三角函数与数列综合问题
三角函数数列不等式
1, cn
,.
求使 k
n 2n1 (n 1)
(7 2n)Tn
(n
N ) 恒成立的实数
k
的范围.
39.等差数列an的前 n
项和为
Sn
n2
3n 2
.
(Ⅰ)求数列 an 的通项公式;
(Ⅱ)若数列
bn
满足 bn
1 a2 a n1 2n1
,求数列
bn
的前 n 项和Tn .
40.等差数列an的前 n 项和为 Sn ,且满足 a4 9,a3 a7 22 .
4 cos2 C cos2( A B) 7 ,c= 7 ,又△ABC 的面积为 S△ABC= 3 3 ,求 a,
2
22
2
b 的值.
32.(本小题满分 12 分)解关于 x 的不等式: (x 2)(ax 2) 0 (其中 a 0 )
33 . 已 知 a,b,c 分 别 为 △ ABC 三 个 内 角 A 、 B 、 C 的 对 边 , a cosC 3asin C b c 0 . (1)求 A; (2)若 a 2 ,△ABC 的面积为 3 ,求 b,c .
b1
1, bn
1 f( )
bn1
(n 2,3,4,...),
求和: b1b2 b2b3 b3b4 ... b2 b n1 2n b2nb2n1 ;
( 3 ) 若 t 3 , 设 cn log 3 a2 log 3 a3 log 3 a4 ... log 3 an1 ,
11 Tn c1 c2
A .120
B.60
C.45
D.30
7.在 ABC 中,若 tan Atan B 1,则 ABC 是( )
A.锐角三角形
三角函数的综合应用+课件-2025届高三数学一轮复习
(2)由题意,得 f(A)=2sin 2A-π3- 3=0,即 sin 2A-π3= 23,
∵A∈0,π2, 则 2A-π3∈-π3,23π, ∴2A-π3=π3,∴A=π3.
在△ABC 中, 由 a2=b2+c2-2bc cos A=42+32-2×4×3×12=13, 可得 a= 13, 又∵12bc sin A=12AD×a,即12×4×3× 23=21AD× 13, ∴AD=61339,故 BC 边上的高 AD 的长为61339.
(2)根据正弦定理得sina A=sinc C=sinb
B=
4 =8 3
3
3,
2
所以
a=8
3
3 sin
A,c=8
3
3 sin
C.
所以
a+c=8
3
3 (sin
A+sin
C).
因为 A+B+C=π,B=π3,所以 A+C=23π,
所以 a+c=8
3
3 sin
A+sin
23π-A=8
3
33 2sin
A+
23cos
A
=8sin A+π6.
因为 0<A<23π,
所以 A+π6∈π6,56π,所以 sin A+π6∈12,1,则 a+c∈(4,8].
所以 a+c 的取值范围是(4,8].
【反思感悟】已知三角形一边及其对角,求取值范围的问题 的解法
(1)(不妨设已知 a 与 sin A 的值)根据 2R=sina A求出三角形外接
∴a2+c2 b2=sin2Asi+n2Csin2B=cos22sCin+2Ccos2C =(1-2sin2Cs)in2+2C(1-sin2C)=2+4sins4iCn2-C 5sin2C
三角函数数列综合测试试题
三角函数数列综合试题————————————————————————————————作者:————————————————————————————————日期:23 一.选择题(共12个小题,每题5分,满分60分)1.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于( )A .30°B .30°或150°C .60°D .60°或1202.在ABC ∆中,角,,A B C 的对边分别是,,a b c ,若52a b =,2A B =,则cos B =( )A.53B.54C.55D.563.在ABC ∆中,6=a ,ο30=B ,ο120=C ,则ABC ∆的面积是( )A .9B .18C .39D .318 4.ABC V 在中,若c=a b =cosA cosB cosC,则ABC V 是 ( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形5. 已知等差数列{}a n 中,a a 7916+=,a 41=,则a 12的值是 A. 15B. 30C. 31D. 646. 等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为 A.81 B.120 C.168 D.1927. 在实数等比数列{}n a 中,263534,64a a a a +==,则4a = A.8 B.16 C.8± D.16±8. 在△ABC 中,若2lg sin lg cos lg sin lg =--C B A ,则△ABC的形状是( )A 直角三角形B 等边三角形C 不能确定D 等腰三角形9 在△ABC 中,A =60°,b =1,其面积为3,则CB A cb a sin sin sin ++++等于 ( ) A .33B .33924 C .338 D .239 10、等差数列{}n a 中,10120S =,那么110a a +=( )A. 12B. 24C. 36D. 48 11、已知等差数列{}n a 的公差12d =,8010042=+++a a a Λ,那么=100SA .80B .55C .135D .160.12、已知等差数列{}n a 中,6012952=+++a a a a ,那么=13S (A .390B .195C .180D .120一、选择题答案1 2 3 4 5 6 7 8 9 10 11 12二.填空题(共6个小题,每题4分,满分24分)13、从前180个正偶数的和中减去前180个正奇数的和,其差为( )14.已知等比数列{a n }的公比是q =21,且a 1+a 3+a 5+…+a 99=60,则a 1+a 2+a 3+…+a 100.等于( )15.ABC ∆中,若b=2a , B=A+60°,则A= . 16.、方程)2)(2(22n x x m x x +-+-=0的四个根组成一个首项为41的等差数列,则|m -n|=…( )17. 已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++=___________18. 已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2=___________三 计算题 (本题共六小题,总共76分)19.(本小题满分12分) 在ABC V 中,角,,A B C 所对的边分别为,,a b c5 且满足sin cos .c A a C = (I )求角C 的大小; (II )求3sin cos()4A B π-+的最大值,并求取得最大值时角,A B 的大小.20.(本小题满分12分)(本小题满分12分)在ABC ∆中,cos cos AC BAB C=. (Ⅰ)证明:B C =. (Ⅱ)若1cos 3A =-.求sin 43B π⎛⎫+ ⎪⎝⎭的值.21. (本小题满分12分)在ABC ∆中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知222a c b -=,且sin cos 3cos sin ,A C A C = 求b22.(本小题满分12分)设{}n a 是一个公差为(0)d d ≠的等差数列,它的6 前10项和10110S =,且124,,a a a 成等比数列.(Ⅰ)证明:1a d =; (Ⅱ)求公差d 的值和数列{}n a 的通项公式.23.(本小题满分14分)已知数列{}n a 的前项和为n S ,且*1111,,3n n a a S n N +==∈.(Ⅰ)求234,,a a a 的值及数列{}n a 的通项公式; (Ⅱ) 求2462...n a a a a ++++的和.24.(本小题满分14分) 已知等差数列{an}的公差是正数,且a3·a7=-12,a4+a6=-4,求它的前20项的和S20的值.参考答案:7 选择题1-5 DBCBA 6-10BCBBB 11-12 CB 填空题 13 180 14 90 15 30 16 1/2 17 7 18 -6 计算题19. 解析:(I )由正弦定理得sin sin sin cos .C A A C =因为0,A π<<所以sin 0.sin cos .cos 0,tan 1,4A C C C C C π>=≠==从而又所以则(II )由(I )知3.4B A π=-于是3sin cos()3sin cos()43sin cos 2sin().63110,,,,46612623A B A A A A A A A A A ππππππππππ-+=--=+=+<<∴<+<+==Q 从而当即时2sin()6A π+取最大值2. 综上所述,3sin cos()4A B π-+的最大值为2,此时5,.312A B ππ==20. 【解】(Ⅰ)在ABC ∆中,由cos cos AC BAB C=及正弦定理得sin cos sin cos B BC C=,8 于是sin cos cos sin 0B C B C -=,即()sin 0B C -=,因为0B π<<,0C π<<,则B C ππ-<-<, 因此0B C -=,所以B C =.(Ⅱ)由A B C π++=和(Ⅰ)得2A B π=-,所以()1cos 2cos 2cos 3B B A π=--=-=, 又由B C=知02B π<<,所以22sin 23B =.42sin 42sin 2cos 29B B B ==. 227cos 4cos 2sin 29B B B =-=-.所以4273sin 4sin 4cos cos 4sin 33318B B B πππ-⎛⎫+=+= ⎪⎝⎭.21解法一:在ABC ∆中sin cos 3cos sin ,A C A C =Q 则由正弦定理及余弦定理有:2222223,22a b c b c a a c ab bc +-+-=gg 化简并整理得:2222()a c b -=.又由已知222a c b -=24b b ∴=.解得40(b b ==或舍).解法二:由余弦定理得: 2222cos a c b bc A -=-.又222a c b -=,0b ≠.所以2cos 2b c A =+①又sin cos 3cos sin A C A C =,sin cos cos sin 4cos sin A C A C A C ∴+=9 sin()4cos sin A C A C +=,即sin 4cos sin B A C =由正弦定理得sin sin bB C c=,故4cos b c A = ②由①,②解得4b =.22.(Ⅰ)证明:∵124,,a a a 成等比数列,∴2214a a a =.