小学奥数分数的简便运算

合集下载

六年级奥数—分数的简便计算

六年级奥数—分数的简便计算

分数是数学学科中一个重要的概念,它是指一个数被分为若干等份之后的每一份。

在学习分数的过程中,我们经常需要进行分数的计算,因此掌握一些分数的简便计算方法可以提高计算效率。

下面我将介绍几种常见的分数的简便计算方法。

一、相加相减:1.分数的相加:对于两个分数的相加,我们需要先找到它们的公共分母,然后将这两个分数的分子相加,分数的分母保持不变。

例如:1/2+1/3=(3+2)/6=5/6 2.分数的相减:与分数的相加类似,对于两个分数的相减,我们也需要先找到它们的公共分母,然后将这两个分数的分子相减,分数的分母保持不变。

例如:5/6-1/3=(5-2)/6=3/6=1/2二、乘法和除法:1.分数的乘法:对于两个分数的乘法,我们将两个分数的分子相乘,分数的分母也相乘。

例如:2/3*3/4=6/12=1/22.分数的除法:对于两个分数的除法,我们将一个分数的分子和另一个分数的倒数的分子相乘,分数的分母也相乘。

例如:2/3/1/4=2/3*4/1=8/3三、分数的化简:在进行分数运算时,我们经常需要对分数进行化简,使分数的表达更加简洁。

化简分数的方法有两种:1.找到分子和分母的最大公约数,然后将分子和分母同时除以这个最大公约数。

2.直接观察分子和分母是否有公因数,有的话就除以这个公因数。

例如:化简4/8,我们发现4和8都可以被2整除,所以可以化简为1/2另外,对于分数的计算,我们还需要注意以下几点:1.如果一个分数的分子和分母相等,那么该分数的值是1、例如:3/3=12.如果一个分数的分子为0,那么该分数的值是0。

例如:0/5=03.如果一个分数是真分数(分子小于分母),那么它的值必然小于1;如果一个分数是假分数(分子大于分母),那么它的值必然大于14.如果一个真分数的分子和分母相差较大,我们可以用约等于号“≈”来表示。

例如:37/100≈0.375.在我们日常生活中,我们经常需要将分数转换成百分数或小数。

这可以通过将分子除以分母,然后乘以100或移动小数点的位置来实现。

六年级奥数举一反三分数简便运算(四)

六年级奥数举一反三分数简便运算(四)

例题4、计算:1 1 1 1 1 1
2 4 8 16 32 64
观察:分母之间的变化规律,后一个分母总是
前一个分母的2倍,也就是两个后面的分数相
加等于前面的一个分数,因此,我们可以从最
后开始算起,先加一个1 ,就可以得到前一个 分数,再依次从后往前6加4 ,就可以得到“和”
“1”,但是先前我们给整个算式加了一1个 ,
1 1 1 1 1 6 42 56 72
例题2、计算:
1 24
+
1 46
+1
68
+...+
1 48
50
因为2
2
4
1 2
1 4
原式=(2
12
4
+
2 46
121
46
1 4
+
1 6
121
6
8
2 1 68 6
+...+
1
8
121
48
2 48 50
50)×2
11 48 50
1 2
=(
1 2
2 1 44
+
1
2
1
44 66
+166 2881 +......+
1
2
1
) 1
4485500 2
= 1 1 1
2 50 2
=
24 50
1 2
=6
25
1 1 1 ... 1 35 5 7 79 9799
1 1 1 ... 1 1 4 4 7 710 97100
1 1 1 ... 1 15 59 913 3337
(1+a)×b-(1+b)×a =b+ab-a-ab =b-a 再用这两个字母所代表的加数相减就行了。

小学六年级奥数_简便运算(四)

