大物 真空中的静电场-习题课
习题讲解1:真空中的静电场习题讲解
解: (1)取圆环ds 2rdr, dq ds, 则 dE dqx 4 r x
2
3 2 2
E
0
R
2rdrx
4 r 2 x
3 2 2
x (1 ) 2 2 2 R x
E
0
R
2rdrx
4 r 2 x
3 2 2
x (1 ) 2 R2 x2
1 求均匀带电细棒中垂线上距O为y点的场强。 设棒长为 l , 电荷线密度为 解:由对称性可知,选用如图所示的坐标系,中垂面上 一点的场强沿y 方向,在x方向抵消。 y dx
4 0 r l 2 cos dx E y ( p) dE y 2 l 2 4 0 r
解:dq dl q q ad d a 0 0
0
a
dE
1 dq 1 q dE d 2 2 4 0 a 4 0 a 0
根据对称性, O处的电场强度方向向下
0
2
O
d E
d E d E
dE y dE cos E y dE y 1 q
S 上
计算无限大均匀带电平板(厚度为d、密度为 )的电场。
4
其中
下
E cos dS E cos dS E cos dS
前 后
上
左
E cos dS E cos dS
右
前 E cos dS 后 E cos dS 0 2
解
V0 0 q q VD 4 0 (3l ) 4 0l
C +q A
大学物理第6章真空中的静电场课后习题与答案
第6章真空中的静电场习题及答案1.电荷为q 和2q 的两个点电荷分别置于x1m 和x1m 处。
一试验电荷置于x 轴上何处,它受到的合力等于零?解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷 q 位于点电荷 0q 的右侧,它受到的合力才可能为0,所以2qqqq00224(x 1)4(x1) ππ 00故x3222.电量都是q 的三个点电荷,分别放在正三角形的三个顶点。
试问:(1)在这三角形的中心放 一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都 为零)?(2)这种平衡与三角形的边长有无关系?解:(1)以A 处点电荷为研究对象,由力平衡知,q 为负电荷,所以2 4 1 π 0 q a 22 cos304 1 π 0 ( q 33qa 2 )3故qq3(2)与三角形边长无关。
3.如图所示,半径为R 、电荷线密度为1的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2的均匀带电直线段,该线段的一端处于圆环中心处。
求该直线段受到的电场力。
解:先求均匀带电圆环在其轴线上产生的场强。
在带电圆环上取dqdl 1,dq 在带电圆环轴 线上x 处产生的场强大小为 dE 4 dq20(xRy2 )根据电荷分布的对称性知,yE0E zdEdEcos x41xdq 1R 3 22 2O(xR) 02xl式中:为dq 到场点的连线与x 轴负向的夹角。
E x4x 220(xR) 3 2dqzx21R R 1 x4x 2R2()3 2 2xR 2( 02 )3 2下面求直线段受到的电场力。
在直线段上取dqdx2,dq受到的电场力大小为Rx12dFxdxEdq32222(xR)0方向沿x轴正方向。
直线段受到的电场力大小为Rlx12FdxdF3202220xR)(11R1121/22R22lR方向沿x轴正方向。
4.一个半径为R的均匀带电半圆环,电荷线密度为。
求:(1)圆心处O点的场强;(2)将此带电半圆环弯成一个整圆后,圆心处O点场强。
大学大学物理习题解答参考答案-一、真空中的静电场
20XX年复习资料大学复习资料专业:班级:科目老师:一、日期:真空中的静电场一、 选择题:1.下列几个说法哪一个是正确的?(A ) 电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向。
(B ) 在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同。
(C ) 场强方向可由/F E =q 定出,其中q 为试验电荷的电量,q 可正可负,F 为试验电荷所受的电场力。
(D ) 以上说法都不正确。
[ ]2.关于静电场中某点电势值的正负,下列说法中正确的是:(A ) 电势值的正负取决于置于该点的试验电荷的正负。
(B ) 电势值的正负取决于电场力对试验电荷作功的正负。
(C ) 电势值的正负取决于电势零点的选取。
(D ) 电势值的正负取决于产生电场的电荷的正负。
[ ]3、某电场的电力线分布情况如图所示。
一负电荷从M 点移到N 点。
有人根据这个图作出下列几点结论,其中哪点是正确的?(A ) 电场强度N M E E <。
(B )电势N M U U <。
(C )电势能N M W W <。
(D )电场力的功A>0。
[ ]4、将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处,测得它所受的力为F .若考虑到电量q 0不是足够小,则(A)F /q 0 比P 点处原先的场强数值大.(B)F /q 0 比P 点处原先的场强数值小.(C)F /q 0 等于原先P 点处场强的数值.(D)F /q 0 P 点处场强数值关系无法确定,[ ]5、一电偶极子放在均匀电场中,当电偶极矩的方向与场强方向不一致时,其所受的合力F 和合力矩M 为:(A) F =0,M =0, (B) F =0,M ≠0,(C) F ≠0,M =0, (D) F ≠0,M ≠0, [ ]6、已知一高斯面所包围的体积内电量代数和∑i q =0,则可肯定:(A ) 高斯面上各点场强均为零。
(B ) 穿过高斯面上每一面元的电通量均为零。
10 真空中的静电场习题(二)
真空中的静电场习题(二)班级 姓名 学号 成绩学习要求:掌握电势的概念和电势叠加原理。
掌握电势与电场强度的积分关系。
能计算一些简单问题中的电势。
一、选择题1.静电场中某点电势的数值等于【 】(A)试验电荷0q 置于该点时具有的电势能 (B) 单位试验电荷置于该点时具有的电势能 (C)单位正电荷置于该点时具有的电势能 (D)把单位正电荷从该点移到电势零点外力做的功 2.如图所1示,P 点处的电势和场强为【 】(A) 0,22aq o πε (B) 0 ,aq o πε8 (C)aq o πε2,0 (D)aq o πε2,22aq o πε3.以下说法中正确的是【 】(A) 沿着电力线移动负电荷,负电荷的电势能是增加的 (B) 场强弱的地方电位一定低,电势高的地方场强一定强 (C) 等势面上各点的场强大小一定相等(D) 场强处处相同的电场中,各点的电位也处处相同4.两个同心的均匀带电球面,内球半径为R 1、带电为Q 1,外球面半径为R 2、带电为Q 2,设无穷远处为电势零点,则在两球面之间、距离球心为r 处的P 点的电势U 为【 】(A) r Q Q 0214πε+ (B) 2020144R Q r Q πεπε+(C) 20210144R Q R Q πεπε+ (D) r Q R Q 0210144πεπε+ 5.