勾股定理测试题含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

18.2 勾股定理的逆定理 达标训练

一、基础·巩固

1.满足下列条件的三角形中,不是直角三角形的是( )

A.三内角之比为1∶2∶3

B.三边长的平方之比为1∶2∶3

C.三边长之比为3∶4∶5

D.三内角之比为3∶4∶5

2.如图18-2-4所示,有一个形状为直角梯形的零件ABCD ,AD ∥BC ,斜腰DC 的长为10 cm ,∠D=120°,则该零件另一腰AB 的长是________ cm (结果不取近似值).

图18-2-4 图18-2-5 图18-2-6

3.如图18-2-5,以Rt △ABC 的三边为边向外作正方形,其面积分别为S 1、S 2、S 3,且S 1=4,S 2=8,则AB 的长为_________.

4.如图18-2-6,已知正方形ABCD 的边长为4,E 为AB 中点,F 为AD 上的一点,且AF=4

1AD ,试判断△EFC 的形状.

5.一个零件的形状如图18-2-7,按规定这个零件中∠A 与∠BDC 都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=12 , BC=13,这个零件符合要求吗?

图18-2-7

6.已知△ABC 的三边分别为k 2-1,2k ,k 2+1(k >1),求证:△ABC 是直角三角形.

二、综合·应用

7.已知a 、b 、c 是Rt △ABC 的三边长,△A 1B 1C 1的三边长分别是2a 、2b 、2c ,那

么△A1B1C1是直角三角形吗?为什么?

8.已知:如图18-2-8,在△ABC中,CD是AB边上的高,且CD2=AD·BD.

求证:△ABC是直角三角形.

图18-2-8

9.如图18-2-9所示,在平面直角坐标系中,点A、B的坐标分别为A(3,1),B(2,4),△OAB是直角三角形吗?借助于网格,证明你的结论.

图18-2-9 10.阅读下列解题过程:已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,

试判断△ABC的形状.

解:∵a2c2-b2c2=a4-b4,(A)∴c2(a2-b2)=(a2+b2)(a2-b2),(B)∴c2=a2+b2,(C)∴△ABC是直角三角形.

问:①上述解题过程是从哪一步开始出现错误的?请写出该步的代号_______;

②错误的原因是______________ ;

③本题的正确结论是_________ _.

11.已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c.试判断△ABC的形状.

12.已知:如图18-2-10,四边形ABCD,AD∥BC,AB=4,BC=6,CD=5,AD=3.

求:四边形ABCD的面积.

图18-2-

10

参考答案

一、基础·巩固

1.思路分析:判断一个三角形是否是直角三角形有以下方法:①有一个角是直角或

两锐角互余;②两边的平方和等于第三边的平方;③一边的中线等于这条边的一半.

由A 得有一个角是直角;B 、C 满足勾股定理的逆定理,所以应选D.

2.解:过D 点作DE ∥AB 交BC 于E, 则△DEC 是直角三角形.四边形ABED 是矩形,∴AB=DE.∵∠D=120°,∴∠CDE=30°.

又∵在直角三角形中,30°所对的直角边等于斜边的一半,∴CE=5 cm.

根据勾股定理的逆定理得,DE=3551022=- cm.∴AB=3551022=- cm.

3.思路分析:因为△ABC 是Rt △,所以BC 2+AC 2=AB 2,即S 1+S 2=S 3,所以S 3=12,因为S 3=AB 2,所以AB=32123==S .

4.思路分析:分别计算EF 、CE 、CF 的长度,再利用勾股定理的逆定理判断即可. 解:∵E 为AB 中点,∴BE=2.∴CE 2=BE 2+BC 2=22+42=20.

同理可求得,EF 2=AE 2+AF 2=22+12=5,CF 2=DF 2+CD 2=32+42=25.

∵CE 2+EF 2=CF 2,∴△EFC 是以∠CEF 为直角的直角三角形.

5.思路分析:要检验这个零件是否符合要求,只要判断△ADB 和△DBC 是否为直角三角形即可,这样勾股定理的逆定理就可派上用场了.

解:在△ABD 中,AB 2+AD 2=32+42=9+16=25=BD 2,所以△ABD 为直角三角形,∠A =90°.

在△BDC 中,BD 2+DC 2=52+122=25+144=169=132=BC 2.

所以△BDC 是直角三角形,∠CDB =90°.因此这个零件符合要求.

6.思路分析:根据题意,只要判断三边之间的关系符合勾股定理的逆定理即可. 证明:∵k 2+1>k 2-1,k 2+1-2k=(k -1)2>0,即k 2+1>2k ,∴k 2+1是最长边.

∵(k2-1)2+(2k)2=k4-2k2+1+4k2=k4+2k2+1=(k2+1)2,∴△ABC是直角三角形.

二、综合·应用

7.思路分析:如果将直角三角形的三条边长同时扩大一个相同的倍数,得到的三角

形还是直角三角形(例2已证).

8.思路分析:根据题意,只要判断三边符合勾股定理的逆定理即可.

证明:∵AC2=AD2+CD2,BC2=CD2+BD2,∴AC2+BC2=AD2+2CD2+BD2

=AD2+2AD·BD+BD2=(AD+BD)2=AB2.∴△ABC是直角三角形.

9.思路分析:借助于网格,利用勾股定理分别计算OA、AB、OB的长度,再利用勾股定理的逆定理判断△OAB是否是直角三角形即可.

解:∵ OA2=OA12+A1A2=32+12=10, OB2=OB12+B1B2=22+42=20,

AB2=AC2+BC2=12+32=10, ∴OA2+AB2=OB2.

∴△OAB是以OB为斜边的等腰直角三角形.

10.思路分析:做这种类型的题目,首先要认真审题,特别是题目中隐含的条件,本题错在忽视了a有可能等于b这一条件,从而得出的结论不全面.

答案:①(B) ②没有考虑a=b这种可能,当a=b时△ABC是等腰三角形;

③△ABC是等腰三角形或直角三角形.

11.思路分析:(1)移项,配成三个完全平方;(2)三个非负数的和为0,则都为0;

(3)已知a、b、c,利用勾股定理的逆定理判断三角形的形状为直角三角形.

解:由已知可得a2-10a+25+b2-24b+144+c2-26c+169=0,

配方并化简得,(a-5)2+(b-12)2+(c-13)2=0.

∵(a-5)2≥0,(b-12)2≥0,(c-13)2≥0.∴a-5=0,b-12=0,c-13=0.

解得a=5,b=12,c=13.又∵a2+b2=169=c2,∴△ABC是直角三角形.

相关文档
最新文档