小学六年级奥数_简便运算(四)
解: 20×(1-25%)×400 =20×0.75×400 =6000(棵) 答:共植树6000棵。
二、精讲精练
练习5:
1.有一块菜地和一块麦地,菜地的一半和麦地的1/3放在一起是13公顷,麦 地的一半和菜地的1/3放在一起是12公顷,那么,菜地有多少公顷?
2.师徒两人加工同样多的零件,师傅要10分钟,徒弟要18分钟。两人共同加 工零件168个,如果要在相同的时间内完成,两人各应加工零件多少个?
答:大米原有1200袋,面粉原有800袋。
二、精讲精练
练习4: 1.甲、乙两人各准备加工零件若干个,当甲完成自己的2/3、乙完成自己的 1/4时,两人所剩零件数量相等,已知甲比乙多做了70个,甲、乙两人各准备 加工多少个零件?
2.一批水果四天卖完。第一天卖出180千克,第二天卖出余下的2/7,第三、 四天共卖出这批水果的一半,这批水果有多少千克?
二、精讲精练
练习4:
1.停车场里有小汽车的辆数是大汽车的3/4,大汽车的辆数是小汽车的几分 之几?
2.如果山羊的只数是绵羊的6/7,那么绵羊的只数是山羊的几分之几?
3.如果花布的单价是白布的1又3/5倍,则白布的单价是花布的几分之几?
二、精讲精练
【例题5】甲数的1/3等于乙数的1/4,甲数是乙数的几分之几,乙数是甲数的 几倍?
小学奥数 举一反三
(六年级)
第5讲 简便运算(四)
前面我们介绍了运用定律和性质以及数的特点进行巧算和简算的一些方 法,下面再向同学们介绍怎样用拆分法(也叫裂项法、拆项法)进行分数的简 便运算。
运用拆分法解题主要是使拆开后的一些分数互相抵消,达到简化运算的目
的。一般地,形如
的分数可以拆成
;形如
的分数可

六年级奥数简便运算

六年级奥数简便运算

第四讲 简便运算(二)一、专题简析前面我们介绍了运用定律和性质以及数的特点进行巧算和简算的一些方法,下面再向同学们介绍怎样用拆分法(也叫裂项法、拆项法)进行分数的简便运算。

运用拆分法解题主要是使拆开后的一些分数互相抵消,达到简化运算的目的。

一般地,形如1a ×(a+1) 的分数可以拆成1a -1a+1 ;形如1a ×(a+n )的分数可以拆成1n ×(1a -1a+n ),形如a+b a ×b 的分数可以拆成1a +1b等等。

同学们可以结合例题思考其中的规律。

二、精讲精练【例题1】计算:11×2 +12×3 +13×4 +…..+ 199×100原式=(1-12 )+(12 -13 )+(13 -14 )+…..+ (199 -1100) =1-12 +12 -13 +13 -14 +…..+ 199 -1100=1-1100=99100练习1计算下面各题:1. 14×5 +15×6 +16×7 +…..+ 139×402. 110×11 +111×12 +112×13 + 113×14 +114×153. 12 +16 +112 +120 + 130 +1424. 1-16 +142 +156 +172【例题2】计算:12×4 +14×6 +16×8 +…..+ 148×50原式=(22×4 +24×6 +26×8 +…..+ 248×50 )×12 =【(12 -14 )+(14 -16 )+(16 -18 )…..+ (148 -150 )】×12=【12 -150 】×12=625练习2计算下面各题:1. 13×5 +15×7 +17×9 +…..+ 197×992. 11×4 +14×7 +17×10 +…..+ 197×1003. 11×5 +15×9 +19×13 +…..+ 133×374. 14 +128 +170 +1130 +1208【例题3】计算:113 -712 +920 -1130 +1342 -1556原式=113 -(13 +14 )+(14 +15 )-(15 +16 )+(16 +17 )-(17 +18) =113 -13 -14 +14 +15 -15 -16 +16 +17 -17 -18=1-18=78练习3计算下面各题:1. 112 +56 -712 +920 -11302. 114 -920 +1130 -1342 +15563. 19981×2 +19982×3 +19983×4 + 19984×5 +19985×64. 6×712 -920 ×6+ 1130 ×6 【例题4】计算:12 +14 +18 +116 +132 +164原式=(12 +14 +18 +116 +132 +164 +164 )-164=1-164=6364练习4计算下面各题:1. 12 +14 +18 +………+12562. 23 +29 +227 +281 +22433. 9.6+99.6+999.6+9999.6+99999.6【例题5】计算:(1+12+13+14)×(12+13+14+15)-(1+12+13+14+15)×(12+13+14)设1+12+13+14=a12+13+14=b原式=a×(b+15)-(a+15)×b=ab+15a-ab-15b=15(a-b)=1 5练习51.(12+13+14+15)×(13+14+15+16)-(12+13+14+15+16)×(13+14+15)2.(18+19+110+111)×(19+110+111+112)-(18+19+110+111+112)×(19+110+111)3.(1+11999+12000+12001)×(11999+12000+12001+12002)-(1+11999+12000+12001+12002)×(11999+12000+12001)。