而{}n a 是等差数列,有2141,3a a d a a d =+=+,于是2111()(3)a d a a d +=+即222111123a a d d a a d ++=+,化简得1a d =.(Ⅱ)解:由条件10110S =和10110910,2S a d ⨯=+得到11045110a d +=由(Ⅰ)知1,a d =代入上式得55110,d =故12,(1)2.n d a a n d n ==+-=23.解: (Ⅰ)*1111,,3,3,23n n n n n n a S n N a S a S n ++-=∈∴=∴=≥Q 当时,1n n n a S S -=-=133n n a a +-⇒143n n a a +=,22214433n n n n a a ---⎛⎫=⋅= ⎪⎝⎭. 所以214133a a ==,324439a a ==,43416327a a ==. 211(1)4(2)3n n n n a n --=⎧⎪∴=⎨≥⎪⎩.(Ⅱ)2462...n a a a a ++++242116[1]114141439 (16333333319)nn⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎝⎭=++++=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-10 316[1]79n⎛⎫=- ⎪⎝⎭24、 解法一 设等差数列{a n }的公差为d ,则d >0,由已知可得(a 2d)(a bd)12 a 3d a 5d = 41111++=-①+++-②⎧⎨⎩由②,有a 1=-2-4d ,代入①,有d 2=4 再由d >0,得d =2 ∴a 1=-10最后由等差数列的前n 项和公式,可求得S 20=180。
三角函数与数列(高考题)
三角函数与数列(高考题)1.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=. (1)证明:sin A sin B=sin C;(2)若b2+c2-a2=bc,求tan B.2.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c. (1)求C; (2)若c=,△ABC的面积为,求△ABC的周长.3.在△ABC中,a2+c2=b2+ac.(1)求∠B的大小; (2)求cos A+cos C的最大值.4.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin 2B=b sin A. (1)求B; (2)若cos A=,求sin C的值.5.设f(x)=2sin(π-x)sin x-(sin x-cos x)2.(1)求f(x)的单调递增区间;(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g的值.6.设f(x)=sin x cos x-cos2.(1)求f(x)的单调区间;(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c.若f=0,a=1,求△ABC面积的最大值.7.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.8.已知向量=,=(sinx,cos2x),x∈R,设函数f(x)=·.(1) 求f(x)的最小正周期. (2) 求f(x) 在上的最大值和最小值.9.已知ΔABC的角A,B,C所对的边分别是a,b,c,设向量,,.(1)若//,求证:ΔABC为等腰三角形;(2)若⊥,边长c= 2,角C=,求ΔABC的面积.10.已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(1)求数列{b n}的通项公式;(2)令c n=.求数列{c n}的前n项和T n.11.设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.(1)求通项公式a n;(2)求数列{|a n-n-2|}的前n项和.12.已知数列的前项和为,且对一切正整数都成立。
高三文科数学三角函数数列与导数试卷
高三文科数学三角函数数列与导数试卷(完卷时间:120分钟,满分:150分)命题及审题:周建梅一、选择题(每小题5分,共60分): 1.sin15cos75cos15sin105+等于( )A.0B.12D.12.在数列{a n }中,a 1=1,a n +1=a n 2-1(n ≥1),则a 1+a 2+a 3+a 4+a 5等于( )A .-1B .1C .0D .23.{a n }是等差数列,且a 1+a 4+a 7=45,a 2+a 5+a 8=39,则a 3+a 6+a 9的值是( )A .24B .27C .30D .33 4.函数y =Asin(ωx +φ) (A >0,ω>0,|φ|<2π=的图象如图所示,则y 的表达式为( ) A .y =2sin(611x 10π+) B .y =2sin(611x 10π-)C .y =2sin(2x +6π)D .y =2sin(2x -6π)5.函数y =f(x)的图象在点P (1,f(1))处的切线方程为y =-2x +10, 导函数为()f x ',则f(1)+(1)f '的值为 ( )A. -2B.2 C .6 D. 86.已知等差数列{a n }的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为( )A .180B .-180C .90D .-90 7.函数13)(23+-=x x x f 是减函数的区间为( )A .),2(+∞B .)2,(-∞C .)0,(-∞D .(0,2)8.由公差为d 的等差数列a 1、a 2、a 3…重新组成的数列a 1+a 4, a 2+a 5, a 3+a 6…是( )A .公差为d 的等差数列B .公差为2d 的等差数列C .公差为3d 的等差数列D .非等差数列 9. 曲线3231y x x =-+在点(1,-1)处的切线方程为(A .34y x =- B.32y x =-+ C.43y x =-+ 10.设函数f(x)在定义域内可导,y =f(x)的图象如图1可能为( )11.函数,93)(23-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a = ( )A .2B .3C .4D .5A B C D12. 要得到)42sin(3π+=x y 的图象只需将y =3sin2x 的图象( )A .向左平移4π个单位 B .向右平移4π个单位C .向左平移8π个单位D .向右平移8π个单位二、填空题(每小题4分,共16分):13.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为________. 14.首项是125,从第10项开始比1大,则该等差数列的公差d 的取值范围是__________. 15.若函数y =x 3+ax 2+bx +27在x =-1时有极大值,在x =3时有极小值,则a =____,b =____. 16.等差数列{}n a 中,30216131074=++++a a a a a ,则其前19项和19S =_________. 三、解答题(共74分): 17.(本小题共12分)(1)在等差数列}{n a 中,已知94=a ,69-=a ,求满足63=n S 的所有的n 的值。
高中数学数列、解三角形、不等式综合复习
本讲主要复习了必修(5)数列、解三角形、不等式等三部分知识要点和考点。
在利用这些知识点解决问题时注重函数的思想、数与形结合的思想、方程的数学思想、分类讨论的数学思想、等价转化的数学思想及配方法、特值法、分离参数法等数学思想方法的应用。
考点一:数列、不等式、解三角形等基础知识的考查例1、在下列命题中,把正确命题的序号填在题后的横线上。
(1)当三角形的各角的余切成等差数列时,各角所对边的平方成等差数列(2)已知不等式①②x2-6x+8<0 ③2x2-9x+m<0若同时满足①②的x值也满足③,则m9.(3)一个等差数列和一个等比数列,其首项是相等的正数,若其第(2n+1)项是相等的,则这两个数列的第(n+1)项也是相等的。
(4)方程有解时a的取值范围是在上述命题中正确命题的序号是。
分析:(1)设三个角A,B,C所对的边分别是a,b,c.由已知条件得:2cotB=cotA+cotC然后化为正、余弦。
通分再利用正、余弦定理可证:2b2=a2+c2.(2)可用特值法:先求不等式①②解集的交集。
再对m取特值验证。
也可利用二次函数的图像解决。
(3)利用等差、等比数列的通项公式表示这两个数列的第(n+1)项,然后比较大小。
或取特值验证。
(4)分离参数法:把a分离出来,用表示a,再用均值不等式求解。
解析:(1)由已知得:2cotB=cotA+cotC.利用正、余弦定理可证:2b2=a2+c2.故命题(1)是正确的。
(2)不等式①②的交集是(2,3),取m=0时,不等式化为:显然当2<x<3时,不等式成立。
故命题(2)错误另解:利用二次函数图像求解:设f(x)=2x2-9x+m,如图由已知得:(3)设数列分别是等差数列、等比数列。
首项分别是>0公差和公比分别是d、q,取n=2,q=2,由已知:即:,故==-=故,故命题(3)错误。
(4)由方程得:-(4+a)=.故此命题错误。
考点二:不等式与数列的综合应用的考查例2、已知数列{a}是首项a1>0,q>-1且q≠1的等比数列,设数列{b}的通项为b=a-ka(n∈N),数列{a}、{b}的前n项和分别为S,T.如果T>kS对一切自然数n都成立,求实数k的取值范围.分析:由探寻T和S的关系入手谋求解题思路。
数列与三角函数交汇题解法探究
4
b n + 2 = (sin 2 x) n· sin 4 x + (cos2 x) n· cos4 x,而 b n + 2 - b n + 1 =
(sin 2 x) n· sin 2 x (sin 2 x - 1) + (cos2 x) n· cos2 x (cos2 x - 1)
a 10 =
= -(sin 2 x) n· sin 2 x cos2 x - (cos2 x) n· cos2 x sin 2 x
[中图分类号] G633.6
[文献标识码] A
[文章编号] 1674-6058(2021)11-0017-02
“从学科的整体高度和思维价值的高度考虑问
题,在知识网络交汇点处设计试题,使对数学基础知
识的考查达到必要的深度 .”这是高考大纲中对高中
数学知识点交汇的明确指导方针 . 其实,设计在知识
网络交汇处的数学问题,是数学知识、数学应用与创
分析与处理 . 当然根据条件的变化可以得到一些不同
的变式 .