如图2所示,一电量为q 的点电荷位于圆心处,A 是圆内一点,B 、C 、D 为同一圆周上的三点,现将一试验电荷Q 从A 点分别移动到B 、C 、D 各点,则【 】(A) 从A 到B ,电场力作功最大 (B) 从A 到C ,电场力作功最大(C) 从A 到D ,电场力作功最大 (D) 从A 到B 、C 、D 各点,电场力作功相等 6.关于电场强度与电势之间的关系,下列说法中正确的是【 】(A )在电场中,场强为零的点,其电势必为零 (C )在电势不变的空间中,场强处处为零 (B )在电场中,电势为零的点,其场强必为零 (D )在场强不变的空间,电势处处为零 6.如图3所示,一导体球壳A ,同心地罩在一接地导体B 上,今给A 球带负电-Q ,则B 球【 】 (A) 带正电 (B) 带负电 (C) 不带电 (D) 上面带正电,下面带负电 7.极板间为真空的平行板电容器,充电后与电源断开,用绝缘工具将两极板拉开一些距离,则下列说法正确的是【 】(A) 电容器极板间的电势差增大 (B) 电容器极板间的电场强度增加(C) 电容器的电容不变 (D) 电容器极板上电荷面密度增加8.在一点电荷产生的电场中,一块电介质如图4放置,以点电荷所在处为球心作一球形闭合面【 】(A) 高斯定理成立,且可以用它求出闭合面上各点的场强(B) 高斯定理成立,但不可以用它求出闭合面上各点的场强 (C) 由于电介质不对称分布,高斯定理不成立 (D) 即使电介质对称分布,高斯定理也不成立二、填空题1.在静电场中,场强沿任意闭合路径的环流,即lE dl⋅=⎰ ,这表明静电场为 场。
大学物理第9章《真空中的静电场》习题解答
dE = k
dq λ ds λ = = dϕ 2 2 r 4πε 0 R 4πε 0 R
R1
R2
∞
=
B 点的电势为
ρ ( R22 − R12 ) . 2ε 0
∞
∞
U B = ∫ E ⋅ d l = ∫ Ed r
rB rB
R2
=
rB
∫
3 ρ ( R2 − R13 ) ρ R13 dr (r − 2 )dr + ∫ 3ε 0 r 2 3ε 0 r R2
∞
ρ R13 2 2 = (3 R2 − rB − 2 ) . 6ε 0 rB
4 3 V = π ( R2 − R13 ) 3
包含的电量为 q = ρV 根据高斯定理得可得球壳外的场强为
E=
A 点的电势为
3 q ρ ( R2 − R13 ) ,(R2≦r) = 4πε 0 r 2 3ε 0 r 2
∞
∞
U A = ∫ E ⋅ dl = ∫ Edr
rA rA
3 ρ ( R2 − R13 ) ρ R13 dr = ∫ 0dr + ∫ ( r − 2 )dr + ∫ 3ε 0 r 2 3ε 0 r R2 rA R1
b/2
∫
−σ = ln(b / 2 + a − x ) 2πε 0 =
b/2
−b / 2
σ b ln(1 + ) 2πε 0 a
真空中的静电场(习题课后)22
(真空中的静电场(习题课后作业)(22)1、真空中半径为R 的球体均匀带电,总电量为q ,则球面上一点的电势U=R q 04/πε;球心处的电势U 0=R q 08/3πε 。
(将均匀带电球体微分成球面,利用电势叠加求得结果)2、无限大的均匀带电平面,电荷面密度为σ,P 点与平面的垂直距离为d ,若取平面的电势为零,则P 点的电势Up==-Ed 02/εσd -,若在P 点由静止释放一个电子(其质量为m,电量绝对值为e)则电子到达平面的速率V=0/εσm ed 。
(221mv Ue p=)3.如图,在真空中A 点与B 点间距离为2R,OCD 是以B 点为中心,以R 为半径的半圆路径。
AB两处各放有一点电荷,带电量分别为:+q (A 点)和-q (B 点),则把另一带电量为Q(Q <0)的点电荷从D 点沿路径DCO 移到O 点的过程中,电场力所做的功为=-=)(o D U U Q A R Qq 06/πε-。
4、点电荷Q 被闭合曲面S 所包围,从无穷远处引入另一点电荷q 至曲面外一点,如图所示。
则引入q 前后:( B )(A)曲面S 的电通量不变,曲面上各点场强不变;(B)曲面S 的电通量不变,曲面上各点场强变化;(C)曲面S 的电通量变化,曲面上各点场强不变;(D)曲面S 的电通量变化,曲面上各点场强变化。
5、选择正确答案:( B )(A)高斯定理只在电荷对称分布时才成立。
(B)高斯定理是普遍适用的,但用来计算场强时,要求电荷分布有一定的对称性。
(C)用高斯定理计算高斯面上各点场强时,该场强是高斯面内电荷激发的。
(D)高斯面内电荷为零,则高斯面上的场强必为零。
6、一无限大平面,开有一个半径为R 的圆洞,设平面均匀带电,电荷面密度为σ,求这洞的轴线上离洞心为r 处的场强。
解:利用圆环在其轴线上任一点场强结果2/3220)(4/x R Qx E +=πε任取一细环ρ~ρ+d ρ,ρπρσd dq 2= 2/3220)(4ρπε+=r rdqdE⎰=∞R dE E 222Rr r+=εσ217、真空中一长为L 的均匀带电细直杆,总电量为q ,(1)试求在直杆延长线上距杆的一端距离为a 的p 点的电场强度和电势。
大学物理第九章电荷与真空中的静电场。习题
S
1 E dS E 2 rh
r R1 R 1 r R 2
r R2
q 0 q h q 0
R2 R1
0
q
E1 0
R1
r
h
E2 2 0 r
E3 0
(2)
U
R2 ln dr 2 0 r 2 0 R1
U
a
2a
a E dr 2 a
q 4 0 r
2
dr
q 8 0 a
1-3 在一个孤立的导体球壳内,若在偏离球中心处 放一个点电荷,则在球壳内、外表面上将出现感应电 荷,其分布将是 (A) 内表面均匀,外表面也均匀。 (B) 内表面不均匀,外表面均匀。
(C) 内表面均匀,外表面不均匀。 (D) 内表面不均匀, 外表面也不均匀。
三、静电场的高斯定理
Φe
S
1 E dS
0
q
i
i内
电荷的分布具有某种 对称性的情况下利用高 斯定理求解 E较为方便
常见的电量分布的对称性(均匀带电) 球对称 柱对称 面对称
r
l
S
E
四、静电场的环路定理 E dl 0
l
五、电势能 电势
1、电势能
2、电势
n i 1
点电荷系电场中的电势 U P U P i 连续分布的带电体系的电势
U P dU P
Q
dq 4 0 r
Q
电势定义法计算
UP
P
E dl
第十章 导体和电介质中的静电场 一、导体静电平衡条件: 导体内任一点的电场强度都等于零。 *推论 (静电平衡状态) 1) 导体为等势体,导体表面为等势面 2) 导体表面任一点 场强方向垂直于表面 二、导体上电荷的分布 1、实心的带电导体,电荷只能分布于导体的表面上。 2、空腔导体 (带电荷Q)
大学物理 真空中的静电场
第九章 真空中的静电场一. 选择题[ B ] 1(基础训练1) 图中所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+(x <0)和- (x >0),则Oxy 坐标平面上点(0,a )处的场强E为(A) 0. (B)i a02ελπ. (C)i a04ελπ. (D)()j i a+π04ελ.【提示】:左侧与右侧半无限长带电直线在(0,a)处产生的场强大小E +、E -大小为:E E +-==矢量叠加后,合场强大小为:02E aλπε=合,方向如图。
