半导体器件物理(第七章) 施敏 第二版

合集下载

最新(施敏)半导体器件物理(详尽版)ppt

最新(施敏)半导体器件物理(详尽版)ppt

江西科技师范大学
半导体器件物理
金刚石结构
由两个面心立方结构 沿空间对角线错开四 分之一的空间对角线 长度相互嵌套而成。
硅(Si) 锗(Ge)
江西科技师范大学
半导体器件物理 大量的硅(Si)、锗 (Ge)原子靠共价键 结合组合成晶体,每 个原子周围都有四个 最邻近的原子,组成 正四面体结构, 。这 四个原子分别处在正 四面体的四个顶角上, 任一顶角上的原子各 贡献一个价电子和中 心原子的四个价电子 分别组成电子对,作 为两个原子所共有的 价电子对。
江西科技师范大学
a 3/2
半导体器件物理
例1-1
假使体心结构的原子是刚性的小球,且中心原子与立方体八个角落 的原子紧密接触,试算出这些原子占此体心立方单胞的空间比率。

江西科技师范大学
半导体器件物理
练习
假使面心结构的原子是刚性的小球,且面中心原子与 面顶点四个角落的原子紧密接触,试算出这些原子占此面 心立方单胞的空间比率。
E1
原子核
E2 E3
能级
电子受到原子核和其 他电子的共同作用。
轨道 电子云在空间分布几率最 大值,即轨道上,电子出现的几 率最大。
江西科技师范大学
半导体器件物理 晶体中的电子
制造半导体器件所用的材 料大多是单晶体。 单晶体是由原子按一定周 期重复排列而成,且排列 相当紧密,相邻原子间距 只有零点几个纳米的数量 级。 当原子间距很小时,原子间的电子轨道将相遇而交叠,晶体中每个原子 的电子同时受到多个原子核和电子(包括这个原子的电子和其他原子的 电子)作用。 电子不仅可以围绕自身原子核旋转,而且可以转到另一个原子周围,即 同一个电子可以被多个原子共有,电子不再完全局限在某一个原子上, 可以由一个原子转到相邻原子,将可以在整个晶体中运动。 江西科技师范大学