四、解后反思
涉及数列与三角函数的交汇问题,可以数列为问
题背景,借助数列的通项、求和、性质等来给三角函数
提供创新情境 . 也可以三角函数为问题背景,借助三
角函数的图像与性质、三角恒等变换等来给数列提供
条件 .
(责任编辑 黄桂坚)
11
1
1
b5 =
,ab = sin 2 x cos2 x = sin 2 2x ≤ ,
36
4
4
而 a2 + b2 = ( a + b) 2 - 2ab = 1 - 2ab, a3 + b3 =
( a + b) ( a2 - ab + b2 ) = 1 - 3ab,
定积分三角函数数列导数中切线问题练习题
学习好资料欢迎下载姓名:4月21日课后作业与1、求由曲线所围成的封闭图形的面积。
1答案:2、求由直线2y=2x与抛物线y=3-x所围成的阴影部分的面积。
D.【解析】,故选、求函数处的切线与坐标轴所围成的三角形的面积。
3,所以切线方程为,所以在处的切线斜率为【解析】,所以所求三角形的面积,得,令,令,得为4,求点取自阴影部分的概率。
、已知从如图所示的长方形区域内任取一个点,长方形的面积为【答案】【解析】,阴影部分的面积为欢迎下载学习好资料。
所以点取自阴影部分的概率为、求定积分5【解析】,21,S?S?6,、已知数列6{a}是等差数列,{a}的前n项和为S nnn63n a2.项和{T}的前na(1)求数列{}的通项公式;(2)求数列nnn n=答案:a n)ba,m?(Δ7、已知ABC的角A、B、C所对的边分别是a、b、c,,设向量2)a2,(A i p?b?n?n?(si B,s,.nm为等腰三角形;ABC//(1)若,求证:Δ?m p C =c = 2⊥,角(2ABC的面积. )若,边长,求Δ3vvu ba?ba??,?Bb sin//n,?a sin A Q m外接圆半ABC,其中R即证明:(1)是三角形RR22ABCa?b??为等腰三角形径,vuvu abb??a?0b(a?2)?m//p?0,即a(b?2)?解(2)由题意可知22221)??4(舍去ab?ab?0??ab)3ab?4ab?(a?b)?3ab即(?4?a?b余弦定理?113sin?C sin??S??4?ab 322关于导数中切线问题的专题训练能力提升(选做)2的图象在a∈R)f)函数(x)=2ln x+x>0-bx+a(b,1. (2014·北大附中河南分校高考押题() 处的切线斜率的最小值是点(b,f(b))1.D 2 C.3 2A.2 B.2222A. ,(b)≥2 ·2b=2b(2x)=+x-b,∴f′b)=+2b-=+b,∵b,∴>0f′f解∵′(bxbb23的取值α-3x+上的任意一点,P点处的切线倾斜角为α,则2. 设点P是曲线y=x3)范围为(πππ5252????????????ππ,πππ,ππ,,0,,0 B. C. D.∪∪A.????????????623623222,x=3x′∵)y,P解析答案[]A []设(x,f()==x切线的斜率-3,∴k33-000.欢迎下载学习好资料π2????2π,π,0A. .故应选∈∴≥α-∪α=3x3.-3∴tan????0323.(云南省昆明市2013届高三复习适应性检测数学(理)试题)若函数11x?x??)??e?x?3xy?e(?的最小值是则的图象上任意点处切线的倾斜角为 ,22????35(A)(B)(C)(D) 4664【答案】 B2+2x+3上的点,且曲线C在点P处切线=(2010·福州高二期末)设P为曲线C:yx4.π倾斜角的取值范围为[0,],则点P横坐标的取值范围为()411D.[,1]1,0] C.[0,1] -A.[1,-]B.[-22π[答案]A [解析]∵y′=2x+2,且切线倾斜角θ∈[0,],∴切线的斜率k满足0≤k≤1,41即0≤2x+2≤1,∴-1≤x≤-.2关于导数其他问题的专题训练132+2xx-[0,4]内任取的一个数,那么函数f(x)=江西八校联考1. (2014·)已知m是区间32x +3在x∈R上是增函数的概率是()m1112A. B. C. D. 4323132222≥0在x+m(x)=x4xx)=--2x′+mx+3在R上是增函数,∴f(C答案:解析:∵f32≤0,解得m≤-2或m≥2.又∵0≤m≤4,∴2≤m≤4.m=R上恒成立,∴Δ16-421故所求的概率为P==.422.(2014·贵阳二中模拟)已知函数f(x)的导函数f′(x)的图象如图所示,那么函数f(x)的图象最有可能的是(),)>0x(′f时,<0x2<单调递减;当-)x(f,)<0x(′f时,>0x或2-<x当解析:A答案:欢迎下载学习好资料A.单调递增.故选f(x)x2的一个极值点,则下)e(x=-1为函数f+bx+c(a,b,c∈R),若x(3.设函数fx)=ax)(x)的图象的是(=列图象不可能为yfx2xx2x x)e由.ax+bx+)e+,则h′(x)=(2axb)e b+(ax++bx+c)e ax=(c+2)解析:设h(x=f(x2x=x)=ca.∴f(x)e(的极值点,当x=-1时,ax2+ax+bx+b+c=c-a=0,∴=-1为函数fa22==1,D中图象一定不满足该条件.axa+bx+.若ax,则+bx+a=0有两根x,xxx2112a的取值范围是k单调递增,则 4.(2014新课标Ⅱ,文11)若函数f(x)=kx-ln x在区间(1,+∞)) () +∞∞,-1] C.[2,+∞)D.[1,-A.(-∞,-2]B.(,,则f'(x)≥0在x)上恒成立∈(1,+∞在)D答案:解析:由f'(x=k-,又f(x)(1,+∞)上单调递增D.≥<<1,故k1.故选∞)k即≥在x∈(1,+∞上恒成立.又当x∈(1,+)时,02t的值为则当|MN|达到最小时,x 5. 设直线x=t与函数f()=x),g(x=ln x图象分别交于点M,N212.A1BD.C ..222212t=令ln t(t>0),F'(t)=20,得t-=t|MN|=F:答案.或t=-(舍去)易知D解析由题意,设(t)=-22t2222??也为,t> t(t(Ft)在0)取得极小值t,上单调递减在t故上单调递增,时t=,F()=t-ln 222.故选D达到最小最小值,即|MN|,数函若)题试)理(学数测检性应适习复三高届2013市明昆省南云( 6.欢迎下载学习好资料11x?x??)x??3x(?y?e??e ,则的图象上任意点处切线的倾斜角为的最小值是22????35 (D)(A)(B)(C)4664B【答案】??)(?fxfy(x))f(x)(xf1)?f(4R的的导函数,已知为上的函数,定义在 7.满足b?2a b1)?f(2a?b的取值范围是满足、,则图象如图所示,若两个正数a?21111)??)(,3((,)??,)?(3,)(??,3 D B. CA...2232C 【答案】ππ2________.sin x,则f′())的导函数为f′(x)且f(x=x=f′()+y8.已知函数=f(x)33ππππ32×2′()=)′(x=2xf′()+cos 答案x.所以f)因为f(x=x+f′()sin x,所以f33334π-6πππ3f′()+cos.所以f′()=.3336-4π12+4x-3ln x在[t,t+1]上不单调,则t的取值范围是____________.=-9.已知函数f(x)x22?x-1??x-3?-x+4x-33答案0<t<1或2<t<3解析f′(x)=-x+4-==-,由f′(x)=0xxx得函数的两个极值点1,3,则只要这两个极值点在区间(t,t+1)内,函数在区间[t,t+1]上就不单调,由t<1<t+1或t<3<t+1,解得0<t<1或2<t<3. ?)100(?x????x1)(x2)(x3)(x(0)?f____________ f已知函数(=x),则10.答案:100!=1×2×3×…×100。
函数与数列的极限的强化练习题答案(含详细分析)
第一讲:函数与数列的极限的强化练习题答案一、单项选择题1.下面函数与y x=为同一函数的是()2.A y=.B y=ln.xC y e=.ln xD y e=解:ln lnxy e x e x===,且定义域(),-∞+∞,∴选D2.已知ϕ是f的反函数,则()2f x的反函数是()()1.2A y xϕ=().2B y xϕ=()1.22C y xϕ=().22D y xϕ=解:令()2,y f x=反解出x:()1,2x y=ϕ互换x,y位置得反函数()12y x=ϕ,选A3.设()f x在(),-∞+∞有定义,则下列函数为奇函数的是()()().A y f x f x=+-()().B y x f x f x=--⎡⎤⎣⎦()32.C y x f x=()().D y f x f x=-⋅解:()32y x f x=的定义域(),-∞+∞且()()()()()3232y x x f x x f x y x-=-=-=-∴选C4.下列函数在(),-∞+∞内无界的是()21.1A yx=+.arctanB y x=.sin cosC y x x=+.sinD y x x=解: 排除法:A21122xxx x≤=+有界,B arctan2xπ<有界,C sin cosx x+≤故选D5.数列{}n x有界是lim nnx→∞存在的()A 必要条件B 充分条件C 充分必要条件D 无关条件解:{}n x收敛时,数列n x有界(即nx M≤),反之不成立,(如(){}11n--有界,但不收敛,选A6.