量子力学主要知识点复习资料全
《量子力学》复习资料提纲
)(Et r p i p Ae-⋅=ρϖηϖψ《量子力学》复习 提纲一、基本假设 1、(1)微观粒子状态的描述 (2)波函数具有什么样的特性 (3)波函数的统计解释2、态叠加原理(说明了经典和量子的区别)3、波函数随时间变化所满足的方程 薛定谔方程4、量子力学中力学量与算符之间的关系5、自旋的基本假设 二、三个实验1、康普顿散射(证明了光子具有粒子性) 第一章2、戴维逊-革末实验(证明了电子具有波动性) 第三章3、史特恩-盖拉赫实验(证明了电子自旋) 第七章 三、证明1、粒子处于定态时几率、几率流密度为什么不随时间变化;2、厄密算符的本征值为实数;3、力学量算符的本征函数在非简并情况下正交;4、力学量算符的本征函数组成完全系;5、量子力学测不准关系的证明;6、常见力学量算符之间对易的证明;7、泡利算符的形成。
四、表象算符在其自身的表象中的矩阵是对角矩阵。
五、计算1、力学量、平均值、几率;2、会解简单的薛定谔方程。
第一章 绪论1、德布洛意假设: 德布洛意关系:戴维孙-革末电子衍射实验的结果: 2、德布洛意平面波:3、光的波动性和粒子性的实验证据:4、光电效应:5、康普顿散射: 附:(1)康普顿散射证明了光具有粒子性(2)戴维逊-革末实验证明了电子具有波动性∑=nnn c ψψ1d 2=⎰τψ(全)()ψψψψμ∇-∇2=**ηϖi j ⎩⎨⎧≥≤∞<<=ax x a x x V 或0,0,0)(0=⋅∇+∂∂j tϖρ⎥⎦⎤⎢⎣⎡+∇-=),(222t r V H ϖημ)(,)(),(r er t r n tE i n n n ϖϖϖηψψψ-=n n n E H ψψ=(3)史特恩-盖拉赫实验证明了电子自旋第二章 波函数和薛定谔方程1.量子力学中用波函数描写微观体系的状态。
2.波函数统计解释:若粒子的状态用()t r ,ρψ描写,τψτψψd d 2*=表示在t 时刻,空间r ρ处体积元τd 内找到粒子的几率(设ψ是归一化的)。
量子力学的知识点
量子力学的知识点量子力学是一门研究微观世界的物理学分支,它描述了微观粒子的行为和相互作用。
本文将介绍一些量子力学的基本概念和知识点。
1. 波粒二象性:量子力学中最基本的概念之一是波粒二象性。
根据波粒二象性,微观粒子既可以表现出波动性,也可以表现出粒子性。
例如,电子和光子既可以像粒子一样被探测到,也可以像波一样干涉和衍射。
2. 不确定性原理:不确定性原理是量子力学的核心原理之一,由海森堡提出。
它指出,在某一时刻,无法同时准确测量一个粒子的位置和动量。
换句话说,粒子的位置和动量不能同时被完全确定。
3. 波函数和量子态:波函数是量子力学中描述微观粒子的数学工具。
它可以用来计算粒子的概率分布和状态。
量子态则是描述粒子的完整信息,包括波函数和其他相关信息。
4. 叠加态和量子叠加:叠加态是指一个粒子处于多个可能状态的叠加状态。
量子叠加是指粒子在没有被观测之前,可以同时处于多个可能状态,直到被观测时才会坍缩到其中一个确定的状态。
5. 纠缠态和量子纠缠:纠缠态是指多个粒子之间存在相互关联的状态。
量子纠缠是指两个或多个粒子之间的状态相互依赖,无论它们之间有多远的距离。
6. 测量和量子测量:量子测量是指对一个量子系统进行观测,以获取它的某个性质的数值。
量子测量会导致波函数坍缩,从而确定粒子的状态。
7. 哥本哈根解释:哥本哈根解释是量子力学最广泛接受的解释之一,由波尔和海森堡等人提出。
它强调了观察者在量子系统中的重要性,认为观测会导致波函数坍缩,从而决定粒子的状态。
8. 量子力学的应用:量子力学在现代科学和技术中有广泛的应用。
例如,量子力学在原子物理学、核物理学、凝聚态物理学和量子计算等领域发挥着重要作用。
总结起来,量子力学是一门研究微观世界的物理学分支,它涉及到波粒二象性、不确定性原理、波函数和量子态、叠加态和量子叠加、纠缠态和量子纠缠、测量和量子测量、哥本哈根解释以及量子力学的应用等知识点。
通过深入了解这些知识点,我们可以更好地理解微观世界的奥秘,并应用于相关领域的研究和技术发展中。
第一章量子力学基础知识总结
第一章量子力学基础知识总结微观粒子的运动特征1.黑体辐射和能量量子化●黑体是一种能全部吸收照射到它上面的各种波长辐射的物体。
●黑体辐射的能量量子化公式:●普朗克常数(h=6.626×10-34 J·s)2.光电效应和光子学说●只有当照射光的频率超过某个最小频率(即临阈频率)时,金属才能发射光电子。
●不同金属的临阈频率不同。
●随着光强的增加,发射的电子数也增加,但不影响光电子的动能。
●增加光的频率,光电子的动能也随之增加●式中h为Planck常数,ν为光子的频率●m = h /c2所以不同频率的光子有不同的质量。
●光子具有一定的动量(p)P = mc = h /c = h/λ●光的强度取决于单位体积内光子的数目,即光子密度。
Ek = h -W3.实物微粒的波力二项性● E = h v , p = h / λ●光(各种波长的电磁辐射)和微观实物粒子(静止质量不为0的电子、原子和分子等)都有波动性(波性)和微粒性(粒性)的两重性质,称为波粒二象性4.不确定度关系●具有波动性的粒子其位置偏差(△x )和动量偏差(△p )的积恒定.,有以下关系:量子力学基本假设1、波函数和微观粒子的状态●波函数ψ和微观粒子的状态●合格波函数的条件2、物理量和算符●算符:对某一函数进行运算,规定运算操作性质的符号。
如:sin,log等。
线性算符:Â( 1+ 2)=Â 1+Â 2自轭算符:∫ 1*Â 1 d =∫ 1(Â 1 )*d 或∫ 1*Â 2 d =∫2(Â 1 )*d3、本征态、本征值和Schrödinger方程●A的本征方程Aψ= aψa 称为力学量算符 A 的本征值,ψ称为A的本征态或本征波函数,4、态叠加原理●若 1, 2… n为某一微观体系的可能状态,由它们线性组合所得的 也是该体系可能的状态。
5、Pauli(泡利)原理●在同一原子轨道或分子轨道上,至多只能容纳两个自旋相反的电子。
量子力学知识点总结
v
2mx
1.05 1034 2 9.1 1031 1010
0.6106 m/s
按经典力学计算
v2 m
r
k
e2 r2
v
ke2 mr
9109 (1.6 1019 )2 9.11031 0.5 1010
2.2106m/s
速度与其不确定度 同数量级。可见,对原 子内的电子,谈论其速 度没有意义,描述其运 动必须抛弃轨道概念, 代之以电子云图象。
Eˆ i 哈密顿算符 t
pˆ x
i
Hˆ
x
2
xˆ x 2 U
定态薛定谔方程(一维)
条件:U=U(x,y,z)
不随时间变化。
2 2m
2m 2Ψ x2 U( x)Ψ
i Ψ t
一般薛定谔方程(三维) 2 2 U i
2m
5. (1) 用 4 个量子数描述原子中电子的量子态,这 4 个 量子数各称做什么,它们取值范围怎样?