小学六年级奥数简便运算题大全

小学六年级奥数简便运算题大全

小学六年级奥数简便运算题大全小学六年级奥数简便运算题大全一、加减法1、给出一系列不超过100的正整数,求出它们的和:(1)25+28+32+43=128(2)17+26+35+49+68=195(3)1+12+30+56+101=2002、给出一个有序整数,求出它们的差:(1)45-25=20(2)110-90=20(3)700-600=1003、给出一组加法的表达式,完成计算:(1)4+6+8+10=28(2)22+26+32+49=129(3)100+20+50+60=230二、乘除法1、求出下列乘积:(1)3×3×3=27(2)2×2×2×2×2=32(3)4×7×9=2522、给出下列相同数量的除法表达式,完成计算:(1)30÷5=6(2)84÷12=7(3)48÷4=123、完成乘法表达式:(1)5×5=25(2)3×6=18(3)7×8=56三、口算式1、整数计算:(1)三加五=八(2)四乘三=十二(3)八减四=四2、小数计算:(1)0.6加0.2=0.8(2)1.5乘0.6=0.9(3)2.2减1.4=0.83、分数计算:(1)(2/3)加(3/4)=17/12 (2)(1/2)乘(2/3)=2/6 (3)(5/6)减(2/4)=4/12四、其他1、求余数:(1)20÷4=5余0(2)32÷6=5余2(3)80÷7=11余32、文字题:(1)张三在售货部买东西花了18元,拿了两张钞票,每张都是20元,购物后张三还剩多少钱?答:22元。

(2)一分钱可以分成多少枚硬币?答:一分钱可以分成10枚硬币。

(3)九块三毛七分可以用多少张五角整?答:九块三毛七分可以用18张五角整。

六年级分数简便运算奥数题及答案

六年级分数简便运算奥数题及答案

六年级分数简便运算奥数题及答案(1)1/1*3+1/2*4+1/3*5+1/4*6+1/5*7......1/98*100+1/99*101=(1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+1/5-1/7+……+1/98-1/100+1/99-1/101)÷2=(1+1/2-1/100-1/101)÷2=15049/10100÷2=15049/20200(2)6分之1+12分之1+24分之1+48分之1+96分之1+192分之1=1/6×(1+1/2+1/4+1/8+1/16+1/32)=1/6×(1-1/32)=1/6-1/192=31/192(3)1/(1×2)+2/(1×2×3)+3/(1×2×3×4)+4/(1×2×3×4×5)+5/(1×2×3×4×5×6)+6/(1×2×3×4×5×6×7)= 1-1/(1×2)+1/(1×2)-1/(1×2×3)+1/(1×2×3)-1/(1×2×3×4)+1/(1×2×3×4)-1/(1×2×3×4×5)+1/(1×2×3×4×5)-1/(1×2×3×4×5×6)+1/(1×2×3×4×5×6)-1/(1×2×3×4×5×6×7)=1-1/(1×2×3×4×5×6×7)=1-1/5040=5039/5040(4)6360/39)/(1600/39)=6360/1600=3.975一、工程问题甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时开启甲乙两水管,5小时后,再开启排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。