当n→∞时,21sinn与1kn为等价无穷小,则k= ()A12B 1C 2D -2解:2211sinlim lim111n nk kn nn n→∞→∞==,2k=选C二、填空题(每小题4分,共24分)7.设()11f xx=+,则()f f x⎡⎤⎣⎦的定义域为解:∵()f f x⎡⎤⎣⎦()111111f xx==+++112x xx≠-+=+ ∴()f f x ⎡⎤⎣⎦定义域为(,2)(2,1)(1,)-∞-⋃--⋃-+∞8.设2(2)1,f x x +=+ 则(1)f x -=解:(1)令()22,45x t f t t t +==-+()245f x x x =-+(2)()221(1)4(1)5610f x x x x x -=---+=-+9.函数44log log 2y =的反函数是解:(1)4log y =,反解出x :214y x -=(2)互换,x y 位置,得反函数214x y -=10.n =解:原式32n =有理化11.若105lim 1,knn e n --→∞⎛⎫+= ⎪⎝⎭则k =解:左式=5lim ()510n kn k ne e e →∞---==故2k =12.2352limsin 53n n n n→∞++= 解:当n →∞时,2sinn ~2n∴原式=2532lim 53n n n n →∞+⋅+= 65三、计算题(每小题8分,共64分)13.求函数21arcsinx y -=解:{21113471110x x x x x --≤≤-≤≤><-->⎧⎪⎨⎪⎩⇔或∴函数的定义域为[](3,1)1,4--⋃ 14.设sin1cos 2x f x ⎛⎫=+ ⎪⎝⎭求()f x 解:22sin 2cos21sin 222x x x f⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭()()221f⎡⎤∴=-⎣⎦故()()221f x x =-15.设()f x ln x =,()g x 的反函数()()1211x g x x -+=-,求()()f g x解: (1) 求22():1x g x y x +=- ∴反解出x :22xy y x -=+22x y y =+-互换,x y 位置得()22g x x x =+- (2)()()ln ln 22f g x g x x x ==⎡⎤⎣⎦+-16.判别()f x (ln x =的奇偶性。
高考立体几何、数列、三角函数、不等式、平面向量综合经典试题练习(含答案)
cos
x
0
2
的部分图象如图所示,f
x0
f
0 ,
则正确的选项是( )
试卷第 2页,总 9页
A.
6
,
x0
1
C.
3
,
x0
1
B.
6
,
x0
4 3
D.
3
,
x0
2 3
20.已知 | a | 1,| b | 2, a 与 b 的夹角为 600,若 a kb 与 b 垂直,则 k 的值为( )
B. 2 2
C. 3 2
D.1
22 . . 设 G 是 ABC 的 重 心 , 且
(56 sin A)GA (40 sin B)GB (35 sin C)GC 0 ,则角 B 的大小为
()
A.45° B.60° C.30° D.1 5°
23.在△ABC 中,a=2,b=2 ,B=45°,则 A 等于( )
CC1 c 则A1B
(A) a+b-c
(B) a–b+c
(C)-a+b+c.
(D)-a+b-c
18.函数 f x sin 2 x
3
sin
x
cos
x
在区间
4
,
2
上的最大值为(
)
(A) 3 2
(B)1 3
(C)1
(D) 1 3 2
19.已知函数
高三数学三角函数试题答案及解析
高三数学三角函数试题答案及解析1.若点在函数的图象上,则的值为 .【答案】.【解析】由题意知,解得,所以.【考点】1.幂函数;2.三角函数求值2.设,将函数在区间内的全部极值点按从小到大的顺序排成数列.(1)求数列的通项公式;(2)设,数列的前项和为,求.【答案】(1);(2).【解析】(1)先根据三角函数的恒等变换化简,得,再根据三角函数的性质找到极值点,利用等差数列的性质写出数列的通项公式;(2)先根据(1)中的结果写出的通项公式,然后写出的解析式,在构造出,利用错位相减法求,计算量比较大,要细心.试题解析:(1),其极值点为, 2分它在内的全部极值点构成以为首项,为公差的等差数列, 4分所以; 6分(2), 8分所以,,相减,得,所以. 12分【考点】1、三角函数的恒等变换及化简;2、三角函数的性质的应用;3、等差数列的通项公式;4、错位相减法求数列的前项和;5、等比数列的前项和.3.若函数的一个对称中心是,则的最小值为()A.B.C.D.【答案】B【解析】由于正切函数的对称中心坐标为,且函数的一个对称中心是,所以,因此有,因为,所以当时,取最小值,故选B.【考点】三角函数的对称性4.在锐角中,,,则的值等于;的取值范围为 .【答案】;【解析】,所以,由正弦定理得,即,所以,为锐角三角形,则,且,即,则有,且有,所以,故有,,所以,即,故的取值范围为.【考点】1.正弦定理;2.三角函数的取值范围5.已知是第二象限角,,则()A.B.C.D.【答案】B【解析】已知是第二象限角,,所以,故选B.【考点】同角三角函数基本关系式.6.在中,角的对边分别为向量,,且.(1)求的值;(2)若,,求角的大小及向量在方向上的投影.【答案】(1);(2),向量在方向上的投影.【解析】(1)由向量数量积坐标形式列式,可求得的值,再利用平方关系可求得的值;(2)先利用正弦定理可求得的值,再利用大边对大角可求得角的大小.由投影的定义可求得向量在方向上的投影.试题解析:(1)由,得, 1分, 2分.. 3分.4分(2)由正弦定理,有, 5分.6分,, 7分. 8分由余弦定理,有, 9分或(舍去). 10分故向量在方向上的投影为 11分. 12分【考点】1、向量数量积、投影;2、三角恒等变换;3、解三角形.7.在中产生区间上均匀随机数的函数为“( )”,在用计算机模拟估计函数的图像、直线和轴在区间上部分围成的图形面积时,随机点与该区域内的点的坐标变换公式为( )A.B.C.D.【答案】D【解析】由于,,而,,所以坐标变换公式为,. 故选D.【考点】均匀随机数的意义与简单应用.8.已知函数,则下列结论正确的是()A.函数的图象关于直线对称B.函数的最大值为C.函数在区间上是增函数D.函数的最小正周期为【答案】C【解析】令得错误;函数的最大值为,故错误;函数的最小正周期为,故错误;当时,,故函数在区间上是增函数,所以选.【考点】考查三角函数的图像及其性质.9.函数,,在上的部分图象如图所示,则的值为.【答案】【解析】根据题意,由于函数,,在上的部分图象可知周期为12,由此可知,A=5,将(5,0)代入可知,5sin(+)=0,可知=,故可知==,故答案为【考点】三角函数的解析式点评:主要是考查了三角函数的解析式的求解和运用,属于基础题。
三角函数所有公式及学习等差数列求和公式的四个层次和对数特例
1 1 1 S 5 , S 3 与 S 4 的等差中项为 1,求等差数列 an 的通项 an .(1997 年全国高考 5 3 4
文科)
解
设 an 的通项为 an a1 (n 1)d , 前 n 项和为 S n na1
n(n 1) d. 2
1 1 1 2 3 S3 4 S 4 ( 5 S5 ) 由题意知 , 1 1 S3 S 4 2 4 3 3 2 1 43 1 5 4 2 1 ( 3 a d ) ( 4 a d ) ( 5 a d) 1 1 1 3 2 4 2 25 2 即 1 3 2 1 43 (3a1 d ) (4a1 d) 2 2 4 2 3
r 1 tg csc x cos
y cos tg r
x sin ctg r
r 1 ctg sec y sin
⑵倒数关系: sin csc cos sec tg ctg 1 ⑶平方关系: sin 2 cos2 sec2 tg 2 csc2 ctg 2 1 ⑷ a sin b cos
+ cos + sin + ctg + tg + cos - sin - cos - cos - sin - ctg - tg
2 3 2 3 2
+ ctg + tg - tg
+ sin - ctg
⒐和差角公式
① sin( ) sin cos cos sin ③ tg ( )
12 3a1d 5d 2 0 d 0 d , 化简可得 解得 或 5 5 2a1 d 2 a1 1 a 4 1 2
三角函数+数列
)
4
2、已知 cos , ( , ) ,则 cos( ) (
2
)
5 ,求 sin( + ) 13 3 15 4、已知 sin =- , ( , ),求 sin( + ) 2 17 3
3、已知 , 都是锐角,sin = ,cos =
10.在△ABC 中,AB=1,BC=2,B=60°,则 AC= 二 数列
等差数列的性质考察 1.等差数列 an 的前 m 项的和是 30,前 2m 项的和是 100,则它的前 3m 项 的和是( A.130 ) B.170 C.210 D.260
2.等差数列 {an } 共有 2n 1 项,其中奇数项之和为 319 ,偶数项之和为 290 , 则其中间项为( A. 28 ). B. 29 C. 30 D.31
4 4
3 4
C. -
4 3
D.