[ B ] 2(基础训练2) 半径为R 的“无限长”均匀带电圆柱体的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为:【提示】:由场分布的轴对称性,作闭合圆柱面(半径为r ,高度为L )为高斯面。
据Guass 定理:SEdS=iiqε∑⎰r R ≤时,有:20r 2rL=LE ρππε,即:0=r 2E ρε r R >时,有:20R 2rL=L E ρππε,即:20R =2rE ρε[ C ] 3(基础训练3) 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于:(A) 06εq . (B) 012εq.(C)024εq . (D) 048εq . 【提示】:添加7个与如图相同的小立方体构成一个大立方体,使A 处于大立方体的中心。
则大立方体外围的六个正方形构成一个闭合的高斯面。
由Gauss 定理知,通过该高斯面的电通量为qε。
再据对称性可知,通过侧面abcd 的电场强度通量等于24εq。
[ D ] 4(基础训练6) 在点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M 点的电势为(A) a q 04επ. (B) aq 08επ.(C) a q 04επ-. (D) aq 08επ-.【提示】:220048PaM Maq q V E dl dr raπεπε-===⎰⎰[ B ] 5(自测提高6)如图所示,两个同心的均匀带电球面,内球面半径为R 1、带电荷Q 1,外球面半径为R 2、带有电荷Q 2.设无穷远处为电势零点,则在内球面之内、距离球心为r 处的P 点的电势U 为:(A)rQ Q 0214επ+. (B) 20210144R Q R Q εεπ+π. (C) 0. (D) 1014R Q επ.【提示】:根据带点球面在求内外激发电势的规律,以及电势叠加原理即可知结果。
大学物理课后习题答案 真空中的静电场
第八章 真空中的静电场 1、[D] 2、[C]要使p 点的电场强度为零,有两种可能:1、在p 点的右侧放正电荷;2、在p 点的左侧放负电荷。
根据题意为负电荷,根据点电荷强度的公式:204rQ E πε=。
其中r=1,负电荷产生的电场:2442120210=⇒=r rQ r Q πεπε,该点在原点的左边。
3、[D]1、粒子作曲线运动的条件必须存在向心力。
2、粒子从A 点出发经C 点运动到B 点是速率递增,存在和运动方向一致的切向力。
3、依据粒子带正电荷,作出作用在质点上的静电力后,符合上诉1、2条件的是[D]。
4、[C]5、[B]6、[D]1、点电荷的电场强度:r e rq E204πε=;2、无限长均匀带电直导线:r rq e rq E r20022πεπε==;3、无限大均匀带电平面:r e E2εσ=4、半径为R 的均匀带电球面外的电场强度:r r R r R r e rq E r302230204414εσσππεπε=⋅==7、[C]对高斯定理的理解。
E是高斯面上各处的电场强度,它是由曲面内外所有静止点和产生的。
∑=0q 并不能说明E有任何特定的性质。
8、[A]应用高斯定理有:⎰=⋅sS d E 0,即:⎰⎰⎰⎰=∆Φ+⋅=⋅+⋅=⋅∆ses s s S d E S d E S d E S d E 0⎰∆Φ-=⋅seS d E9、[B]10、[C]依据公式:R r rQ E ≥=,420πε已知:,4,22σπR Q R r ==代入上式可得:2024444εσπεσπ==RR E11、[D]先构建成一个边长为a 的立方体,表面为高斯面,应用高斯定理,一个侧面的磁通量为: 0661εq S d E S d E ss=⋅=⋅⎰⎰12、[D]13、[D]半径为R 的均匀带电球面:R r R Q U <=,40πεR r r Q U >=,40πε半径为R 的均匀带电球体: R r r Q U >=,40πεR r RQ r R RQ U <+-=,4)(802230πεπε正点电荷: ,40rQ U πε=负点电荷: ,40rQ U πε-=14、[C]分析:先求以无限远处为电势的零点.则半径为R 电量为Q 的球面的电势: 0)(,4)(0=∞=U RQ R U πε,4)()(0RQ R U U U R πε-=-∞=∞对15、[B]利用电势的叠加来解。
大学物理课后答案第六章真空中的静电场
⼤学物理课后答案第六章真空中的静电场习题66-1 解:以x 轴上的点电荷Q 作为研究对象,其受q 的作⽤⼒具有对称性,所受合⼒沿x 轴,即F=qx Q x F F F 2+=其中:202)2(4a Q F Q πε=;02045cos 4aqQ F qx πε=所以:02020245cos 42)2(4a qQ a Q F πεπε+=令上式为零可得:q Q 22-= 6-2 解:据分析,3E 只能取垂直⽅向,D 点的场强如图所⽰:xa1q q 3(1)D 点的合场强的垂直分量为零,0cos 32=+E E θ,即32co s E E -=θ带⼊点电荷场强关系式,得203220422)2(41aq a q πεπε-=?C q 9310*9.9--= (2)22201021?+=+=a q a q E E E πεπε =m v /10*79.16-6-3 长l =15.0cm 的直导线AB 上均匀地分布着线密度λ=5.0x10-9C ·m -1的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强.解:如题6-3图所⽰(1)在带电直线上取线元x d ,其上电量q d 在P 点产⽣场强为20)(d π41d x a xE P -=λε 222)(d π4d x a xE E l l P P -==?-ελ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ0.5-?=λ1m C -?, 5.12=a cm 代⼊得21074.6?=P E 1C N -? ⽅向⽔平向右(2)同理 2220d d π41d +=x xE Q λε⽅向如题8-6图所⽰由于对称性?=l Qx E 0d ,即Q E只有y 分量,∵ 22222220dd d d π41d ++=x x xE Qyλε22π4d d ελ?==lQyQy E E ?-+2223222)d (d l l x x2220d4π2+=l lελ0.5-?=λ1cm C -?, 15=l cm ,5d 2=cm 代⼊得21096.14?==Qy Q E E 1C N -?,⽅向沿y 轴正向6-4 ⼀个半径为R 的均匀带电半圆环,电荷线密度为λ,求环⼼处O 点的场强.解: 如6-4图在圆上取?Rd dl =题6-4图λλd d d R l q ==,它在O 点产⽣场强⼤⼩为 20π4d d R R E ε?λ=⽅向沿半径向外则 ??