说题比赛2015中考数学26题
2015年河北省中考数学试题及解析
D.要消去 x,可以将①×(﹣5)+②×2
12.(2 分)(2015•河北)若关于 x 的方程 x2+2x+a=0 不存在实数根,则 a 的取值范围是( )
A.a<1
B.a>1
C.a≤1
D.a≥1
13.(2 分)(2015•河北)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点
数 3 相差 2 的概率是( )
位所得到的数,据此判断即可.
C:根据积的乘方的运算方法判断即可.
D:根据同底数幂的乘法法则判断即可.
解答: 解:∵
=2,
∴选项 A 不正确; ∵6×107=60000000, ∴选项 B 不正确; ∵(2a)2=4a2, ∴选项 C 不正确; ∵a3•a2=a5, ∴选项 D 正确. 故选:D. 点评:(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确: ①(am)n=amn(m,n 是正整数);②(ab)n=anbn(n 是正整数). (2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:
24.(11 分)(2015•河北)某厂生产 A,B 两种产品,其单价随市场变化而做相应调整.营
销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.
A,B 产品单价变化统计表
第一次 第二次 第三次
A 产品单价(元/件) 6
5.2
6.5
B 产品单价(元/件) 3.5
4
3
并求得了 A 产品三次单价的平均数和方差:
①a﹣p= (a≠0,p 为正整数);②计算负整数指数幂时,一定要根据负整数指数幂
的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数. (3)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要 熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相 乘时才是底数不变,指数相加. (4)此题还考查了科学计数法﹣原数,要熟练掌握,解答此题的关键是要明确:科学 记数法 a×10n 表示的数“还原”成通常表示的数,就是把 a 的小数点向右移动 n 位所得 到的数.若科学记数法表示较小的数 a×10﹣n,还原为原来的数,需要把 a 的小数点向 左移动 n 位得到原数. 5.(3 分)(2015•河北)如图所示的三视图所对应的几何体是( )
2015北京各区中考数学二模26题全面总结及答案
x 的请回答:(1) 当k =1时,使得原等式成立的x 的个数为 _______; (2) 当0<k <1时,使得原等式成立的x 的个数为_______; (3) 当k >1时,使得原等式成立的x 的个数为 _______. 参考小明思考问题的方法,解决问题:关于x 的不等式240 ()x a a x+-<>0只有一个整数解,求a 的取值范围.26.(1)小明遇到下面一道题:如图1,在四边形ABCD 中,AD ∥BC ,∠ABC =90º,∠ACB =30º,BE ⊥AC 于点E ,且=CDE ACB ∠∠.如果AB =1,求CD 边的长.小明在解题过程中发现,图1中,△CDE 与△ 相似,CD 的长度等于,线段CD 与线段 的长度相等;他进一步思考:如果ACB α∠=(α是锐角),其他条件不变,那么CD 的长度可以表示为CD = ;(用含α的式子表示))(2)受以上解答过程的启发,小明设计了如下的画图题:在Rt △OMN 中,∠MON =90º,OM <ON ,OQ ⊥MN 于点Q ,直线l 经过点M ,且l ∥ON .请在直线l 上找出点P 的位置,使得NPQ ONM ∠=∠.请写出你的画图步骤,并在答题卡上完成相应的画图过程.(画出一个即可,保留画图痕迹,不要求证明)26 .阅读材料如图1,若点P 是⊙O 外的一点,线段PO 交⊙O 于点A,则PA 长是点P 与⊙O 上各点之间的最短距离.图1 图2 证明:延长PO 交⊙O 于点B ,显然PB>PA .如图2,在⊙O 上任取一点C (与点A ,B 不重合),连结PC ,OC .,,,,PO PC OC PO PA OA OA OC PA PC <+=+=∴<且∴PA 长是点P 与⊙O 上各点之间的最短距离.由此可以得到真命题:圆外一点与圆上各点之间的最短距离是这点到圆心的距离与半径的差.请用上述真命题解决下列问题.(1)如图3,在Rt △ABC 中,∠ACB =90°,AC =BC =2,以BC 为直径的半圆交AB 于D ,P 是上的一个动点,连接AP ,则AP长的最小值是.图3(2)如图4,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,点N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△MN A ',连接C A ',①求线段A ’M 的长度; ②求线段C A '长的最小值.26.问题背景:在△ABC 中,AB ,BC ,AC ,求这个三角形的面积.小军同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需要求出△ABC 的高,借用网格就能计算出它的面积.图4图1 图2 (1)请你直接写出△ABC 的面积________; 26.阅读下面材料:小玲遇到这样一个问题:如图1,在等腰三角形ABC 中,AC AB =,︒=∠45BAC ,22=BC ,BC AD ⊥图3小玲发现:分别以AB ,AC 为对称轴,分别作出△ABD ,△ACD 的轴对称图形,点D 的对称点分别为E ,F ,延长EB ,FC 交于点G ,得到正方形AEGF ,根据勾股定理和正方形的性质就能求出AD 的长.(如图2)请回答:BG 的长为,AD 的长为; 参考小玲思考问题的方法,解决问题:如图3,在平面直角坐标系xOy 中,点()0,3A ,()4,0B ,点P 是△OAB 的外角的角平分线AP 和BP 的交点,求点P 的坐标.CBAE图1 图226.阅读下面材料:小凯遇到这样一个问题:如图1,在四边形ABCD 中,对角线AC 、BD 相交于点O , AC =4,BD =6,∠AOB =30°,求四边形ABCD 的面积.小凯发现,分别过点A 、C 作直线BD 的垂线,垂足分别为点E 、F ,设AO 为m ,通过计算△ABD 与△BCD 的面积和使问题得到解决(如图2).请回答:(1)△ABD 的面积为 (用含m 的式子表示). (2)求四边形ABCD 的面积.参考小凯思考问题的方法,解决问题:如图3,在四边形ABCD 中,对角线AC 、BD 相交于 点O ,AC =a ,BD =b ,∠AOB =α(0°<α<90°),则四边形ABCD 的面积为 (用含a 、b 、α的式子表示).26.【阅读学习】 刘老师提出这样一个问题:已知α为锐角,且tan α=13,求sin2α的值.小娟是这样解决的:如图1,在⊙O 中,AB 是直径,点C 在⊙O 上,∠BAC =α,所以∠ACB =90°,tan α=BCAC=13.易得∠BOC =2α.设BC =x ,则AC =3x ,则AB.作CD ⊥AB 于D ,求出CD = (用含x 的式子表示),可求得sin2α=CDOC= . 【问题解决】已知,如图2,点M 、N 、P 为圆O 上的三点,且∠P =β,tan β =12,求sin2β的值.图1图2图326. 如图,在平面直角坐标系xOy 中,矩形ABCD 各边都平行于坐标轴,且A (-2,2),C(3,-2).对矩形ABCD 及其内部的点进行如下操作:把每个点的横坐标乘以a ,纵坐标乘以b ,将得到的点再向右平移k (0k >)个单位,得到矩形''''A B C D 及其内部的点(''''A B C D 分别与ABCD 对应).E (2,1)经过上述操作后的对应点记为'E . (1)若a =2,b =-3,k =2,则点D 的坐标为 ,点'D 的坐标为 ; (2)若'A (1,4),'C (6,-4),求点'E 的坐标.26.阅读下面的材料:小明遇到一个问题:如图1,在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G . 如果3AF EF =,求CDCG的值. 他的做法是:过点E 作EH ∥AB 交BG 于点H ,那么可以得到△BAF ∽△HEF . 请回答:(1)AB 和EH 之间的数量关系是 ,CG 和EH 之间的数量关系是 ,图1图2CDCG的值为 . (2)参考小明思考问题的方法,解决问题:如图2,在四边形ABCD 中,DC ∥AB ,点E 是BC 延长线上一点,AE 和BD 相交于点F .如果2AB CD =,23BC BE =,求AFEF的值.图1 图226.在平面内,将一个图形以任意点O 为旋转中心,逆时针...