立体图形的展开和折叠(课堂PPT)
合集下载
立体图形的展开图课件PPT
立体图形的展开图 课件
目 录
• 立体图形基础 • 立体图形的展开过程 • 立体图形的展开图示例 • 立体图形展开图的实践应用 • 立体图形展开图的制作技巧
01
CATALOGUE
立体图形基础
立体图形的定义与分类
定义
立体图形是三维空间中具有大小 和形状的空间几何体。
分类
常见的立体图形包括长方体、正 方体、圆柱体、圆锥体、球体等 。
圆锥体的展开图
总结词
圆锥体的展开图是一个扇形和一个圆 形的组合。
详细描述
圆锥体的展开图是由一个扇形和一个 圆形组成的平面图形。扇形的半径等 于圆锥体的高,弧长等于圆锥体的底 面周长。圆形是圆锥体底面的展开形 状。
球体的展开图
总结词
球体的展开图是一个完整的圆形。
详细描述
球体的展开图是一个完整的圆形,因为球体在任何方向上的形状都是相同的。这个圆形代表了球体的表面展开后 的形状。
包装设计
包装盒的设计和制作需 要利用立体几何的知识 ,如长方体、圆柱体等
。
艺术创作
立体图形在雕塑、绘画 等艺术创作中也有广泛
应用。
02
CATALOGUE
立体图形的展开过程
展开图的定义与分类
01
02
03
展开图定义
将立体图形的表面沿某些 棱边展开在同一个平面上 的图形。
展开图分类
轴对称展开图、非轴对称 展开图。
应用领域
包装、折纸艺术、建筑设 计等。
展开图的绘制方法
手工绘制
使用直尺、圆规等工具,依据立 体图形的尺寸和形状绘制展开图
。
软件绘制
使用CAD等绘图软件,通过输入立 体图形的三维数据,生成展开图。
目 录
• 立体图形基础 • 立体图形的展开过程 • 立体图形的展开图示例 • 立体图形展开图的实践应用 • 立体图形展开图的制作技巧
01
CATALOGUE
立体图形基础
立体图形的定义与分类
定义
立体图形是三维空间中具有大小 和形状的空间几何体。
分类
常见的立体图形包括长方体、正 方体、圆柱体、圆锥体、球体等 。
圆锥体的展开图
总结词
圆锥体的展开图是一个扇形和一个圆 形的组合。
详细描述
圆锥体的展开图是由一个扇形和一个 圆形组成的平面图形。扇形的半径等 于圆锥体的高,弧长等于圆锥体的底 面周长。圆形是圆锥体底面的展开形 状。
球体的展开图
总结词
球体的展开图是一个完整的圆形。
详细描述
球体的展开图是一个完整的圆形,因为球体在任何方向上的形状都是相同的。这个圆形代表了球体的表面展开后 的形状。
包装设计
包装盒的设计和制作需 要利用立体几何的知识 ,如长方体、圆柱体等
。
艺术创作
立体图形在雕塑、绘画 等艺术创作中也有广泛
应用。
02
CATALOGUE
立体图形的展开过程
展开图的定义与分类
01
02
03
展开图定义
将立体图形的表面沿某些 棱边展开在同一个平面上 的图形。
展开图分类
轴对称展开图、非轴对称 展开图。
应用领域
包装、折纸艺术、建筑设 计等。
展开图的绘制方法
手工绘制
使用直尺、圆规等工具,依据立 体图形的尺寸和形状绘制展开图
。
软件绘制
使用CAD等绘图软件,通过输入立 体图形的三维数据,生成展开图。
展开与折叠(动画演示)ppt课件
从专业网站或素材库中下载所需 的图形、图像和图标等素材。
导入素材
在PPT中选择“插入”功能,将 收集到的素材导入到相应的幻灯
片中。
调整素材
根据需要调整素材的大小、位置 和颜色等属性,使其符合动画效
果的要求。
关键帧设置技巧
01 02
添加关键帧
在动画窗格中,选择需要添加动画的对象,点击“添加动画”按钮,在 弹出的菜单中选择“自定义路径”或“其他动画效果”,然后设置关键 帧的位置和属性。