六年级奥数专题分数的计算技巧

六年级奥数专题分数的计算技巧

1. 83 × 72 ÷ 109 例2. 432 ÷ 851 × 2213= 83 ×72 ×910 = 411 ×138 ×2213= 3425978六年级六年级奥数奥数专题分数的计算技巧专题分数的计算技巧专题简介分数分数四则运算四则运算中有许多十分有趣的现象与技巧,中有许多十分有趣的现象与技巧,它主要通过一些运算定它主要通过一些运算定律、性质和一些技巧性的方法,达到计算正确而迅速的目的。

基础学习例 1023´´´´= 22213413811´´´´= 425 = 1 典型例题 例1、计算:(1)4544×37 37 ((2)20042004××200367分析与解:观察这两道题的数字特点,第(观察这两道题的数字特点,第(11)题中的4544与1只相差1个分数单位,如果把4544写成(写成(1-1-451)的差与37相乘,再运用相乘,再运用乘法分配律乘法分配律可以使计算简便。

同样,第(可以使计算简便。

同样,第(22)题中可以把)题中可以把整数整数2004写成(写成(2003+12003+12003+1)的和)的和与200367相乘,再运用乘法分配律计算比较简便。

相乘,再运用乘法分配律计算比较简便。

(1)4544×37 37 ((2)20042004××200367 =(1-451)×)×37 = 37 = 37 = ((2003+12003+1)×)×200367= 1= 1××37 - 451×37 = 200337 = 2003××200367 + 1 + 1××200367= 36458 =67200367例2、计算计算: (1)73: (1)73151×81 (2) 166201÷41分析与解:(1)73151把改写成把改写成(72 (7273151×81 = (72 +1516)×81 = 72 = 72 ××81 +1516×81 = 9152(2)把题中的166201÷41 = (164 +2041)×411 = 164 = 164××411 +2041×411 = 4201例3、计算:(1)41×39 + 43×25 + 426×133(2)1174×(×(2232 - 43)+ 15121 ÷2117分析与解:(1可以写成43×1313,,426×133可以写成43×1326,然后再运用乘法分配律使计算简便。

【精品】通用版2022年六年级奥数精品讲义易错专项高频计算题-分数的巧算(含答案)

【精品】通用版2022年六年级奥数精品讲义易错专项高频计算题-分数的巧算(含答案)

通用版六年级奥数专项精品讲义及常考易错题汇编计算问题-分数的巧算【知识点归纳】分数运算符合的定律.(1)乘法交换律 a×b=b×a(2)乘法结合律 a×(b×c)=(a×b)×c(3)乘法分配律 a×(b+c)=a×b+a×c;a×(b-c)=a×b-a×c (4)逆用乘法分配律 a×b+a×c=a×(b+c);a×b-a×c=a×(b-c)(5)互为倒数的两个数乘积为1.除法的几个重要法则(1)商不变性质被除数和除数乘以(或除以)同一个非零的数,商不变,即a÷b=(a×n)÷(b×n)(n≠0)a÷b=(a÷m)÷(b÷m)(m≠0)(2)当n个数都除以同一个数后再加减时,可以将它们先加减之后再除以这个数;反之也成立(也可称为除法分配律).如:(a±b)÷c=a÷c±b÷c; a÷c±b÷c=(a±b)÷c.【解题方法点拨】分数巧算就是熟能生巧的过程,综合运用乘法分配律,分数化小数,小数化分数以及带分数化假分数、带分数拆分等方法达到巧算的目的.1、把同分母的分数凑成整数.a.先去括号;b.利用交换律把同分母分数凑在一起;c.利用减法性质把同分母分数凑在一起.2、分数乘法中,利用乘法交换律,交换数的位置,以达到约分的目的;利用乘法结合律,以达到约分的目的,从而简算.3、分数混合运算中有除法,先将除法转化为乘法,然后再利用乘法的分配律的方法来计算以达到凑整的目的.4、懂得拆分.一.选择题1.+++…++的和是()A.1 B.2012 C.10062.的值是多少.()A.B.C.D.3.如果+=×2=;++=×3=;+++=×4=,则+++…+=()A.B.C.D.4.用简便方法计算:的结果是()A.B.C.D.5.若将算式的值化为小数,由小数点后第1个数字是()A.4 B.3 C.2 D.16.计算:(1+)×(1+)×(1+)×…×(1+)=()A.50 B.99 C.100 D.2007.分母为2009的所有真分数相加是多少?()A.1004 B.2008 C.330 D.789二.填空题8.2019×(1﹣)×(1﹣)×(1﹣)×……×(1﹣)=.9.我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非.”如图:在一个边长为1的正方形纸板上,依次贴上面积为“,,…”的矩形彩色纸片,请你用“数形结合”的思想,依据数形变化的规律,计算+++++…=.10.+++=.11.=.12.+++…+,这个算式结果的整数部分是.13.2006×2008×(+)=.14.=.15.+++++=.三.计算题16.计算我最细心,怎样算简便就怎样算.×+÷(+﹣)×1201999+999×999×(﹣)×0.3÷17.计算题①(9﹣3﹣1)×2②++③8888×58﹣4444×16+44④150﹣120÷1.4×0.84⑤17×37﹣174×1.9+17×82⑥1999×﹣18.运算能力展示.7.8÷[32×(1)+3.6][12×19×()]9 ()×()﹣()×()19.计算 (1)1+12+123+1234+12345+123456 (2)(142857+428571+285714+857142+571428+714285)+9 (3)149×(4)3(5)(10+876+312)×(876+312+918)﹣(10+876+312+918)×(876+312) (6)解方程:13﹣2(2x ﹣3)=5﹣(x ﹣2) 20.计算。