(2) 4 个量子数取值的不同组合表示不同的量子态, 当 n = 2 时,包括几个量子态?
(3) 写出磷 (P) 的电子排布,并求每个电子的轨道角 动量。
答:(1) 4 个量子数包括: ➢ 主量子数 n, n = 1, 2, 3,… ➢ 角量子数 l, l = 0, 1, 2,…, n-1 ➢ 轨道磁量子数 ml, ml = 0, 1, …, l ➢ 自旋磁量子数 ms, ms = 1/2
处单位体积元中发现一个粒子的概率,称为概率密度。
因此波函数 y 又叫概率幅。
六、不确定关系
位置动量不确定关系: xpx / 2 能量时间不确定关系: Et / 2
量子力学基础 知识点
量子物理知识点小结一、普朗克能量子假说1、黑体辐射的实验定律2、普朗克能量子假说2)维恩位移定律:T λm = b1)斯特藩-玻耳兹曼定律: M (T ) = σT 4对频率为ν 的谐振子, 最小能量 ε 为: ⋅⋅⋅⋅⋅⋅,,,3,2,εεεεn νh =ε谐振子的能量不能取任意值,只能是某一最小能量ε 的整数倍,二、爱因斯坦光量子假说1、光量子假说 W m h νm+=221v 2、光电效应方程: 光具有“波粒二象性”光子的动量: λhp =光子的能量: h ν=ε碰撞过程中能量守恒: 2200mc h νc m h ν+=+v m e h e h n +=λλ00碰撞过程中动量守恒:波长的偏移量:)cos 1(0θλλλλ-=-=∆c nm 00243.0m 10432120=⨯⋅≈=-cm h c λ康普顿波长: 三、康普顿效应(X 射线光子与自由电子碰撞)四、玻尔氢原子理论一切实物粒子都具有波粒二象性 2)角动量量子化条件假设; 1)定态假设; 3)频率条件假设h νmc E ==2λh m p ==v ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥∆⋅∆≥∆⋅∆≥∆⋅∆222 z y x p z p y p x 2≥∆⋅∆t Ε五、德布罗意假说六、不确定性关系:七、波函数2、波函数满足的条件1、波函数的统计意义1)归一化条件t 时刻,粒子在空间r 处的单位体积中出现的概率, 与波函数模的平方成正比。
*2),(ΨΨt r ΨdVdW w === 概率密度: 12=⎰⎰⎰dV Ψ粒子在整个空间出现的总概率等于 1 , 即: 2)标准化条件:单值、连续、有限一维情况: 1)(2=⎰+∞∞-dx x Ψ八、定态薛定谔方程1、定态:若粒子的势能 E P (x ) 与 t 无关,仅是坐标的函数, 微观粒子在各处出现的概率与时间无关2、一维定态薛定谔方程: 0)()()(=-+x E E 2m dx x d P 222ψψ九、氢原子,3,2,1,1)8(22204=⋅-=n nh me E n ε1、能量量子化和主量子数n 2、角动量量子化和角量子数l)1(2)1(+=+=l l h l l L π1,,3,2,1,0-=n l 3、角动量空间量子化和磁量子数m ll m m L l l z ±±±==,,2,1,0, 4、自旋角动量和自旋量子数 21,)1(=+=s s s S 21,±==s s z m m S十、原子的电子壳层结构1、原子中电子状态由四个量子数(n 、l 、m l 、 m s )决定用 K , L , M , N , O , P , …. 表示 2、原子的壳层结构主量子数 n 相同的电子属于同一壳层壳层n = 1 , 2 , 3 , 4 , 5 , 6 , …. 同一壳层中( n 相同),l 相同的电子组成同一分壳层 支壳层 用 s , p , d , f , … , 表示l = 0, 1 , 2 , 3 , … , n -13、原子的壳层结构中电子的填充原则1) 泡利不相容原理2) 能量最小原理。
量子力学复习资料
《量子力学》复习资料第一章 绪论1、经典物理学的困难:①黑体辐射;②光电效应;③氢原子线性光谱;④固体在低温下的比热。
2、★★★普朗克提出能量子假说:黑体只能以νh E =为能量单位不连续的发射和吸收辐射能量,⋯⋯==,3,2,1 n nh E n ν,能量的最小单元νh 称为能量子。
意义:解决了黑体辐射问题。
3、★★★(末考选择)爱因斯坦提出光量子假说:电磁辐射不仅在发射和吸收时以能量νh 的微粒形式出现,而且以这种形式在空间以光速c 传播,这种粒子叫做光量子,也叫光子。
意义:解释了光电效应。
【注】光电效应方程为0221W hv v m m e -= 4、★★★玻尔的三个基本假设:①定态假设:原子核外电子处在一些不连续的定常状态上,称为定态,而且这些定态相应的能量是分立的。
②跃迁假设:原子在与能级m E 和n E 相对应的两个定态之间跃迁时,将吸收或辐射频率为ν的光子,而且有m n E E hv -=.③角动量量子化假设:角动量必须是 的整数倍,即 ,3,2,1,==n n L意义:解决了氢原子光谱问题。
(末考选择)5、★★★玻尔理论后来也遇到了困难,为解决这些困难,德布罗意提出了微观粒子也具有波粒二象性的假说。
6、德布罗意公式:⇒⎪⎩⎪⎨⎧===k n h p h Eλν意义:将光的波动性和粒子性联系起来,两式的左端描述的是粒子性(能量和动量),右端描述的是波动性(频率和波长)。
7、(填空)德布罗意波长的计算:meUhmE h p h 22===λ 8、★★★康普顿散射实验的意义:证明了光具有粒子性。
(末考填空)同时也证实了普朗克和爱因斯坦理论的正确性。
9、★★★证实了电子具有波动性的典型实验:戴维孙-革末的电子衍射实验(也证实了德布罗意假说的正确性)、电子双缝衍射实验。
10、微观粒子的运动状态和经典粒子的运动状态的区别:(1)描述方式不同:微观粒子的运动状态用波函数描述,经典粒子的运动状态用坐标和动量描述;(2)遵循规律不同:微观粒子的运动遵循薛定谔方程,经典粒子的运动遵循牛顿第二定律。
关于量子力学的知识点总结
关于量子力学的知识点总结量子力学是现代物理学的一个重要分支,研究微观世界的行为规律。
它涉及到很多的知识点,下面将对其中的一些重要知识点进行总结。
1. 波粒二象性:量子力学中的基本粒子既可以表现出粒子的性质,又可以表现出波动的性质。
例如,电子、光子等粒子既可以像粒子一样具有位置和动量,又可以像波动一样具有频率和波长。
2. 不确定性原理:由于波粒二象性的存在,无法同时准确测量粒子的位置和动量,因为测量其中一个属性会对另一个属性造成不确定性。
这是因为波粒二象性使得微观粒子的位置和动量不能同时具有确定值。
3. 波函数:在量子力学中,波函数描述了一个量子系统的状态,其平方表示在不同位置寻找粒子的概率。
波函数形式为ψ(x),其中x代表位置。
4. 叠加原理:当两个或多个波函数重叠时,它们可以相互叠加形成新的波函数。
这种叠加可以导致干涉现象,即波的相位相加或相减,形成波纹增强或波纹消除的现象。
5. 薛定谔方程:薛定谔方程是描述量子系统随时间演化的基本方程。
它能够确定系统的波函数随时间的变化,并给出粒子的能量以及其他物理量。
6. 量子态与态矢量:量子力学描述粒子的态称为量子态,用态矢量表示。
一个粒子的量子态是一个复数的线性组合,它确定了粒子在不同物理量上的测量结果的概率。
7. 纠缠:当两个或多个粒子通过量子力学的相互作用使得它们的量子态互相关联时,就产生了纠缠现象。
纠缠态的特点是不能将其视为单个粒子的状态,而必须将其作为整个系统的态来描述。
8. 可观测量与算符:在量子力学中,物理量的观测结果用可观测量表示。
每个可观测量都有对应的算符,通过作用于波函数求得其期望值。