展开与折叠(动画演示 )ppt课件
目 录
• 引言 • 展开与折叠基本概念 • 动画演示制作工具介绍 • 展开与折叠动画效果制作 • 案例分析:优秀展开与折叠动画作品欣赏 • 实践操作:动手制作一个展开与折叠动画 • 总结回顾与拓展延伸
01
引言
目的和背景
介绍展开与折叠动画 效果在PPT中的应用
激发观众对于学习展 开与折叠动画效果的 兴趣
展开与折叠作用
01
02
03
提高用户体验
通过展开与折叠,用户可 以按需查看详细信息或简 化视图,从而提高使用效 率和满意度。
节省空间
在有限的空间内展示大量 信息时,通过折叠部分内 容可以节省空间,使界面 更加整洁。
引导用户注意力
通过展开与折叠的动画效 果,可以引导用户的注意 力,突出重要信息。
展开与折叠应用场景
02
当鼠标悬停或点击标题栏时,通过流畅的动画效果将标题栏展
开,逐渐展示出更多详细信息和内容。
交互设计
03
在展开过程中,可以添加一些交互元素,如下拉菜单、选项卡
等,方便用户进一步探索和了解信息。
案例二:精美绝伦的图片展示折叠效果
初始状态
导入素材
在PPT中选择“插入”功能,将 收集到的素材导入到相应的幻灯
片中。
调整素材
根据需要调整素材的大小、位置 和颜色等属性,使其符合动画效
果的要求。
关键帧设置技巧
01 02
添加关键帧
在动画窗格中,选择需要添加动画的对象,点击“添加动画”按钮,在 弹出的菜单中选择“自定义路径”或“其他动画效果”,然后设置关键 帧的位置和属性。
展开与折叠(动画演示 )ppt课件
目 录
• 引言 • 展开与折叠基本概念 • 动画演示制作工具介绍 • 展开与折叠动画效果制作 • 案例分析:优秀展开与折叠动画作品欣赏 • 实践操作:动手制作一个展开与折叠动画 • 总结回顾与拓展延伸
01
引言
目的和背景
介绍展开与折叠动画 效果在PPT中的应用
激发观众对于学习展 开与折叠动画效果的 兴趣
展开与折叠作用
01
02
03
提高用户体验
通过展开与折叠,用户可 以按需查看详细信息或简 化视图,从而提高使用效 率和满意度。
节省空间
在有限的空间内展示大量 信息时,通过折叠部分内 容可以节省空间,使界面 更加整洁。
引导用户注意力
通过展开与折叠的动画效 果,可以引导用户的注意 力,突出重要信息。
展开与折叠应用场景
02
当鼠标悬停或点击标题栏时,通过流畅的动画效果将标题栏展
开,逐渐展示出更多详细信息和内容。
交互设计
03
在展开过程中,可以添加一些交互元素,如下拉菜单、选项卡
等,方便用户进一步探索和了解信息。
案例二:精美绝伦的图片展示折叠效果
初始状态
立体图形的表面展开图(课件)
共有11种情况
新知讲解
第一种:一四一型
新知讲解
第一种:一四一型
新知讲解
第二种:二三一型
新知讲解
第三种:二二二型
第四种:三三型
新知讲解
例 下面的图形都是正方体的展开图吗?
是
是
是
新知讲解
例 下面的图形都是正方体的展开图吗?
是
不是
是
新知讲解
正方体展开图“口诀” 中间四个面,上下各一面 中间三个面,一二隔河见 中间两个面,楼梯天天见 中间没有面,三三连一线
拓展提高
在下边的展开图中,分别填上1、2、3、4、5、6,使折
叠成正方体后,相对面上的数字之和相等,求x=
,
y=
, z=
。
y
1x z 5
4
拓展提高
引导:由正方体的展开图可以看出:1和z是相对面,5 和x是相对面,4和y是相对面,所以1+z=7, 5+x=7,4+y=7,所以x=2,y=3,z=6。
4.3立体图形的表面展开图
华师大版 七年级上
新知导入
你想知道这些精美的包装 盒是怎么制成的吗?