五年级下册讲义: 06讲 分数简便运算(二)(含答案、奥数板块)

五年级下册讲义:  06讲 分数简便运算(二)(含答案、奥数板块)

分数简便运算(二)【名师解析】分数计算是小学数学学习和重要内容,也是数学竞赛的重要内容之一。

要使计算准确、快速,关键在于掌握运算技巧。

观察算式的特点及规律,灵活地运用运算定律和性质,对启迪思维,提高应变能力,培养综合分析与推理能力都有很大的帮助。

常用的主要技巧:逆用乘法分配律;代换法;转化法。

【例题精讲】例1、代换法)413121()514131211()51413121()4131211(++⨯++++-+++⨯+++练习、)20021.....413121()20031.....4131211()20031.....413121()20021.....4131211(++++⨯+++++-++++⨯+++++20071 (14131111120071) (1413121)++++++++++例2、(等差数列)100999843211543211432113211211++++++++++++++++++++++ΛΛΛΛ练习、100986421864216421421+++++++++++++ΛΛ10011002100310010010031002100144434241313233323121222111++++++++++++++++++++++ΛΛΛΛΛΛ例3、(巧分类)2222222612612612617777772525252525225225225211234565432⨯⨯练习、3213213213211212121221212121211211211211⨯ 9999999977777777543211234567876⨯8888888888888888123456787654321⨯++++++++++++++例4、(裂差)50491...431321211⨯++⨯+⨯+⨯ 5614213012011216121++++++99971...751531311⨯++⨯+⨯+⨯练习、100991 (13)1211211111101⨯++⨯+⨯+⨯100981...861641421⨯++⨯+⨯+⨯ 156113211101901721++++例5、(裂和)561542133011209127311-+-+-练习、81]831)561054291307720631249635[(÷--+-+-【选讲】(等比数列)1001003231212131313131⨯++++++Λ 512125611281641321161814121++++++++练习:384119219614812411216131+++++++ 1001003271616571717171⨯++++++Λ【综合精练】12817641632151614813412211++++++6059605860260154535251434241323121+++++++++++++++ΛΛΛΛ999897432116543211543211432113211++++++++++++++++++++++++++ΛΛΛΛ6866766647867647427⨯+⨯++⨯+⨯+⨯ΛΛ10297197921171211271721⨯+⨯++⨯+⨯+⨯ΛΛ3512787665774201+-+- 9172175615421330112091276523+-+-+-+-32336255321952814324992063163512158-+-+-+- 44735228315861--++)7665544332()7665544332211(21)766554433221()766554433221(2++++⨯++++++-⨯+++++++++++)947331()947352311(53)94735231()94735231(2++⨯++++-⨯+++++++11112111311143114120092009++++++++++m m 5141415151515132⨯++++++Λ【挑战竞赛】=⨯+++⨯++⨯++⨯+2003200220032002 (43433232212122222222)分数简便运算(二)【名师解析】分数计算是小学数学学习和重要内容,也是数学竞赛的重要内容之一。