例如,位置可观测量对应位置算符,动量可观测量对应动量算符。
9. 自旋:自旋是粒子特有的内禀角动量,与其自身特性相关。
自旋可能采取离散值,如电子的自旋即为1/2。
10. 荷质比:荷质比是粒子带电性质与其质量的比值。
根据量子力学理论,荷质比具有量子化的性质。
量子力学复习资料
量子力学复习资料一、基本概念1、波粒二象性这是量子力学的核心概念之一。
它表明微观粒子既具有粒子的特性,如位置和动量,又具有波动的特性,如波长和频率。
例如,电子在某些实验中表现出粒子的行为,如碰撞和散射;而在另一些实验中,如双缝干涉实验,又表现出波动的行为。
2、量子态量子态是描述微观粒子状态的方式。
与经典物理学中可以精确确定粒子的位置和动量不同,在量子力学中,粒子的状态通常用波函数来描述。
波函数的平方表示在某个位置找到粒子的概率密度。
3、不确定性原理由海森堡提出,指出对于一个微观粒子,不能同时精确地确定其位置和动量,或者能量和时间。
即:\(\Delta x \cdot \Delta p \geq \frac{\hbar}{2}\),\(\Delta E \cdot \Delta t \geq \frac{\hbar}{2}\),其中\(\hbar\)是约化普朗克常数。
二、数学工具1、薛定谔方程这是量子力学中的基本方程,类似于经典力学中的牛顿运动方程。
对于一个质量为\(m\)、势能为\(V(x)\)的粒子,其薛定谔方程为:\(i\hbar\frac{\partial \Psi(x,t)}{\partial t} =\frac{\hbar^2}{2m}\frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x)\Psi(x,t)\)。
2、算符在量子力学中,物理量通常用算符来表示。
例如,位置算符\(\hat{x}\)、动量算符\(\hat{p}\)等。
算符作用在波函数上,得到相应物理量的可能取值。
三、常见量子力学系统1、一维无限深势阱粒子被限制在一个宽度为\(a\)的区域内,势能在区域内为零,在区域外为无穷大。
其能量本征值为\(E_n =\frac{n^2\pi^2\hbar^2}{2ma^2}\),对应的本征函数为\(\Psi_n(x) =\sqrt{\frac{2}{a}}\sin(\frac{n\pi x}{a})\)。
量子力学知识点
量子力学知识点量子力学是20世纪初发展起来的一种物理学理论,它主要描述微观粒子如原子、电子等的行为。
量子力学的核心概念包括波函数、量子态、不确定性原理、量子纠缠等。
以下是量子力学的一些主要知识点总结:1. 波函数:量子力学中,一个粒子的状态由波函数描述,波函数是一个复数函数,其模的平方给出了粒子在某个位置被发现的概率密度。
2. 薛定谔方程:这是量子力学中描述粒子波函数随时间演化的基本方程。
薛定谔方程是量子力学的核心,它是一个偏微分方程,能够预测粒子的行为。
3. 量子态:量子系统的状态可以由波函数表示,这些状态是离散的,并且遵循一定的量子数规则。
4. 量子叠加原理:量子系统可以同时处于多个可能的状态,这些状态的叠加构成了系统的总状态。
5. 不确定性原理:由海森堡提出,指出无法同时精确测量粒子的位置和动量。
这是量子力学与经典力学的一个根本区别。
6. 量子纠缠:两个或多个粒子可以处于一种特殊的相关状态,即使它们相隔很远,一个粒子的状态改变也会立即影响到另一个粒子的状态。
7. 量子隧道效应:粒子有可能穿过一个经典力学中不可能穿越的势垒,这是量子力学中的一个非直观现象。
8. 波粒二象性:量子力学中的粒子既表现出波动性也表现出粒子性,这种性质由德布罗意提出。
9. 量子力学的诠释:包括哥本哈根诠释、多世界诠释等,不同的诠释试图解释量子力学中观察到的现象。
10. 量子计算:利用量子力学原理进行信息处理的技术,量子计算机能够执行某些特定类型的计算任务,速度远超传统计算机。
11. 量子纠缠与量子通信:量子纠缠是量子通信的基础,可以实现安全的信息传输。
12. 量子退相干:量子系统与环境相互作用,导致量子态的相干性丧失,是量子系统向经典系统过渡的过程。
13. 量子场论:将量子力学与相对论结合起来,描述粒子的产生和湮灭过程。
14. 量子信息:研究量子系统在信息处理中的应用,包括量子密码学、量子通信等。
15. 量子测量:量子力学中的测量问题涉及到波函数的坍缩,即测量过程会导致量子态的不确定性减少。
量子力学知识点
量子力学知识点量子力学是描述微观世界中物质和能量行为的理论框架,是现代物理学中最重要的分支之一。
早在20世纪初,物理学家们就开始探索微观世界的奥秘,并提出了量子力学的理论基础。
本文将为您介绍一些关于量子力学的基本知识点。
一、光的粒子性和波动性在经典物理学中,光被视为电磁波,具有波动性质。
然而,在实验中发现光也具有粒子性,即光子。
根据光的粒子性和波动性,量子力学引入了波粒二象性的概念。
二、波函数和不确定原理波函数是量子力学中用来描述粒子行为的数学函数。
它包含了粒子的位置、动量、能量等信息。
根据不确定原理,无法同时准确确定粒子的位置和动量,这是量子力学中的基本原理之一。
三、叠加原理和量子纠缠量子力学中的叠加原理指出,处于未观测状态的粒子可以同时存在于多个可能状态之中。
当进行观测时,波函数会坍缩为某一确定状态。
这种现象被称为量子纠缠,即两个或多个粒子之间的状态相互依赖,无论它们之间有多远。
四、量子力学的定态和非定态在量子力学中,定态表示粒子处于稳定状态,其波函数不随时间变化。
非定态则表示粒子的状态会随时间演化。
通过薛定谔方程,我们可以描述粒子在不同状态下的演化过程。
五、测量和观测量子力学中的测量和观测与经典物理学中有所不同。
测量过程会导致波函数坍缩,粒子的状态被确定下来。
而在观测之前,粒子处于叠加态,可能处于多个不同状态。
六、量子力学的应用量子力学的应用涉及到许多领域。
在材料科学中,量子力学可以解释材料的电子结构和导电性质。
在计算机科学中,量子计算机的发展有望在处理复杂问题上实现超高速计算。
此外,量子力学还在量子通信、量子密码等领域有重要应用。
七、量子纠缠和量子隐形传态量子纠缠是量子力学中的一个重要概念,也是量子计算和量子通信的基础。
量子隐形传态则指通过纠缠态将信息传递到另一个位置,实现“隐形传输”。
结语量子力学作为一门复杂而深奥的学科,对我们理解微观世界的本质和开展科学研究具有重要意义。
本文对量子力学的一些基本知识点进行了梳理和介绍,希望能对读者理解量子力学产生帮助,并引发对这一领域更深入的探索与思考。
(完整版)量子力学知识点小结,推荐文档
第一章⒈玻尔的量子化条件,索末菲的量子化条件。
⒉黑体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。
⒎普朗克量子假说:表述1:对于一定频率ν的辐射,物体只能以hν为能量单位吸收或发射电磁辐射。
表述2:物体吸收或发射电磁辐射时,只能以量子的方式进行,每个量子的能量为:ε=hν。
表述3:物体吸收或发射电磁辐射时,只能以能量ε的整数倍来实现,即ε,2ε,3ε,…。
⒏光电效应:光照射到金属上,有电子从金属上逸出的现象。
这种电子称之为光电子。
⒐光电效应有两个突出的特点:①存在临界频率ν0:只有当光的频率大于一定值v0 时,才有光电子发射出来。
若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。
②光电子的能量只与光的频率有关,与光的强度无关。
光的强度只决定光电子数目的多少。