新知导入
我们知道圆柱的侧面展开图是长方形,圆锥的侧面展 开图是扇形。但在实际生活中常常需要了解整个立体图形 展开的形状,如包装一个长方体形状的物体,需要根据其 平面展开图来裁剪纸张。
我们下面要讨论的是一些简单多面体的表面展开图。
课堂总结
板书设计
4.3立体图形的表面展开图 一、简单立体图形的展开图 二、正方体的展开图
新知讲解
下图的三个图是一些多面体的表面展开图,你能 说出这些多面体的名称吗?
正方体
长方体
三棱柱
新知讲解
第一种:一四一型
新知讲解
第一种:一四一型
新知讲解
第二种:二三一型
新知讲解
第三种:二二二型
第四种:三三型
新知讲解
例 下面的图形都是正方体的展开图吗?
是
是
是
新知讲解
例 下面的图形都是正方体的展开图吗?
是
不是
是
新知讲解
正方体展开图“口诀” 中间四个面,上下各一面 中间三个面,一二隔河见 中间两个面,楼梯天天见 中间没有面,三三连一线
拓展提高
在下边的展开图中,分别填上1、2、3、4、5、6,使折
叠成正方体后,相对面上的数字之和相等,求x=
,
y=
, z=
。
y
1x z 5
4
拓展提高
引导:由正方体的展开图可以看出:1和z是相对面,5 和x是相对面,4和y是相对面,所以1+z=7, 5+x=7,4+y=7,所以x=2,y=3,z=6。
4.3立体图形的表面展开图
华师大版 七年级上
新知导入
你想知道这些精美的包装 盒是怎么制成的吗?
新知导入
我们知道圆柱的侧面展开图是长方形,圆锥的侧面展 开图是扇形。但在实际生活中常常需要了解整个立体图形 展开的形状,如包装一个长方体形状的物体,需要根据其 平面展开图来裁剪纸张。
我们下面要讨论的是一些简单多面体的表面展开图。
课堂总结
板书设计
4.3立体图形的表面展开图 一、简单立体图形的展开图 二、正方体的展开图
新知讲解
下图的三个图是一些多面体的表面展开图,你能 说出这些多面体的名称吗?
正方体
长方体
三棱柱
6.1.1.2从不同的方向看立体图形和立体图形的展开图(课件)人教版(2024)数学七年级上册
侵权必究
知识目标
1. 了解立体图形与平面图形之间的联系.
2.能画出简单立体图形从不同方向看得到的平面 图形. (重点、难点)
3. 了解研究立体图形的方法,体会一个立体图形 按照不同方式展开可得到不同的平面展开图.
4. 通过展开与折叠了解棱柱、棱锥、圆柱、圆锥、 长方体、正方体的表面展开图或根据展开图判断 立体图形. (重点、难点)
行列
?
黄
侵权必究
总结归纳
巧记正方体的展开图口诀: 正方体盒巧展开, 六个面儿七刀裁, 十一类图记分明; 一四一呈6种, 二三一有3种, 二二二与三三各1种; 对面相隔不相连, 识图巧排“凹”和“田”.
侵权必究
红 蓝
黄
做一做
1. 下列四个图形中是正方体的平面展开图的是( B )
侵权必究
2.下列各图不是正方体表面展开图的是( C )
友情提示: 沿着棱剪 展开后是一 个平面图形
侵权必究
正方体的展开图
1
2
34
5
6
7
8
9
10
11
思考: 这些正方体展开图可以分为几种? 观察上面的11种正方体的展开图有没有什么规律? 哪几号展开图可以分为一类,为什么?
侵权必究
侵权必究
侵权必究
侵权必究
相 对 两 面 不 相 连
上左
下右
隔隔
蓝
一一
第六章 几何图形初步 6.1.1 第2课时
从不同的方向看立体图形 和立体图形的展开图
侵权必究
目录页
新课导入
讲授新课
当堂练习
课堂小结
侵权必究
新课导入
✓ 教学目标 ✓ 教学重点
侵权必究
知识目标
1. 了解立体图形与平面图形之间的联系.