旋转一个角度θ,得到图形'G ,再以O 为中心将图形放大或缩小得到图形''G ,使图形''G 与图形G 对应线段的比为k ,并且图形G 上的任一点P ,它的对应点''P 在线段'OP 或其延长线上;我们把这种图形变换叫做旋转相似变换,记为()O θ,k ,其中点O 叫做旋转相似中心,θ叫做旋转角,叫做相似比. 如图1中的线段''OA 便是由线段OA 经过()302︒O ,得到的.(1)如图2,将△ABC 经过☆ ()901,︒后得到△'''A B C ,则横线上“☆”应填下列四个点()00O ,、()01D ,、()0E ,-1、()12C ,中的点 . (2)如图3,△ADE 是△ABC 经过()A θ,k 得到的,90︒=EAB ∠,12cos EAC =∠ 则这个图形变换可以表示为(),A .HG F ECDBAFECB A D G 'G k图2图3O26.如图1,在□ABCD 中,点E 是BC 边上的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G ,若AB =6,3AF EF =,求DG 的长.小米的发现,过点E 作交BG 于点H (如图2),经过推理和计算能够使问题得到解决.则DG = .如图3,四边形ABCD 中,AD ∥BC ,点E 是射线DM 上的一点,连接BE 和AC 相交于点F ,若BC aAD =,CD bCE =,求BFEF的值(用含EH AB ∥,a 图1图2图326.如图①,P 为△ABC 内一点,连接P A 、PB 、PC ,在△P AB 、△PBC 和△P AC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点.(1)如图②,已知Rt △ABC 中,∠ACB =90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明E 是△ABC 的自相似点. (2)如图③,在△ABC 中,∠A <∠B <∠C .①利用尺规作出△ABC 的自相似点P (不写出作法,保留作图痕迹);②如果△ABC 的内心P 是该三角形的自相似点,请直接写出该三角形三个内角的度数.BBC①②CBC③答案26. (本小题满分5分)解:(1)当k=1时,使1 ;…………………………………….(2)当0<k<1时,2 ;(3)当k>1时,使1 .…..解决问题:将不等式240 (x a ax+-<研究函数2(0)y x a a=+>与函数4yx=∵函数4yx=的图象经过点A(1,4),B函数2y x=的图象经过点C(1,1),D若函数2(y x=+3a=,结合图象可知,当03a<<时,关于x的不等式24(0)x a ax+<>只有一个整数解.也就是当03a<<时,关于x的不等式240()x a ax+-<>0只有一个整数解. ……………………5分26.解:(1)CAD BC. ……………………………………………………………3分1tan α.……………………………………………………………………………4分 (2)方法1:如图8,以点N 为圆心,ON 为半径作圆,交直线l 于点1P ,2P ,则点 1P ,2P 为符合题意的点.……………………………………………… 5分 方法2:如图9,过点N 画NO 的垂线1m ,画NQ 的垂直平分线2m ,直线1m 与2m 交于点R ,以点R 为圆心,RN 为半径作圆,交直线l 于点1P ,2P ,则点1P ,2P 为符合题意的点. ……………………………………… 5分26. 解:(1)△ABC 的面积是4.5;…….2分(2)如右图: …….4分△MNP 的面积是7. …….5分26.解:BG 的长为2,AD 的长为22+;…………………2分如图,过点P 分别作x PC ⊥轴于点C ,y PD ⊥轴于点D ,AB PE ⊥于点E …………………3分∵AP 和BP 是△OAB 的外角的角平分线 ∴CAP EAP ∠=∠,EBP DBP ∠=∠ ∴PD PE PC ==∴四边形OCPD 是正方形,AE AC =,BE BD =…………4分∴DO PD CP OC === ∵()0,3A ,()4,0B ∴5=AB∴12=++=+BO AB OA OD OC∴6==OD OC ,∴6==PD CP ∴()6,6P ……………………5分26. 解:(1)32m ;……………………………………………………………………………1分(2)由题意可知∠AEO =90°.∵ AO = m ,∠AOB =30°, ∴AE =12m .∴S △ABD =m AE BD 2321=⋅. 同理,CF =1(4)2m -.∴S △BCD =m CF BD 23621-=⋅.…………………………………………………2分 ∴S 四边形ABCD = S △ABD +S △BCD 6=.…………………………………………………3分解决问题:αsin 21⋅ab .………………………………………………………………5分 26.解:10103xCD =. ……………………………………………………………………… 1分Sin2α=CD OC=53. ……………………………………………………………………… 2分 如图,连接NO ,并延长交⊙O 于Q ,连接MQ ,MO ,作NO MH ⊥于H . 在⊙O 中,∠NMQ =90°. ∵ ∠Q=∠P =β,OM=ON,∴ ∠MON=2∠Q=2β. ………………………………………… 3分∵ tan β=21,∴ 设MN =k ,则MQ =2k ,∴ NQ =k MQ MN 522=+.∴ OM=21NQ=k 25. ∵ MH NQ MQ MN S NMQ ⋅=⋅=∆2121, ∴ MH k k k ⋅=⋅52 . ∴MH=k 552. ………………………………………………………………………………… 4分 在MHORt ∆中,sin2β=sin ∠MON =5425552==kkOM MH . …………………………………… 5分26. 解:(1)D (3,2),'D (8,-6),..................................................................................2分 (2)依题可列:21,3 6.a k a k -+=⎧⎨+=⎩则a =1,k =3,2b =4,b =2,.........................................................4分(a ,b ,k 求出一个给1分) ∵点E (2,1),∴'E (5,2)......................................................................................................5分26.(本小题满分5分)解:(1)AB =3EH ,CG =2EH ,32.………………………………………………3分 (2)如图,过点E 作EH ∥AB 交BD 的延长线于点H .∴ EH ∥AB ∥CD . ∵ EH ∥CD , ∴23CD BC EH BE ==, ∴ CD =23EH . 又∵2AB CD=,∴ AB =2CD =43EH .∵ EH ∥AB ,∴ △ABF ∽△EHF . ∴4433AF AB EH EH EF EH ===.……………………………………5分 26.(1)E ………………………………………………………………………………2分 (2)60,k︒………………………………………………………5分26.答案:DG =2;……………………………………………………………………………………2 如图(画图正确,正确标出点E 、F )………………………………………………………………3 过E 作EG ∥AD ,延长CA 交于点G ∴△CAD ∽△CGE .∴AD CDGE CE=. ∵CD bCE =,HF E CB AD∴ADb GE=.∴AD bEG=. (4)∵AD∥BC,∴BC∥EG.∴△GEF∽△CBF.∴BC BF EG EF=.∵BC aAD=,∴BC abEG=.∴BFabEF= (5)26.解:⑴在Rt△ABC中,∠ACB=90°,CD是AB上的中线,∴12CD AB=,∴CD=BD.∴∠BCE=∠ABC.……………………………….(1分)∵BE⊥CD,∴∠BEC=90°,∴∠BEC=∠ACB.……………………………….(2分)∴△BCE∽△ABC.∴E是△ABC的自相似点.………………………….(3分)⑵①作图略.(方法不唯一)……………………….(5分)②连接PB、PC.∵P为△ABC的内心,∴12PBC ABC∠=∠,12PCB ACB∠=∠.∵P为△ABC的自相似点,∴△BCP∽△ABC.∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC =2∠A,∠ACB=2∠BCP=4∠A.∵∠A+∠ABC+∠ACB=180°.∴∠A+2∠A+4∠A=180°.∴1807A∠=.∴该三角形三个内角的度数分别为1807、3607、7207.…………….(6分)。
