实验一 电容式传感器的位移实验

合集下载

位移传感器实验报告

位移传感器实验报告

位移传感器实验报告位移传感器实验报告引言:位移传感器是一种能够测量物体位移的装置。

它在工业自动化、机器人技术、医疗设备等领域有着广泛的应用。

本实验旨在通过对位移传感器的实验研究,探索其工作原理和性能特点。

一、实验目的本实验的目的是研究位移传感器的工作原理和性能特点,了解其在实际应用中的优缺点,为后续的工程设计和应用提供参考。

二、实验装置和方法实验所用的位移传感器是一种电容式位移传感器,其工作原理是通过测量电容的变化来实现对位移的测量。

实验装置包括位移传感器、信号调理电路、数据采集系统等。

在实验过程中,首先将位移传感器固定在待测物体上,然后通过调整传感器的位置和角度,使其与被测物体保持良好的接触。

接下来,将信号调理电路与传感器连接,并将其输出与数据采集系统相连。

最后,通过改变被测物体的位移,观察位移传感器的输出信号变化,并记录相应的数据。

三、实验结果与分析在实验过程中,我们通过改变被测物体的位移,观察位移传感器的输出信号变化,并记录了相应的数据。

实验结果显示,位移传感器的输出信号随着被测物体位移的增加而线性增加,且具有较高的精度和稳定性。

进一步分析发现,位移传感器的灵敏度与传感器的工作原理和结构有关。

电容式位移传感器通过测量电容的变化来实现对位移的测量,其灵敏度受到电容变化量的影响。

因此,在实际应用中,我们需要根据具体的需求选择合适的位移传感器,以确保测量结果的准确性和可靠性。

此外,位移传感器还具有一定的温度特性。

在实验过程中,我们发现位移传感器的输出信号受到环境温度的影响。

当环境温度发生变化时,位移传感器的输出信号也会发生相应的变化。

因此,在实际应用中,我们需要对位移传感器进行温度补偿,以提高测量的精度和稳定性。

四、实验总结通过本次实验,我们深入了解了位移传感器的工作原理和性能特点。

位移传感器是一种能够测量物体位移的重要装置,在工业自动化、机器人技术、医疗设备等领域有着广泛的应用。

在实际应用中,我们需要根据具体的需求选择合适的位移传感器,并进行相应的温度补偿,以确保测量结果的准确性和可靠性。

7 电容式传感器位移特性实验

7 电容式传感器位移特性实验
传感器装于电容传感器实验模板,并将 传感器引线插头插入实验模板的插座中。 2、连线 接入±15V电源;将电容传感器实验模板的输出 端Vo1与数显单元Vi相接(插入主控箱Vi孔)Rw调 节到中间位置(方法:逆时针转到底再顺时转5圈)。 3、将主机箱上的电压表量程(显示选择)开关打到 2v档,合上主机箱电源开关,平移测微头改变电容 传感器的动极板位置使电压表显示0v ,再转动测微 头(同一个方向)5圈,记录此时的测微头读数和电压 表显示值为实验起点值。
二、圆柱形差动结构的电容式传感器
设圆筒的半径为r1,圆柱的半径为r2,圆柱的 长为x,则电容: 2πεx 2 c c x ln r1 r2 lnr1 r2
本实验电容器由两个圆筒和一个圆柱组成的。
2 2x C1、C2差动连接时 c ln r1 r2
C ∝x,配上测量电路,建立U∝ x,就能测量位移。 电容传感器的电容值非常微小,必须借助于测量电路, 将其转换成电压、电流、频率信号等电量来表示电容值的 大小。
电容式传感器的位移特性实验
实验目的
了解电容式传感器的结构及其特点。 了解电容式传感器测位移的原理
非电量 敏感元件
电参数 转换电路
电压或电流
实验原理
一、电容式传感器 1、定义 以电容为敏感原件,将机械位移量转换为电容量 变化的传感器称为电容式传感器。 2、分类 利用电容C=εs/d,通常将电容式传感器分为变 面积型、变介质型和变间隙型三种。 变面积型电容传感器中,平板结构对极距特别敏 感,测量精度受到影响,而圆柱形结构受极板径向变 化的影响很小,且理论上具有很好的线性关系,因而 成为实际中最常用的电容式传感器。
反方向每转动测微头1圈(△x=0.5mm) 读1次电压表读 数,记录10组数据),将数据填入表1并作出V—x曲线。 表1 电容传感器位置与输出电压值 X(mm) V(mV) 4、计算电容式传感器的系统灵敏度S和非线性误差δ。

06电容式传感器的位移特性实验

06电容式传感器的位移特性实验

06电容式传感器的位移特性实验
电容式传感器是一种常用的测量位移的传感器,它利用电容器的电容值与其电极间距离的关系来测量物体的位移。

以下是
06电容式传感器的位移特性实验步骤:
实验材料:
1. 06电容式传感器
2. 数字万用表
3. 电子秤
4. 尺子
5. 活动支架
步骤:
1. 将06电容式传感器放在活动支架上,调整传感器的高度,
使其平行地与实验台面接触。