ελd sin π4sin d d 0RE E x ==ελπd cos π4)cos(d d 0RE E y -=-=积分RR E x 000π2d sin π4ελελπ==0d cos π400=-=?ελπRE y∴ RE E x 0π2ελ=6-5解:如图所⽰,将半球⾯分割成⽆数半径不等环⾯与X 轴垂直的细圆环,图中圆环所带电荷量θθπλλγd ds dq sin 22==,该带电细圆环在O 点产⽣的电场强度为E d =()i xdqy x o224123+επ由⼏何关系,θγcos =x θγs i n =yγ222=+yx有 E d=()i xdq y x o224123+επ = επo41i dθθπσθγγγsin 2cos 2=i d oθθθσεcos sin 2球⼼处的电场强度:i i d E d E o oεεσθθθσπ4cos sin 220===??6-6解:将球⾯沿垂直于X轴的⽅向分割成⽆数半径不等的细圆环,圆中阴影环的带电荷量为:ααπσσRd R ds dq sin 2==在P 点的场强为:θααπσπεθπεαcos sin 241cos 42020r Rd R r d dE ?==(1)⽅向沿X 轴正⽅向(设0>α)如图由余弦定理θc o s 2222xy r x R -+=得: xrR r x 2cos 222-+=θ(2)⼜由余弦定理得:(3)式两边微分得:ααd Rx rdr sin 22= 得:xr dd R =ααs i n(4)将(1)、(2)、(3)式代⼊(1)式得:dr rR x x R rx R r x xr Rrdr E d 2222022220142241-+=-+?=εσπσπε(1)球⾯外(R x >)任⼀点P 的场强值+-= ?-+==x R x R x qdr r R x x R dE E 2022220414πεεσ(2)球⾯内:(R x <)+-=?-+==x R x R dr r R x x R dE E 01422220εσ6-7均匀带电的细线弯成正⽅形,边长为l ,总电量为q .求这正⽅形轴线上离中⼼为r 处的场强E .解: 如6-7图⽰,正⽅形⼀条边上电荷4q在P 点产⽣物强P E d ⽅向如图,⼤⼩为()4π4cos cos d 22021l r E P +-=εθθλ∵ 22cos 221l r l +=π4d 22220l r l l r E P ++=ελP Ed 在垂直于平⾯上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE +++=⊥ελ题6-7图由于对称性,P 点场强沿OP ⽅向,⼤⼩为2)4(π44d 422220l r l r lrE E P ++==⊥ελE P ++=ε⽅向沿OP6-8如题6-8)图所⽰,在点电荷q 的电场中取半径为R 的圆平⾯.q 在该平⾯轴线上的A 点处,求:通过圆平⾯的电通量.解:题6-8图∵通过半径为R 的圆平⾯的电通量等于通过半径为22x R +的球冠⾯的电通量,球冠⾯积*]1)[(π22222xR x x R S +-+=∴ )(π42200x R Sq +=Φε02εq=[221xR x +-]*关于球冠⾯积的计算:见题8-9(c)图ααα)cos 1(π22α-=r6-9 解: ⾼斯定理0d ε∑?=?q S E s,02π4ε∑=q r E当5=r cm 时,0=∑q ,0=E15r =cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=3.98≈1C N -?,⽅向沿半径向外. 50r =cm 时,3π4∑=ρq -3(外r )内3r∴ ()33204π3 1.064πr r E r ρε-=≈外内 1C N -? 沿半径向外. 6-10 解:由⾼斯定理得:= dv s d E Sρε0球体内: E(r)? 4πr 2='rr k 041πεr d r ''2=4r k επ r e kr r E24)(ε= ,0球体外:4202414)(R R r d r r k r r E Rεππεπ=''?'=2044)(r rkR r Eε= (r>R ) 6-11 半径为1R 和2R (2R >1R )的两⽆限长同轴圆柱⾯,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: ⾼斯定理0d ε∑?=q S E s取同轴圆柱形⾼斯⾯,侧⾯积rl S π2=则 rl E S E Sπ2d =??对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >题6-12图6-12 两个⽆限⼤的平⾏平⾯都均匀带电,电荷的⾯密度分别为1σ和2σ,试求空间各处场强.解: 如题6-12图⽰,两带电平⾯均匀带电,电荷⾯密度分别为1σ与2σ,两⾯间, n E)(21210σσε-=1σ⾯外, n E)(21210σσε+-= 2σ⾯外, n E)(21210σσε+= n:垂直于两平⾯由1σ⾯指为2σ⾯.6-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去⼀块半径为r <R 的⼩球体,如题8-13图所⽰.试求:两球⼼O 与O '点的场强,并证明⼩球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀⼩球的组合,见题6-13图(a).(1) ρ+球在O 点产⽣电场010=E,ρ- 球在O 点产⽣电场'dπ4π3430320OO r E ερ=∴ O 点电场'd33030OO r E ερ= ; (2) ρ+在O '产⽣电场'd π4d 3430301OO E ερπ=' ρ-球在O '产⽣电场002='E∴ O ' 点电场 003ερ='E'OO题6-13图(a) 题6-13图(b)(3)设空腔任⼀点P 相对O '的位⽮为r',相对O 点位⽮为r (如题6-13(b)图)E PO =,3ερr E O P '-=' ,∴ 0003'3)(3ερερερdOO r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.6-15解:将这⼀平⾯看作是由⼀系列环带所组成,取以O 为圆⼼,半径为r, 宽度为dr 的环带作为⾯元,该⾯元所带电量为rdrds dq πσσ2=?=rdr dq πσ2=该带电圆环在其轴线上P 点处的电场强度E d的⽅向沿X 轴正向,其⼤⼩为2322023220)(2)(41r x rdrx r x xdqdE +??=+?=εσπε做积分可得轴线上P 点的总场强:+2122023220)(2)(2x R xr x rdr x E R +?=+?=?∞εσεσ6-16解:① aqa q a q a q U 0002334πεπεπεπε-=-+-+=② aqQQ U U A 0023)(πε-=?-=∞题6-17图6-17 如题6-17图所⽰,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另⼀正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场⼒作的功.