小升初奥数第次课分数乘法简便运算

小升初奥数第次课分数乘法简便运算

+
1 3
1 4
+...+
1 99
1 100
......
= 1 1
100
99
= 100 2020/6/5
1 1 1 ... 1 45 56 67 3 940
111111 2 6 12203042
11 1 1 1 6 42 56 72
2020/6/5
Hale Waihona Puke 11 1 ... 1 35 57 79 9 799
232
46
2020/6/5
第八种:裂项法和拆项法 1 1 1 ... 1 12 23 34 9 9100
思路: 11 1 1
11 22 2
11 1 1 2233 2 3
11 1 1 33 44 3 4
11 1 1 9999110000 99 100
裂项法
=
1
1 2
+
1 2
1 3
29 29 30
28 1 30
第六种:带分数化加式
25 5 4 8
(25 5)4 8
25454 8
100 5 2
102 1 2
2020/6/5
333 1 3 3
14 1 1 25 13
2020/6/5
第七种:添加因数“1”
111 5 59 1111 5 59
1 1 1 5 9
11 1 ... 1 14 47 710 9 7100
2020/6/5
2020/6/5
2020/6/5
第五种:数字化加式或减式
87 3 86
(861) 3 86
86 3 1 3 86 86
3 3 86

小学奥数简便计算

小学奥数简便计算

简便运算方法总结一、运用运算定律:这里主要指乘法分配律的应用。

对于乘法算式中有因数可以凑整时,一定要仔细分析另一个因数的特点,尽量进行变换拆分,从而使用乘法分配律进行简便计算。

例如:⑴2005200420042004÷ ⑵654987666321655987⨯+-⨯二、充分约分:除了把公因数约简外,对于分子、分母中含有的公因式,也可直接约简为1。

进行分数的简便运算时,要认真审题,仔细观察运算符号和数字特点,合理进行简算。

需要注意的是参加运算的数必须变形而不变质,当变成符合运算定律的形式时,才能使计算既对又快。

例如:⑴)154971267()1389511511(⨯⨯÷⨯⨯ ⑵052005200520200520052005072007200720200720072007++++三、错位相减法: 根据算式的特点,将原式扩大一个整数倍,用扩大后的算式同原算式相减,就可以使复杂的计算变的简单。

例如:⑴21+221+321+421+521 ⑵51+543251515151+++四、公式法等差数列,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,。

等差数列的前n 项和公式为:Sn=n(a1+an)/2 注意: 以上n 均属于正整数。

计算:20081+20082+20083+20084+…+20082006+20082007五、图解法 计算:21 +41+81+161+321+641 解法一解法二六、裂项法这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1)1/[n(n+1)]=1/n-1/(n+1)(2)1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)](3)1/[n(n+1)(n+2)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]} 1、:511⨯+951⨯+1391⨯+……+33291⨯+37331⨯ 2、:21-34-154-354-634-994-1434-1954-2554 3、:21+65+1211+2019+3029+……+97029701+990098994、:1+432113211211+++++++++……+100......3211++++5、+⨯⨯+⨯⨯+⨯⨯543143213211…+10099981⨯⨯七、分组法,运用运算定律,将原式重新分组组合,把能凑整或约分化简的部分结合在一起简算。

六年级奥数之“分数运算中的技巧”专题

六年级奥数之“分数运算中的技巧”专题

六年级奥数之“分数运算中的技巧”专题主讲人:刘紫涵 审核人:孙蕾 一、专题分析:二、题型分类汇编:➢ 分数简便运算常见题型题型一:连乘——乘法交换律的应用 例题:1)1474135⨯⨯ 2)56153⨯⨯ 3)266831413⨯⨯涉及定律:乘法交换律 b c a c b a ⋅⋅=⋅⋅基本方法:将分数相乘的因数互相交换,先行运算。