2015年河北省中考数学试卷(含详细答案)
CD
效
数学试卷第1页(共26页)
数学试卷第2页(共26页)
10.一台印刷机每年印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当
x2时,y20,则y与x的函数图象大致是()
16.如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原
来面积相等的正方形,则()
8.如图,AB∥EF,CDEF,BAC50,则ACD()
A.120B.130
C.140D.150
9.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东
30和南偏西45方向上.符合条件的示意图是()
毕
ABCD
无
--------------------)11
2
C.(2a)22a2D.a3a2a5
-------------
绝
5.右图中的三视图所对应的几何体是()
在
--------------------
河北省2015年初中毕业生升学文化课考试
数学
_
__
__
__
考__2.下列说法正确的是()
__
__A.1的相反数是1B.1的倒数是1
__
__
__图案是()
__Байду номын сангаас
__
名__
姓_
_
_
__
__
_题
校
学
业
--------------------
--------------------
图1图2图3
AB
CD
6.如图,AC,BE是O的直径,弦AD与BE交于点F,下列三角形
中,外心不是点O的是()
2015年中考数学试题及答案
2015年中考数学含试题数 学 试 题 卷本卷共六大题,24小题,共120分。
考试时间120分钟一、选择题(本大题共6小题,每小题3分,共18分) 1、比-2013小1的数是( )A 、-2012B 、2012C 、-2014D 、2014 2、如图,直线l 1∥l 2,∠1=40°,∠2=75°,则∠3=( ) A 、70° B 、65° C 、60° D 、55°3、从棱长为a 的正方体零件的一角,挖去一个棱长为0.5a得到一个如图所示的零件,则这个零件的左视图是( ) A 、 B 、 C 、 D 、 4、某红外线遥控器发出的红外线波长为0.000 00094m ,用科学计数法表示这个数是( )A 、9.4×10-7mB 、9.4×107mC 、9.4×10-8mD 、9.4×108m 5、下列计算正确的是( )A 、(2a -1)2=4a 2-1B 、3a 6÷3a 3=a 2C 、(-ab 2) 4=-a 4b 6D 、-2a +(2a -1)=-1 6、某县盛产枇杷,四星级枇杷的批发价比五星级枇杷的批发价每千克低4元。
某天,一位零售商分别用去240元,160元来购进四星级与五星级这两种枇杷,其中,四星级枇杷比五星级枇杷多购进10千克。
假设零售商当天购进四星级枇杷x 千克,则列出关于x 的方程为( )A 、240x +4=160x -10B 、240x -4=160x -10C 、240x -10 +4=160xD 、240x -10 -4=160x二、填空题(本大题共8小题,每小题3分,共24分) 7、因式分解:xy 2-x = 。
8、已知x =1是关于x 的方程x 2+x +2k =0的一个根,则它的另一个根是 。
9、已知2x 3y =13 ,则分式x -2y x +2y的值为 。
辽宁省大连市2015年中考数学试题(word版-含解析)
2015省市中考数学试卷(解析版) (满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(2015,1,3分)﹣2的绝对值是( )A . 2B .-2C .21 D .-21【答案】A【解析】解:根据负数的绝对值等于它的相反数,得|﹣2|=2.故选A . 2. (2015,2,3分)如图是某几何体的三视图,则该几何体是( )(第2题)A .球B .圆柱C .圆锥D .三棱柱【答案】C【解析】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥,故选C.3.(2015,3,3分)下列长度的三条线段能组成三角形的是( )A . 1,2,3B .,1,2,3C .3,4,8D .4,5,6【答案】D【解析】解:根据三角形任意两边之和大于第三边,只要两条较短的边的和大于最长边即可。
故选D . 4. (2015,4,3分)在平面直角坐标系中,将点P (3,2)向右平移2个单位长度,所得到的点的坐标为( )A.(1,2)B.(3,0)C.(3,4)D.(5,2) 【答案】D【解析】解:根据点的坐标平移规律“左减右加,下减上加”,可知横坐标应变为5,而纵坐标不变,故选D.5. (2015,5,3分)方程4)1(2x 3=-+x 的解是( )A. 52=x B. 65=x C.2=x D.1=x【答案】C【解析】解:4)1(2x 3=-+x ,去括号得:3x+2-2x=4.移项合并得:2=x 。
故选C. 6. (2015,6,3分)计算()2x 3-的结果是( )A. 2x 6B.2x 6-C.2x 9D.2x 9- 【答案】C【解析】解:根据积的乘方,()2x 3-=()22x 3⋅-=2x 9,故选C.7. (2015,7,3分)某舞蹈队10名队员的年龄如下表所示:年龄(岁) 13 14 15 16 人数2431则这10名队员年龄的众数是( ) A. 16 B.14 C.4 D.3 【答案】B【解析】解:一组数据中出现次数最多的那个数据叫做众数,14出现的次数最多,故选B.8. (2015,8,3分)如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上,∠ADC=2∠B,AD=5,则BC 的长为( )(第8题)A.3-1B.3+1C.5-1D.5+1【答案】D【解析】解:在△ADC 中,∠C=90°,AC=2,所以CD=()1252222=-=-AC AD ,因为∠ADC=2∠B ,∠ADC=∠B+∠BAD,所以∠B=∠BAD,所以BD=AD=5,所以BC=5+1,故选D.二、填空题(本大题共8小题,每小题3分,满分24分.)9. (2015,9,3分)比较大小:3__________ -2(填>、<或=) 【答案】>【解析】解:根据一切正数大于负数,故答案为>。
陕西省2015年中考数学试题及答案(Word版)
2015年陕西省初中毕业学业考试试题数学第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.计算:=-032)(( )A.1B.23- C.0 D.322.如图是一个螺母的示意图,它的俯视图是( )3.下列计算正确的是( )A.632a a a =•B.2224)2(b a ab =-C.532)(a a =D.ab b a b a 332223=÷ 4.如图,AB//CD,直线EF 分别交直线AB 、CD 于点E 、F,若∠1=46°30′,则∠2的度数为( )A.43°30′B.53°30′C.133°30′D.153°30′5.设正比例函数mx y =的图象经过点)4,(m A ,且y 的值随x 值的增大而减小,则=m ( )A.2B.-2C.4D.-4 6.如图,在△ABC 中,∠A=36°,AB=AC ,BD 是△ABC 的角平分线,若在边AB 上截取BE=BC ,连接DE,则图中等腰三角形共有( )A.2个B.3个C.4个D.5个7.不等式组⎪⎩⎪⎨⎧---≥+0)3(23121>xxx 的最大整数解为( )A.8B.6C.5D.48.在平面直角坐标系中,将直线22:1--=x y l 平移后,得到直线42:2+-=x y l ,则下列平移作法正确的是( )A.将1l 向右平移3个单位长度B.将1l 向右平移6个单位长度C.将1l 向上平移2个单位长度D. 将1l 向上平移4个单位长度 9.在□ABCD 中,AB=10,BC=14,E 、F 分别为边BC 、AD 上的点,若四边形AECF为正方形,则AE 的长为( )A.7B.4或10C.5或9D.6或810.下列关于二次函数)>1(122a ax ax y +-=的图象与x 轴交点的判断,正确的是( )A.没有交点B.只有一个交点,且它位于y 轴右侧C.有两个交点,且它们均位于y 轴左侧D.有两个交点,且它们均位于y 轴右侧 二、填空题(共4小题,每小题3分,计12分)11.将实数605-,,,π由小到大用“<” 号连起来,可表示为_________________。
2015年贵州数学中考真题及答案
解得 x1=3,x2=-1,
∴点 C的坐标为(-1,0),点 A′的坐标为(3,0). (2分)
当 x=0时,y=3.