2. 使用数字万用表测试传感器的电容值。

记录下传感器未受力时的电容值。

3. 在传感器上方放置一定质量的物体,使其挤压传感器。

在每个质量下,使用数字万用表再次测试传感器的电容值并记录。

注意每次测试前应等待其稳定。

4. 根据实验记录计算出传感器在不同挤压质量下的电容值变化,即位移量。

绘制出位移量-受力特性曲线。

实验注意事项:
1. 操作时要避免传感器受到横向的力,应保证其纵向受力,并且应尽量避免传感器的弯曲、捏压或折叠。

2. 测试数据时应先让传感器空置一段时间,等待温度稳定。


感器的输出信号应稳定后再进行测量。

3. 验证实验前要检查设备的正常运行,如电流表、电压表等应检查好其电子管,以免不必要损失。

实验结果:
通过实验可以得出传感器的位移特性曲线,可以了解到在不同的质量下,传感器的电容值发生的变化,从而得出传感器对力的检测能力及其灵敏度等基本特性。

电容式传感器位移特性实验报告

电容式传感器位移特性实验报告

电容式传感器位移特性实验报告篇一:实验十一电容式传感器的位移特性实验实验十一电容式传感器的位移特性实验一、实验目的:了解电容传感器的结构及特点二、实验仪器:电容传感器、电容传感器模块、测微头、数显直流电压表、直流稳压电源三、实验原理:电容式传感器是指能将被测物理量的变化转换为电容量变化的一种传感器它实质上是具有一个可变参数的电容器。

利用平板电容器原理:C??Sd??0??r?Sd(11-1)0真空介电常数,εr介质相对介电常数,由式中,S为极板面积,d为极板间距离,ε此可以看出当被测物理量使S、d 或εr发生变化时,电容量C随之发生改变,如果保持其中两个参数不变而仅改变另一参数,就可以将该参数的变化单值地转换为电容量的变化。

所以电容传感器可以分为三种类型:改变极间距离的变间隙式,改变极板面积的变面积式和改变介质电常数的变介电常数式。

这里采用变面积式,如图11-1两只平板电容器共享一个下极板,当下极板随被测物体移动时,两只电容器上下极板的有效面积一只增大,一只减小,将三个极板用导线引出,形成差动电容输出。

四、实验内容与步骤1.按图11-2将电容传感器安装在电容传感器模块上,将传感器引线插入实验模块插座中。

2.将电容传感器模块的输出UO接到数显直流电压表。

3.接入±15V电源,合上主控台电源开关,将电容传感器调至中间位置,调节Rw,使得数显直流电压表显示为0(选择2V档)。

(Rw确定后不能改动)4.旋动测微头推进电容传感器的共享极板(下极板),每隔记下位移量X与输出电压值V的变化,填入下表11-1五、实验报告:1.根据表11-1的数据计算电容传感器的系统灵敏度S和非线性误差δf。

六、实验数据曲线图:VX篇二:电涡流传感器的位移特性实验报告实验十九电涡流传感器的位移特性实验一、实验目的了解电涡流传感器测量位移的工作原理和特性。

二、实验仪器电涡流传感器、铁圆盘、电涡流传感器模块、测微头、直流稳压电源、数显直流电压表三、实验原理通过高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量。

电容式传感器测位移实验

电容式传感器测位移实验
电容式传感器的位移 特性实验
一、实验目的
理解差动电容式传感器的工作原理,掌握差动电容 式传感器电路的组成并会计算其精度,了解电容传感器 在位移测量中的使用。
二、实验内容
利用电容式传感器测位移
三、实验仪器
• 传感器检测技术综合实验台、电容传感器实验模块、 电容传感器、振动源实验模块、示波器、导线。
六、实验报告要求 • 1. 实验数据真实,准确,填入表格 • 2. 对数据进行处理,进行误差分析,求出 线性度,灵敏度,做出输入-输出特性曲线
七、注意事项
• 1.不要带电操作,请仔细检查电路及仪器连 接后打开电源;
• 2.传感器内外筒上导线较细,请大家轻拿轻 放,并注意在改变位移时小幅度增加,避 免拉断导线; • 3.实验完成后注意整理好仪器再离开。
四、实验原理
S 0 r S C d d
• 差动圆筒式 两个外筒不动 等电势 内筒可动

差动电容式传感器结构图
二极管环形充放电电路
cx1
a
c
cx2
五、实验步骤
1.连接电路
2. 螺旋测微仪安装示意图
2.调节脉冲调制单元的电位器W1,使其输出 方波 3. RW1调节到中间位置,旋动测微头推进电 容传感器移动至极板中间位置,使电压数显 表显示为最小值 4.旋动测微头,每间隔0.5mm记下位移X与输 出电压值,填入表

利用电容式位移传感器测量物体位移的实验步骤

利用电容式位移传感器测量物体位移的实验步骤

利用电容式位移传感器测量物体位移的实验步骤引言:近年来,随着科技的不断进步和应用的广泛发展,利用电容式位移传感器测量物体位移的技术在各个领域得到了广泛应用。

它通过测量电容的变化来获取物体的位移信息,具有高精度、快速响应和可靠性强的特点。

本文将介绍利用电容式位移传感器测量物体位移的实验步骤。

实验材料:1. 电容式位移传感器2. 电容检测电路3. 定位台4. 信号处理器5. 示波器6. 可变电源7. 实验样品实验步骤:步骤一:搭建实验装置首先,将定位台放在水平平稳的台面上,并调整好水平,保证测量的准确性。