题型二:乘法分配律的应用例题:1)27)27498(⨯+2)4)41101(⨯+ 3)16)2143(⨯+涉及定律:乘法分配律 bc ac c b a ±=⨯±)(基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。

题型三:乘法分配律的逆运算(提取公因数)例题:1)213115121⨯+⨯ 2)61959565⨯+⨯ 3)751754⨯+⨯涉及定律:乘法分配律逆向定律 )(c b a c a b a ±=⨯±⨯基本方法:提取两个乘式中共有的因数,将剩余的因数用加减相连,同时添加括号,先行运算。

题型四:添加因数“1”例题:1)759575⨯- 2)9216792⨯- 3)23233117233114+⨯+⨯涉及定律:乘法分配律逆向运算基本方法:添加因数“1”,将其中一个数n 转化为1×n 的形式,将原式转化为两两之积相加减的形式,再提取公有因数,按乘法分配律逆向定律运算。

题型五:数字化加式或减式 例题:1)16317⨯ 2)12612447⨯ 3)353436⨯涉及定律:乘法分配律逆向运算基本方法:将一个大数转化为两个小数相加或相减的形式,或将一个普通的数字转化为整式整百或1等与另一个较小的数相加减的形式,再按照乘法分配律逆向运算解题。

注意:将一个数转化成两数相加减的形式要求转化后的式子在运算完成后依然等于原数,其值不发生变化。

例如:999可化为1000-1。

其结果与原数字保持一致。

题型六:带分数化加式例题:1)513226⨯2)351213⨯ 3)135127⨯涉及定律:乘法分配律基本方法:将带分数转化为整数部分和分数部分相加的形式,再按照乘法分配律计算。

小学六年级奥数简便运算(含答案)

小学六年级奥数简便运算(含答案)

简便运算(一)一、知识要点根据算式的结构和数的特征.灵活运用运算法则、定律、性质和某些公式.可以把一些较复杂的四则混合运算化繁为简.化难为易。

二、精讲精练【例题1】计算4.75-9.63+(8.25-1.37)【思路导航】先去掉小括号.使4.75和8.25相加凑整.再运用减法的性质:a-b-c = a-(b+c).使运算过程简便。

所以原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2练习1:计算下面各题。

1. 6.73-2 又8/17+(3.27-1又9/17)2. 7又5/9-(3.8+1又5/9)-1又1/53. 14.15-(7又7/8-6又17/20)-2.1254. 13又7/13-(4又1/4+3又7/13)-0.75【例题2】计算333387又1/2×79+790×66661又1/4【思路导航】可把分数化成小数后.利用积的变化规律和乘法分配律使计算简便。

所以:原式=333387.5×79+790×66661.25=33338.75×790+790×66661.25=(33338.75+66661.25)×790=100000×790=79000000练习2:计算下面各题:1. 3.5×1又1/4+125%+1又1/2÷4/52. 975×0.25+9又3/4×76-9.753. 9又2/5×425+4.25÷1/604. 0.9999×0.7+0.1111×2.7【例题3】计算:36×1.09+1.2×67.3【思路导航】此题表面看没有什么简便算法.仔细观察数的特征后可知:36 = 1.2×30。

这样一转化.就可以运用乘法分配律了。

所以原式=1.2×30×1.09+1.2×67.3=1.2×(30×1.09+1.2×67.3)=1.2×(32.7+67.3)=1.2×100=120练习3:计算:1. 45×2.08+1.5×37.62. 52×11.1+2.6×7783. 48×1.08+1.2×56.84. 72×2.09-1.8×73.6【例题4】计算:3又3/5×25又2/5+37.9×6又2/5【思路导航】虽然3又3/5与6又2/5的和为10.但是与它们相乘的另一个因数不同.因此.我们不难想到把37.9分成25.4和12.5两部分。