2.能画出简单立体图形从不同方向看得到的平面 图形. (重点、难点)
3. 了解研究立体图形的方法,体会一个立体图形 按照不同方式展开可得到不同的平面展开图.
4. 通过展开与折叠了解棱柱、棱锥、圆柱、圆锥、 长方体、正方体的表面展开图或根据展开图判断 立体图形. (重点、难点)
行列
?
黄
侵权必究
总结归纳
巧记正方体的展开图口诀: 正方体盒巧展开, 六个面儿七刀裁, 十一类图记分明; 一四一呈6种, 二三一有3种, 二二二与三三各1种; 对面相隔不相连, 识图巧排“凹”和“田”.
侵权必究
红 蓝
黄
做一做
1. 下列四个图形中是正方体的平面展开图的是( B )
侵权必究
2.下列各图不是正方体表面展开图的是( C )
友情提示: 沿着棱剪 展开后是一 个平面图形
侵权必究
正方体的展开图
1
2
34
5
6
7
8
9
10
11
思考: 这些正方体展开图可以分为几种? 观察上面的11种正方体的展开图有没有什么规律? 哪几号展开图可以分为一类,为什么?
侵权必究
侵权必究
侵权必究
侵权必究
相 对 两 面 不 相 连
上左
下右
隔隔
蓝
一一
第六章 几何图形初步 6.1.1 第2课时
从不同的方向看立体图形 和立体图形的展开图
侵权必究
目录页
新课导入
讲授新课
当堂练习
课堂小结
侵权必究
新课导入
✓ 教学目标 ✓ 教学重点
侵权必究
展开与折叠(2)课件 2022—2023学年苏科版数学七年级上册
第五章 · 走进图形世界
5.3 展开与折叠(2) 第2课时 折叠
学习目标
学习目标
1.进一步感受立体图形与平面图形之间的关系,能根 据表面展开图判断、制作简单几何体;
2.感受正方体表面展开图中各个面之间的关系,会确 定正方体的对应面;
3.理解表面展开图中各个面之间的关系,会利用表 面展开图进行计算;
④
新知归纳
如果表面展开图由6个正方形组成,那么立体图形是正方体; 如果由3个或3个以上的三角形与1个多边形组成,那么立体图形是棱锥; 如果由3个或3个以上的长方形与2个形状、大小都相同的多边形组成, 那么立体图形是棱柱.
复习巩固
数学实验
3.如图,纸板上有10个无阴影的小正方形,从中选出1个,使 它与图中5个有阴影的正方形一起制作成一个正方体包装盒. 先想一想,再折一折,验证你的想法.
蚊子
●
你有何 高招?
壁虎 ● ●
壁 虎
拓展延伸
小壁虎的难题: 如图:如果圆桶改为正方体了呢?有多少条路径?哪条路径最短?
B
壁虎 ● A
B
●
蚊子
展开
B
A
B A 这样的路径有几条?
解:(1)这个包装盒是一个长方体. (2)此包装盒的表面积为2·b2+4·ab=2b2+4ab,体积为b2·a=ab2.
还原几何体是解答此类题的关键,动手操作是还原几何体的一个有效方法.
拓展延伸
小壁虎的难题:
如图:一只圆桶的下方有一只壁虎,上方有一只蚊子,壁虎要想尽快吃
到蚊子,应该走哪条路径?
● 蚊子
A
BCD
BCD
F
A
E
F
E
课堂小结
本节课你有什么新的收获!
5.3 展开与折叠(2) 第2课时 折叠
学习目标
学习目标
1.进一步感受立体图形与平面图形之间的关系,能根 据表面展开图判断、制作简单几何体;
2.感受正方体表面展开图中各个面之间的关系,会确 定正方体的对应面;
3.理解表面展开图中各个面之间的关系,会利用表 面展开图进行计算;
④
新知归纳
如果表面展开图由6个正方形组成,那么立体图形是正方体; 如果由3个或3个以上的三角形与1个多边形组成,那么立体图形是棱锥; 如果由3个或3个以上的长方形与2个形状、大小都相同的多边形组成, 那么立体图形是棱柱.