∴点 A的坐标为(0,3); (3分)
3 x+2
≥0的解集.(6分)
解:(1)根据“异号两数相乘,积为负”可得
第一人
C1Βιβλιοθήκη C2C3B
第二人
C1
(C2,C1) (C3,C1) (B,C1)
C2
(C1,C2)
(C3,C2) (B,C2)
C3
(C1,C3) (C2,C3)
(B,C3)
B
(C1,B) (C2,B) (C3,B)
(11分)
{ { 2x-3>0 2x-3<0
①
或②
x+1<0
, x+1>0
(3分)
解①得无解;解②得 -1<x<32.
∴原不等式的解集为 -1<x<32;
(6分)
有 6种结果.
八、(本题共 16分)
∴P(一人是喜欢跳绳,一人是喜欢足球的学生)=162=12.
(14分)
26.如图,在平面直角坐标系中,平行四边形 ABOC如图放置,将此平行四边形绕
点
O顺时针旋转
90°得到平行四边形
A′B′OC′.抛物线
y=
-x2
+2x+3经过
六、(本题共 14分)
中考数学备考 QQ群:689548040
2015年陕西省中考数学试题及解析
2015年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.(3分)(2015•陕西)计算:(﹣)0=().2.(3分)(2015•陕西)如图是一个螺母的示意图,它的俯视图是().4.(3分)(2015•陕西)如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.若∠1=46°30′,则∠2的度数为()则m=()6.(3分)(2015•陕西)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()7.(3分)(2015•陕西)不等式组的最大整数解为()8.(3分)(2015•陕西)在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,则下列9.(3分)(2015•陕西)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正2)二、填空题(共5小题,每小题3分,计12分,其中12、13题为选做题,任选一题作答)11.(3分)(2015•陕西)将实数,π,0,﹣6由小到大用“<”号连起来,可表示为.12.(3分)(2015•陕西)正八边形一个内角的度数为.13.(2015•陕西)如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为(用科学计算器计算,结果精确到0.1°).14.(3分)(2015•陕西)如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为.15.(3分)(2015•陕西)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.三、解答题(共11小题,计78分,解答时写出过程)16.(5分)(2015•陕西)计算:×(﹣)+|﹣2|+()﹣3.17.(5分)(2015•陕西)解分式方程:﹣=1.18.(5分)(2015•陕西)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分.(保留作图痕迹,不写作法)19.(5分)(2015•陕西)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.20.(7分)(2015•陕西)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.21.(7分)(2015•陕西)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B 点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)22.(7分)(2015•陕西)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.23.(7分)(2015•陕西)某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)24.(8分)(2015•陕西)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.25.(10分)(2015•陕西)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y 轴交于C点.(1)求点A,B,C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.26.(12分)(2015•陕西)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC 的值;若不存在,请说明理由.2015年陕西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.(3分)(2015•陕西)计算:(﹣)0=().))2.(3分)(2015•陕西)如图是一个螺母的示意图,它的俯视图是().4.(3分)(2015•陕西)如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.若∠1=46°30′,则∠2的度数为()则m=()6.(3分)(2015•陕西)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()DBC=7.(3分)(2015•陕西)不等式组的最大整数解为()解:8.(3分)(2015•陕西)在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,则下列9.(3分)(2015•陕西)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正2x=二、填空题(共5小题,每小题3分,计12分,其中12、13题为选做题,任选一题作答)11.(3分)(2015•陕西)将实数,π,0,﹣6由小到大用“<”号连起来,可表示为﹣6.:12.(3分)(2015•陕西)正八边形一个内角的度数为135°.每一个内角的度数为×13.(2015•陕西)如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为27.8°(用科学计算器计算,结果精确到0.1°).A==14.(3分)(2015•陕西)如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为10.的图象过|ab|=2|cd|=2的图象过==|ab|=2|cd|=215.(3分)(2015•陕西)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是3.MN=ACAD=6,MN=AD=33三、解答题(共11小题,计78分,解答时写出过程)16.(5分)(2015•陕西)计算:×(﹣)+|﹣2|+()﹣3.﹣+2﹣+83+2﹣17.(5分)(2015•陕西)解分式方程:﹣=1.,是分式方程的解.18.(5分)(2015•陕西)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分.(保留作图痕迹,不写作法)19.(5分)(2015•陕西)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在良好等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.20.(7分)(2015•陕西)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.,21.(7分)(2015•陕西)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B 点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米),,,22.(7分)(2015•陕西)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.23.(7分)(2015•陕西)某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)∴小亮掷得向上一面的点数为奇数的概率是:.=24.(8分)(2015•陕西)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.BC=,,BE=25.(10分)(2015•陕西)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y 轴交于C点.(1)求点A,B,C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.)代入上式,得解得:y=(MD==26.(12分)(2015•陕西)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为24;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC 的值;若不存在,请说明理由.=4BC AE=2424=2CD=2AE=8=4+12OB=OP=4﹣解得:OQ=,OB=BOQ==,.。
说题比赛中考数学题PPT课件
直线AC:y=-6x-2
E(1,0)
直线AB:y=-2x+2
S=ED×h÷2=8/3
第5页/共15页
D(1,0)
四、说思想
本题是一道一次函数与反比例函数的综合性问题, 并结合三角形相似进行考察,难度偏低,主要考察 学生基础内容的掌握与灵活运用的能力。
本题渗透数形结合思想、方程思想,启发学生灵 活利用几何和代数方法解题的意识,培养学生图形 识别和观察能力,提升了学生学以致用的能力。
分析:题目中没有给出某一个点的具体坐标, 所以需要我们寻找突破点S△AOB=3.利用代 数法求解本题较为简单。设A(x,m/x), 所以S△AOB=x·m/x÷2=3,m=6. m求出后,利用一次函数的图像,△ACB的 面积便可以顺利求解。
第11页/共15页
拓展延伸二:数形结合解难题
如图,正比例函数
y
1 2
x的图象与反比例函数
y
k x
(k
0)在第一象限的图象
交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.