解: 如题6-17图⽰0π41ε=O U 0)(=-RqR q0π41ε=O U )3(R qR q -Rq 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-=6-18 如题6-18图所⽰的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中⼼O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产⽣的场强互相抵消,取θd d R l =则θλd d R q =产⽣O 点Ed 如图,由于对称性,O 点场强沿y 轴负⽅向题6-18图θεθλππcos π4d d 222R E E y R 0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产⽣电势,以0=∞U===AB200012ln π4π4d π4d R R x x x x U ελελελ同理CD 产⽣ 2ln π40 2ελ=U半圆环产⽣ 0034π4πελελ==R R U ∴ 0032142ln π2ελελ+=++=U U U U O 6-19解:⑴如图所⽰,建⽴坐标V ala x dx U la ap 300105.2ln 44?=+==?+πελπελV x b dxU l l Q 32220103.44?=+=?-πελ6—22解:⑴在板状圆环上取半径为为1r ,宽为dr 的环带作为⾯元,该⾯元的带电量为:rdr rdr ds dq πσπσσ22=?==该带电圆环在轴线上P 点的电势为21)(2)(42221220r x rdr r x dq dU +?=+=πσπε积分可得点P 的总电势+-+=+=+=212222022021222|2)(22121R x R x r x r x rdr U R R R R P εσεσεσ⑵⼩球在下落过程中,电场⼒和重⼒都在对⼩球做功,我们对⼩球应⽤质点动能定理,则有221mv A A =+电重下落过程中重⼒的做功为:mgx A =重电场⼒能做的功为:)(00U U q l d E q A p p--=?-=?电由第⼀问得的结果可知,环⼼处的电势为:)(21200R R U -=εσ由此可知,)(2)(2121221200R x R x R R q U U q A p +++--=--=εσ电将上述结果带⼊动能定理中得由此可得⼩球到环⼼O 处的速度为()121222212022??+++--+=R x R x R R gx v εσ6—23解:参考6—19题i xa ar x U E x z dzU p p aap 220220244+?=??-=+=?-πελπεσ。
大学物理 第十二章 真空中静电场习题解答
第十二章 真空中静电场习题解答(参考)12.6 一均匀带电的细棒被弯成如图所示的对称形状,试问θ为何值时,圆心O 点处的场强为零.[解答]设电荷线密度为λ,先计算圆弧的电荷在圆心产生的场强. 在圆弧上取一弧元 d s =R d φ, 所带的电量为 d q = λd s , 在圆心处产生的场强的大小为 2200d d d d 44q s E kr R Rλλϕπεπε===, 由于弧是对称的,场强只剩x 分量,取x 轴方向为正,场强为d E x = -d E cos φ. 总场强为2/20/2cos d 4x E Rπθθλϕϕπε--=⎰2/20/2sin 4Rπθθλϕπε--=0sin 22R λθπε=,方向沿着x 轴正向.再计算两根半无限长带电直线在圆心产生的场强. 根据上一题的公式③可得半无限长带电直线在延长上O 点产生的场强大小为`04E Rλπε=,由于两根半无限长带电直线对称放置,它们在O 点产生的合场强为``02coscos 222x E E R θλθπε==,方向沿着x 轴负向.当O 点合场强为零时,必有`x x E E =,可得 tan θ/2 = 1,因此 θ/2 = π/4, 所以 θ = π/2.12.8 (1)点电荷q 位于一个边长为a 的立方体中心,试求在该点电荷电场中穿过立方体一面的电通量是多少?(2)如果将该场源点电荷移到立方体的的一个角上,这时通过立方体各面的电通量是多少? [解答]点电荷产生的电通量为图12.6RΦe = q/ε0.(1)当点电荷放在中心时,电通量要穿过6个面,通过每一面的电通量为Φ1 = Φe /6 = q /6ε0.(2)当点电荷放在一个顶角时,电通量要穿过8个卦限,立方体的3个面在一个卦限中,通过每个面的电通量为Φ1 = Φe /24 = q /24ε0;立方体的另外3个面的法向与电力线垂直,通过每个面的电通量为零.12.10 两无限长同轴圆柱面,半径分别为R 1和R 2(R 1 > R 2),带有等量异号电荷,单位长度的电量为λ和-λ,求(1)r < R 1;(2) R 1 < r < R 2;(3)r > R 2处各点的场强.[解答]由于电荷分布具有轴对称性,所以电场分布也具有轴对称性. (1)在内圆柱面内做一同轴圆柱形高斯面,由于高斯内没有电荷,所以E = 0,(r < R 1).(2)在两个圆柱之间做一长度为l ,半径为r 的同轴圆柱形高斯面,高斯面内包含的电荷为 q = λl ,穿过高斯面的电通量为d d 2e SSE S E rl Φπ=⋅==⎰⎰E S Ñ,根据高斯定理Φe = q /ε0,所以02E rλπε=, (R 1 < r < R 2). (3)在外圆柱面之外做一同轴圆柱形高斯面,由于高斯内电荷的代数和为零,所以E = 0,(r > R 2).12.11 13.9 一厚度为d 的均匀带电无限大平板,电荷体密度为ρ,求板内外各点的场强.[解答]方法一:高斯定理法.(1)由于平板具有面对称性,因此产生的场强的方向与平板垂直且对称于中心面:E = E`. 在板内取一底面积为S ,高为2r 的圆柱面作为高斯面,场强与上下两表面的法线方向平等而与侧面垂直,通过高斯面的电通量为d e SΦ=⋅⎰E S2d d d S S S =⋅+⋅+⋅⎰⎰⎰E S E S E S 1`02ES E S ES =++=,高斯面内的体积为 V = 2rS ,包含的电量为 q =ρV = 2ρrS , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρr/ε0,(0≦r ≦d /2).①(2)穿过平板作一底面积为S ,高为2r 的圆柱形高斯面,通过高斯面的电通量仍为 Φe = 2ES ,高斯面在板内的体积为V = Sd , 包含的电量为 q =ρV = ρSd ,根据高斯定理 Φe = q/ε0,可得场强为 E = ρd /2ε0,(r ≧d /2). ②方法二:场强叠加法.(1)由于平板的可视很多薄板叠而成的,以r 为界,下面平板产生的场强方向向上,上面平板产生的场强方向向下.在下面板中取一薄层d y ,面电荷密度为d σ = ρd y ,产生的场强为 d E 1 = d σ/2ε0,积分得100/2d ()222rd y dE r ρρεε-==+⎰,③ 同理,上面板产生的场强为/2200d ()222d ry dE r ρρεε==-⎰,④ r 处的总场强为E = E 1-E 2 = ρr/ε0.