然后将电容式位移传感器放置在定位台上,并通过螺丝固定好。

将电容式位移传感器的输出端与电容检测电路相连,再将电容检测电路的输出端连接到信号处理器以及示波器。

步骤二:调整实验参数将可变电源连接到电容检测电路上,根据实验要求设置适当的电压值。

在信号处理器上设置适当的增益和滤波参数,以保证得到清晰、稳定的测量信号。

此外,还需根据实验需求选择合适的采样频率和触发方式。

步骤三:校准电容式位移传感器在进行实际测量之前,需要对电容式位移传感器进行校准。

首先,将实验样品放置在传感器下方,并确保测量范围内没有其他物体干扰。

然后,调整电容检测电路输出的直流电压,使得示波器显示出零位的电压。

此时,可以将样品从初始位置移动到期望的位置,记录示波器上的实时电压。

步骤四:实际测量位移将实验样品放置在传感器下方,并通过定位台调节位置,使样品位于测量范围内。

在示波器上观察传感器输出的电压信号,并记录下对应的位置。

可以通过移动样品,观察位置与电压变化的关系,并得到物体位移曲线。

通过调整实验参数和测量范围,可以得到不同精度和范围的位移测量结果。

步骤五:数据处理与分析将实验测得的位移数据导入计算机,并利用相应的数据处理软件进行处理和分析。

可以通过拟合曲线,求解出位移与电压的数学模型,并计算出位移的准确值。

此外,还可以进行误差分析和精度评价,探究实验结果的可靠性和偏差大小。

电容式传感器的位移特性实验报告资料

电容式传感器的位移特性实验报告资料

电容式传感器的位移特性实验报告资料一、实验内容:1、使用电容式传感器进行位移测量;2、采用锁相放大器,对位移测量进行信号检测,输出交流(AC)信号幅度和相位;3、掌握电容式传感器的阻抗和信号特性。

二、实验原理:1、电容式传感器:是将测量物体与一个接地电极分离,形成一个独立的电容二极管。

当测量物体发生位移时,该二极管电容Cc变化,即Cc=f(d),d是测量位移。

在保持传感器静态工作点C0不变的情况下,当Cc发生变化时,不受测物位移的干扰。

因此,电容式传感器可以实现高精度、无接触、无磨损位移测量。

2、锁相放大器:是一种适用于相位、频率、振幅等参数检测的精密电子测量仪器。

它可以对微弱的交流信号检测并输出信号幅度和相位。

三、实验器材:2、锁相放大器;3、信号调理器;4、多路开关;5、示波器。

四、实验过程:1、在传感器静态工作点时,接触传感器,调整微调电容,使电压稳定在一个固定值;2、调整开关,将传感器所测量的位移信号输入信号调理器内,进行信号调理,可以得到一个幅度为1V、频率为10kHz左右、带有微弱噪声的交流信号;3、将调理后的信号连接至锁相放大器的输入端,将锁相放大器的参考输入端连接至信号调理器输出端,调节锁相放大器的参考信号相位,使锁相放大器输出的交流信号幅度和参考信号相位一致;4、通过示波器连接至锁相放大器输出端,调节示波器测量参数,可以得到锁相放大器输出信号的AC幅度和相位值;5、通过多路开关改变传感器输入的位移值,重复以上步骤,得到传感器的位移特性曲线。

五、实验结果:在不同的测量点进行测量,在锁相放大器中得到具有不同幅度和相位的AC信号,通过信号处理以及调制,最终得到有关电容式传感器位移特性曲线,从中发现电容性传感器在不同测量点上具有不同的灵敏度,以及对于位移值的反应截然不同,这也是电容式传感器的特点,需要在实际应用中进行合理的选择和设计。

六、实验分析:通过实验,我们发现电容式传感器的测量值和测量量并非简单的线性关系,仅仅是对于位移变化而产生的电容变化,同时也受到感应现象、环境噪声的影响。

电容式传感器的位移特性实验

电容式传感器的位移特性实验

电容式传感器的位移特性实验电容式位移传感器实验是一种重要的引导应用考核技术,它要求用户在复杂的实验环境中结合理论知识和实际操作,使用电容式位移传感器来测量和检验其变化。

电容式位移传感器具有灵敏度高、稳定性好、良好的鲁棒性等优点,在工业控制领域中得到广泛应用。

实验 content一、研究内容1、电容式位移传感器介绍:介绍电容式位移传感器的原理工作原理、接线结构以及精度要求等。

2、等效电路仿真:使用电路仿真软件,仿真输入电压的变化对电容式位移传感器的影响。

3、实验素材:利用工业电容式位移传感器,测量传感器的位移特性,探查其非线性特性以及如何改善精度。

4、仪器设备:利用函数发生器、数字万用表、模拟量信号示波器等常用仪器设备,分别检测典型电容器位移传感器的精度。

5、结论性评价:评价:分析电容式位移传感器的特性,对它的优缺点进行总结,指出如何提高其精度,进一步建立相关的计算模型。

二、实验原理1、电容式位移传感器由两个电容构成,其原理是由于特定环境改变时,电容之间的介质改变,会在电容上形成电容电势差而发生变化,从而使电容式位移传感器的内部电路受到影响,最终通过电容变化改变其输出电压。