(1)求反比例函数的解析式;
(2)如果为反比例函数在第一象限图象上的点(点与点不重合),且点的
横坐标为1,在轴上求一点P,使PA+PB最小。
解析:
B
P C
【总结】在解决函数与几何综合题目时,不仅需要清楚函数知识,而且 还需要掌握好几何知识,画出图形,利用数形结合的思想解题。
本题分为两个小题,由易到难。对学生的识图辩图能 力、分析能力、计算能力的要求较高,总之本题立足课 标,注重基础,强调能力,综合性较强,关注学生能力 的发展。
第3页/共15页
三、说解答策略
本题第一问:求一次函数与反比例函数的解析式
2015年河北省中考数学试题及答案(K12教育文档)
(直打版)2015年河北省中考数学试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)2015年河北省中考数学试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)2015年河北省中考数学试题及答案(word版可编辑修改)的全部内容。
2015年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题共16个小题,1-10小题,每小题3分;11-16小题,每小题2分,共42分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算:=-⨯-)1(23 ( )A. 5B.1C.-1D.6 2。
下列说法正确的是( )A.1的相反数是-1B.1的倒数是-1C.1的立方根是±1D.-1是无理数3.一张菱形纸片按图1-1、图1-2依次对折后,再按图1-3打出一个圆形小孔,则展开铺平后的图案( )4。
下列运算正确的是( )A 。
21211-=⎪⎭⎫ ⎝⎛- B 。
60000001067=⨯ C 。
()2222a a = D 。
523a a a =⋅5.图2中的三视图所对应的几何体是( )C D图1—2图1—3图1—1B A6。
如图3,AC ,BE 是⊙O 的直径,弦AD 与BE 交于点F,下列三角形中,外心不是..点O 的是( )A.△ABE B 。
△ACF C 。
△ABD D 。
△ADE7。
在数轴上标注了四段范围,如图4,则表示8的点落在( )A.段① B 。
段 ② C.段③ D 。
段④8。
如图5,AB ∥EF ,CD ⊥EF ,∠BAC=50°,则∠ACD=( )A.120° B 。
2015年广东省中考数学试题(word版带答案)
2015年广东省初中毕业生学业考试数 学说明:1、全卷共4页,满分120分,考试用时为100分钟。
2、答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号、用2B 铅笔把对应号码的标号涂黑。
3、选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
4、非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效。
5、考生务必保持答题卡的整洁,考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 2-= A.2B.2-C.12D.12-2. 据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为( )A.61.357310⨯B.71.357310⨯C.81.357310⨯D.91.357310⨯3. 一组数据2,6,5,2,4,则这组数据的中位数是( )A.2B.4C.5D.64. 如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是( )A.75°B.55°C.40°D.35°5. 下列所述图形中,既是中心对称图形,又是轴对称图形的是( )A.矩形B.平行四边形C.正五边形D.正三角形6. 2(4)x -=A.28x -B.28xC.216x -D.216x7. 在0,2,0(3)-,5-这四个数中,最大的数是( )A.0B.2C.0(3)-D.5-8. 若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是( )A.2a ≥B.2a ≤C.2a >D.2a <9. 如题9图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为( )A.6B.7C.8D.910. 如题10图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设 △EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是( )二、填空题(本大题6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡相应的位置上.11. 正五边形的外角和等于(度).12. 如题12图,菱形ABCD 的边长为6,∠ABC =60°,则对角线AC 的长是.13. 分式方程321x x=+的解是 .14. 若两个相似三角形的周长比为2:3,则它们的面积比是.15. 观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是.16. 如题16图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 .三、解答题(一)(本大题3小题,每小题6分,共18分). 17. 解方程:2320x x -+=.18. 先化简,再求值:21(1)11x x x ÷+--,其中21x =-.19. 如题19图,已知锐角△AB C.(1) 过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法); (2) 在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.四、解答题(二)(本大题3小题,每小题7分,共21分)20. 老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的 卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上 的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,题20图是小明同学所画的正确树状图的一部分.(1) 补全小明同学所画的树状图; (2) 求小明同学两次抽到卡片上的数字之积是奇数的概率.21. 如题21图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1) 求证:△ABG≌△AFG;(2)求BG的长.22. 某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1) 求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2) 商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?五、解答题(三)(本大题3小题,每小题9分,共27分)23. 如题23图,反比例函数ky x=(0k ≠,0x >)的图象与直线3y x =相交于点C ,过直线上点A (1,3)作 AB ⊥x 轴于点B ,交反比例函数图象于点D ,且AB =3B D. (1) 求k 的值; (2) 求点C 的坐标;(3) 在y 轴上确实一点M ,使点M 到C 、D 两点距离之和d =MC +MD ,求点M 的坐标.24. ⊙O 是△ABC 的外接圆,AB 是直径,过 BC的中点P 作⊙O 的直径PG 交弦BC 于点D ,连接AG , CP ,P B.(1) 如题24﹣1图;若D 是线段OP 的中点,求∠BAC 的度数;(2) 如题24﹣2图,在DG 上取一点k ,使DK =DP ,连接CK ,求证:四边形AGKC 是平行四边形;(3) 如题24﹣3图;取CP 的中点E ,连接ED 并延长ED 交AB 于点H ,连接PH ,求证:PH ⊥A B.25. 如题25图,在同一平面上,两块斜边相等的直角三角板Rt △ABC 与Rt △ADC 拼在一起,使斜边AC 完全重合,且顶点B ,D 分别在AC 的两旁,∠ABC =∠ADC =90°,∠CAD =30°,AB =BC =4cm . (1) 填空:AD =(cm ),DC =(cm );(2) 点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发,且分别在AD ,CB 上沿A →D ,C →B 的方向运动,当N 点运动 到B 点时,M ,N 两点同时停止运动,连结MN ,求当M ,N 点运动了x 秒时,点N 到AD 的距离(用含x 的式子表示);(3) 在(2)的条件下,取DC 中点P ,连结MP ,NP ,设△PMN 的面积为y (cm 2),在整个运动过程中,△PMN 的面积y 存在最大值,请求出这个最大值.(参考数据:sin 75°=624+,sin 15°=624-)参考答案一、选择题1、A2、B3、B4、C5、A6、D7、B8、C9、D 10、D二、填空题11、360° 12、6 13、x=2 14、4:9 15、211016、4 三、解答题(一)17.解:(x-1)(x-2)=0 x 1=1,x 2=2 18.解:原式=111)1)(1(112+=-⋅-+=-÷-x x x x x x x x x x 把12-=x 代入得:原式=2219.(1)(2)解:∵43tan ==∠AD BD BAD 且 AD=4,∴BD=3 ∴CD=5-3=2四、解答题(二) 20.(1) (2)9421.(1)证明:∵AB=AD=AF,AG=AG ,∠ABG=∠AFG=90° ∴△ABG 和△AFG 全等(HL ) (2)设BG=x,GC=6-x ,GF=x ,GE=3+x,EC=3 在Rt △GCE 中,(x+3)2=32+(6-x)2 解得:x=2 22. (1)设A 型号每台的价格为x ,B 型号的为y,由题意得: ⎩⎨⎧=-+-=-+-120)40(3)30(67640)30(5y x y x 解得:⎩⎨⎧==5642y x(2)设A 型号的购进x 台,则B 型号的为(70-x )台,由题意得: 2500)70(4030≤-+x x 解得:x ≥30 ∴A 型号的最少要30台 五、解答题(三)∵AB=3BD,AB=3 ∴BD=1 ∴D 点坐23.