交但不垂直D .无法确定 解析:因为AB →=(-2,-2,2),CD →=(1,1,-1), 又因为AB →=-2CD →,所以AB →∥CD →,即AB ∥CD . 答案:A3.已知a =(2x ,1,3),b =(1,-2y ,9),如果a 与b 为共线向量,则( ) A .x =1,y =1 B .x =12,y =-12C .x =16,y =-32D .x =-16,y =32答案:C4.已知a =3i +2j -k ,b =i -j +2k ,则5a 与3b 的数量积等于( ) A .-15 B .-5 C .-3D .-1解析:a =(3,2,-1),b =(1,-1,2),所以5a ²3b =15a ²b =-15. 答案:A5.已知a ²b =0,|a |=2,|b |=3,且(3a +2b )²(λa -b )=0,则λ等于( ) A.32 B .-32C .±32D .1答案:A6.(2014²广东卷)已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A .(-1,1,0) B .(1,-1,0) C .(0,-1,1)D .(-1,0,1)解析:利用向量数量积公式的变形公式cos 〈a ,b 〉=a ²b|a ||b |求向量的夹角,各项逐一验证.选项B 中cos 〈a ,b 〉=a ²b |a ||b |=1³12³2=12,所以〈a ,b 〉=60°.答案:B7.正方体ABCD ­A 1B 1C 1D 1的棱长为a ,AM →=13AC 1→,N 为B 1B 的中点,则|MN →|为( )A.216aB.66aC.156a D.153a 答案:A8.如图,在正方体ABCD ­A 1B 1C 1D 1中,以D 为原点建立空间直角坐标系,E 为BB 1的中点,F 为A 1D 1的中点,则下列向量中,能作为平面AEF 的法向量的是( )A .(1,-2,4)B .(-4, 1,-2)C .(2,-2,1)D .(1,2,-2)答案:B9.在正三棱柱ABC ­A 1B 1C 1中,D 是AC 的中点,AB 1⊥BC 1,则平面DBC 1与平面CBC 1所成的角为( )A .30°B .45°C .60°D .90°答案:B10.已知正四棱柱ABCD ­A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( )A.23B.33C.23 D.13解析:以D 为原点建立如图所示的空间直角坐标系.设AA 1=2AB =2,则D (0,0,0),C 1(0,1,2),B (1,1,0),C (0,1,0),从而DB →=(1,1,0),DC 1→=(0,1,2),DC →=(0,1,0). 设平面BDC 1的法向量n =(x ,y ,z ),则⎩⎨⎧n ²DB →=0,n ²DC 1→=0,即⎩⎪⎨⎪⎧x +y =0,y +2z =0.令z =-1,得n =(-2,2,-1). 因为cos 〈DC →,n 〉=DC →²n |DC →||n |=23,所以CD 与平面BDC 1所成角的正弦值为23.答案:A11.如图,在正方体ABCD ­A 1B 1C 1D 1中,下面结论错误的是( )A .BD ∥平面CB 1D 1 B .AC 1⊥BDC .AC 1⊥平面CB 1D 1 D .向量AD →与CB 1→的夹角为60°答案:D12.已知OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),点Q 在直线OP 上运动,则当QA →²QB →取得最小值时,点Q 的坐标为( )A.⎝ ⎛⎭⎪⎫12,34,13B.⎝ ⎛⎭⎪⎫12,32,34C.⎝ ⎛⎭⎪⎫43,43,83 D.⎝ ⎛⎭⎪⎫43,43,73 答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知a =(2,-1,0),b =(k ,0, 1),若〈a ,b 〉=120°,则k =________.解析:因为cos 〈a ,b 〉=a ²b |a ||b |=2k 5³k 2+1=-12<0,所以k <0,且k 2=511.所以k =-5511. 答案:-551114.已知a =(x ,2,-4),b =(-1,y ,3),c =(1,-2,z ),且a ,b ,c 两两垂直,则(x ,y ,z )=________.答案:(-64,-26,-17)15.设a ,b 是直线,α,β是平面,a ⊥α,b ⊥β,向量a 1在a 上,向量b 1在b 上,a 1=(1,1,1),b 1=(-3,4,0),则α,β所成二面角中较小的一个的余弦值为________.