⒑爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E= hν的微粒形式出现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子。
爱因斯坦方程⒒光电效应机理:当光射到金属表面上时,能量为E= hν的光子立刻被电子所吸收,电子把这能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面后的动能。
⒓解释光电效应的两个典型特点:①存在临界频率v0:由上式明显看出,当hν- W0≤0时,即ν≤ν0 = W0 / h时,电子不能脱出金属表面,从而没有光电子产生。
②光电子动能只决定于光子的频率:上式表明光电子的能量只与光的频率ν有关,而与光的强度无关。
⒔康普顿效应:高频率的X射线被轻元素如白蜡、石墨中的电子散射后出现的效应。
⒕康普顿效应的实验规律:①散射光中,除了原来X光的波长λ外,增加了一个新的波长为λ'的X光,且λ' >λ;⒖空间反演:把一个波函数的所有坐标自变量改变符号(如r →-r)的运算。
宇称算符:表示空间反演运算的算符。
宇称守恒:体系状态的宇称不随时间改变。
量子力学知识点总结
1、光子的能量和动量是:E=ℎ v=ћw、p=ℎvn/c=ℎn/λ=ћk2、量子现象:由以上两个公式可以看出,在宏观现象中,h和其他物理量相比较可以略去,因而辐射的能量可以连续变化,因此凡是h在其中起重要作用的现象都可以称为量子现象。
3、量子化条件:在量子理论中,角动量必须是h的整数倍4、量子化条件的推广:∮pdq=(n+1/2)ℎ, n是0和正整数,称为量子数。
5、德布罗意公式:E=ℎv=ћw、p=ℎ/λn=ћk6、波函数的统计解释:波函数在空间中某一点的强度(振幅绝对值的平方)和在该点找到粒子的概率成比例。
dw(x,y,z,t)= C∣Φ(x,y,z,t)∣²dτ7、态叠加原理:对于一般的情况,如果Ψ1和Ψ2是体系的可能状态,那么它们的线性叠加Ψ=c1Ψ1+c2Ψ2(c1,c2是复数),也是这个体系的一个可能状态,这就是量子力学中的态叠加原理。
态叠加原理还有一个含义:当粒子处于态Ψ1和态Ψ2的线性叠加态Ψ时,粒子时既处在态Ψ1又处在态Ψ2.注意:态叠加原理指的是波函数(概率幅)的线性叠加,而不是概率的叠加8、波函数的标准条件:有限性、连续性、导致可测量的单值性9、什么是定态定态:体系处于Ψ(r,t)=ψ(r)e~-iEt/ћ所描写的状态时,能量具有确定性,这种状态称为定态。
Ψ(r,t)=ψ(r)e~-iEt/ћ称为定态波函数10、定态薛定谔方程:−ћ²/2m▽²ψ+U(r)ψ=Eψ11、本征值方程:ĤΨ=EΨ,E称为算符Ĥ的本征值,Ψ称为算符Ĥ属于本征值E的本征函数12、薛定谔波动方程的一般解可以写为这些定态波函数的线性叠加:13、束缚态:通常把在无限远处为零的波函数所描写的状态称为束缚态14、隧道效应:粒子在能量E小于势垒高度时仍能贯穿势垒的现象15、厄米算符:量子力学中表示力学量的算符都是厄米算符。
算符F̂满足下列等式:∫ψ∗F̂φdx=∫(F̂ψ)∗φdx16、力学量与算符的关系的一个基本假设:量子力学中,表示力学量的算符都是厄米算符,它们的本征函数组成完全系当体系处于波函数ψ(x)所描写的状态时,测量力学F所得的数值,必定是算符F^的本征值之一,测得λn的概率是|Cn∣²17、对易与不对易的关系:如果两个算符F̂和Ĝ,有一组共同本征函数φn而且φn组成完全系,则算符F̂和Ĝ对易。
量子力学复习资料
量⼦⼒学复习资料第⼀章知识点:1. ⿊体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对⿊体,简称⿊体.2. 处于某⼀温度 T 下的腔壁,单位⾯积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。
3. 实验发现:热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线,其形状和位置只与⿊体的绝对温度 T 有关⽽与⿊体的形状和材料⽆关。
4. 光电效应---光照射到⾦属上,有电⼦从⾦属上逸出的现5. 光电效应特点:1.临界频率ν0 只有当光的频率⼤于某⼀定值ν0时,才有光电⼦发射出来.若光频率⼩于该值时,则不论光强度多⼤,照射时间多长,都没有电⼦产⽣.光的这⼀频率ν0称为临界频率。
2.光电⼦的能量只是与照射光的频率有关,与光强⽆关,光强只决定电⼦数⽬的多少(爱因斯坦对光电效应的解释)3. 当⼊射光的频率⼤于ν0时,不管光有多么的微弱,只要光⼀照上,⽴即观察到光电⼦(10-9s )6. 光的波粒⼆象性:普朗克假定a.原⼦的性能和谐振⼦⼀样,以给定的频率ν振荡;b.⿊体只能以 E = h ν为能量单位不连续的发射和吸收能量,⽽不是象经典理论所要求的那样可以连续的发射和吸收能量.7. 总结光⼦能量、动量关系式如下:把光⼦的波动性和粒⼦性联系了起来8.波长增量 Δλ=λ′–λ随散射⾓增⼤⽽增⼤.这⼀现象称为康普顿效应.散射波的波长λ′总是⽐⼊射波波长长(λ′ >λ)且随散射⾓θ增⼤⽽增⼤。
9.波尔假定:1.原⼦具有能量不连续的定态的概念. 2.量⼦跃迁的概念. 10.德布罗意:假定:与⼀定能量 E 和动量 p 的实物粒⼦相联系的波(他称之为“物质波”)的频率和波长分别为:E = h ν ? ν= E/h ? P = h/λ ? λ= h/p ? 该关系称为de. Broglie 关系.德布罗意波:ψde Broglie 关系:ν= E/h ?ω = 2πν= 2πE/h = E/ λ= h/p ?k = 1/ = 2π /λ = p/n k h k n n h n C h n C E p h E ==========πλπλνων22其中波长。
量子力学主要知识点复习资料
大学量子力学主要知识点复习1能量量子化辐射黑体中分子和原子的振动可视为线性谐振子,这些线性谐振子可以发射和吸收辐射能。
这些谐振子只能处于某些分立的状态,在这些状态下,谐振子的能量不能取任意值,只能是某一最小能量ε 的整数倍 对频率为ν 的谐振子, 最小能量ε为: 2.波粒二象性波粒二象性(wave-particle duality )是指某物质同时具备波的特质及粒子的特质。
波粒二象性是量子力学中的一个重要概念。
在经典力学中,研究对象总是被明确区分为两类:波和粒子。
前者的典型例子是光,后者则组成了我们常说的“物质”。
1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。
1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。
根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。
德布罗意公式3.波函数及其物理意义在量子力学中,引入一个物理量:波函数 ,来描述粒子所具εεεεεn ,,4,3,2,⋅⋅⋅νh =εh νmc E ==2λh m p ==v有的波粒二象性。
波函数满足薛定格波动方程粒子的波动性可以用波函数来表示,其中,振幅表示波动在空间一点(x ,y,z )上的强弱。
所以,应该表示 粒子出现在点(x,y,z )附件的概率大小的一个量。
从这个意义出发,可将粒子的波函数称为概率波。