(1)标为(1,1)代入xk y =得:k=1(2)联立y=3x 与xy 1=解得:C 点坐标为(3,33) (3)作D 点关于y 轴的对称点E (-1,1),连接CE ,则CE 与y 轴的交点就是所求的点M设CE 的直线解析式为y=kx+b ,代入E,C 两点坐标解得: k=332- , b=232- ∴M 点坐标为(0,232-)24.(1).∵P 点为弧BC 的中点,且OP 为半径 ∴OP ⊥BC又∵AB 为直径,∴∠ACB=90° ∴AC//OP∴∠BAC=∠BOD 又∵21cos ===∠OP OD OB OD BOD ,∴∠BOD=60° ∴∠BAC=60°(2) 由(1)得:AC//GK, DC=DB又∵DK=DP ∴用SAS 易证明:△CDK 与△BDP 全等 ∴∠CKD=∠BPD 又∵∠G=2-180AOG ∠︒ ∠BPD=2-180BOD∠︒ ∴∠G=∠BPD=∠CKD∴AG//CK 又AC//GK (已证) ∴四边形AGKC 为平行四边形 (3) 连接OC∵点E 为CP 的中点,点D 为BC 的中点 ∴DE//BP∴△OHD 与△OBP 相似 ∵OP=OB ∴OH=OD 又OC=OP ∠COD=∠POH ∴△COD 与△POH 全等 ∴∠PHO=∠CDO=90°25.(1)AD=62 CD=22(2)过N 点作NE ⊥AD 于E ,过C 点作CF ⊥NE 于F ∴NF=x x NCF NC 42-615sin sin =︒⋅=∠⋅ 又EF=CD=22 ∴x NE 42622-+= )40(≤≤x (3)设NE 与PM 相交于点H 则MD NH S PMN ⋅⋅=21△ ∵DE=CF=x NC 42675sin +=︒⋅ ∴x x x DE AM AD ME 42646242662++-=+--=--= 由△MEH 与△MDP 相似得:MD ME PD HE =,∴MDMEHE ⋅=2 ∴NH=MD ME NE HE NE ⋅-=-2 ∴MD NH S PMN ⋅⋅=21△=ME NE MD MD ME NE MD 2(21)2(21-⋅=⋅-⋅)第 11 页 =)]42662(2)42622)(62[(21x x x x +----+- =32422378262+--+--x x 当2622372---=-=a b x 时,面积有最大值, S 最大值=16162962338442-++=-a b ac PS :答案仅供参考,最后一题最后一问的答案,没有绝对把握算对了,毕竟只算了一遍,也真心不想算第二遍!。
2015年重庆中考数学试题第26题动点问题(附答案)
2014年重庆(2014•内江)如图,抛物线y=ax2+bx+c经过A(﹣3.0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.(1)求抛物线的解析式;(2)线段AB上有一动点P,过点P作y轴的平行线交抛物线于点Q,求线段PQ的最大值;(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.(2014年四川巴中)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣4与x轴交于点A(﹣2,0)和点B,与y轴交于点C,直线x=1是该抛物线的对称轴.(1)求抛物线的解析式;(2)若两动点M,H分别从点A,B以每秒1个单位长度的速度沿x轴同时出发相向而行,当点M到达原点时,点H立刻掉头并以每秒个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动,经过点M的直线l⊥x轴,交AC或BC于点P,设点M的运动时间为t秒(t>0).求点M的运动时间t与△APH的面积S的函数关系式,并求出S的最大值.(2014年江苏盐城)【问题情境】张老师给爱好学习的小军和小俊提出这样一个问题:如图1,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.【变式探究】如图3,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;请运用上述解答中所积累的经验和方法完成下列两题:【结论运用】如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;【迁移拓展】图5是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且AD•CE=DE•BC,AB=2dm,AD=3dm,BD=dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.(2014年四川南充)如图,抛物线y=x2+bx+c与直线y=x﹣1交于A、B两点.点A的横坐标为﹣3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB于D.(1)求抛物线的解析式;(2)当m为何值时,S四边形OBDC=2S△BPD;(3)是否存在点P,使△PAD是直角三角形?若存在,求出点P的坐标;若不存在,说明理由.(2014•抚顺)已知:Rt△A′BC′≌Rt△ABC,∠A′C′B=∠ACB=90°,∠A′BC′=∠ABC=60°,Rt△A′BC′可绕点B旋转,设旋转过程中直线CC′和AA′相交于点D.(1)如图1所示,当点C′在AB边上时,判断线段AD和线段A′D之间的数量关系,并证明你的结论;(2)将Rt△A′BC′由图1的位置旋转到图2的位置时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)将Rt△A′BC′由图1的位置按顺时针方向旋转α角(0°≤α≤120°),当A、C′、A′三点在一条直线上时,请直接写出旋转角的度数.如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM. (1)求AO的长;(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC=3AM;(3)连接EM,若△AEM的面积为40,请直接..写出△AFM的周长.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.本题满分12分)问题探究(1)如图①,在矩形ABCD 中,AB=3,BC=4,如果BC 边上存在点P,使△APD 为等腰三角形,那么请画出满足条件的一个等腰△APD ,并求出此时BP 的长;(2)如图②,在△ABC 中,∠ABC=60°,BC=12,AD 是BC 边上的高,E,F 分别为边AB 、AC 的中点,当AD=6时,BC 边上存在一点Q ,使∠EQF=90°。
2015年河北省中考数学试题与答案(清晰扫描版)
2015年河北省初中毕业生升学文化课考试数学试卷本试卷分卷I和卷II两部分;卷I为选择题,卷II为非选择题. 本试卷总分120分,考试时间120分钟.卷I (选择题,共42分)注意事项:1.答卷I前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上.考试结束,监考人员将试卷和答题卡一井收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.—、选择题(本大題共16个小題,1〜10小题,每小题3分;11〜16小题,每小题2分,共42分.在每小题给出的四个选项中.只有一项是符合题目要求的)1. 计算:3-2x(-l) =A. 5C・-12. 下列说法正确的是A・1的相反数是一1C・1的立方根是±13. 一张菱形纸片按图1-1.图1・2依次对折后,再按图1・3打出一个圆B. 1D. 6B.】的倒数是-】D. -1是无理数形小孔,则展开铺平后的图案是D.段④8・如图 5. AB//EF, CDJLEF. ZB4C=50h 贝ljZJCD=B. 130° D. 150°4. F 列运算正确的是丄<2 B ・ 6xlO 7 =60X)000C. (2a)2 = 2a 26.如图3, AC. BE 是00的直径,弦4D 与BE 交于点F,下列三角形中,外心不是点O 的是A. ZBEB. ^ACFC. MBDD. ^ADE7.在数轴上标注了四段范IS,如图4,则表示迓的点落在26 V\2.72.8"图4A.段①B.段②C.段③ A. 120° C. 140°5.出 左視图B图3图59. 己知:岛F位于岛0的正西方,由岛几0分别测得船R位于南偏东30•和南偏西45•方向10. 一台印刷机每年可印刷的书本数量丿(万册)与它的使屋时(53x(年)成反比例关系,11. 利用加减消元法解方程组+ = -10,咚,下列做法正确的是[5x-3y = 6 ②A. 要消去y,可以将①x5 +②x2B. 要消去x,可以将①x3 +②x(-5)C. 要消去〃可以将①x5 +②x3D. 耍消去炊可以将①x(-5) +②x212.若关于x 的方程x 2+2x + a = 0不存在实数根,则a 的取值范围是• • •A. a<\B. a>\13.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是A.丄B.- 2 3C. \D.丄 5 6 B. 914.如图6,直线/: y = -^x-3与宜线y^a (a 为常数)的交点 在第四象限.则a 可能在A. \<a<2 B ・一2GV0 D- -10VaV-4 ・15・如图7,点儿0为定点.定直线/〃/i 乩P 是/上一动点. 点M N 分别为必.的中点. 对于下列各值 ①线段MV 的长: ②2AB 的周长; ③△PMV 的面积; ④直线MM ABZ 间的距离;图7⑤厶PB 的大小• 其中会随点P 的移动而变化的是 A.②③ C.①®® D.④⑤ 16.图8是甲.乙两张不同的矩形纸片, 着虚线剪开后,各自要拼一个与原来面积相等的正 方形.则A.甲.