4 3
2 sin x (sin x cos x ) 7、函数 y 的最大值为(
A. 1 2 B. 2 1 C. 2
) D.2
学海无涯多歧路
“学辅”相伴行万里!
5
学辅教育
成功就是每天进步一点点!
(四)正弦定理与余弦定理的运用 正弦定理 1.已知两角及一边 例题:在△ABC 中,已知 a=2 2,A=30°,B=45°,解三角形.
)。
A
1 2
B
1 2
C
3 2
D
3 2
3、已知 sin cos 2 , (0,π),则 sin 2 =
A. 1
B.
2 2
C.
2 2
高三数学诱导公式试题答案及解析
高三数学诱导公式试题答案及解析1.化简=()A.-2B.-C.-1D.1【答案】C【解析】===-1.2.已知,且,则()A.B.C.D.【答案】【解析】.又因为,所以为三象限的角,.选B.【考点】三角函数的基本计算.3.在中,,,则的面积为.【答案】或;【解析】解三角形问题,往往需要利用对角进行消元.因为所以或或,所以的面积为或.【考点】诱导公式4.已知,,则= .【答案】【解析】由,得从而所以解决三角函数给值求值问题,关键从角的关系上进行分析.【考点】三角函数给值求值.5.已知,,则 .【答案】【解析】,又,则【考点】三角函数运算.6.在中,角A、B、C的对边分别为a、b、c,且角A、B、C成等差教列.(I)若,求边c的值;(II)设,求的最大值.【答案】(Ⅰ).(Ⅱ).【解析】(Ⅰ)由角成等差数列,及,首先得到.进一步应用余弦定理即得所求.(Ⅱ)根据,可化简得到根据,即可得到时,有最大值.试题解析:(Ⅰ)因为角成等差数列,所以,因为,所以. 2分因为,,,所以.所以或(舍去). 6分(Ⅱ)因为,所以9分因为,所以,所以当,即时,有最大值. 12分【考点】等差数列,和差倍半的三角函数,,三角函数的性质,余弦定理的应用.7.已知向量,,(Ⅰ)若,求的值;(Ⅱ)在中,角的对边分别是,且满足,求函数的取值范围.【答案】(1);(2).【解析】本题主要考查两角和与差的正弦公式、二倍角公式、余弦定理、三角函数的值域等基础知识,考查运用三角公式进行三角变换的能力和基本的运算能力.第一问,利用向量的数量积将坐标代入得表达式,利用倍角公式、两角和的正弦公式化简表达式,因为,所以得到,而所求中的角是的2倍,利用二倍角公式计算;第二问,利用余弦定理将已知转化,得到,得到,得到角的范围,代入到中求值域.试题解析:(Ⅰ)∵,而,∴,∴,(Ⅱ)∵,∴,即,∴,又∵,∴,又∵,∴,∴.【考点】1.向量的数量积;2.倍角公式;3.两角和与差的正弦公式;4.余弦公式;5.三角函数的值域.8.已知,,则的值是( )A.B.C.D.1【答案】C【解析】∵,∴,又∵,∴,∴.【考点】1.诱导公式;2.平方关系;3.两角和与差的正弦公式.9.已知向量,,(1)若,求向量、的夹角;(2)当时,求函数的最大值.【答案】(1)向量与的夹角为;(2)函数在区间的最大值为.【解析】(1)将代入向量的坐标,再利用向量的数量积计算)向量与的夹角;(2)先根据向量的数量积求出函数的解析式,并化简为,计算在区间的取值范围,然后结合正弦曲线确定函数的最大值.试题解析:(1)当时,,,,所以、的夹角为;(2),,,,当,即.时,.【考点】1.平面向量的数量积;2.二倍角公式;3.辅助角公式;4.三角函数的最值10.已知向量函数.(1)求函数的最小正周期及单调递减区间;(2)在锐角三角形ABC中,的对边分别是,且满足求的取值范围.【答案】(1),;(2)【解析】(1)首先利用向量的坐标运算和两角和差公式求出函数的表达式,然后再根据三角函数的周期公式求出周期,由正弦函数的单调性可得,解出x,即得所求的单调减区间,.(2)利用正弦公式把已知等式转化为角的三角函数式,再利用两角和差公式,把和角展开,整理可得sinC=2cosAsinC,即1=2cosA.得,在根据三角形的内角和定理和B是锐角,求出角B的取值范围为,即,可得,所以=.试题解析:解:(1) 3分函数的最小正周期为T 4分函数的单调递减区间为,。
数学中的数列和三角函数知识
数学中的数列和三角函数知识一、数列知识1.数列的定义:数列是由一些按照一定顺序排列的数构成的序列。
2.数列的表示方法:–列举法:直接将数列中的各项写出来;–通项公式法:用公式表示数列中任意一项的值。
3.数列的分类:–整数数列:数列中的每一项都是整数;–有理数数列:数列中的每一项都是有理数;–实数数列:数列中的每一项都是实数。
4.数列的性质:–单调性:数列可以分为单调递增、单调递减或常数数列;–周期性:数列中存在周期性的重复项;–收敛性:数列的各项逐渐趋近于某一确定的值。
5.等差数列:数列中任意两项之差都相等的数列。
–定义:数列{a_n}中,如果对于任意的n,都有a_n - a_(n-1) = d,那么数列{a_n}就是等差数列,其中d为常数,称为公差。
–通项公式:a_n = a_1 + (n - 1)d–前n项和公式:S_n = n/2 * (a_1 + a_n)6.等比数列:数列中任意两项的比值都相等的数列。
–定义:数列{a_n}中,如果对于任意的n,都有a_n / a_(n-1) = q,那么数列{a_n}就是等比数列,其中q为常数,称为公比。
–通项公式:a_n = a_1 * q^(n-1)–前n项和公式:S_n = a_1 * (1 - q^n) / (1 - q)(q ≠ 1)二、三角函数知识1.三角函数的定义:三角函数是用来描述直角三角形中角度与边长之间关系的函数。
2.基本三角函数:–正弦函数(sin):sinθ = 对边 / 斜边–余弦函数(cos):cosθ = 邻边 / 斜边–正切函数(tan):tanθ = 对边 / 邻边3.特殊角的三角函数值:–sin30° = 1/2,cos30° = √3/2,tan30° = 1/√3–sin45° = √2/2,cos45° = √2/2,tan45° = 1–sin60° = √3/2,cos60° = 1/2,tan60° = √3–sin90° = 1,cos90° = 0,tan90° = 无穷大4.三角函数的性质:–周期性:三角函数具有周期性,如sinθ和cosθ的周期都是2π;–奇偶性:sinθ和tanθ是奇函数,cosθ是偶函数;–单调性:三角函数在各自的定义域内具有单调性。
高考三角函数及数列大题
三角函数典型例题1 .设锐角ABC ∆的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围.3 .在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,22sin 2sin =++C B A . I.试判断△ABC 的形状;II.若△ABC 的周长为16,求面积的最大值.5 .已知在ABC ∆中,A B >,且A tan 与B tan 是方程0652=+-x x 的两个根. (Ⅰ)求)tan(B A +的值;(Ⅱ)若AB 5=,求BC 的长.6 .在ABC ∆中,已知内角A . B .C 所对的边分别为a 、b 、c ,向量()2s i n ,3m B =- ,2cos 2,2cos 12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。 (I)求锐角B 的大小;(II)如果2b =,求ABC ∆的面积ABC S ∆的最大值。11.已知⎪⎪⎭⎫ ⎝⎛-=23,23a ,)4cos ,4(sin x x b ππ=,b a x f ⋅=)(。 (1)求)(x f 的单调递减区间。(2)若函数)(x g y =与)(x f y =关于直线1=x 对称,求当]34,0[∈x 时,)(x g y =的最大值。25.在锐角△ABC 中,角A . B .C 的对边分别为a 、b 、c,已知.3tan )(222bc A a c b =-+(I)求角A;(II)若a=2,求△ABC 面积S 的最大值。高考数学数列大题1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比(Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ;(Ⅱ)求数列}{n a 的通项公式;(Ⅲ)求数列}{n a 的前n 项和n S3.已知数列{}n a 的前n 项和为n S ,且有12a =,11353n n n n S a a S --=-+(2)n ≥(1)求数列n a 的通项公式;(2)若(21)n n b n a =-,求数列n a 的前n 项的和n T 。