自由粒子的波函数波函数的性质:可积性,归一化,单值性,连续性 4. 波函数的归一化及其物理意义常数因子不确定性设C 是一个常数,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。
相位不定性如果常数 ,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。
表示粒子出现在点(x,y,z )附近的概率。
表示点(x,y,z )处的体积元中找到粒子的概率。
这就是波函数的统计诠释。
自然要求该粒子在空间各点概率之总和为1 必然有以下归一化条件 5. 力学量的平均值既然 表示 粒子出现在点 0),()](2[),(22=-∇+∂∂t r r V mt r t i ψψ)](exp[Et r p i A k -⋅=ψ=ψ2|(,,)|x y z ψ2|(,,)|x y z x y z ψ∆∆∆x y zτ∆=∆∆∆2|(,,)|1x y z dxdydz ψ∞=⎰(,,)x y z ψ(,,)c x y z ψαi e C =(,,)i e x y z αψ(,,)x y z ψ22|()||(,,)|r x y z ψψ=),,(z y x r =23*3|()|()(),x r xd r r x r d r ψψψ+∞+∞-∞-∞==⎰⎰附件的概率,那么粒子坐标的平均值,例如x 的平均值x __,由概率论,有 又如,势能V是 的函数:,其平均值由概率论,可表示为 再如,动量 的平均值为: 为什么不能写成因为x 完全确定时p 完全不确定,x 点处的动量没有意义。
研究生量子力学知识点归纳总结
研究生量子力学知识点归纳总结量子力学是现代物理学的基石之一,其研究对象为微观世界中的微粒。
作为研究生学子,掌握量子力学的关键知识点对于进一步深入研究和应用具有重要意义。
本文将对研究生量子力学的知识点进行归纳总结,以便学子们能够更好地理解和运用量子力学的基本概念和理论。
一、波粒二象性1. 波动性与粒子性的基本概念波粒二象性是指微观粒子既表现出波动性又表现出粒子性的特点。
波动性体现为粒子的波函数,而粒子性则表现为粒子的位置和动量等可测量的物理量。
2. 德布罗意假设德布罗意假设指出,所有物质粒子,无论是宏观还是微观,都具有波动性。
其核心思想是将物质粒子的动量与波长相联系,可以通过波动性来解释一系列的实验现象。
二、量子力学的数学基础1. 薛定谔方程薛定谔方程是量子力学的核心方程,描述了物质粒子的波函数随时间的变化规律。
薛定谔方程是一个协调波动性与粒子性的方程,体现了波函数在空间中的传播和演化。
2. 波函数与概率解释波函数是描述微观粒子状态的数学函数,含有物质的波动性信息。
通过波函数的模的平方,可以得到微观粒子在空间中出现的概率密度分布。
三、量子力学的基本原理1. 粒子的定态与态矢量量子力学中,粒子的波函数可以表示为多个定态的叠加,每个定态都对应着一个特定的能量。
态矢量是描述粒子状态的数学工具,用于表示粒子处于某一定态下的状态信息。
2. 不确定性原理不确定性原理是量子力学的基本原理之一,指出了测量一个粒子的位置和动量的不确定度之间的关系。
简而言之,通过测量粒子的位置,其动量的确定性将降低,而通过测量动量,其位置的确定性将降低。
四、量子力学的应用1. 简谐振子简谐振子是量子力学中的一个重要模型,可以用于描述原子中的电子、光子的运动状态等。
其基态和激发态能级之间的能量差与频率有关,为量子力学应用提供了基础。
2. 粒子的相互作用量子力学可以描述粒子之间的相互作用,并具备解释分子结构、原子核稳定性等问题的能力。
它通过研究波函数的变化,揭示了微观粒子的交互规律。
量子力学总复习
n n n Nn Nn Nn e
x y z x y z
2 r 2 2
Байду номын сангаас
H nx ( x) H n y ( y ) H nz ( z )
12、势垒贯穿 隧道效应: 粒子在能量E小于势垒高度时仍能贯 穿势垒的现象,称为隧道效应。
需掌握知识点
1、掌握定态的概念;定态的性质。
几 个 重 要 概 念
本征函数
n N ne
n
x
H n ( x)
Nn
n!
,
11、可以用分离变量法求解得到(在笛卡尔坐标中) 三维各向同性谐振子的能级和波函数。
3 Enx ny nz nx n y nz 2
nx , n y , nz 0,1,2,
H mn
2 0
E n Em
m,m n
0
H mn
0
1, m n
0 m
En En H nn
0
m,m n
0 ˆ 0 m H mn H n
En Em 0 * ˆ 0 m (r )H n (r )d
( A) ( S ) 1M s A ( S ) ( A) 00
5、角动量(轨道和自旋)
ˆL ˆ i L ˆ L ˆS ˆ i S ˆ S
2 ˆ2 S ˆ2 S ˆ2 S x y z 4
对两个Fermi子体系:
M s 0, 1
2 n x n ( x) sin ,0 x a a a
es4 es2 En 2 2 2 2 2 n 2n a0
量子力学复习提纲
量子力学复习提纲第一章 绪论 1.德布罗意关系, E h νω==(1)h p n k λ==(2)2.微观粒子的波粒二象性.3. 电子被V 伏电压加速,则电子的德布罗意波长为12.25hA λ=≈(3)第二章 波函数和薛定谔方程 1.波函数的统计解释:波函数在空间某一点的强度()2,r t ψ 和在该处找到粒子的几率成正比,描写粒子的波是几率波. 其中2w*=ψψ=ψ代表几率密度.2.态叠加原理:如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加1122c c ψ=ψ+ψ,也是体系的一个可能状态.3. 薛定谔方程和定态薛定谔方程薛定谔方程()(),ˆ,r t i H r t t∂ψ=ψ∂(4)定态薛定谔方程()()ˆH r E r ψ=ψ (5)其中()22ˆ2H U r μ=-∇+ (6)为哈密顿算符,又称为能量算符,4. 波函数的标准条件: 有限性,连续性(包括ψ及其一阶导数)和单值性.5. 波函数的归一化,1d τ*∞ψψ=⎰(9)6.求解一维薛定谔方程的几个例子.一维无限深势阱及其变种, 一维线性谐振子; 势垒贯穿.第三章 量子力学中的力学量1. 坐标算符, 动量算符及角动量算符;构成量子力学力学量的法则;2. 本征值方程,本征值,本征函数的概念ˆF ψλψ= (10)3. 厄密算符的定义,性质及与力学量的关系.ˆF dx ψφ*=⎰()ˆF dx ψφ*⎰(11)实数性: 厄密算符的本征值是实数.正交性: 厄密算符的属于不同本征值的两个本征函数 相互正交.完全性: 厄密算符ˆF的本征函数()n x φ和()x λφ组成完全系, 即任一函数()x ψ可以按()n x φ和()x λφ展开为级数:()()()n n nx c x c x d λλψφφλ=+∑⎰ (12)展开系数: ()()nnc x x dx φψ*=⎰, (13)()()c x x dx λλφψ*=⎰. (14)2nc 是在()x ψ态中测量力学量F 得到nλ的几率,2c d λλ是在()x ψ态中测量力学量F ,得到测量结果在λ到d λλ+范围内的几率.4. 2ˆL 和ˆZL 算符的本征值方程,本征值和本征函数. ()22ˆ1L l l ψψ=+ , ˆzL m ψψ= 本征函数 (),lm Y θφ.5. 氢原子的哈密顿算符及其本征值,本征函数nlm ψ的数学结构, ()()(),,,nlmnl lm r R r Y ψθφθφ= (15)主量子数n ,角量子数l 和磁量子数m 的取值范围,简并态的概念.6. 