乙都可以B.甲、乙都不可以C.曰不可以.乙可以D.甲可以.乙不可以将它们分别沿 ►U-1 ->乙 图82015年河北省初中毕业生升学文化课考试数学试卷卷II (非选择题,共78分)注意事项:1・答卷II 前,将密封线左侧的项目填写清楚.2.答卷I 】时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.题号二三2122232425261得分二、填空题(本大题共4个小题.每小题3分,共12分.把答案 写在题中横线上)17. 若|a| = 2015°,则18.•若4 = %工0,则与芒的值为 a _ab19. 平面上,将边长相等的正三角形、正方形、正五边形.正六边形的一边审合并會在一起,如图9,则Z3 + Z1-Z2 = ____________20. 如图10, Z5OC=9°,点4在OB 匕且OA^\.按下列要求画图:以/为圆心,1为半径向右画弧交OC 于点皿.得第1条线段AAxx 再以川为圆心,1为半径向右画弧交03于点力2,得第2条线段A,A 2i 再以力2为圆心,1为半径向右画弧交OC 于点冷,得第3条线段局禺;这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则 ___________得分评卷人总分22.(本小题满分10分)三、解答题(本大题共6个小题■共66分.解答应写出文字说明、证明过程或演算步骤): (1)求所捋的二次三项式;(2)若x = V6+l,求所捂二次三项式的值.21.(本小题满分10分)得分评卷人嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的.她先用尺规作出了如图11的四边形ABCD.并写出了如下不完整的己知和求证.(1) 在方框中填空.以补全已知和求证:(2) 按嘉淇的想法写岀证明;证明:(3) ______________________________________________________________________ 用文字叙述所证命题的逆命题为_______________________________________________________22.(本小题满分10分)水平放置的容器内原有210亳米髙的水,如图12・将若干个球逐一放入该容器中,每 放入一个大球水面就上升4亳米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y 毫米.(1) 只放入大球,且个数为x 大,求y 与心的函数关系式仟必写出x 大的范围); (2) 仅放入6个大球后,开始放入小球,且小球个数为©、•① 求y 与x 小的函数关系式(不必写出林的范围); ② 限定水面高不超过260毫米,最多能放入几个小球?图12得分评卷人23.(本小题满分10分)24.(本小題满分11分)得分评卷人某厂生产A, B 两种产品.其单价随市场变化而做相应调整.营销人员根据前三次单价 变化的情况.绘制了如下统计表及不完整的折线图^X A =5.9; |[(6-5・9F + (5.2-5.9)2+ (6.5-5.9)2] =昔(1)补全图13中B 产品单价变化的折线图.B 产品第三次的单价比上一次的单价降低了 ________ %;(2) 求B 产品三次单价的方差,并比较哪种产品的单价波动小:(3) 该厂决定第四次调价,A 产品的单价仍为6.5元/件,B 产品的单价比3元/件上调使得A 产品这四次单价的中位数是B 产品四次单价中位数 的2倍少1,求加的值.第一次 第二次 第三次A 产品单价 (元/件) 6 5.2 6.5 B 产品険价 (元/件) 3.543A. B 产品单价变化统计表并求得了 A 产品三次单价的平均数和方差:田1325.(本小题满分11分)如图14,已知点0(0, 0),/(-5, 0),B(2, 1),抛物线/:J«-(X-A)2+1 (A为常数)与p轴的交点为C.(1)/经过点8,求它的解析式,并写出此时/的对称轴及顶点坐标;(2)设点C的纵坐标为%,求%的最大值,此时/上有两点(心,沖,(勺,儿),其中x,>x2^0,比较儿与儿的大小;(3)当线段Q4被/只分为两部分,且这两部分的比是1 :4时,求的值.• • •平面上,矩形ABCD 与直径为QP 的半圆K 如图15・1 摆放,分别延长D4和0P 交于点0,且ZDO0=6O°, OQ=OD=3, 0P=2, 0A =AB = l ・让线段 OD 及矩形 ABCD 位置固定,将线段O0连带着半圆K 一起绕着点0按逆时 针方向开始旋转,设旋转角为a(0oMa=60。
2015年河北省中考数学试卷与答案解析
2015年河北省中考数学试卷参考答案与试题解析一.选择题(1-10小题每小题3分,11-16小题每小题3分,共42分每小题的四个选项中只有一个是正确的)3.(3分)(2015•河北)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()B=25.(3分)(2015•河北)如图所示的三视图所对应的几何体是()B6.(3分)(2015•河北)如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()7.(3分)(2015•河北)在数轴上标注了四段范围,如图,则表示的点落在()8.(3分)(2015•河北)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()9.(3分)(2015•河北)已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()10.(3分)(2015•河北)一台印刷机每年可印刷的书本数量y (万册)与它的使用时间x (年). B . C . D (y=,11.(2分)(2015•河北)利用加减消元法解方程组,下列做法正确的是,213.(2分)(2015•河北)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点B的概率是:=14.(2分)(2015•河北)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()﹣﹣﹣x15.(2分)(2015•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()MN=ABMN=16.(2分)(2015•河北)如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()的正方形,图乙可以拼一个边长为二.填空题(4个小题,每小题3分,共12分)17.(3分)(2015•河北)若|a|=20150,则a=±1.18.(3分)(2015•河北)若a=2b≠0,则的值为.==故答案为:19.(3分)(2015•河北)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=24°.20.(3分)(2015•河北)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=9.三.解答题(共6个小题,共66分)21.(10分)(2015•河北)老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式;(2)若x=+1,求所捂二次三项式的值.﹣﹣22.(10分)(2015•河北)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为平行四边形两组对边分别相等.,23.(10分)(2015•河北)水平放置的容器内原有210毫米高的水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小①求y与x小的函数关系式(不必写出x小范围);②限定水面高不超过260毫米,最多能放入几个小球?,24.(11分)(2015•河北)某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]==5.9,s(1)补全如图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了25%(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.产品第三次的单价比上一次的单价降低了=(=产品,这四次单价的中位数为;,×1=25.(11分)(2015•河北)如图,已知点O(0,0),A(﹣5,0),B(2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y c,求y c的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.26.(14分)(2015•河北)平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=0D=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).发现:(1)当α=0°,即初始位置时,点P在直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B.(2)在OQ旋转过程中,简要说明α是多少时,点P,A间的距离最小?并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求a及S阴影拓展:如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.探究:当半圆K与矩形ABCD的边相切时,求sinα的值.,如图﹣﹣﹣OS==2=2﹣KO,在=,•RE=+,即,BQ=AF=AO=2﹣OS=,﹣,KO﹣====sin60的值为:或。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如图,正比例函数 y
1 2
x 的图象与反比例函数 y
k x
(k 0)在第一象限的图象
交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.