2、实验中利用函数发生器产生跨越输入电压,观察输出电压的变化,研究电容式位移传感器的补偿特性和灵敏度。

3、设置正反向斜率的步进电压,控制正反向补偿电压间隔,观察其非线性特性,探究其实际特性。

4、模拟量信号示波器给出电容式位移传感器的不同输出电压,观察实际精度,辅助分析结果。

三、实验结果1、经过仿真计算,确定电容式位移传感器补偿特性曲线,补偿范围较大,灵敏度及时响应速度较快,补偿特性良好。

2、观察实验电路中电容式位移传感器的输出电压,发现其在正反向补偿斜率步进电压下,相应的响应有非线性变化,合理,可靠。

3、通过模拟量信号示波器的输出,可分析典型电容式位移传感器的精度,表明电容式位移传感器的精度较高,可以满足应用要求。

四、结论1、电容式位移传感器具有灵敏度高、稳定性优、较好的精度等特点,在工业控制领域具有广泛应用。

电容式传感器测位移特性实验

电容式传感器测位移特性实验

电容式传感器测位移特性实验电容式传感器是一种常用的位移传感器,采用电容式将小的位移量变化,转变成模拟电压来发送,以实现检测和测量的目的,其具有快速响应、高精度和反应稳定的特点,被广泛应用到航空、航天、工业控制仪表等领域。

本实验将通过实验设备进行测量电容式传感器的位移特性,以更加深入的了解电容式传感器的工作特性。

实验装置是一台专业的电容测试仪,此外还配有一个线性位移模拟器、一个电容式传感器、一些实验电缆和接口线等辅助设备。

实验可分为三个步骤:绘制拟合曲线前的实验前准备工作、将电容式传感器的位移信号变为模拟电压的转换过程以及拟合测得的曲线。

1、实验前准备工作:首先,将位移模拟器接线连接到实验装置;随后,将电容式传感器接入实验装置,并将电容传感器安装在位移模拟器上;最后,调节电容测试仪偏置电路,矫正偏置电压,以设定有效位移信号范围。

2、将电容式传感器的位移信号变为模拟电压的转换过程:在实验中,将位移模拟器的调置电位从最小值(0mm)调至最大值(50mm),从而控制位移模拟器产生不同的位移量。

每次顺序调节时,实验装置将其位移量所产生的信号作为输入,经过转换后将电容式传感器的位移信号变成一定失真程度的模拟电压信号,从而可进行数据获取。

3、拟合测得的曲线:由于电容式传感器的反应特性的确定,在本实验中选择了一种标准的二次曲线进行拟合,以便更好地了解其工作原理。

在拟合曲线以及拟合曲线的过程中,采用的是软件的拟合算法,计算出最佳的参数并绘制拟合曲线。

实验结果表明,本次实验证明了电容式传感器位移特性测试实验使用电容式传感器和实验装置进行测量均具有可行性和准确性,为此类传感器的应用提供了足够的参考。

此外,本次实验也体现了软件算法拟合准确性以及实验数据在绘制曲线过程中的重要性等。

电容式传感器的位移实验

电容式传感器的位移实验

实验一 电容式传感器的位移实验一、 实验目的:学会电容式传感器地初步使用,了解电容式传感器结构及其特点,对该传感器有一感性认识。

二、基本原理:利用电容C =εA /d 和其它结构的关系式通过相应的结构和测量电路可以选择ε、A 、d 中三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)、测微小位移(d 变)和测量液位(A 变)等多种电容传感器。

变面积型电容传感器中,平板结构对极距特别敏感,测量精度受到影响,而圆柱形结构受极板径向变化的影响很小,且理论上具有很好的线性关系,(但实际由于边缘效应的影响,会引起极板间的电场分布不均,导致非线性的问题依然存在,且灵敏度下降,但比变极距性好得多。

)成为实际中常用的结构。

本实验采用的传感器为圆筒式变面积差动结构的电容式位移传感器,如下图所示:它是有二个圆筒和一个圆柱组成的。

其中线位移单组式的电容量C 在忽略边缘效应时为:2XC=ln(R/r)επ式中:X ——外圆筒与内圆柱覆盖部分的长度;R 、 r ——外圆筒内半径和内圆柱外半径;图中C1、C2是差动连接,当图中的圆柱产生∆X 位移时,电容量的变化量为1202XX C=C -C ==C ln(R/r)Xεπ∆∆∆ 式中ε2 、ln(R /r)为常数,说明∆C 与位移∆X 成正比,配上配套测量电路就能测量位移。

于是,可得其静态灵敏度为:g C 2+X 2-X 4k ==-/X=X ln(R/r)ln(R/r)ln(R/r)X X επεπεπ⎡⎤∆∆∆∆⎢⎥∆⎣⎦()() 可见灵敏度与R/r 有关,R 与r 越接近,灵敏度越高,虽然内外机筒原始覆盖长度X 与灵敏度无关,但X 不可太小,否则边缘效应将影响到传感器的线性。