氢原子的能级公式和能级的简并度.422,1,2,3,...2s n e E n nμ=-= (16)不考虑电子的自旋是2n 度简并的;考虑电子的自旋是22n 度简并的.7. 给定电子波函数的表达式,根据电子在(),,r θφ点周围的体积元内的几率()22,,sin nlm r r drd d ψθφθθφ(17)计算电子几率的径向分布和角分布.计算在半径r 到r dr +的球壳内找到电子的几率. 8. 给定态函数,计算力学量平均值,平均值的计算公式.()()ˆF x F x dx ψψ*=⎰(18) 注意(11)式对波函数所在的空间作积分. 9. 算符的对易关系及测不准关系.(1) 如果一组算符相互对易,则这些算符所表示的力学量同时具有确定值(即对应的本征值), 这些算符有组成完全系的共同的本征函数.例如: 氢原子的哈密顿算符ˆH ,角动量平方算符2ˆL 和角动量算符ˆz L 相互对易, 则(i) 它们有共同的本征函数nlm ψ, (ii) 在态nlm ψ中,它们同时具有确定值:4222s n e E n μ=-,()21l l + , m .(2) 测不准关系:如果算符ˆF和ˆG 不对易,则一般来说它们不能同时有确定值. 设ˆFˆG -ˆG ˆF =ˆik 则算符ˆF和ˆG 的均方偏差满足:()_______2ˆF ∆⋅()_______22ˆ4k G ∆≥(19)其中 ()()________________________2222222F F F F FF F F F ∆=-=-+=-()__________222F F F ∆=-, ()__________222G G G ∆=-(a) 利用测不准关系估计氢原子的基态能量, 线性谐振子的零点能等.(b) 给定态函数ψ,计算两个力学量ˆF和ˆG 的均方偏差的乘积()_______2ˆF∆⋅()_______2ˆ?G ∆=(20)第四章 态和力学量的表象 1. 对表象的理解(1) 状态ψ: 态矢量(2) Q 表象:力学量Q 的本征函数 ()()()12,,...,...n u x u x u x构成无限维希耳伯特空间(坐标系)的基矢量 (4) 将态矢量按照上述基矢量展开:()()(),n n nx t a t u x ψ=∑()()()12,,...,...n a t a t a t 是态矢量ψ在Q 表象中沿各基矢量的分量.(5) ()2n a t 是在(),x t ψ所描写的态中,测量力学量Q 得到结果为n Q 的几率. 2. 算符在Q 表象中的表示(i)算符ˆF在Q 表象中是一个矩阵, nm F 称为矩阵元 ()(),nm nm F u x F x u x dx i x *∂⎛⎫≡ ⎪∂⎝⎭⎰(ii) 算符在自身表象中是一个对角矩阵,其对角矩阵元为该算符对应的本征值. 3. 量子力学公式的矩阵表述 (1) 平均值公式:†F F =ψψ (21)(2) 本征值方程 → 久期方程()()()()()()1111121222122212 ... ... ... ... : : : ... ... : : :m m n n nm mm a t a t F F F a t a t F F F F F F a t a t λ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭→ 111212122212 ... ... ... ... 0... ... ..............................n n n n nn F F F F F F F F F λλλ--=-(3) 薛定谔方程的矩阵形式 di H dtψ=ψ(22) 4. 么正变换的概念(1) 么正变换是两个表象基矢量之间的变换矩阵. (2) 么正变换的矩阵元由两个表象的基矢量共同确定,()()()(),.n n m m S x x dx S x x dx ββααψϕψϕ***⎫=⎪⎬=⎪⎭⎰⎰(3) 态矢量由A 表象变换到B 表象的公式1b S a -= (23)(4) 力学量ˆF由A 表象变换到B 表象的公式: 1F S FS -'= (24)5. 么正变换的性质(i) 么正变换不改变算符的本征值; (ii) 么正变换不改变矩阵F 的迹; (iii) 么正变换不改变力学量的平均值.第五章 微扰理论(I) 求解非简并定态微扰问题 (1) 确定微扰的哈密顿算符ˆH'. ()0ˆˆˆHH H '=+, 及与()0ˆH对应的零级近似能量()n E 和零级近似波函数()0nψ;(2) 计算能量的一级修正:()()()100ˆn nn E H d ψψτ*'=⎰ (25)(3) 计算波函数的一级修正:()()()()10'00mn n m mn mH E E ψψ'=-∑(26) (4) 计算能量的二级修正:()()()22'0nln ln l H E E E '=-∑ (27)(II) 求解非简并定态微扰问题 (只要求能量的一级修正) 求解步骤(1) 确定微扰的哈密顿算符ˆH'. (2) 确定微扰算符的矩阵元:ˆliH '=ˆl i H d φφτ*'⎰(28)(3) 求解久期方程得到能量的一级修正()()()111121121222112.........................................................n k n k kkkkn H E H H H H E H H H H E '''-'''-='''- (29)(III) 变分法不作要求 (IV) 含时微扰论 (1) 基本步骤设0ˆH 的本征函数为n φ为已知:0ˆn n nH φεφ=(30)将ψ按照0ˆH 的定态波函数n it n n e εφ-Φ=展开:()n nna t ψ=Φ∑(31)展开系数的表达式:()01mk ti t m mka t H e dt i ω'''=⎰(32)其中ˆmn m n H H d φφτ*''=⎰(33)是微扰矩阵元,()1m nmnωεε=-(34)为体系由n ε能级跃迁到m ε能级的玻尔频率. 在t 时刻发现体系处于m Φ态的几率是()2m a t , 体系在微扰的作用下,由初态k Φ跃迁到终态m Φ的几率为()2k m m W a t →= (35)(2) 用于周期微扰()()ˆˆi t i t H t F e e ωω-'=+得到()()()11mk mk i t i t mk m mk mk F e e a t ωωωωωωωω''+-⎡⎤--=-+⎢⎥+-⎣⎦(36)由(36)式,讨论并理解发生跃迁的条件是mkωω=±或m k m k εεω=± (37)(i) 表明只有外界的微扰含有频率mk ω时,体系才能从k Φ态跃迁到m Φ态,这时体系吸收和发射的能量是mk ω ;(ii)跃迁是一个共振现象.(3) 能量时间的测不准关系的含义E t ∆∆ (38)(4) 了解原子的跃迁几率和三个爱因斯坦系数:mk A , mkB 和km B 及相互关系. (5) 了解用含时微扰理论计算爱因斯坦发射和吸收系数(6) 记住对角量子数和磁量子数的选择定则1,0, 1.l l l m m m '∆=-=±⎫⎬'∆=-=±⎭(39) 第六章 散射只要求理解微分散射截面的概论, 不作计算要求.第七章 自旋与全同粒子1. 电子的自旋角动量S ,它在空间任何方向的投影只能取 2z S =± (40) 2. 自旋算符的矩阵形式 01ˆ210x S ⎛⎫= ⎪ ⎪⎝⎭ , 0ˆ20y i S i ⎛⎫-= ⎪ ⎪⎝⎭ , 10ˆ201z S ⎛⎫= ⎪ ⎪-⎝⎭(41) 3.泡利矩阵 01ˆ10x σ⎛⎫= ⎪ ⎪⎝⎭, 0ˆ0y i i σ⎛⎫-= ⎪ ⎪⎝⎭, 10ˆ01z σ⎛⎫= ⎪ ⎪-⎝⎭ (42)(1) 求力学量在某个自旋态的平均值和均方偏差.†G G =ψψ (43)()11121†1222122G G G G G G **⎛⎫ψ⎛⎫=ψψ=ψψ ⎪ ⎪ ⎪ψ⎝⎭⎝⎭ (44) (2)求解自旋角动量算符的本征值方程, 本征值和本征函数4. 自旋与轨道角动量的耦合及产生光谱的精细结构的原因.5. 全同性原理的表述6. 描写全同粒子体系状态的波函数只能是对称或反对称的,它们的对称性不随时间改变.实验证明,微观粒子按照其波函数的对称性可以分为两类: (I) 费米子: 波函数是反对称的;(II) 玻色子: 波函数是对称的.7.泡利不相容原理:不能有两个或两个以上的费米子处于同一状态.。