(2)在公式③和④中,令r = d /2,得E 2 = 0、E = E 1 = ρd /2ε0,E 就是平板表面的场强.平板外的场强是无数个无限薄的带电平板产生的电场叠加的结果,是均强电场,方向与平板垂直,大小等于平板表面的场强,也能得出②式.12.17 电荷Q 均匀地分布在半径为R 的球体内,试证明离球心r (r <R )处的电势为2230(3)8Q R r U Rπε-=. [证明] 球的体积为343V R π=, 电荷的体密度为 334Q QV R ρπ==. 利用高斯定理的方法可求球内外的电场强度大小为30034QE r r Rρεπε==,(r ≦R ); 204Q E rπε=,(r ≧R ).取无穷远处的电势为零,则r 处的电势为d d d RrrRU E r E r ∞∞=⋅=+⎰⎰⎰E l3200d d 44RrRQ Q r r r R rπεπε∞=+⎰⎰230084R rRQQ r R rπεπε∞-=+22300()84Q Q R r RRπεπε=-+2230(3)8Q R r R πε-=.12.21 如图所示,一个均匀带电,内、外半径分别为R 1和R 2的均匀带电球壳,所带电荷体密度为ρ,试计算:(1)A ,B 两点的电势;(2)利用电势梯度求A ,B 两点的场强. [解答](1)A 点在球壳的空腔内,空腔内的电势处处相等,因此A 点的电势就等于球心O 点的电势.在半径为r 的球壳处取一厚度为d r 的薄壳,其体积为 d V = 4πr 2d r , 包含的电量为d q = ρd V = 4πρr 2d r , 在球心处产生的电势为00d d d 4O qU r r r ρπεε==,球心处的总电势为2122210d ()2R O R U r r R R ρρεε==-⎰, 这就是A 点的电势U A .过B 点作一球面,B 的点电势是球面外的电荷和球面内的电荷共同产生的.球面外的电荷在B 点产生的电势就等于这些电荷在球心处产生的电势,根据上面的推导可得22120()2B U R r ρε=-. 球面内的电荷在B 点产生的电势等于这些电荷集中在球心处在B 点产生的电势.球壳在球面内的体积为3314()3B V r R π=-,包含的电量为 Q = ρV ,这些电荷集中在球心时在B 点产生的电势为332100()43B BBQ U r R r r ρπεε==-. B 点的电势为U B = U 1 + U 2322120(32)6B BR R r r ρε=--.图12.21(2)A 点的场强为0AA AU E r ∂=-=∂. B 点的场强为3120()3B B B B BU R E r r r ρε∂=-=-∂。
大学物理题库-第5章 静电场习题(含答案解析)
真空中的静电场一 选择题1.两个等量的正电荷相距为2a ,P 点在它们的中垂线上,r 为P 到垂足的距离。
当P 点电场强度大小具有最大值时,r 的大小是:[ ](A )42a r =(B )32a r = (C )22ar = (D )a r 2= 2.如图5-1所示,两个点电荷的电量都是q +,相距为a 2,以左边点电荷所在处为球心,以a 为半径作一球形高斯面,在球面上取两块相等的小面积1S 和2S ,设通过1S 和2S 的电通量分别为1Φ和2Φ,通过整个球面的电通量为Φ,则[ ](A )021εq=ΦΦ>Φ,(B )0212,εq=ΦΦ<Φ(C )021εq=ΦΦ=Φ,(D )021εq=ΦΦ<Φ,3.在静电场中,高斯定理告诉我们 [ ](A )高斯面内不包围电荷,则高斯面上各点E的量值处处相等;(B )高斯面上各点E只与面内电荷有关,与面外电荷无关;(C )穿过高斯面的E(D )穿过高斯面的E 通量为零,则高斯面上各点的E必为零; 4.如图5-2所示,两个“无限长”的同轴圆柱面,半径分别为1R 和2R ,其上均匀带电,沿轴线方向单位长度上的带电量分别为1λ和2λ,则在两圆柱面之间、距轴线为r 的P 点处的场强大小为:[ ](A )r 012πελ (B )r 0212πελλ+ (C )()r R -2022πελ (D )()1012R r -πελ5.电荷面密度为+σ和-σ的两块“无限大”均匀带电平行平板,放在与平面垂直的x2-5 图1 - 5 图轴上a +和a -位置,如图5-3所示。
设坐标圆点o 处电势为零,则在a x a +<<-区域的电势分布曲线为: ( )6.真空中两个平行带电平板A 、B ,面积均为S ,相距为)(S d d <<2,分别带电量q +和q -,则两板间相互作用力的大小为:[ ](A )204d q πε (B )Sq 0ε (C )Sq 022ε (D )不能确定7.静电场中,下列说法哪一个是正确的?[ ](A )正电荷的电势一定是正值; (B )等势面上各点的场强一定相等;(C )场强为零处,电势也一定为零; (D )场强相等处,电势梯度矢量一定相等。
真空中的静电场习题课
ro R r
(A)
(B)
(C)
(D)
(E)
[A]
大学物理学A
习题课
9.下面说法正确的是
第7章 真空中的静电场
(A)等势面上各点场强的大小一定相等; (B)在电势高处,电势能也一定高; (C)场强大处,电势一定高; (D)场强的方向总是从电势高处指向低处.
[D]
大学物理学A
习题课
第7章 真空中的静电场
例:.求无限长均匀带电直线的电势分布
场强分布 E 2 0r
由定义 V Edr
dr
P
r 2 0r
PQ
r
发散
R
选有限远为电势零点( Q )
R
R
VP r Edr 2 0r dr 2 0 ln r
讨 论
rR V 0 rR V0 rR V0
大学物理学A
习题课
第7章 真空中的静电场
12.如图所示,在X--Y平面内有与Y轴平行、位于
大学物理学A
习题课
本章内容要点:
静电场的场量 点电荷 电场叠加性
F
E
q0
q
E E
4
r2
0
r0
Ei
dE
第7章 真空中的静电场
E u 关系
VP E • dl
P
Va
Wa q0
E • dl
a
q V
4 0 r V
Vi
dV
E V
大学物理学A
习题课
场强的计算
叠加法 高斯定理法
E
④无限长均匀带电圆柱体 E
大学物理学A
第7章 真空中的静电场
E
0
rR
2 0r
大学物理静电场习题课
的电场 Ex
4 0a
(sin 2
sin 1 )
Ey
4 0a
(cos1
cos2 )
特例:无限长均匀带电(dài diàn)直线的
场强
E 20a
(2)一均匀带电圆环轴线上任一点 x处的电场
xq
E
4 0 (
x2
a2
3
)2
i
(3)无限大均匀带电平面的场强
精品文档
E 2 0
五、高斯定理可能应用(yìngyòng)的
搞清各种(ɡè zhǒnɡ) 方法的基本解题步 骤
4、q dV Ar 4r 2dr
精品文档
6.有一带电球壳,内、外半径分别为a和b,电荷体 密度r = A / r,在球心处有一点电荷Q,证明当A = Q / ( 2pa2 )时,球壳区域内的场强的大小(dàxiǎo) 与r无关.