复习巩固
数学实验
3.如图,纸板上有10个无阴影的小正方形,从中选出1个,使 它与图中5个有阴影的正方形一起制作成一个正方体包装盒. 先想一想,再折一折,验证你的想法.
蚊子
●
你有何 高招?
壁虎 ● ●
壁 虎
拓展延伸
小壁虎的难题: 如图:如果圆桶改为正方体了呢?有多少条路径?哪条路径最短?
B
壁虎 ● A
B
●
蚊子
展开
B
A
B A 这样的路径有几条?
解:(1)这个包装盒是一个长方体. (2)此包装盒的表面积为2·b2+4·ab=2b2+4ab,体积为b2·a=ab2.
还原几何体是解答此类题的关键,动手操作是还原几何体的一个有效方法.
拓展延伸
小壁虎的难题:
如图:一只圆桶的下方有一只壁虎,上方有一只蚊子,壁虎要想尽快吃
到蚊子,应该走哪条路径?
● 蚊子
A
BCD
BCD
F
A
E
F
E
课堂小结
本节课你有什么新的收获!
常考立体图形的展开与折叠专题复习PPT(2020)
3、想一想?
是不是所有的立体图形都有平面展开图?
不是,例如:球
3
图形的折叠
图形的折叠
下图是一些立体图形的展开图,用它们能 围成怎样的立体图形?
下图是一个正方体的展开图,标注了字母A 的面是正方体的正面,如果正方体的左面与
x 右面所标注代数式的值相等,求 的值.
-2
3 -4 1
A 3 x-2
3x-2=-4
1
立体图形的展开图
立体图形的展开图
把你所做的立体图形展开, 看它的平面展开图是什么。
1.圆柱展开图
展开
5.小壁虎的选择:
如图:一只圆桶的下方有一只壁虎,上方有一只蚊 子,壁虎要想尽快吃到蚊子,应该走哪条路径?
●
●
● ●
2.三棱柱展开图
三 棱 柱
三棱柱九种展开图形
3.三棱锥展开图
三棱锥九种展开图形
4
常见易错题精讲
想一想、折一折
以下哪些图形经过折叠可以围成一个棱柱?
⑴
⑵
⑷
⑶
拓展1:你有办法将图形(1)、(3)修改后
使能折叠成棱柱?
拓展2:图形(2)、(4)是不同的平面图形, 折叠出同样的棱柱,从中你得到了什么启示?
连一连
下列图形能折叠成什么图形?
圆柱体 圆锥
五棱柱 四棱锥
把一个正方体的表面沿某条棱剪开, 展开成平面图形,你能得到哪些箱子的一个顶点A,它 发现相距它最远的另一个顶点B处有它感兴趣的 食物,这只蚂蚁想尽快得到食物,哪条路径最短? 试在图中将路线画出来。
B B
A
徐埠白果小学 xububaiguoxiaoxue
想一想:图中的几个图形能否折叠 成为棱柱?