物理量子力学知识点速记
物理量子力学知识点速记1. 波粒二象性:量子力学中的粒子既可以表现出粒子性,也可以表现出波动性。
实验观测到的粒子行为有时像粒子,有时又像波动。
2. 波函数:波函数是量子力学中对一个系统状态的数学描述。
波函数的平方代表了在不同位置上发现粒子的概率。
3. 量子叠加原理:量子力学中,一粒子可以存在于多个状态的叠加态中,直到被观测或测量时才会坍塌成确定的状态。
4. 测量:量子力学中的测量不同于经典物理的测量。
测量会导致系统的状态坍塌成一个确定的值,而不是连续的测量结果。
5. 不确定性原理:由于测量会造成波函数坍塌,量子力学中存在不确定性原理,即无法同时精确测量粒子的位置和动量。
6. 干涉:量子力学中,波函数可以产生干涉现象,即波函数叠加导致的波峰和波谷的相遇。
著名的双缝干涉实验就是典型的例子。
7. 纠缠:两个或多个粒子之间可以产生纠缠态,即它们的状态是相互关联的,一方的状态改变会立即影响到其他粒子的状态,无论它们之间有多远的距离。
8. 原子:原子是物质的基本构建单位,由核和绕核运动的电子组成。
量子力学成功解释了原子的结构和性质。
9. 光子:光子是光的基本单位,也是电磁波的量子。
光子的能量和频率成正比。
10. 薛定谔方程:薛定谔方程是量子力学的核心方程,描述了系统的波函数随时间的演化。
它是对经典力学中的运动方程的量子版本。
11. 哥本哈根解释:哥本哈根解释是对量子力学中测量和观测问题进行的解释。
它强调了量子世界中的概率性和不确定性。
12. 自旋:自旋是粒子的一种内在性质,类似于粒子的旋转。
自旋决定了粒子的很多性质,如磁性和角动量。
13. 跃迁:原子或分子中的电子在不同能级之间的能量差跃迁。
跃迁会伴随辐射或吸收特定频率的光。
14. 微观世界:量子力学是研究微观世界的物理学,描述了分子、原子和基本粒子的行为。
15. 康普顿散射:康普顿散射是光子与物质中自由电子碰撞后的散射现象,从而证明了光的粒子性。
16. 德布罗意波:德布罗意提出了与物质粒子相关的波动性,即波粒二象性的基础。
量子力学知识点归纳
量子力学知识点归纳
粒子性质
- 波粒二象性:微观粒子既具有波动性质又具有粒子性质。
- 粒子的量子态:用波函数描述粒子的状态。
- 粒子的叠加态:在量子力学中,粒子可以同时处于多个不同状态的叠加态。
波函数与测量
- 波函数的基本性质:波函数必须满足归一化和连续性条件。
- 算符与期望值:量子力学中的物理量用算符表示,其期望值对应其在该态下的平均值。
- 不确定性原理:海森堡不确定性原理表明,无法同时准确知道粒子的位置和动量。
Schrödinger 方程
- 定态和非定态:物理系统可以处于定态或非定态,定态由定
态方程描述,非定态由非定态方程描述。
- 离散能级和连续能谱:不同物理系统的能级结构可以是离散
的也可以是连续的。
- 波函数的时间演化:波函数随时间的演化由薛定谔方程描述。
量子力学中的操作
- 叠加和干涉:量子力学中的粒子可以叠加在一起,并在经典
中无法解释的方式上产生干涉效应。
- 量子纠缠:两个或多个粒子之间的纠缠状态是量子力学的独
特现象,纠缠态可以表现出非常特殊的相关性。
- 测量与波函数坍缩:测量一个物理量会导致波函数坍缩到一
个确定的状态,而非叠加态。
以上是量子力学知识点的一个完整归纳,展示了该领域的基本
概念和特性。
深入研究这些知识点可以更好地理解和应用量子力学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v1.0 可编辑可修改大学量子力学主要知识点复习资料,填空及问答部分1能量量子化辐射黑体中分子和原子的振动可视为线性谐振子,这些线性谐振子可以发射和吸收辐射能。
这些谐振子只能处于某些分立的状态,在这些状态下,谐振子的能量不能取任意值,只能是某一最小能量 的整数倍εεεεεn ,,4,3,2,⋅⋅⋅ 对频率为 的谐振子, 最小能量为: νh =ε 2.波粒二象性波粒二象性(wave-particle duality )是指某物质同时具备波的特质及粒子的特质。
波粒二象性是量子力学中的一个重要概念。
在经典力学中,研究对象总是被明确区分为两类:波和粒子。
前者的典型例子是光,后者则组成了我们常说的“物质”。
1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。
1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。
根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。
德布罗意公式h νmc E ==2λhm p ==v3.波函数及其物理意义在量子力学中,引入一个物理量:波函数 ,来描述粒子所具有的波粒二象性。
波函数满足薛定格波动方程0),()](2[),(22=-∇+∂∂t r r V mt r t i ψψ 粒子的波动性可以用波函数来表示,其中,振幅表示波动在空间一点(x ,y,z )上的强弱。
所以,应该表示 粒子出现在点(x,y,z )附件的概率大小的一个量。
从这个意义出发,可将粒子的波函数称为概率波。
自由粒子的波函数)](exp[Et r p i A k -⋅=ψ=ψ波函数的性质:可积性,归一化,单值性,连续性 4. 波函数的归一化及其物理意义常数因子不确定性设C 是一个常数,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。
相位不定性如果常数 ,则 和 对粒子在点(x,y,z )2(,,)x y z ψ(,,)c x y z ψαi e C =(,,)i e x y z αψ(,,)x y z ψ附件出现概率的描述是相同的。
表示粒子出现在点(x,y,z )附近的概率。
表示点(x,y,z )处的体积元中找到粒子的概率。
这就是波函数的统计诠释。
自然要求该粒子在空间各点概率之总和为1必然有以下归一化条件5. 力学量的平均值既然 表示 粒子出现在点 附件的概率,那么粒子坐标的平均值,例如x 的平均值x __,由概率论,有 又如,势能V 是 r 的函数:)(r V,其平均值由概率论,可表示为⎰+∞∞-=r d r r V r V 3*)()()( ψψ⎰+∞∞-=r d r r V r V 3*)()()(ψψ再如,动量 的平均值为:为什么不能写成因为x 完全确定时p 完全不确定,x 点处的动量没有意义。