证:用高斯定理求球壳内场强:
一、一个实验(shíyàn)定律:库仑定F律12
二、两个物理(wùlǐ)概念:场强、电势;
q1q2
4 0r122
e12
三、两个基本定理:高斯定理、环流定理
有源场
E
dS
1
0
qi
LE dl 0
( qi 所有电荷代数和)
(与
VA VB
B
E
dl等价)
A
(保守场)
精品文档
四、电场(diàn c1h.ǎ点n电g)荷强的度电的场计(d算iàn
b
Wab qE dl q(Ua Ub ) qUab (Wb Wa )
a
3. 电势叠加原理
(1)点电荷的电势分布:
q
U P 4 0r
(2)点电荷系的电势分布:
《大学物理》真空中的静电场练习题及答案解析
《大学物理》真空中的静电场练习题及答案解析一 选择题1. 下列几个说法中哪一个是正确的 (B )(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向(B )电场中某点的场强大小与试验电荷无关。
(C )场强大小由 E =F /q 可知,某点的场强大小与试验电荷受力成正比,与电量成反比。
(D )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同2. 如图所示为一沿 x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ、-λ,则 oxy坐标平面上点(0,a )处的场强E 的方向为( A )( A )x 正方向 (B ) x 负方向 (C )y 正方向(D )y 负方向3.如图所示,一个带电量为q 的点电荷位于正立方体的中心上,则通过其中一侧面的电场强度通量等于:( B )(A)04εq (B)06εq (C) 024εq (D) 027εq第2题图 第3题图 4.关于高斯定理0ε∑⎰⎰=⋅=Φi s e q s d E ,下列说法中正确的是( C )(A )如果高斯面无电荷,则高斯面上的电场强度处处为零(B )如果高斯面上的电场强度处处为零,则高斯面内无电荷(C )如果高斯面上的电场强度处处为零,则通过高斯面的电通量为零(D )若通过高斯面的电通量为零,则高斯面上的电场强度处处为零5.如图所示,闭合曲面S 内有一点电荷q ,P 为S 面上一点,在S 面外A 点有一点电荷,q ,将其移到B 点,则( B )(A )通过S 面的电通量不变,P 点的电场强度不变。
(B )通过S 面的电通量不变,P 点的电场强度变化。
(C )通过S 面的电通量改变,P 点的电场强度不变。
(D )通过S 面的电通量改变,P 点的电场强度变化。
6.下列说法中正确的是( D )(A )场强为0的点电势也为0 (B )场强不为0的点电势也不为0(C )电势为0的点,则电场强度也一定为0(D )电势在某一区域为常数,则电场强度在该区域必定为01.B2.A3.B4.C5.D 、6D二 填空题1、在点电荷的q +,q -电场中,作如图所示的三个高斯面,求通过321S S 、、S ,球面的电通量分别为________________、_______________、______________。
10 真空中的静电场习题(二)-答案 (2)
1真空中的静电场习题(二)答案三、计算题1、 (1)带电直线上离中心O 为z’处的电荷元dq=λdz ’在P 点产生的电势)'z z ('dz 41)'z z (dq 41dU 0-=-=λπεπε带电直线在P 点的电势:)'z z ('dz 41dU U 0llLP -==⎰⎰-λπε,lz l z lnl8q U 0P -+=πεP 点的电场强度:zU E ∂∂-=,)l z (4qE 220-=πε,k )l z (4qE 220 -=πε(2)带电直线上离中心O 为z 处的电荷元dq=λdz 在P 点产生的电势2222rz dz 41rz dq 41dU +=+=λπεπε带电直线在P 点的电势:⎰⎰-+==ll220LP rz dz41dU U λπεrr l l lnl4q U 220P ++=πεP 点的电场强度:rU E ∂∂-=,)l r (r 4qE 220+=πε0220r )l r (r 4qE+=πε2.(1) 120ln22212121r r dr rEdr U U r r r r r r πελπελ===-⎰⎰(2)在点电荷的电场中,我们曾取r →∞处的电势为零,是因为电荷分布在有限的空间中;若无限长均匀带电直线附近的电势也这样取,其电场中任一点的电势为无限大,这就无意义了。
本题中带电体为无限长均匀带电直线,电荷分布在无限的空间中,零电势点就不能取无限远处的电势为零。
3、 无穷远处为电势零点,两个电荷构成的电荷系在O 点和D 点的电势为0L 4q L 4q U 00O =-+=πεπεLq Lq Lq U D 00064314πεπεπε-=-+=(1) 单位正电荷从O 沿OCD 移动到D ,电场力做的功:)U U )(1(A P O -+=, L6q A 0πε=(2) 单位负电荷从D 沿AB 延长线移动到无穷远,电场力做的功:)U U )(1(A P ∞--=,)0L6q (A 0---=πε, L6q A 0πε=4. C 、F 两点之间的电势差为5154-⋅=lq U o CF πε将单位正电荷从C 点沿CDEF 路径运动到F 点,电场力所作的功5154-⋅==lq U A o CF πε5、 根据动能定理,静电力对电子做的功等于电子动能的增量: )U U(e mv21B A2-=114q 414q Uo2o1Aπεπε+=,V 63U A -=, 414q 114q U o2o1B πεπε+=,V 153U B =m )U U (e 2v B A -=, s /m 107.8v 6⨯= 6. 20111)ln (2222=-+=++-∂∂-=∂∂-=xyx x x yx xU x E x53)ln (2222=+=++-∂∂-=∂∂-=yx yx y x xU yE y点P (4,3,0)处的电场强度j i j E i E E y x532011+=+=(1)计算题∙∙ABq-q+ODCL L。
大学物理-真空中的静电场习题课和答案解析
基本要求
1、掌握静电场的电场强度和电势的概念以及电场 强度和电势的叠加原理。
2、掌握静电场强度和电势的积分关系,了解场强 与电势的微分关系,能计算一些简单问题中的 场强和电势。
3、理解静电场的规律:高斯定理和环路定理。掌 握用高斯定理计算场强的条件和方法,并能熟 练应用。
1、基本概念: ① 电场强度矢量
圆环上的电荷分布对环心对称,它在环心处的场强为零。
E
E1
Q
16 0 R2
方向竖直向下。
1、在静电场中,下列说法正确的是:
A)带正电荷的导体,其电势一定是正值。 B)等势面上各点的场强一定相等。
√ C)场强为零处,电势也一定为零。 D)场强相等处,电势梯度矢量一定相等。
四、证明题(10分)
有一带电球壳,内、外半径分别为a 和b ,电荷体密度 ρ = A / r ,
解:先计算细绳上的电荷对中心产生的场强。
3R
选细绳的顶端为坐标原点O。X轴向下为正。
在x 处取一电荷元 dq dx Qdx / 3R
R
它在环心处的场强为:
R/2
dq
Qdx
dE1
4 0 (4R
x)2
12 0R(4R
x)2
整个细绳上的电荷在O点处的场强为:
3R
Qdx
Q
E1 0 12 0R(4R x)2 16 0R2
P
P0
E
d
l
P
微分关系E U
③ 电通量
de E d S
e SE d S
④ 电势能
零点
Wa q0 a E d l q0U a
⑤ 电势差 U U ab U a U b
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
此题也可以在柱面坐标系中用三重积分来 计算。
13.如图所示,一厚为 a 的“无限大”带电 平板,电荷体密度 = kx (0≤x≤a) k为一正 的常数。求: (1)板外两侧任一点 M1、 M2的电场强度大小;(2)板内任一点M 的电场强度;(3)场强最小的点在何处。
M1 o
M
M2
x
a
解:(1)在x处取厚为 dx 的平板,此平板带电量
E
E1 - a 2
z
o
1 a 2
X
a/2 E 2E cos 0r r 2a 2 2 0 (a 4 z )
方向如图所示. 或用矢量表示
E2a 2 2 0 (a 4 z ) i
E
Z
E
E1 a 2
z
o
1 a 2
X
10.一均匀带电细杆,长为 l,其电荷线 密度为 ,在杆的延长线上,到杆的一端 距离为 d 的 P 点处,有一电量为 q0 的点 电荷。试求:(1)该点电荷所受的电场力; (2)当 d >> l 时,结果如何?(自选坐 标系求解)
d x
点电荷 q0 所受的电场力为 q 0l F 4 0d d l
q0与 同号时,F // - i , q0与 异号时,F // i 。 (2)当d >>l 时, q 0q F 2 4 0d
d
q0
l dx
o
x
x
d x
(q = L),此时线电荷分布视为点电荷。
11.一带电细线弯成半径为 R 的半圆形,电 荷线密度为 =0sin,式中 为半径为 R 与 x 轴所成的夹角,0 为一常数,如图所 示,试求环心 o 处的电场强度。
X
解:过 z 轴上任一点(0,0,z)分别以两条带 电细线为轴作单位长度的圆柱形高斯面, 如图所示.按高斯定理求出两带电直线分 别在该处产生的场强大小为: Z E- /(2 0r )
式中正负号分别表示 场强方向沿径向朝外 和朝里,如图所示.按 场强叠加原理,该处 合场强的大小为
E
[A]
6.半径为 R 的均匀带电球面, 总电量为 Q, 设无穷远处电势为零,则该带电体所产生 的电场的电势 U ,随离球心的距离 r 变化 的分布曲线为:
U U U
1 U r
o R
1 U r
o
R
1 U r
o
R
U
U 1 U 2 r
o R
1 U 2 r
r
r
r
(A)
(B)
(C)
(D)
r o R
1.图中所示为一沿 x 轴放置的“无限长” 分段均匀带电直线,电荷线密度分别为 +(x >0)和 -(x < 0),则 oxy 坐标 平面上点(0,a)处的场强 E 为: (A)0
( B ) 2 a i 0 i (C) 4 0a (D) i j 2 0a
y
0, a
M 右侧产生的场强方向沿 x 轴负向, 2 2 a kx k a x E2 dx x 2 4 0 0 2 2 2 k kx ka - x 2 2 2x - a E 4 0 4 0 4 0
(3)E = 0 时最小,
M1 o
M
M2
x
2x - a 0
2 2
x a
2
a
14. 真空中一均匀带电细直杆,长度为 2a, 总电量为 +Q, 沿 ox 轴固定放置(如图)。 一运动粒子质量为 m、带有电量 +q,在经 过 x 轴上的 C 点时,速率为 v。试求:(1) 粒子在经过x轴上的 C 点时,它与带电杆之 间的相互作用电势能(设无穷远处为电势零 点);(2)粒子在电场力作用下运动到无穷 远处的速率 v ( 设 v 远小于光速).