(完整版)六年级奥数专题分数的计算技巧

(完整版)六年级奥数专题分数的计算技巧

六年级奥数专题分数的计算技巧专题简介分数四则运算中有许多十分有趣的现象与技巧,它主要通过一些运算定律、性质和一些技巧性的方法,达到计算正确而迅速的目的。

基础学习例 1. × ÷ 例 2. ÷ × 83721094328512213典型例题例1、计算:(1)×37 (2)2004×4544200367分析与解:观察这两道题的数字特点,第(1)题中的与1只相差1个分数单位,如果把4544写成(1-)的差与37相乘,再运用乘法分配律可以使计算简便。

同样,第(2)题中可以把整4544451数2004写成(2003+1)的和与相乘,再运用乘法分配律计算比较简便。

200367(1)×37 (2)2004×4544200367=(1-)×37 = (2003+1)×451200367例2、计算: (1)73× (2) 166÷4115181201分析与解:(1)73把改写成(72 + ),再运用乘法分配律计算比常规方法计算要简便得多,1511516所以(2)把题中的166分成41的倍数与另一个较小的数相加的形式,再利用除法的运算性质使计201算简便。

例3、计算:(1)×39 + ×25 + ×4143426133六年级奥数专题分数的计算技巧专题简介分数四则运算中有许多十分有趣的现象与技巧,它主要通过一些运算定律、性质和一些技巧性的方法,达到计算正确而迅速的目的。

基础学习例 1. × ÷ 例 2. ÷ × 83721094328512213 = × × = × × 83729104111382213 = = 34259781023⨯⨯⨯⨯22213413811⨯⨯⨯⨯ = = 1425典型例题例1、计算:(1)×37 (2)2004×4544200367分析与解:观察这两道题的数字特点,第(1)题中的与1只相差1个分数单位,4544如果把写成(1-)的差与37相乘,再运用乘法分配律可以使计算简便。

六年级奥数第03讲-分数的简便运算(教)

六年级奥数第03讲-分数的简便运算(教)

学科教师辅导讲义学员编号: 年 级:六年级 课 时 数:3 学员姓名: 辅导科目:奥数学科教师:陈老师授课主题 第03讲-分数的简便运算授课类型T 同步课堂P 实战演练S 归纳总结教学目标①换元:让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式;②循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题。

授课日期及时段T (Textbook-Based )——同步课堂一、换元解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简. 二、循环小数化分数1、循环小数化分数结论:纯循环小数混循环小数分子 循环节中的数字所组成的数循环小数去掉小数点后的数字所组成的数与不循环部分数字所组成的数的差分母n 个9,其中n 等于循环节所含的数字个数按循环位数添9,不循环位数添0,组成分母,其中9在0的左侧·0.9a a =; ··0.99ab ab =; ··10.09910990ab ab ab =⨯=; ··0.990abc a abc -=,……2、单位分数的拆分:知识梳理例:110=112020+=()()11+=()()11+=()()11+=()()11+ 分析:分数单位的拆分,主要方法是: 从分母N 的约数中任意找出两个m 和n,有:11()()()()m n m n N N m n N m n N m n +==++++=11A B+ 本题10的约数有:1,10,2,5.。

例如:选1和2,有:11(12)12111010(12)10(12)10(12)3015+==+=++++ 本题具体的解有:1111111111011110126014351530=+=+=+=+考点一:换元例1、计算:3333333313579111315+++++++【解析】原式()333333333123414152414=++++++-+++L L()()223331515181274⨯+=-⨯+++L22576002784=-⨯⨯ 8128=例2、计算:234561111111333333++++++【解析】法一:利用等比数列求和公式。

最新小学奥数 分数的速算与巧算(含详解)

最新小学奥数 分数的速算与巧算(含详解)

最新小学奥数 分数的速算与巧算教学目标本讲知识点属于计算大板块内容,分为三个方面系统复习和学习小升初常考计算题型.1、 裂项:是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,本讲要求学生掌握裂项技巧及寻找通项进行解题的能力2、 换元:让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。

3、 循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题. 4、通项归纳法通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式. 知识点拨一、裂项综合 (一)、“裂差”型运算(1)对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯-(2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有:1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。

(二)、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档