图形的展开与折叠课件
保持工作区域整洁
及时清理工作区域,避免杂物影响 操作,确保工作台面干净整洁。
精度要求
01
02
03
测量准确
在展开和折叠前,要进行 精确测量,确保尺寸无误 。
对齐准确
在折叠过程中,要确保各 边对齐,避免出现偏差。
细节处理
对于细节部分,要特别注 意处理,确保整体效果美 观。
材料选择
纸张材质
选择质地均匀、厚度适中 的纸张,以确保展开与折 叠的效果。
方体。
圆柱体的折叠
要点一
总结词
圆柱体可以通过两个圆面和一个矩形的折叠,形成三维的 立体结构。
要点二
详细描述
首先,准备两个圆形纸片和一个矩形纸片。然后,将两个 圆面沿着直径进行折叠,再将矩形纸片卷起来形成一个柱 体,最后将两个圆面粘贴在柱体的两端,形成圆柱体。
圆锥体的折叠
总结词
圆锥体可以通过一个圆面和一个等腰三角形的折叠,形成三维的立体结构。
化学实验
在化学实验中,图形的展开与折 叠可用于研究化学反应的动力学 过程和化学物质的结构特性等。
05
图形展开与折叠的注意 事项
安全注意事项
使用工具安全
在使用剪刀、刀片等工具时,要 确保操作区域干净,避免工具滑
落或误伤。
避免使用锐利边角
在展开和折叠过程中,要避免使用 过于锐利的边角,以防划伤皮肤。
区别
图形展开主要关注的是如何将曲面剪开并平摊在平面上,而图形折叠则关注如何将平面图形对折成空间几何体。 此外,展开后的平面图形保留了原图形的所有顶点、棱和面的信息,而折叠后的空间几何体仅保留了部分顶点和 边的信息。
02
图形展开的方法与技巧
平行四边形的展开
总结词
及时清理工作区域,避免杂物影响 操作,确保工作台面干净整洁。
精度要求
01
02
03
测量准确
在展开和折叠前,要进行 精确测量,确保尺寸无误 。
对齐准确
在折叠过程中,要确保各 边对齐,避免出现偏差。
细节处理
对于细节部分,要特别注 意处理,确保整体效果美 观。
材料选择
纸张材质
选择质地均匀、厚度适中 的纸张,以确保展开与折 叠的效果。
方体。
圆柱体的折叠
要点一
总结词
圆柱体可以通过两个圆面和一个矩形的折叠,形成三维的 立体结构。
要点二
详细描述
首先,准备两个圆形纸片和一个矩形纸片。然后,将两个 圆面沿着直径进行折叠,再将矩形纸片卷起来形成一个柱 体,最后将两个圆面粘贴在柱体的两端,形成圆柱体。
圆锥体的折叠
总结词
圆锥体可以通过一个圆面和一个等腰三角形的折叠,形成三维的立体结构。
化学实验
在化学实验中,图形的展开与折 叠可用于研究化学反应的动力学 过程和化学物质的结构特性等。
05
图形展开与折叠的注意 事项
安全注意事项
使用工具安全
在使用剪刀、刀片等工具时,要 确保操作区域干净,避免工具滑
落或误伤。
避免使用锐利边角
在展开和折叠过程中,要避免使用 过于锐利的边角,以防划伤皮肤。
区别
图形展开主要关注的是如何将曲面剪开并平摊在平面上,而图形折叠则关注如何将平面图形对折成空间几何体。 此外,展开后的平面图形保留了原图形的所有顶点、棱和面的信息,而折叠后的空间几何体仅保留了部分顶点和 边的信息。
02
图形展开的方法与技巧
平行四边形的展开
总结词
2024新人编版七年级数学上册《第六章6.1.1第2课时从不同方向看立体图形及展开图》课件
友情提示: 沿着棱剪,展开后是 一个平面图形.
探究新知
正方体的展开图
1
2
34
5
6
7
8
9
10
11
探究新知
思考:1.这些正方体展开图可以分为几种? 2.观察上面的11种正方体的展开图有没有什么规律?哪几号 展开图可以分为一类,为什么?
探究新知
探究新知
探究新知
探究新知
?
蓝 黄
相 对 两 面 不 相 连
2 c 7 -1 b
a
课堂小结
从
从前面看
左
面
看
从上面看
课堂小结
巧记正方体的展开图口诀: 正方体盒巧展开, 六个面儿七刀裁, 十一类图记分明; 一四一呈6种, 二三一有3种, 二二二与三三各1种; 对面相隔不相连, 识图巧排“凹”和“田”.
红 蓝
黄
课堂小结
常见几何体的展开图
圆锥
四棱锥
长方体
三棱柱
探究新知
试一试 下面的五幅图分别是从什么方向看的?
1
背
面2顶部34前面
5右 侧
左
侧
探究新知
排一排 一辆汽车从小明的面前经过,小明拍摄了一组照片. 请按照汽车被摄入镜头的先后顺序给下面的照片编号, 并与同伴进行交流.
探究新知
学生活动二 【一起探究】画出从不同方向看同一物体的图形 例1 如图是由若干小正方体搭成的几何体,我们分别从前面 看、从左面看和从上面看得到的平面图形分别是怎样的呢? 请同学们尝试画一画.