三、需用器件与单元主机箱、电容传感器、电容传感器实验模板、测微头。

四、实验步骤:1、测微头的使用和安装参阅实验九。

按图1将电容传感器装于电容传感器接主机箱电压表的Vin)。

电容式传感器的位移特性实验报告

电容式传感器的位移特性实验报告

斜率代替,因此得到
k = 35.24826255 mv/mm
5、迟滞误差 迟滞指正反行程中输出—输入特性曲线的不重合程度,用最大输出差值
∆max 与满量程输出������������������的百分比来表示,即
δH
=
±
1 2
·
∆������������������ ������������������
xi
12
12.5
13
13.5
14
14.5
15
15.5
16
16.5
17
17.5
yi -353.1 -335.5 -317.9 -300.2 -282.6 -265.0 -247.4 -229.7 -212.1 -194.5 -176.9 -159.2
xi
18
18.5
19
19.5
20
20.5
21
21.5
7 -510 -505
13 -339 -334
19 -106 -104
表 2 传感器线性输出区域
7.5 -497 -491 13.5 -322 -318 19.5 -85 -82
8 -483 -478
14 -304 -300
20 -64 -61
8.5 -470 -466 14.5 -286 -283 20.5 -43 -40
位移X/mm
输出电压U/mv 0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15 16.5 18 19.5 21 22.5 24 25.5 27 28.5
200 100
0 -100 -200 -300 -400 -500 -600
正行程

电容式传感器的位移特性实验 电容式传感器论文

电容式传感器的位移特性实验 电容式传感器论文

智能仪器课程设计报告书课程名称:智能仪器设计题目:电容式传感器的位移特性实验学院:电气学院专业:测控技术与仪器班级:BG0XX组员:XXX XXXXXX XXX摘要仪器仪表式获取信息的工具,式认识世界的手段。

它是一个具体的系统或装置。

它最基本的作用是延伸、扩展、补充或代替人的听觉、视觉、触觉等器官的功能。

随着科学技术的不断发展,人类社会已经步入信息时代,对仪器仪表的依赖性更强,要求也更高。

现代仪器仪表以数字化、自动化、智能化等共性技术为特征获得了快速发展。

关键词:智能仪器、微型计算机AbstractInstrument information access tool, a means of understanding the world style. It is a specific system or device. It is the most basic role is to extend, expand, complement or replace human auditory, visual, tactile and other organ functions. With the continuous development of science and technology, mankind has entered the information age, more dependent on the instrument, demanding more. Modern instrumentation to digital, automatic and intelligent features such as access to common technologies for the rapid development.Keywords:Intelligent instruments, micro-computer目录摘要 (I)ABSTRACT (III)第1章电容式传感器 (1)1.1电容式传感器工作原理 (1)1.2电容式传感器的结构类型 (2)1.3电容式传感器的优缺点 (2)第2章电容式传感器的位移特性实验 (4)2.1实验目的 (4)2.2基本原理 (4)2.3需用器件与单元 (4)2.4实验步骤 (5)2.5 A/D转换 (6)课程设计小结 (7)参考文献 (8)第1章 电容式传感器1.1 电容式传感器的工作原理两块极板之间的间隙变化,或是表面积变化,将使电容量改变,根据这一原理制成的传感器称为电容式传感器。

测控技术与仪器传感器技术实验报告电容式传感器的位移实验

测控技术与仪器传感器技术实验报告电容式传感器的位移实验

测控技术与仪器传感器技术实验报告电容式传感器的位移实验
一、实验内容
本实验旨在检测和分析电容式传感器的位移响应性能,以及在位移为特定值时对应的电容值。

二、实验原理
电容式传感器可以用来检测物体或介质(如气体或液体)的位移,它的原理是根据电容变化而变化,电容的基本原理是容量的大小取决于相应电容片的表面积和充放电电路中的介质介电系数,由于电容器中有物体或介质的变化,使得变化的电容量也随之变化,以实现位移检测的目的。

三、仪器及耗材
本实验所需设备主要为有限元分析仪,辅以相关耗材。

四、实验流程
1.将实验构筑出电容传感器测量定位系统,主要由电容传感器、测量电路以及数据分析软件等组成;
2.安装各种位移规测拨动台;
3.使用有限元分析仪,测量不同位移情况下对应的电容值;
4.绘制电容值随位移变化曲线;
5.结合实验结果推测实验结果并敏感度记录结果。