解析:由题意,cos θ=|cos 〈a 1,b 1〉|=|a 1²b 1||a 1||b 1|=(1,1,1)³(-3,4,0)3³5=315. 答案:31516.已知四面体顶点A (2,3,1)、B (4,1,-2)、C (6,3,7)和D (-5,-4,8),则顶点D 到平面ABC 的距离为________.答案:11三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知四边形ABCD 的顶点分别是A (3,-1,2),B (1,2,-1),C (-1,1,-3),D (3,-5,3).求证:四边形ABCD 是一个梯形.证明:因为AB →=(1,2,-1)-(3,-1,2)=(-2,3,-3),CD →=(3,-5,3)-(-1,1,-3)=(4,-6,6),因为-24=3-6=-36,所以AB →和CD →共线,即AB ∥CD .又因为AD →=(3,-5,3)-(3,-1,2)=(0,-4,1),BC →=(-1,1,-3)-(1,2,-1)=(-2,-1,-2),因为0-2≠-4-1≠1-2,所以AD →与BC →不平行,所以四边形ABCD 为梯形.18.(本小题满分12分)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)求a 和b 的夹角θ的余弦值;(2)若向量ka +b 与ka -2b 互相垂直,求k 的值. 解:a =AB →=(-1,1,2)-(-2,0,2)=(1,1,0), b =AC →=(-3,0,4)-(-2,0,2)=(-1,0,2).(1)cos θ=a ²b |a ||b |=-1+0+02³5=-1010,所以a 与b 的夹角θ的余弦值为-1010. (2)ka +b =(k ,k ,0)+(-1,0,2)=(k -1,k ,2),ka -2b =(k ,k ,0)-(-2,0,4)=(k +2,k ,-4),所以(k -1,k ,2)²(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0. 即2k 2+k -10=0,所以k =-52或k =2.19.(本小题满分12分)如图,在直三棱柱ABC ­A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4.(1)证明:AC ⊥BC 1;(2)求二面角C 1­AB ­C 的余弦值大小.解:直三棱柱ABC ­A 1B 1C 1中,AC =3,BC =4,AB =5,故AC ,BC ,CC 1两两垂直,建立空间直角坐标系(如图),则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4). (1)证明:AC →=(-3,0,0),BC 1→=(0,-4,4), 所以AC →²BC 1→=0.故AC ⊥BC 1.(2)解:平面ABC 的一个法向量为m =(0,0,1),设平面C 1AB 的一个法向量为n =(x ,y ,z ),AC 1→=(-3,0,4),AB →=(-3,4,0), 由⎩⎨⎧n ²AC 1→=0,n ²AB →=0.得⎩⎪⎨⎪⎧-3x +4z =0,-3x +4y =0,令x =4,则y =3,z =3,n =(4,3,3), 故cos 〈m ,n 〉=334=33434. 即二面角C 1­AB ­C 的余弦值为33434.20.(本小题满分12分)正方体ABCD ­A 1B 1C 1D 1的棱长为4,M 、N 、E 、F 分别为A 1D 1、A 1B 1、C 1D 1、B 1C 1的中点,求平面AMN 与平面EFBD 间的距离.解:如图所示,建立空间直角坐标系D ­xyz ,则A (4,0,0),M (2,0,4),D (0,0,0),B (4,4,0),E (0,2,4),F (2,4,4),N (4,2,4),从而EF →=(2,2,0),MN →=(2,2,0),AM →=(-2,0,4),BF →=(-2,0,4), 所以EF →=MN →,AM →=BF →,所以EF ∥MN ,AM ∥EF ,EF ∩BF =F ,MN ∩AM =M . 所以平面AMN ∥平面EFBD .设n =(x ,y ,z )是平面AMN 的法向量,从而⎩⎨⎧n ²MN →=2x +2y =0,n ²AM →=-2x +4z =0,解得⎩⎪⎨⎪⎧x =2z ,y =-2z .取z =1,得n =(2,-2,1),由于AB →=(0,4,0), 所以AB →在n 上的投影为n ²AB →|n |=-84+4+1=-83.