数列综合题型
(一)数列和函数综合1.已知数列{a n}中,,且当时,函数取得极值.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)数列{b n}满足:b1=2,,证明:是等差数列,并求数列{b n}的通项公式通项及前n 项和S n.2.已知:f n(x)=a1x+a2x2+…+a n x n,且数列{a n}成等差数列.(1)当n为正偶数时,f n(﹣1)=n,且a1=1,求数列{a n}的通项;(2)试比较与3的大小.3.已知f(x)在(﹣1,1)上有定义,,且满足x,y∈(﹣1,1)有.对数列{x n}有(1)证明:f(x)在(﹣1,1)上为奇函数.(2)求f(x n)的表达式.(3)是否存在自然数m,使得对于任意n∈N*且<成立?若存在,求出m的最小值.(二)数列与不等式综合4.(2011•湖南)已知函数f(x)=x3,g (x)=x+.(Ⅰ)求函数h (x)=f(x)﹣g (x)的零点个数.并说明理由;(Ⅱ)设数列{ a n}(n∈N*)满足a1=a(a>0),f(a n+1)=g(a n),证明:存在常数M,使得对于任意的n∈N*,都有a n≤M.5.如图:假设三角形数表中的第n行的第二个数为a n(n≥2,n∈N*)(1)归纳出a n+1与a n的关系式并求出a n的通项公式;(2)设a n b n=1求证:b2+b3+…+b n<2.6.已知正项等差数列{a n}的前n项和为S n,其中a1≠a2,a m、a k、a h都是数列{a n}中满足a h﹣a k=a k﹣a m的任意项.(Ⅰ)证明:m+h=2k;(Ⅱ)证明:S m•S h≤S k2;(III)若也成等差数列,且a 1=2,求数列的前n项和.(三)数列和向量综合7.已知点集,其中=(2x﹣b,1),=(1,b+1),点列P n(a n,b n)在L中,P1为L与y轴的交点,等差数列{a n}的公差为1,n∈N*.(I)求数列{b n}的通项公式;(Ⅱ)若,令S n=f(1)+f(2)+f(3)+…+f(n);试写出S n关于n的函数解析式;8.已知一列非零向量,n∈N*,满足:=(10,﹣5),,(n32 ).,其中k是非零常数.(1)求数列{||}是的通项公式;(2)求向量与的夹角;(n≥2);(3)当k=时,把,,…,,…中所有与共线的向量按原来的顺序排成一列,记为,,…,,…,令,O为坐标原点,求点列{B n}的极限点B的坐标.(注:若点坐标为(t n,s n),且,,则称点B(t,s)为点列的极限点.)9.我们把一系列向量(i=1,2,…,n)按次序排成一列,称之为向量列,记作{}.已知向量列{}满足:,=(n≥2).(1)证明数列{||}是等比数列;(2)设θn表示向量,间的夹角,若b n=2nθn﹣1,S n=b1+b2+…+b n,求S n;(3)设||•log2||,问数列{c n}中是否存在最小项?若存在,求出最小项;若不存在,请说明理由.10.从原点出发的某质点M,按向量=(0,1)移动的概率为,按向量=(0,2)移动的概率为,设可达到点(0,n)的概率为P n,求:(1)求P1和P2的值.(2)求证:P n+2=P n+P n+1.(3)求P n的表达式.(四)数列和三角函数综合11.已知点列B1(1,y1)、B2(2,y2)、…、B n(n,y n)(n∈N)顺次为一次函数图象上的点,点列A1(x1,0)、A2(x2,0)、…、A n(x n,0)(n∈N)顺次为x轴正半轴上的点,其中x1=a(0<a<1),对于任意n∈N,点A n、B n、A n+1构成一个顶角的顶点为B n的等腰三角形.(1)求数列{y n}2的通项公式,并证明{y n}3是等差数列;(2)证明x n+2﹣x n5为常数,并求出数列{x n}6的通项公式;(3)问上述等腰三角形A n8B n9A n+110中,是否存在直角三角形?若有,求出此时a值;若不存在,请说明理由.12.设数列{a n}是首项为0的递增数列,(n∈N),,x∈[a n,a n+1]满足:对于任意的b∈[0,1),f n(x)=b总有两个不同的根.(1)试写出y=f1(x),并求出a2;(2)求a n+1﹣a n,并求出{a n}的通项公式;(3)设S n=a1﹣a2+a3﹣a4+…+(﹣1)n﹣1a n,求S n.13.(理)已知复数,其中A,B,C是△ABC的内角,若.(1)求证:;(2)当∠C最大时,存在动点M,使|MA|,|AB|,|MB|成等差数列,求的最大值.(五)数列和解析几何综合14.在xoy平面上有一系列点P1(x1,y1),P2(x2,y2)…,P n(x n,y n),…,(n∈N*),点P n在函数y=x2(x≥0)的图象上,以点P n为圆心的圆P n与x轴都相切,且圆P n与圆P n+1又彼此外切.若x1=1,且x n+1<x n x1=1.(I)求数列{x n}的通项公式;(II)设圆P n的面积为S n,,求证:.15.已知点P n(a n,b n)满足,且.(1)求点P1坐标,并写出过点P0,P1的直线L的方程;(2)猜测点P n(n≥2)与直线L的位置关系,并加以证明;(3)求数列{a n}与{b n}的通项公式,并求的最小值(其中O为坐标原点,n∈N*).16.如图,在直角坐标系xOy中,有一组底边长为a n的等腰直角三角形A n B n C n(n=1,2,3,…),底边B n C n依次放置在y轴上(相邻顶点重合),点B1的坐标为(0,b),b>0.(1)若A1,A2,A2,…,A n在同一条直线上,求证:数列{a n}是等比数列;(2)若a1是正整数,A1,A2,A2,…,A n依次在函数y=x2的图象上,且前三个等腰直角三角形面积之和不大于,求数列{a n}的通项公式.17.已知点P n(a n,b n)满足,且.(1)求点P1坐标,并写出过点P0,P1的直线L的方程;(2)猜测点P n(n≥2)与直线L的位置关系,并加以证明;(3)求数列{a n}与{b n}的通项公式(n∈N*).答案与评分标准1.已知数列{a n}中,,且当时,函数取得极值.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)数列{b n}满足:b1=2,,证明:是等差数列,并求数列{b n}的通项公式通项及前n项和S n.考点:数列与函数的综合;等比数列的通项公式;数列的求和;数列递推式。
新高考数学创新好题1情境创新之知识综合