五、实验结果
(1)在位移为-100mm时,电容值为0.71;
(5)在位移为100mm时,电容值为0.86。

将各不同位移情况下的电容值进行扩展绘图:
六、敏感度分析
根据以上实验结果可以推算得出电容式位移传感器的敏感度为0.05F/mm。

七、讨论
电容式位移传感器的位移变化率符合要求,表明该类传感器可以满足实际应用的需求。

但是因为其固有特性,容易受湿度和粉尘影响,也就是说,它的精度和可靠性需要有效地
控制。

电容式传感器的位移实验总结

电容式传感器的位移实验总结

电容式传感器的位移实验总结1. 引言嘿,大家好!今天咱们聊聊电容式传感器的位移实验。

是不是听起来有点高大上?别担心,咱们用最简单的语言来掰扯一下。

电容式传感器,这玩意儿可真是科技的小精灵,能精确测量位移。

想象一下,你的手机屏幕触摸,背后就有这么个“小能手”在忙活。

2. 实验准备2.1 实验设备在实验开始之前,咱们得先准备好设备。

电容式传感器、万用表,还有一些基本的实验工具,比如电源和连接线。

这些东西就像做饭的调料,没有它们,啥都别想做出来。

别忘了,实验室的环境也很重要,要保持干净整洁,像你家里打扫的一样,才能心情好,实验也顺利。

2.2 实验步骤接下来,咱们就要进入正题,嘿嘿!先把传感器连接到电路上,确保一切都能正常工作。

然后,慢慢调整传感器的位移,注意观察数据的变化。

每次移动一点点,传感器就会像个小孩子,立刻给你反馈。

这时候你会感受到,哇,科技就是这么神奇!感觉自己像是进入了未来世界,嘿,有点小激动。

3. 实验结果分析3.1 数据观察实验结束后,拿到的数据就像一份宝藏。

你会发现,位移和电容之间的关系简直清晰得让人惊讶。

每当你移动传感器,电容的变化就像过山车一样,一上又下一惊一乍。

通过这些数据,咱们可以推导出一些公式,仿佛揭开了一个个小秘密,让人忍不住想深入探索。

3.2 误差分析不过,任何事情都不可能完美无缺,对吧?在实验中,总会遇到一些小麻烦。

比如环境的干扰、设备的灵敏度等等,都是影响结果的“捣蛋鬼”。

这时候,别急着骂它们,先冷静下来,想想怎么克服这些问题。

用心去分析,每个误差都是你进步的机会,别小看它们哦!4. 总结与展望实验的最后,咱们得给这次经历一个总结。

电容式传感器在位移测量中的应用真是让人眼前一亮,它的高精度和实时性让很多传统方法相形见绌。

未来,随着科技的发展,这种传感器会越来越普遍,可能在你生活的方方面面都有它的身影。

想到这里,心里满满的都是期待!谁知道呢,或许下一个伟大的发明就是从这些实验中诞生的。

国开作业《传感器与测试技术》实验成绩(20%)参考320

国开作业《传感器与测试技术》实验成绩(20%)参考320

电容式传感器的位移测量实验一、实验目的:了解电容传感器的结构及特点 二、实验仪器:电容传感器、电容传感器模块、测微头、数显直流电压表、直流稳压电源三、实验原理:电容式传感器是指能将被测物理量的变化转换为电容量变化的一种传感器它实质上是具有一个可变参数的电容器。

利用平板电容器原理: dSd SC r ⋅⋅==εεε0(3-1)式中,S 为极板面积,d 为极板间距离,ε0真空介电常数,εr 介质相对介电常数,由此可以看出当被测物理量使S 、d 或εr 发生变化时,电容量C 随之发生改变,如果保持其中两个参数不变而仅改变另一参数,就可以将该参数的变化单值地转换为电容量的变化。

所以电容传感器可以分为三种类型:改变极间距离的变间隙式,改变极板面积的变面积式和改变介质电常数的变介电常数式。

这里采用变面积式,如图3-1两只平板电容器共享一个下极板,当下极板随被测物体移动时,两只电容器上下极板的有效面积一只增大,一只减小,将三个极板用导线引出,形成差动电容输出。

图3-1四、实验内容与步骤1.按图3-2将电容传感器安装在电容传感器模块上,将传感器引线插入实验模块插座中。

图3-22.将电容传感器模块的输出U接到数显直流电压表。

O3.接入±15V电源,合上主控台电源开关,将电容传感器调至中间位置,调节Rw,使得数显直流电压表显示为0(选择2V档)。

(Rw确定后不能改动)4.旋动测微头推进电容传感器的共享极板(下极板),每隔0.2mm记下位移量X与输出电压值V的变化,填入下表3-1X(mm)V(mV)五、实验报告:。

1.根据表11-1的数据计算电容传感器的系统灵敏度S和非线性误差δf。

传感器技术-电容式传感器的位移实验

传感器技术-电容式传感器的位移实验
《传感器技术》课程实验报告
专业名称
年级
班级
学生姓名
指导老师
时间
实验名称
电容式传感器的位移实验







1.了解电容式传感器的结构及其特点




电容传感器、电容传感器实验模板,测微头,移相/相敏检波/滤波模板、数显单元、直流稳压电源




用平板电容C=EAd的关系,在E、A、d中三个参数中,保持二个参数不变,只改变其中一个参数。就可使电容(C)发生变化,通过相应的测量电路,将电容的变化量转换成相应的电电压量,则可以制成多种电容传感器,如:变ε的温度电容传感器。②变d的电容孝式压力传感器。③变A的电容式位移传感器。本实验采用第⑧种电容传感器,是-种圆筒形差动变面积式电容传感器。









1、按图3- 1将电容传感器装于电容传感器实验模板上。
2、将电容传感器连线指入电容传感器实验模板,实验线路见图4-1。
3、将电容传感器实验模板的输出端V。与数显电压表V,相接,电压表量程置2V档.R调节到中同位置:
4、接入士15V电源,将测微头旋至10mm处,活动杆与传感器相吸合,调整测微头的左右位置,使电压表指示最小,并将测量支架顶部的镙钉拧紧,旋动测微头,每问隔0.2mm记下输出电压值(V ),填入表4- 1.测微头回到10mm处,反向旋动测微头,重复实验过程。


过程Biblioteka 及实验结

1.