A.4个
B.5个
C.6个
D.7个
当堂训练
3.由5个棱长为1的小正方体组成的几何体如图放置,一面着 地,两面靠墙.如果要将露出来的部分涂色,则涂色部分 的面积为( B )
探究新知
正方体的展开图
1
2
34
5
6
7
8
9
10
11
探究新知
思考:1.这些正方体展开图可以分为几种? 2.观察上面的11种正方体的展开图有没有什么规律?哪几号 展开图可以分为一类,为什么?
探究新知
探究新知
探究新知
探究新知
?
蓝 黄
相 对 两 面 不 相 连
2 c 7 -1 b
a
课堂小结
从
从前面看
左
面
看
从上面看
课堂小结
巧记正方体的展开图口诀: 正方体盒巧展开, 六个面儿七刀裁, 十一类图记分明; 一四一呈6种, 二三一有3种, 二二二与三三各1种; 对面相隔不相连, 识图巧排“凹”和“田”.
红 蓝
黄
课堂小结
常见几何体的展开图
圆锥
四棱锥
长方体
三棱柱
探究新知
试一试 下面的五幅图分别是从什么方向看的?
1
背
面2顶部34前面
5右 侧
左
侧
探究新知
排一排 一辆汽车从小明的面前经过,小明拍摄了一组照片. 请按照汽车被摄入镜头的先后顺序给下面的照片编号, 并与同伴进行交流.
探究新知
学生活动二 【一起探究】画出从不同方向看同一物体的图形 例1 如图是由若干小正方体搭成的几何体,我们分别从前面 看、从左面看和从上面看得到的平面图形分别是怎样的呢? 请同学们尝试画一画.
A.4个
B.5个
C.6个
D.7个
当堂训练
3.由5个棱长为1的小正方体组成的几何体如图放置,一面着 地,两面靠墙.如果要将露出来的部分涂色,则涂色部分 的面积为( B )
立体图形的展开图 ppt课件
长方体的平面展开图
长方体
棱锥的平面展开图
三棱锥
圆柱体的平面展开图
圆柱体
圆锥体的平面展开图
圆锥体
棱台的平面展开图
三棱台
圆台的平面展开图
圆台
球体是否可以 展成平面图形? 球体
连一连
下列图形能折叠成什么图形?
圆柱体 圆锥
五棱柱 四棱锥
1cm 1.5cm
下面图形按虚线折叠成 一个封闭的立体图形, 它的形状像什么?
如图,一只蚂蚁在正方体箱子的一个顶点A,它 发现相距它最远的另一个顶点B处有它感兴趣的 食物,这只蚂蚁想尽快得到食物,哪条路径最短? 试在图中将路线画出来。
B B
A
常见平面图形:
三角形
正方形
长方形
平行四边形
菱形
精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
• “太阳当空照,花儿对我笑,小鸟说早早早……”
门 1.5cm
2cm 1cm
2cm
门 天窗 天窗
门
门 1.5cm
4cm
把一个正方体的表面沿某条棱剪开, 展开成平面图形,你能得到哪些平面 图形?请与同伴进行交流。
想一想、折一折
以下哪些图形经过折叠可以围成一个Hale Waihona Puke 柱?⑴⑵⑶
⑷
你有办法将图形(1)、(3)修改后使 能折叠成棱柱? 图形(2)、(4)是不同的平面图形,折叠 出同样的棱柱,从中你得到了什么启示?
展开与折叠动画演示课件PPT学习
第29页/共31页
动手操作:
摆一摆
1.先想象正方体的展开图还有什么样子,再用6 个正方形摆出来,并用胶条将相邻的边粘上, 然后试一试你所摆的这个平面图形能不能折成 正方体?比一比哪个组拼摆的正方体展开图最 多。
2.把能折成正方体的展开图贴到黑板上。注意: 贴之前先观察一下黑板,如果你的展开图与黑 板上的展开图重复了,就不要再贴了。
a
A
b
c
d
BCD
f
r
FR
第23页/共31页
3、如下图是一个正方体的展开图,每个
面内部都标注了字母,请根据要求填空:
1)如果D面在左面,那么F面在
;
2)如果B面在后面,从左面看是D面,
那么上面是
。
D
E
DE
A
B
C
AB C
F
F
第24页/共31页
4、把下图折起来,它会变成正方体
(
)
A
B
C
D
第25页/共31页
第19页/共31页
下列图形哪个不是长方体的表面 展开图?