新高考数学创新好题1情境创新之知识综合新高考数学创新好题主题一情境创新之知识综合学科知识综合1.[平面向量与三角函数综合]已知单位向量a,b满足a·b=0,若向量c=a+b,则sin=()A.B.C.D.2.[三角函数与数列综合]已知数列{an}的通项公式是an=f(),其中f(x)=sin(ωx+φ)(ω>0,|φ|.-1B.-C.1D.3.[逻辑联结词与二项式、正态分布综合]已知命题p:(x2-)n的展开式中,仅有第7项的二项式系数最大,则展开式中的常数项为495.命题q:随机变量ξ服从正态分布N(2,σ2),且P(ξ<4)=0.7,则P(0给出四个命题:①p∧q,②p∨q,③p∧(?q),④(?p)∨q,其中真命题是()A.①③B.①④C.②③D.②④4.[数列与平面向量综合]设{an}是首项为-10,公差为2的等差数列,{bn}是首项为-,公差为的等差数列.O为原点,向量=(-1,1),=(1,1),点Pn满足=an+bn(n∈N).若存在点Pk(k∈N)位于第一象限,则k=()A.5或6B.6C.7D.6或75.[导数与三角函数综合]已知函数f(x)的定义域为R,f()=-,对任意的x∈R,满足f''(x)>4x.当α∈[0,2π]时,不等式f(sinα)+cos2α>0的解集为()A.(,)B.(,)C.(,)D.(,)6.[函数与数列综合]定义在[0,+∞)上的函数f(x)满足:当0≤x<2时,f(x)=2x-x2;当x≥2时,f(x)=3f(x-2).若函数f(x)的极大值点从小到大依次记为a1,a2,…,an,…,并记相应的极大值为b1,b2,…,bn,…,则a1b1+a2b2+…+a20b20的值为()A.19×320+1B.19×319+1C.20×319+1D.20×320+17.[椭圆与平面向量综合]已知椭圆C:=1,F1,F2分别是其左、右焦点,若对椭圆C上的任意一点P,·>0恒成立,则实数m的取值范围为()A.(-3,0)∪(0,3)B.[-3,0)∪(0,3]C.(-∞,-3)∪(3,+∞)D.(-∞,-3]∪[3,+∞)8.[抛物线与平面向量综合]已知抛物线C:y2=4x的焦点为F,准线为l,P是l上一点,直线PF与抛物线C交于M,N两点,若=4,则|MN|=()A.B.3C.D.9图1-29.[立体几何与函数综合]如图1-2所示,在长方体ABCD-A1B1C1D1中,底面ABCD是边长为3的正方形,侧棱AA1=t,P为矩形CDD1C1上及内部的动点,M为BC 的中点,∠APD=∠CPM,三棱锥A1-PCD的体积的最大值记为V(t),则下列关于函数V(t)的结论正确的是()A.V(t)为奇函数B.V(t)在(0,+∞)上单调递增C.V(2)=3D.V(3)=10.[双曲线与解三角形综合]已知双曲线E:=1(a>0,b>0)的左、右顶点分别为A,B,M是E上一点,且△ABM为等腰三角形,其外接圆的半径为a,则双曲线E的离心率为()A.B.+1C.D.+111.[解三角形与平面向量、基本不等式综合] 已知锐角△ABC的内角A,B,C的对边分别为a,b,c.若向量m=(a-b,sinC),n=(c-b,sinA+sinB),m=λn(λ≠0),则tanC的最小值为()A.B.2C.D.12.[直线斜率与三角恒等变换综合]若正方形一条对角线所在直线的斜率为2,则该正方形的两条邻边所在直线的斜率分别为,.?13.[数列与双曲线综合]已知一族双曲线En:x2-y2=(n∈N,n≤2019),设直线x=2与En在第一象限内的交点为An,点An在En的两条渐近线上的射影分别为Bn,Cn,记△AnBnCn的面积为an,则a1+a2+a3+…+a2019=.?跨学科知识综合14.[数学与化学综合]溶液的酸碱度是通过pH来刻画的,已知某溶液的pH等于-lg[H+],其中[H+]表示该溶液中氢离子的浓度,且该溶液中氢离子的浓度为10-6mol/L,则该溶液的pH为()A.4B.5C.6D.715.[数学与物理综合]长江流域内某地南北两岸平行,如图1-3所示,已知游船在静水中的航行速度v1的大小|v1|=10km/h,水流的速度v2的大小|v2|=4km/h,设v1和v2所成的角为θ(0行到正北方向上位于北岸的码头B处,则cosθ等于()图1-3A.-B.-C.-D.-16.[数学与物理综合]体育锻炼是青少年学习生活中非常重要的组成部分.某学生做引体向上运动,处于图1-4所示的平衡状态时,两只胳膊的夹角为,每只胳膊的拉力大小均为400 N,则该学生的体重(单位:kg)约为()图1-4(参考数据:重力加速度大小取g=10m/s2,≈1.732)A.63kgB.69kgC.75kgD.81kg17.[2020山东,4,5分][数学与地理综合]日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A 处的水平面所成角为()A.20°B.40°C.50°D.90°图1-518.[数学与体育综合]台球运动已有五、六百年的历史,参与者用球杆在台上击球.若和光线一样,台球在球台上碰到障碍物后也遵从反射定律.如图1-5,有一张长方形球台ABCD,AB=2AD,现从角落A沿角α的方向把球打出去,球经2次碰撞球台内沿后进入角落C的球袋中,则tanα的值为()A.B.C.或D.19.[2020全国卷Ⅱ,12,5分][理][数学与通信技术综合]0-1周期序列在通信技术中有着重要应用.若序列a1a2…an…满足ai∈{0,1}(i=1,2,…),且存在正整数m,使得ai+m=ai(i=1,2,…)成立,则称其为0-1周期序列,并称满足ai+m=ai(i=1,2,…)的最小正整数m为这个序列的周期.对于周期为m的0-1序列a1a2…an…,C(k)=aiai+k(k=1,2,…,m-1)是描述其性质的重要指标.下列周期为5的0-1序列中,满足C(k)≤(k=1,2,3,4)的序列是()A.11010…B.11011…C.10001…D.11001…20.[数学与化学综合]稠环芳烃类化合物中有不少致癌物质,比如学生钟爱的快餐油炸食品中会产生苯并芘,它可看作是由一个苯环和一个芘分子结合而成的稠环芳烃类化合物,长期食用会致癌.下面是一组稠环芳烃的结构简式和分子式:名称萘蒽并四苯…并n苯结构简式……分子式C10H8C14H10C18H12……由此推断并十苯的分子式为.?答案主题一情境创新之知识综合1.B解法一由已知知|a|=|b|=1,|c|=|a+b|==3,则cos=,因为∈(0,π),所以sin=.解法二由题可设a=(1,0),b=(0,1),则c=(,),cos=,因为∈(0,π),所以sin=,故选B.2.B由题图可得(T为f(x)的最小正周期),则T=π,ω==2.将(,-1)代入f(x)=sin(2x+φ)中,可得+φ=2kπ+,k∈Z,则φ=2kπ+,k∈Z.又|φ|n=f()=sin,则{an}为周期为6的数列,因为a1=,a2=0,a3=-,a4=-,a5=0,a6=,所以S2020=336S6+(a1+a2+a3+a4)=0-=-.故选B.3.C对于命题p,(x2-)n的展开式中,仅有第7项的二项式系数最大,即最大,所以n=12.展开式的通项公式为Tr+1=··=(-1)r··x24-3r,令24-3r=0,得r=8,故展开式中的常数项为(-1)8·=495,所以p为真命题.对于命题q,根据正态分布的对称性可知P(0假命题.所以p∧q,(?p)∨q为假命题,p∨q,p∧(?q)为真命题,即②③为真命题.故选C.4.D由已知得an=2n-12,bn=-1.因为=an+bn=(2n-12)·(-1,1)+(-1)·(1,1)=(11-,-13),所以点Pn的坐标为(11-,-13),可得Pk(11-,-13).若存在点Pk(k∈N)位于第一象限,则解得造函数g(x)=f(x)-2x2+1,则g''(x)=f''(x)-4x>0,所以函数g(x)在R上为增函数.因为f()=-,所以g()=f()-2×()2+1=0.