所以两平行平面间的距离d =|n ²AB →||n |=83.21.(本小题满分12分)如图,在Rt △ABC 中,AB =BC =4,点E 在线段AB 上.过点E 作EF ∥BC 交AC 于点F ,将△AEF 沿EF 折起到△PEF 的位置(点A 与P 重合),使得∠PEB =60°.(1)求证:EF ⊥PB .(2)试问:当点E 在线段AB 上移动时,二面角P ­FC ­B 的平面角的余弦值是否为定值?若是,求出其定值;若不是,说明理由.(1)证明:在Rt △ABC 中,因为EF ∥BC ,所以EF ⊥AB ,所以EF ⊥EB ,EF ⊥EP , 又因为EB ∩EP =E ,EB ,EP ⊂平面PEB ,所以EF ⊥平面PEB . 又因为PB ⊂平面PEB ,所以EF ⊥PB .(2)解:在平面PEB 内,过点P 作PD ⊥BE 于点D , 由(1)知EF ⊥平面PEB ,所以EF ⊥PD ,又因为BE ∩EF =E ,BE ,EF ⊂平面BCFE ,所以PD ⊥平面BCFE . 在平面PEB 内过点B 作直线BH ∥PD ,则BH ⊥平面BCFE .如图所示,以B 为坐标原点,BC →,BE →,BH →的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.设PE =x (0<x <4), 又因为AB =BC =4, 所以BE =4-x ,EF =x . 在Rt △PED 中,∠PED =60°, 所以PD =32x ,DE =12x ,所以BD =4-x -12x =4-32x , 所以C (4,0,0),F (x ,4-x ,0),P ⎝ ⎛⎭⎪⎫0,4-32x ,32x .从而CF →=(x -4,4-x ,0),CP →=⎝ ⎛⎭⎪⎫-4,4-32x ,32x .设n 1=(x 0,y 0,z 0)是平面PCF 的一个法向量,所以⎩⎨⎧n 1²CF →=0,n 1²CP →=0,即⎩⎪⎨⎪⎧x 0(x -4)+y 0(4-x )=0,-4x 0+⎝ ⎛⎭⎪⎫4-32x y 0+32xz 0=0,所以⎩⎨⎧x 0-y 0=0,3y 0-z 0=0,取y 0=1,得n 1=(1,1,3)是平面PFC 的一个法向量. 又平面BFC 的一个法向量为n 2=(0,0,1), 设二面角P ­FC ­B 的平面角为α, 则cos α=|cos 〈n 1,n 2〉|=⎪⎪⎪⎪⎪⎪n 1²n 2|n 1||n 2|=155.因此当点E 在线段AB 上移动时,二面角P ­FC ­B 的平面角的余弦值为定值,且定值为155. 22.(本小题满分12分)如图,四边形ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF ∥DE ,DE =3AF ,BE 与平面ABCD 所成的角为60°.(1)求证:AC ⊥平面BDE ; (2)求二面角F ­BE ­D 的余弦值;(3)设点M 是线段BD 上一个动点,试确定点M 的位置,使得AM ∥平面BEF ,并证明你的结论.(1)证明:因为DE ⊥平面ABCD ,所以DE ⊥AC , 因为四边形ABCD 是正方形,所以AC ⊥BD , 又DE ∩BD =D ,所以AC ⊥平面BDE . (2)解:因为DE ⊥平面ABCD ,所以∠EBD 就是BE 与平面ABCD 所成的角, 即∠EBD =60°, 所以ED BD= 3.由AD =3,得DE =36,AF = 6.如图,分别以DA ,DC ,DE 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (3,0,0),F (3,0,6),E (0,0,36),B (3,3,0),C (0,3,0),所以BF →=(0,-3,6),EF →=(3,0,-26).设平面BEF 的一个法向量为n =(x ,y ,z ), 则⎩⎨⎧n ²BF →=0,n ²EF →=0,即⎩⎨⎧-3y +6z =0,3x -26z =0.令z =6,则n =(4,2,6). 因为AC ⊥平面BDE ,所以CA →=(3,-3,0)为平面BDE 的一个法向量, 所以cos 〈n ,CA →〉=n ²CA →|n ||CA →|=626³32=1313.故二面角F ­BE ­D 的余弦值为1313. (3)解:依题意,设M (t ,t ,0)(t >0),则AM →=(t -3,t ,0), 因为AM ∥平面BEF , 所以AM →²n =0,即4(t -3)+2t =0,解得t =2.所以点M 的坐标为(2,2,0),此时DM →=23DB →,所以点M 是线段BD 上靠近点B 的三等分点.。

相关文档
最新文档