(1)求反比例函数的解析式;
(2)如果为反比例函数在第一象限图象上的点(点与点不重合),且点的
横坐标为1,在轴上求一点P,使PA+PB最小。
解析:
B
P C
(2016年泰安中考题)如图,在平面直角坐标系中,正方形OABC的顶点O
与坐标原点重合,点C的坐标为(0,3),点A在x轴的负半轴上,点D、M
分别在边AB、OA上,且AD=2DB,AM=2MO,一次函数y=kx+b的图象过
k
点D和M,反比例函数y= 的图象经过点D,与BC的交点为N.
x
(1)求反比例函数和一次函数的表达式;
A
突破点:遵循“先易后难”原则,反比例函数仅需要
一个点坐标,便可求出表达式,所以利用A(-1,4)
D
求出反比例函数,然后再利用反比例函数表达式反
EO
x
向求出B(2,-2),最后利用A、B两点坐标带入一
C
B
次函数表达式,列出关于k、b的二元一次方程组求解。
带入y= m
A(-1,4)
x
4
y=-
x
求B
A、B带入
B(2,-2)
y=kx+b
y=-0.5x+4
4k+b=2 8k+b=0
三、说解答策略
本题第二问:求△AED的面积S
分析:
原句在现:BC⊥y轴,垂足为C。
突破点:BC⊥y轴,带来点C坐标,以此为突破口, 可以利用多种方法来解答。
方法一:
BC⊥y轴
BC∥x轴
△AED∽△ABC
y
A
D
EO
x
C
ቤተ መጻሕፍቲ ባይዱ
B
S=8/3 方法二:
x
y=ax+b的图象经过A′、B′两点.求反比例函数及一次函数的表达式;
(2)若反比例函数y= k 的图象经过点A′及A′B′的中点M,求m的值. x
将一次函数与反比例函数,结合平移的知识进行考察。这 里要分清平移前后的坐标变换,并提醒学生注意审题,细 节决定此题成败。
五、说变式及拓展延伸:变式二
本题渗透数形结合思想、方程思想,启发学生灵 活利用几何和代数方法解题的意识,培养学生图形 识别和观察能力,提升了学生学以致用的能力。
五、说教学价值
1.通过本题,我们可以感受到一次函数与反比例函数的 结合,是历年中考的必考题型,也是初中数学的核心知 识,相对简单,所以在日常教学中要强化训练,争取此 题多拿分。
题多解题型的能力。
拓展延伸一:代数法求解表达式
分析:题目中没有给出某一个点的具体坐标, 所以需要我们寻找突破点S△AOB=3.利用代 数法求解本题较为简单。设A(x,m/x), 所以S△AOB=x·m/x÷2=3,m=6. m求出后,利用一次函数的图像,△ACB的 面积便可以顺利求解。
拓展延伸二:数形结合解难题
本题分为两个小题,由易到难。对学生的识图辩图能 力、分析能力、计算能力的要求较高,总之本题立足课 标,注重基础,强调能力,综合性较强,关注学生能力 的发展。
三、说解答策略
本题第一问:求一次函数与反比例函数的解析式
y
分析:
m
原句在现:一次函数y=kx+b与反比例函数y= 图象相交于
A(-1,4),B(2,n)两点。 x
2.“先易后难”是解决此类题目的关键,从本题总结做题方 法:先以题目中的已知条件入手,求出其中一个解析式, 再从求得的解析式与条件分析求得另一个解析式。
五、说教学价值
3.一次函数与反比例函数联合,并结合面积、等腰三角形 矩形、比例线段、平移等进行考察,已成为中考中的常见 题型,在教学中多着重培养学生利用代数(坐标)法解决 几何问题的能力。
【总结】在解决函数与几何综合题目时,不仅需要清楚函数知识,而且 还需要掌握好几何知识,画出图形,利用数形结合的思想解题。
七、小结
题海战略不是提升数学成绩的好方法,如果能深入分析 中考中的典型题,并掌握好与之相关的变式题型,便能解决 这一类问题,毕竟万变不离其宗。
本题通过对一道中考题的提炼,将初中涉及到的重点知 识---一次函数、反比例函数、三角形相似、图形的平移、面 积的求解以及重要思想--数形结合等加以考察,以点带面, 在教学中慢慢提升学生这方面的能力,特别是我们七年级现 在正在进行一次函数学习的学段。
一、原题再现
本题出自2015年泰安市中考数学第26题
知识点涉及: 平面直角坐标系; 反比例函数的解析式、图像; 一次函数的解析式、图像; 二元一次方程组的求解; 三角形面积的求解; 三角形相似等。
二、说题目立意
本题是一次函数与反比例函数的综合性问题,主要是 对针对两种函数表达式的求解及其图像性质利用的考察, 并结合坐标系,考察学生对数形结合的掌握,中间穿插 对三角形相似及二元一次方程组求解的考察。
(2)若点P在直线DM上,且使△OPM的面积与四边形OMNC的面积相等,
求点P的坐标.
本题是将一次函数与反比例函数,结合正方形的知识
进行考察,并在第二问中渗透一题多解的思想,这里
要求学生要将线段长短与求坐标结合在一起。比起15
年本题增加了难度,从命题方向上来看,要求教师要
在日常教学中培养学生全面思考的意识,提升求解一
BC⊥y轴
C(0,-2)
△AED与△ABC面积 比等于高的比的平方
直线AC:y=-6x-2
E(1,0)
直线AB:y=-2x+2
S=ED×h÷2=8/3
D(1,0)
四、说思想
本题是一道一次函数与反比例函数的综合性问题, 并结合三角形相似进行考察,难度偏低,主要考察 学生基础内容的掌握与灵活运用的能力。
4.解决问题的关键在于——突破口。 突破口在于分析所求问题,认清坐标数在解决 几何问题中的作用
五、说变式及拓展延伸:变式一
(2014年山东泰安)如图①,△OAB中,A(0,2),B(4,0),将 △AOB向右平移m个单位,得到△O′A′B′.
k
(1)当m=4时,如图②.若反比例函数y= 的图象经过点A′,一次函数