又f(sinα)+cos2α>0,所以g(sinα)=f(sinα)-2sin2α+1=f(sinα)+cos2α>0=g(),所以sinα>.因为0≤α≤2π,所以α>0的解集为(,).故选D.6.A当0≤x<2时,f(x)=2x-x2=1-(x-1)2,可得f(x)的极大值点a1=1,极大值b1=1,当2≤x<4,即0≤x-2<2时,可得f(x)=3f(x-2)=3[1-(x-3)2],可得a2=3,b2=3,当4≤x<6,即0≤x-4<2时,可得f(x)=9f(x-4)=9[1-(x-5)2],可得a3=5,b3=9,…,即有a20=39,b20=319.记S20=a1b1+a2b2+…+a20b20,则S20=1×1+3×3+5×9+…+39×319①,3S20=1×3+3×9+5×27+…+39×320②,①-②得-2S20=1+2×(3+9+27+…+319)-39×320=1+2×-39×320,化简可得S20=19×320+1,故选A.7.C当点P为短轴上的顶点时,∠F1PF2最大,要使·>0恒成立,则∠F1PF2为锐角,即∠F1PO<45°(O为坐标原点),即tan∠F1PO=<1,所以c29,所以93或m,M(xM,yM),N(xN,yN),因为=4,所以(2,-t)=4(1-xM,-yM),所以解得因为MN为过抛物线焦点的弦,由焦点弦的常用结论(详见主书P215【规律总结】)可得xM·xN==1,所以xN=2,所以xM+xN=.由抛物线的定义,得|MN|=xM+xN+p=+2=,故选C.解法二设准线l与x轴交于点E,点N在第一象限,如图D1-1所示,作MM''⊥l于点M'',NN''⊥l于点N'',则由抛物线的定义知,|MM''|=|MF|,|NN''|=|NF|.因为=4,所以|PF|∶|PM|=4∶3.因为△PFE∽△PMM'',所以,即,解得|MF|=,所以|PF|=6.又△PFE∽△PNN'',所以,即,解得|NF|=3,所以|MN|=|MF|+|NF|=+3=,故选 C.9.D由题意知,AD⊥PD,MC⊥PC.因为∠APD=∠CPM,所以Rt△PDA∽Rt△PCM.又M为BC的中点,所以=2,即PD=2PC,即PD2=4PC2.在平面DCC1D1中,以DC的中点为坐标原点,以DC所在直线为x轴,DC的垂直平分线为y轴,以的方向为x轴的正方向,的方向为y轴的正方向建立平面直角坐标系,则D(-,0),C(,0).设P(x'',y'')(-≤x''≤,0≤y''≤t),则(x''+)2+(y'')2=4(x''-)2+4(y'')2,整理得(y'')2=-(x'')2+5x''-,易知当x''=时,y''取得最大值.若0,则(S△PCD)max=.又A1到平面PCD的距离为3,所以V(t)=所以V(t)为非奇非偶函数,故A错误;函数V(t)在(0,+∞)上不是单调函数,故B错误;V(2)=,故C错误;V(3)=,故D正确.故选D.10.C解法一不妨设M在第一象限,M(x0,y0),因为△ABM是等腰三角形,所以结合图形可知,只能|AB|=|BM|=2a.令∠MAB=θ,则∠AMB=θ,∠ABM=π-2θ,∠MBx=2θ,在△MAB中,由正弦定理可得=2×a,所以sinθ=,则cos2θ=1-2sin2θ=,sin2θ=,则x0=a+2acos2θ=,y0=2asin2θ=,即M(,).又点M在双曲线上,所以·=1,解得=2,则e2=1+=3,则e=,故选C.解法二不妨设M在第一象限,因为△ABM是等腰三角形,所以结合图形可知,只能|AB|=|BM|=2a.令∠MAB=θ,则∠AMB=θ,∠ABM=π-2θ,∠MBx=2θ,由正弦定理可得=2×a,所以sinθ=,则cosθ=,tanθ=,即kMA=,cos2θ=1-2sin2θ=,则sin2θ=,tan2θ==2,即kMB=2,根据kMA·kMB=2=,得e2=1+=3,则e=,故选C.11.C∵m=λn(λ≠0),∴m∥n,∴(a-b)(sinA+sinB)=sinC(c-b),由正弦定理得(a-b)(a+b)=c(c-b),整理得a2=b2+c2-bc,由余弦定理得cosA=.∵A∈(0,),∴A=,又C∈(0,),∴,∴tanC=tanC.∵△ABC是锐角三角形,且A=,∴解得,∴tanC=tanC≥+2,当且仅当tanC,即tanC=2时等号成立,故tanC的最小值为,选C.图D1-212.-3如图D1-2,以A为原点建系,AC的斜率为2,设AB的倾斜角为θ,则AC的倾斜角为θ+,则tan(θ+)=2.kAB=tanθ=tan(θ+)=,则kAD=-=-3.所以正方形的两条邻边所在直线的斜率分别为和-3.13.设An(x0,y0),可得.双曲线En:x2-y2=(n∈N,n≤2019)的渐近线方程为x-y=0,x+y=0.已知点An在En的两条渐近线上的射影分别为Bn,Cn,不妨设Bn在第一象限内,可得|AnBn|=,|AnCn|=,易知双曲线En的两条渐近线互相垂直,可得AnBn⊥AnCn,则△AnBnCn的面积an=|AnBn|·|AnCn|=··,则a1+a2+a3+…+a2019=×2019×2020=.14.C由题意可得,该溶液的pH为-lg10-6=6.故选C.15.B设游船的实际速度为v,v1与河流南岸上游的夹角为α,v1=,v2=.以AD,AC为邻边作平行四边形如图D1-3所示,要使得游船正好航行到B处,则|v1|cosα=|v2|,即cosα=.又θ=π-α,所以cosθ=cos(π-α)=-cosα=-,故选B.16.B作出示意图,如图D1-4所示,设图中重力为G,两只胳膊的拉力分别为F1,F2,F1与F2的合力为F'',则|G|=|F''|.由余弦定理得|F''|2=4002+4002-2×400×400×cos=3×4002(N2),解得|F''|=400N.所以|G|=400N.所以该学生的体重约为≈69(kg).故选B.图D1-517.B过球心O,点A以及晷针的轴截面如图D1-5所示,其中CD为晷面,GF为晷针所在直线,EF为点A处的水平面,GF⊥CD,CD∥OB,∠AOB=40°,∠OAE=∠OAF=90°,所以∠GFA=∠CAO=∠AOB=40°.故选B.18.C由题意知,可分为两种,且仅有两种情况.第一种情况,球碰撞CD与AB边内沿后进入角落C的球袋中,如图D1-6所示.根据台球碰撞障碍物后也遵从反射定律知,AE=EF=FC,于是根据图形的对称性知E,F分别为CD与AB的三等分点,则DE=DC=AD,所以tanα=tan∠AED=.第二种情况,球碰撞BC与AD边内沿后进入角落C的球袋中,如图D1-7所示.同理,由第一种情况的解法知M,N分别为BC,AD的三等分点,所以BM=BC=AB=AB,所以tanα=.综上可知,选C.图D1-6图D1-719.C对于A,因为C(1)=,C(2)=,不满足C(k)≤,故A不正确;对于B,因为C(1)=,不满足C(k)≤,故B不正确;对于C,因为C(1)=,C(2)==0,C(3)==0,C(4)=,满足C(k)≤,故C正确;对于D,因为C(1)=,不满足C(k)≤,故D不正确.综上所述,故选C.20.C42H24因为表格中所给的稠环芳烃的分子式中C的下标分别是10,14,18,…,H的下标分别是8,10,12,…,所以表格中所给的稠环芳烃的分子式中C的下标构成等差数列,设为{am},则首项a1=10,公差为4,所以其通项公式为am=10+(m-1)·4=4m+6,表格中所给的稠环芳烃的分子式中H的下标构成等差数列,设为{bm},首项b1=8,公差为2,所以其通项公式为bm=8+(m-1)·2=2m+6.易知m=n-1,所以并n苯的分子式为C4n+2H2n+4(n≥4,n∈N),所以并十苯的分子式为C42H24.第8页共8页。