1.注意电压表选择的量程。
2.实验前将电压表数值调零。



电容式传感器的位移实验报告

电容式传感器的位移实验报告

电容式传感器的位移实验报告电容式传感器的位移实验报告概述:电容式传感器是一种常见的传感器类型,它通过测量电容的变化来检测物体的位移。

在本次实验中,我们将使用电容式传感器来测量一个物体的位移,并分析实验结果。

实验装置:1. 电容式传感器:我们选择了一款高精度的电容式传感器,具有稳定的性能和较小的测量误差。

2. 信号采集器:为了获取传感器的输出信号,我们使用了一台信号采集器,并将其连接到电容式传感器。

3. 物体:我们选择了一个简单的金属块作为实验物体,通过移动该物体来模拟位移。

实验步骤:1. 连接:首先,我们将电容式传感器与信号采集器进行连接。

确保连接稳固可靠,并避免干扰信号的出现。

2. 校准:在进行实际测量之前,我们需要对电容式传感器进行校准。

校准的目的是确定传感器的输出与实际位移之间的关系。

3. 实验测量:将物体放置在传感器的测量范围内,并通过移动物体来模拟位移。

同时,记录传感器输出的变化,并与实际位移进行对比。

实验结果与分析:通过实验测量,我们得到了一系列传感器的输出值,并与实际位移进行了对比。

根据我们的实验数据,我们可以得出以下结论:1. 传感器输出与位移之间存在线性关系:通过绘制传感器输出与实际位移之间的散点图,我们发现它们之间存在明显的线性关系。

这意味着电容式传感器在测量位移方面具有较高的准确性和可靠性。

2. 测量误差存在:尽管电容式传感器具有较高的精度,但在实际测量中仍存在一定的误差。

这些误差可能来自于传感器本身的不确定性,以及实验环境中的干扰因素。

因此,在实际应用中,我们需要对测量结果进行修正和校准。

3. 传感器响应速度:通过观察传感器输出的变化曲线,我们可以了解到电容式传感器的响应速度。

在实验中,我们发现传感器的响应速度相对较快,能够准确地跟踪物体的位移变化。

实验应用:电容式传感器在工业和科学研究领域有着广泛的应用。

以下是一些常见的应用领域:1. 位移测量:正如我们在实验中所展示的,电容式传感器可以用于测量物体的位移。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C d C0 d0
此时C与Δd近似呈线性关系,所以变极距型电容式 传感器只有在Δd/d0很小时,才有近似的线性关系。
• 灵敏度:
C C0 Sn d d 0
可见,要提高灵敏度,应减小 d0 。但 d0 过小,容 易引起电容器击穿或短路。
C C0 S 灵敏度: n d d0
测量电路
• 测量电路画在实验模板的面板上。其电路的核心 部分是二极管环路充放电电路