B A
C
D
第20页/共31页
考考你
如果“你”在前面,那么谁在后面?
了!
太棒
你们
第21页/共31页
KEY: 棒
2、“坚”在下,“就”在后,胜利在 哪里?
坚 持就是
胜 利
第22页/共31页
2、如下图是一个正方体的展开图,图中 已标出三个面在正方体中的位置,F: 前面;R:右面;D:下面。试判定另外 三个面A、B、C在正方体中的位置。
汇报交流:
先说出你们小组把这些正方体展开图分 为几类?每一类分别有哪几号展开图? 再说出规律是什么?
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探索圆柱的侧面展开图
做一做
把圆柱的侧面展开,会得到什么图形?
圆柱展开动画演示
17
探索圆锥的侧面展开图
做一做
把圆锥的侧面展开,会得到什么图形?
圆锥侧面展开演示
18
(3)巩固提升
想一想、折一折
哪种几何体的表面能展开成下面的平面 图形?
(1)
(2)
19
(3)巩固提升
想一想、折一折
图中的两个图形经过折叠能否围成棱柱?
(1)
(2)
20
考考你 如图,上面的图形分别是下面哪个立体图 形展开的形状?把它们用线连起来。
21
下图是一些立体图形的展开图,用它们能 围成怎样的立体图形?
22
想一想: 下面几个图形是一些常见几何 体的展开图,你能正确说出这些几何 体的名字么?
23
(Ⅴ)想一想、折一折
你能用一张纸片,通过剪一剪、 折一折,制作一个棱柱形的盒子。
A.
B.
C.
D.
11
如图所示的纸板上有10个无阴影的正方形, 从中选出一个,与图中5个有阴影的正方形 一起折一个正方体的包装盒,有多少种不 同的选法。
12
有一个正方体,在它的各个面上分别涂了
白、红、黄、兰、绿、黑六种颜色。甲、乙、 丙三位同学从三个不同的角度去观察此正方体, 结果如下图,问这个正方体各个面的对面的颜 色是什么?
展开与折叠 (2)
1
(1)回顾思考:
正方体 的11种不 同的展开图
2
能否将得到的平面图形分类? 你是按什么规律来分类的?
第一类,1,4, 1型,共六种。
3
第二类,2,3,1型,共三种。
4
第三类,2,2,2型,只有一种。
第四类,3,3型,只有一种。
5
总结规律:
正方体的表面展开图用“口诀”:
一线不过四, 田凹应弃之; 相间、“Z”端是对面, 间二、拐角邻面知。
24
(Ⅵ)课堂小结,布置作业
同学们一定有许多感想与收获,能把自 己的感想与收获说出来与大家分享一下 吗?
25
谢谢!
26
黑 红兰
甲
白 黄红
乙
绿 兰黄
丙
13
(2)新课学习
做一做
将图中的棱柱沿某些棱剪开,展成一个平面图 形,你能得到哪些形状的平面图形?
14
展开 展开
展开
15
探索什么样的图形能围成棱柱
想一想、折一折
以下哪些图形经过折叠可以围成一个棱柱?
⑴
⑵
⑶
⑷
拓展:你能将图形(1)、(3)修改后使其能折叠成棱柱吗?
16
6
一线不过四
×
×
7
田凹应弃之
×× × ×
8
如图1—6的图形都是正方体的展开图吗?
图1
图2
图3
是
是
是
图4
图5
图6 9
是
不是不是Biblioteka 下面图形都是正方体的展开图吗?
图(1)
不是
图(2)
不是
图(3)
是
图(4)
不是
图(5)
不是
图(6)
不是
10
右图需再添上一个面,折叠后才能围成一个正方体, 下面是四位同学补画的情况(图中阴影部分),其中 正确的是( B )