y
R 0
x
解:在 处取电荷元,其电量为
dq dl 0 R sind
y
dq
它在o点处产生的场强为
dq 0 sin d dE 2 4 0 R 4 0 R
dEy -dE sin
dE x
dE
0 dE y
x
在 x、y 轴上的二个分量
dEx -dE cos
(C)
4 0r
Q1
2
(D) 0 [D]
3.真空中一半径为 R 的球面均匀带电 Q, 在球心 o 处有一带电量为 q 的点电荷,设 无穷远处为电势零点,则在球内离球心 o 距离的 r 的 P 点处的电势为: (A)
q 4 0 r
q Q (C) 4 0 r
1 q Q (B) 4 0 r R 1 q Q q (D) 4 0 r R
a o a a
C
x
解:(1)在杆上取线元 dx,其上电量 dq Qdx 2a 设无穷远处电势为 a a a 零,dq 在 C 点处 o C x x dx 产生的电势 Q dx 2a dU 4 0 2a - x
整个带电杆在 C 点产生的电势 Q a dx Q U L du ln 3 -a 8 0a 2a - x 8 0a
A
R
H
解:在离顶点 A 为 x 处选厚为 dx 的薄圆 盘,此圆盘半径为 r 。 由图知
R x H ,r x H r R
r
R
x
H
A
此薄圆盘的带电量
dq dV r 2dx ,
r dx dx 电荷面密度=电量/面积= 2 r 由均匀带电圆盘在轴线上任一点的场强
2
x 1 1 E - 2 2 2 0 x x R
[B]
4如图所示,一个带电量为 q 的点电荷位 于正立方体的 A 角上,则通过侧面 abcd 的电场强度通量等于: (A)q /60 ;
(C)q /240 ;
a
(B)q /120 ;
(D)q /360 .
d A
q
b
c
[C]
5.半径为 r 的均匀带电球面 1,带电量为 q;其外有一同心的半径为 R 的均匀带电 球面 2,带电量为 Q ,则此两球面之间的 电势差 U1-U2 为: q 1 1 q 1 1 - - (A) (B) 4 0 r R 4 0 R r q Q 1 q Q - (C) (D) 4 0 r 4 0 r R
l d
r
P
q0
解:(1) 选杆的左端为坐标原点,方向如图 示,任取一电荷元 dx,它在点电荷所在 处产生场强为 dx dE 2 4 0 d x 整个杆上的电荷在该点的场强为
E
l 0
4 0 d x
dx
2
d
4 0 d l lq0Fra bibliotekl dx
o
x
x
带电粒子在 C 点时,它与带电杆 a a 相互作用电势能为 o x dx W qU qQ ln 3 8 0a
a
C x
(2)带电粒子从 C 点起运动到无限远处时, 电场力作功,电势能减少。粒子动能增加。 1 1 2 2 mv - mv qQ ln 3 8 0a 2 2 由此得粒子在无限远处的速率
-
x
o
[ B ]
2.两个同心的均匀带电球面,内球面半径 为 R1、带电量 Q1,外球面半径为 R2、带 电量 Q2,则在内球面里面、距离球心为 r 处的 P 点的场强大小 E 为:
Q Q 1 2 (A) 2 4 0 r Q Q 1 2 (B) 2 2 4 0R1 4 0R2
可得此薄圆盘在 A 点的场强
x dE 1 2 2 2 0 r R
R
r
x
H
A
2 2 1 - H H R dx 2 0 H H dx E 0 1 2 2 2 0 H R
H H 1 2 2 2 0 R H
(C)场强大处,电势一定高; (D)场强的方向总是从电势高处指向低处.
[D]
9.如图所示,在X--Y平面内有与Y轴平行、 位于 x= a/2 和 x = - a /2 出的两条“无 限长”平行的均匀带电细线,电荷密度分 别为 和 -.求轴上任一点的电场强 度. Z - Y
a - o 2 a 2
0 Ex 0 sin cosd 0 4 0 R 0 0 2 Ey 0 sin d 8 0 R 4 0 R 0 E Exi Ey j - 8 R j 0
12 .如图所示,圆锥体底面半径为 R ,高 为 H,均匀带电,电荷体密度为 ,求顶 点 A处的场强。
(E)
r
[A]
7.已知一高斯面所包围的体积内电量代数 和 qi 0 ,则可肯定:
(A)高斯面上各点场强均为零。 (B)穿过高斯面上每一面元的电通量均为 零。 (C)穿过整个高斯面的电通量为零。 (D)以上说法都不对。
[C]
8.下面说法正确的是
(A)等势面上各点场强的大小一定相等;
(B)在电势高处,电势能也一定高;
dq dx S
电荷面密度为
dq dx S
M1 o
M
dx kxdx 则 dE 2 0 2 0 2 0
a 0
M2
x
x
kx ka 2 a E dx 2 0 4 0 (2)板内任一点 M 左侧产生的场强方向沿 x 轴正向, x kx kx 2 E1 dx 0 2 4 0 0
qQ 2 v ln 3 v 4 0am
12