能否用以坐标为自变量的波函数计算动量的平均值 可以,但需要表示为p __r d r p r ⎰+∞∞-=3*)(ˆ)(ψψ其中为动量 的算符 6.算符量子力学中的算符表示对波函数(量子态)的一种运算如动量算符∇-≡i pˆ 能量算符Eti E ˆ≡∂∂=动能算符222ˆ∇-=mT动能平均值r d r T r T ⎰+∞∞-=3*)(ˆ)(ψψ 角动量算符pr l ˆˆ⨯= 角动量平均值r d r l r l ⎰+∞∞-=3*)(ˆ)( ψψ 薛定谔方程),()],(2[),(22t r t r V mt r t i ψψ+∇-=∂∂2|(,,)|x y z x y z ψ∆∆∆x y z τ∆=∆∆∆2|(,,)|1x y z dxdydz ψ∞=⎰22|()||(,,)|r x y z ψψ=),,(z y x r =23*3|()|()(),x r xd r r x r d r ψψψ+∞+∞-∞-∞==⎰⎰3d r dxdydz=*3()(),p p p p d p ϕϕ+∞-∞=⎰⎰+∞∞-=rd r r p r p 3*)()()(ψψ∇-≡ i p ˆp算符,被称为哈密顿算符, 7.定态数学中,形如 的方程,称为本征方程。
其中 方程称为能量本征方程,被称为能量本征函数, E 被称为能量本征值。
当E 为确定值,),(t r ψ=)(r E ψ)exp(Et i-拨函数所描述的状态称为定态,处于定态下的粒子有以下特征:粒子的空间概率密度不随时间改变,任何不显含t 的力学量的平均值不随时间改变,他们的测值概率分布也不随时间改变。
8.量子态叠加原理但一般情况下,粒子并不只是完全处于其中的某一本征态,而是以某种概率处于其中的某一本征态。
换句话说,粒子的状态是所有这些分立状态的叠加,即)()(x c x n nn ψψ∑=,具有),(中发现粒子处于态)(表示在态||2x x c n n ψψ的概率能量n E9. 宇称若势函数V (x )=V (-x ),若)(x ψ是能量本征方程对于能量本征值E 的解,则)(x -ψ也是能量本征方程对于能量本征值E 的解具有确定的宇称。
无简并,则若的解,如果能量本征值是能量本征方程对应于设)()(),()()(x x x V x V Ex ψψψ-=10.束缚态通常把在无限远处为零的波函数所描写的状态称为束缚态ˆAf af =ˆA →算符,f →本征函数,a →本征值22ˆ()2H V r m=-∇+22ˆ[()]()()()()2E E E E V r r E r H r E r mψψψψ-∇+=→=)(r E ψ:()()()()()()()()()cos()cos()cos()sin()sin()sin()P P x x P x x x P x x x x P x x x P x x x ψψψψψψψψψ=-=-==-=-→=-=→=-=-定义空间反演算符为如果或,称具有确定的偶宇称或奇宇称,如偶宇称奇宇称注意:一般的函数没有确定的宇称11. 一维谐振子的能量本征值 12. 隧穿效应量子隧穿效应为一种量子特性,是如电子等微观粒子能够穿过比它们能量大的势垒的现象。
这是因为根据量子力学,微观粒子具有波的性质,而有不为零的概率穿过位势障壁。
又称隧穿效应,势垒贯穿。
按照经典理论,总能量低于势垒是不能实现反应的。
但依量子力学观点,无论粒子能量是否高于势垒,都不能肯定粒子是否能越过势垒,只能说出粒子越过势垒概率的大小。
它取决于势垒高度、宽度及粒子本身的能量。
能量高于势垒的、运动方向适宜的未必一定反应,只能说反应概率较大。
而能量低于势垒的仍有一定概率实现反应,即可能有一部分粒子(代表点)穿越势垒(也称势垒穿透barrier penetration),好像从大山隧道通过一般。
这就是隧道效应。
例如H+H2低温下反应,其隧道效应就较突出。
13. 算符对易式一般说来,算符之积不满足交换律,即,由此导致量子力学中的一个基本问题:对易关系对易式 ,通常 坐标对易关系角动量的对易式,0]ˆ,ˆ[,ˆ]ˆ,ˆ[,ˆ]ˆ,ˆ[,ˆ]ˆ,ˆ[,0]ˆ,ˆ[,ˆ]ˆ,ˆ[,ˆ]ˆ,ˆ[,ˆ]ˆ,ˆ[,0]ˆ,ˆ[,0],ˆ[,],ˆ[,],ˆ[,],ˆ[,0],ˆ[,],ˆ[,],ˆ[,],ˆ[,0],ˆ[=-====-=-====-====-=-===z y x y z y x z x z y y y z x y y z x z y x x x y z z y y y x x x pl p i p l p i p l p i p l p l p i p l p i p l p i p l p l z l x i y l y i x l x i z l y l z i x l y i z l z i y l x lyx z x z y z y x z z y y x x l i l l l i l l l i l l l l l l l l ˆ]ˆ,ˆ[,ˆ]ˆ,ˆ[,ˆ]ˆ,ˆ[,0]ˆ,ˆ[,0]ˆ,ˆ[,0]ˆ,ˆ[ ======.,2,1,0,)2/1(⋅⋅⋅=+==n n E E n ω A B B A ˆˆˆˆ≠A B B A B A B Aˆˆˆˆ]ˆ,ˆ[,ˆˆ-≡∀设和0]ˆ,ˆ[≠B A ⎩⎨⎧≠===βαβαδααββ,0,]ˆ,[ i i p zy x ,,,=βα14.厄密算符平均值的性质,ˆ~ˆˆ,ˆ*的厄密共轭算符称为的共轭转置算符则A A A A ∀。
=即记为*~ˆˆ,ˆA A A ++先转置,再共轭。
**ˆ~ˆψτϕϕτψA d A d ⎰⎰= 体系的任何状态下,其厄密算符的平均值必为实数,在任何状态下平均值为实的算符必为厄米算符,实验上可观测量相应的算符必须是厄米算符。
厄密算符的属于不同本征值的本征函数彼此正交。
15. 量子力学关于算符的基本假设1、微观粒子的状态由波函数 描写。
2、波函数的模方表示 t 时刻粒子出现在空间点(x,y,z )的概率。
3、力学量用算符表示。
4、波函数的运动满足薛定格方程16. 算符的本征方程,本征值与本征函数数学中,形如的方程,称为本征方程。
其中3*其中,,)(均可展开如下:状态完备态矢,系统的任何能构成一组正交归一都是不简并的,则,果的本征态与本征值,如ˆ是算符和dr a a x A A A n n n nn n n n n ⎰∑==∀ψψψψψψψ17. 不确定度关系的严格表达18. 两个算符有共同本征态的条件ˆAf af =),(t rψψ=2|),(|t r ψ2222ˆ(,)()(,)(,),2ˆ(,)2i r t V r t H r t t mHV r t mψψψ∂=-∇+=∂=-∇+→哈密顿算符ˆA→算符,f →本征函数,a →本征值ˆ,ˆˆˆn n nn nAA A n A A A A AAψψψψψψ==满足的和不止一组可能有组,因此此式称为的本征方程,称为的一个本征值,称为的一个本征态。
两个算符对易,即0]ˆ,ˆ[ B A19. 力学量完全集若算符的本征值是简并的,仅由其本征值无法惟一地确定其本征态。
若要惟一地确定其本征态,必须再加上另一些与之对易的算符的本征值才可。
例如,仅由 的本征值不能确定体系状态,必再加上的本征值才能确定体系状态。
这样,为了完全确定一个体系的状态,我们定义力学量完全集。
定义:如果有一组彼此独立而且相互对易的厄米算符 ,它们只有一组共同完备本征函数集,记为,可以表示一组量子数,给定一组量子数后,就完全确定了体系的一个可能状态,则称为体系的一组力学量完全集。
20. 力学量完全集共同本征态的性质若能级简并21. 守恒量对于Hamilton 量H 不含时的量子体系,如果力学量A 与H 对易,则无论体系处于什么状态(定态或非定态),A 的平均值及其测值的概率分布均不随时间改变,所以把A 称为量子体系的一个守恒量。