• •
• •

充电:当高频激励电压(f>100kHz)输入到a点,由低电平E1跃到高电 平E2时,电容CX1和CX2两端电压均由E1充到E2。 线路一:a点经D3到b点,再对CX1充电到O点(地) 线路二:a点经C4到c点,再经D5到d点对CX2充电到O点。此时,D4和 D6由于反偏置而截止。在t1充电时间内,由a到c点的电荷量为: Q1=CX2(E2-E1) (1) 放电:当高频激励电压由高电平E2返回到低电平E1时,电容CX1和CX2均 放电。 线路一:CX1经b点、D4、c点、C4、a点、L1放电到O点 线路二:CX2经d点、D6、L1放电到O点。在t2放电时间内由c点到a点的 电荷量为: Q2=CX1(E2-E1) (2) 式(1)(2)是C4电容值远远大于传感器的CX1和CX2电容值的前提下 得到的结果。电容C4的充放电回路如图中实线、虚线箭头所示。 在一个充放电周期内(T=t1+t2),由c点到a点的电荷量为: Q=Q2-Q1=(CX1-CX2)(E2-E1)=△CX △E
需用器件与单元
• • • • • 主机箱±15V直流稳压电源 电压表 电容传感器 电容传感器实验模板 测微头
实验步骤:
• 1、按图示安装、接线。
电容传感器位移实验安装、接线示意图
• 2、将实验模板上的Rw调节到中间位置(方法:逆时针转 到底再顺时传3圈)。 • 3、将主机箱上的电压表量程切换开关打到2V档,检查接 线无误后合上主机箱电源开关,旋转测微头改变电容传感 器的动极板位置使电压表显示0V ,再转动测微头(同一个 方向)6圈,记录此时的测微头读数和电压表显示值为实验 起点值。以后,反方向每转动测微头1圈即△X=0.5mm位 移读取电压表读数(这样转13圈读取相应的电压表读数), 将数据填入表(这样单行程位移方向做实验可以消除测微 头的回差)。 • 电容传感器位移实验数据
• 若,只保留上式中的线性项和三次项, 电容式传 感器的相对非线性误差θ为:
2 100% ( ) 100% 0 2( ) 0 2( )3
差动式电容传感器灵敏度是原来的2倍 零点附近的非线性误差大大降低。
变面积型电容式传感器
(1)线位移型
• 动极板沿定极板移动Δx,则电容量变化为: a
• 4、根据表数据作出△X—V实验曲线并截取线性比较好的 线段计算灵敏度S=△V/△X和非线性误差δ及测量范围。 实验完毕关闭电源开关。
实验结果
C C1 C2 C0 [2 2( )3 2( )5 ...] 0 0 0 • 电容值相对变化量为:
C 2 [1 ( )2 ( )4 ...] C0 0 0 0
C 2 4 2 [1 ( ) ( ) ...] C0 0 0 0
C0 C C0 C d0 d 1 d d0
电容量与极板间距离的关系
0 r S
• 若Δd/d0<<1时,则展成级数:
d d 2 d 3 C C0 1 d0 d0 d0 d C0 1 d 0
• 当θ=0 时,
0 r S0 C0 0
动极板
• 当θ≠0时, 则: 0 r S0 1 C C0 C0 0
定极板
• 可见,电容的变化ΔC=-C0(θ/π)与角位移θ成线性关系。
(3)圆柱位移型
• 两只静极板电容器共享一个动极板,当动极板随被测物体 移动时,两只电容器上下极板的有效面积一只增大,一只 减小,将三个极板用导线引出,形成差动电容输出。 • 本实验采用的传感器为圆筒式变面积差动结构的电容式位 移传感器,差动式一般优于单组(单边)式的传感器。它灵 敏度高、线性范围宽、稳定性高。 • 二个圆筒和一个圆柱组成的。设圆筒的半径为R;圆柱的 半径为r;圆柱的长为x,则电容量为C=ε2пx/ln(R/r)。 图中C1、C2是差动连接,当图中的圆柱产生∆X位移时, 电容量的变化量为∆C =C1-C2=ε2п2∆X/ln(R/r),式中 ε2п、ln(R/r)为常数,说明∆C与∆X位移成正比,配上配 套测量电路就能测量位移。
在一个充放电周期内(T=t1+t2),由c点到a点的电荷量为: Q=Q2-Q1=(CX1-CX2)(E2-E1)=△CX △E
式中:CX1与CX2的变化趋势是相反的(传感器的结构决定的, 是差动式)。 • 设激励电压频率f=1/T,则流过ac支路输出的平均电流i为: i=fQ=f△CX △E 式中:△E—激励电压幅值;△CX—传感器的电容变化量。 可看出:f、△E一定时,输出平均电流i与△CX成正比, 此输出平均电流i经电路中的电感L2、电容C5滤波变为直流I 输出,再经Rw转换成电压输出Vo1=I Rw。由传感器原理已 知∆C与∆X位移成正比,所以通过测量电路的输出电压Vo1 就可知∆X位移。
差动式结构
• 为提高灵敏度和线性度,克服电源电压、环境温度变化等外界条件影 响,常采用差动式电容传感器 • 上下两极板是固定极板,中间极板是活动极板 • 未开始测量时将活动极板调整在中间位置,两边电容相等。测量时, 中间极板向上或下平移,就会引起电容量的上增下减或反之。
当动极板向上位移Δδ时:
电容器C1的间隙δ1变为δ0–Δδ ;电容器C2的间隙δ2变为δ0+Δδ ; 则:
(g)
(h)
(i)
(j)
( k)
(l)
电容式传感元件的各种结构形式
变间隙(极距)型电容传感器
• 变极距型电容式传感器
• 当传感器的 εr 和S 为常数,初始极距为 d0时,可知
其初始电容量C0为
C0
量增大了ΔC,则有
0 r S
d0
• 若电容器极板间距离由初始值 d0 缩小了 Δd ,电容
d 式中;C0=ε0εr b a /d 为初始电容, 电容相对变化量为: C C C0
0 r a x b
C0
d b Δx S
C x C0 a
• 显然,ΔC与动极板位移Δx呈线性关系 x
(2)角位移型
• 当动极板产生角位移θ时, 与定极板间的有效覆盖面积改变, 两极板间的电容量改变。 θ
C1 C0 1 1
0 • 在Δδ /δ 0<< 1时,按级数展开:
C1 C0 [1
1
C2 C0
1
0

0
(

0
) (
2

0
) ...]
3
C2 C0 [1
0
(
0
) (
2
0
)3 ...]
• 电容值总的变化量为:
上述等式成立的条件是:Δd/d0<<1时,高次项省略,若保 留二次项,则有: C d d (1 ) C0 d0 d0
• 电容式传感器的相对非线性误差δ :
= d / d0 100%
• 可见,要提高灵敏度,须减小起始间隙d0,但此时相对非 线性误差δ增大。所以为使二者兼得,常采用差动式结构, 即使其中一个电容器的电容C1随位移△d增加,而另一个电 容器的电容C2则减小。
S —— 两极板间相互覆盖面积; d—— 两极板之间的距离。
• 当被测参数变化使得S、 d或ε发生变化时,电容量 C 也随之变化。电容式传感器可分为变间隙(极 距)型、变面积型和变介电常数(介质)型三种。
变间隙(极距)型、变面积型和变介电常数(介质)型

(a)
(b)
(c)
(d)
2
(e)
1
(f)
压、液面、料面、成分含量等方面的测量。
电容式传感器的工作原理和结构形式
• 由绝缘介质分开的两个平行金属板组成的平板电 容器,如果不考虑边缘效应,其电容量为:
C

• •
0 r S
d

S
d
• 式中:εr —— 相对介电常数;
ε0—— 真空中的介电常数,ε0=8.85×10-12 [F/m];
实验一 电容式传感器的位移实验
指导教师:杨倩 E-mail:yyqqq@
实验目的
• 了解电容式传感器结构及其特点。
实验原理
• 电容式传感器是利用电容器的原理将被测非电量
转换为电容量的变化,实现非电量到电量的转化。
• 应用:不但广泛的应用于位移、振动、角度、加
速度等机械量的精密测量而且可以用于压力、差
相关文档
最新文档