施敏 半导体器件物理与工艺

施敏 半导体器件物理与工艺

施敏半导体器件物理与工艺
施敏(Shi Min)是半导体器件物理与工艺领域的专家,研究
方向主要涉及半导体材料、器件物理和工艺技术。

他在该领域做出了多项重要的研究成果,对于半导体器件的性能提升和工艺改进具有重要的指导意义。

施敏在半导体材料方面的研究主要涉及材料的生长和特性研究,以及材料在器件中的应用和优化。

他对于新型半导体材料的研究,如氮化物材料、碳化硅材料等,具有深入的了解和广泛的经验。

通过对材料的结构、晶格、电学、光学等性质进行研究,他能够准确地评估材料的适用性和性能。

此外,他还对材料的生长过程进行了优化,以提高材料的质量和一致性。

施敏在半导体器件物理方面的研究主要围绕器件内部的电学和光学特性展开。

他研究了器件中电子和空穴的输运过程,以及载流子和能带在器件中的分布规律。

通过深入理解器件中的物理现象,他能够提出相应的改进方法,以提高器件的效率和性能。

施敏在半导体器件工艺方面的研究聚焦于器件的制备和加工过程。

他研究了各种器件加工方法的优缺点,以及不同材料在加工过程中可能出现的问题。

通过优化制备工艺,他能够提高器件的稳定性和可靠性,同时降低生产成本。

总体而言,施敏在半导体器件物理与工艺领域的研究成果丰富,对于推动半导体器件的发展和应用具有重要的贡献。

他的研究
旨在提高器件性能、优化工艺流程和推动新材料的应用,为半导体行业的发展提供技术支持和指导。

半导体器件物理施敏

半导体器件物理施敏

NMOS晶体管基本结构与电路符号
栅极 源极
导体
绝缘体
栅极
栅极
n
n
p 掺杂半导体衬底
n 型MOS管
漏极
源极
漏极 源极
漏极
衬底 耗尽型电路符号
衬底 增强型电路符号
PMOS晶体管基本结构与电路符号
栅极 源极
导体 绝缘体
栅极
栅极
p
p
n 掺杂半导体衬底
p 型MOS管
漏极
源极
漏极 源极
漏极
衬底
衬底
耗尽型电路符号
二、界面陷阱与氧化层电荷
主要四种电荷类型:界面陷阱电荷、氧化层固定电荷、氧化层陷阱电荷和可动离子 电荷。
金 属
氧化层陷阱电荷
可动离子电荷 Na+K+氧源自层固定电荷SiO2Si
界面陷阱电荷
实际MOS二极管的C-V曲线
平带电压:
VFBmsQf Q Cm oQot
实际MOS二极管的阈值电压:
V T V F B qC A W o N m ψ s(i n V Fv B) 2sq C o A ( N 2 ψ B ) 2 ψ B
理想MOS二极管的C-V曲线
V=Vo+ψs C=CoCj/(Co+Cj) 强反型刚发生时的金属平行板电压— —阈值电压
一旦当强反型发生时,总电容保持在最小值Cmin。
理想MOS二极管的C-V曲线
理想情况下的阈值电压:
V TqC A N W omψ s(in v 2s)qC o A N (2 ψ B )2 ψ B
三种 状态
由p型半导体构成的MOS结构在各种VG下的表面势和空间电荷分布:
表面电势ψs:

施敏 半导体器件物理与工艺 pdf

施敏 半导体器件物理与工艺 pdf

施敏半导体器件物理与工艺 pdf 施敏半导体器件物理与工艺pdf:详细解析半导体器件的物理性质和制程技术 施敏半导体器件物理与工艺pdf是一本系统地介绍半导体器件物理性质和制程技术的文档。

本文将以一个逐步思考的方式,详细描述半导体器件的物理性质和制程技术,并通过举例来加深理解。

本文具有清晰的结构,包括前言、主体部分和总结,以确保读者能够全面了解半导体器件的物理性质和制程技术。

第一部分:半导体器件的物理性质 在本部分,我们将首先介绍半导体器件的基本概念和性质。

我们将从半导体材料的能带结构开始,解释导电性差异的原因以及控制电流的机制。

我们将详细讨论pn结的形成、载流子注入和扩散,并介绍不同类型的半导体器件如二极管、晶体管和场效应晶体管。

此外,我们还将介绍半导体器件的基本特性,如电流-电压特性和频率响应特性。

第二部分:半导体器件的制程技术 在本部分,我们将重点讨论半导体器件的制程技术。

我们将详细描述半导体器件的制造过程,并重点介绍光刻、扩散、蚀刻和沉积等关键制程步骤。

我们将解释每个制程步骤的原理、方法和影响因素,并提供实际例子来说明。

此外,我们还将讨论半导体器件的封装技术和测试技术,以确保器件的可靠性和性能。

第三部分:半导体器件物理与工艺的联系 在本部分,我们将探讨半导体器件物理性质与制程技术的密切联系。

我们将详细说明物理性质如材料的能带结构、载流子注入和扩散是如何影响制程技术的选择和结果的。

我们还将介绍如何通过物理性质的优化来改进器件的性能,并讨论不同制程参数对器件性能的影响。

通过本文的详细解析,我们可以深入了解半导体器件的物理性质和制程技术。

我们了解了半导体器件的基本概念和性质,以及其在电流控制和信号放大中的重要作用。

我们还学习了半导体器件的制程技术,以及如何根据物理性质来改进器件的制程过程。

通过这些知识,我们能够更好地设计、制造和测试半导体器件,以满足不同应用领域的需求。

总结起来,施敏半导体器件物理与工艺pdf通过清晰的结构、逐步思考的方式,详细描述了半导体器件的物理性质和制程技术。

施敏-课后习题答案

施敏-课后习题答案
ni (9.65109 ) 2 n p 5 1015
2
1.86104 cm3
1 qp p 1 1.6 1019 5 1015 150 8.33cm
8. 给定一个未知掺杂的硅晶样品,霍耳测量提供了以下的 信息:W = 0.05 cm,A = 1.610-3 cm2(参考图3.8),I = 2.5 mA,且磁场为30T(1特斯拉(T)= 10-4 Wb/cm2)。若 测量出的霍耳电压为 +10 mV,求半导体样品的霍耳系数、 导体型态、多数载流子浓度、 N ( E ) F ( E )dE
而导带单位体积总的电子数为
Ec
N ( E ) F ( E )dE
导带中电子平均动能:


Ec
( E Ec) N ( E ) F ( E )dE

=3/2kT

Ec
N ( E ) F ( E ) dE
14. 一半导体的本征温度为当本征载流子浓度等 于杂质浓度时的温度。找出掺杂1015 磷原子/立 方厘米的硅样品的本征温度。

ni (9.65109 ) 2 16 3 4.7 103 cm3 (a) 热平衡时 no N D 2 10 cm , p0 n0 2 1016
2
从书上公式(50),推导
U th o N t pn pno
pn pno 2n E Ei 1 i cosh t n kT no

(2) 常温情况(T=300K)
NC 2.86 1019 EC EF kT ln( ) 0.0259ln( )eV 0.205eV 16 ND 10

(3) 高温情况(T=600K) 根据图2.22可看出ni =3X1015 cm-3,已接近施主浓度 EF -Ei = kT ln(n/ni) = 0.0518ln(ND/ni) = 0.0518ln3.3=0.06eV

施敏 半导体器件物理与工艺 pdf

施敏 半导体器件物理与工艺 pdf

施敏半导体器件物理与工艺一、施敏半导体器件的背景与意义随着科技的飞速发展,电子工程领域对高性能、低功耗的半导体器件的需求日益增长。

施敏半导体器件,作为一种新型的电子器件,以其独特的物理机制和工艺技术,在现代电子工程领域中扮演着越来越重要的角色。

施敏半导体器件具有高灵敏度、快速响应和低功耗等优点,广泛应用于传感器、逻辑电路、存储器等领域。

二、施敏半导体器件原理施敏半导体器件主要基于隧道效应、极化效应等物理原理工作。

通过利用材料内部的电子行为,实现电导率的变化,从而实现传感或逻辑操作。

为了实现这一功能,关键在于材料的选择以及其制备工艺的控制。

这涉及到多种材料物理和材料工程的知识,如能带理论、载流子输运机制等。

三、工艺流程制作施敏半导体器件的工艺流程主要包括材料选择、外延生长、掺杂、制程整合等步骤。

在材料选择阶段,需要综合考虑材料的能带结构、载流子迁移率、稳定性等性能指标。

外延生长和掺杂是关键的制程步骤,直接影响器件的性能。

此外,为了实现高效的电路集成,还需要考虑如何优化制程参数,以实现良好的欧姆接触和低电阻传输。

四、典型应用领域与案例分析施敏半导体器件在信息技术、消费电子、汽车等领域有广泛的应用。

例如,在传感器领域,施敏器件可以用于气体检测、湿度传感、压力传感等;在逻辑电路中,施敏器件可以用于构建各种逻辑门电路,实现信息的处理与传输;在存储器领域,施敏器件可以作为非易失性存储单元,用于存储数据。

五、发展趋势与挑战随着物联网、人工智能等新兴技术的发展,施敏半导体器件的应用前景更加广阔。

未来,施敏半导体器件将朝着更高性能、更低功耗、更小尺寸的方向发展。

然而,这也带来了诸多挑战,如如何提高器件的稳定性、可靠性以及如何实现大规模生产等。

对此,我们建议深入研究材料的物理机制和制程技术,加强跨学科合作,以推动施敏半导体器件的创新发展。

六、结论施敏半导体器件在电子工程领域中发挥着核心作用,其发展对于推动科技进步具有重要意义。

半导体器件物理课程大纲_施敏

半导体器件物理课程大纲_施敏

《半导体器件物理》教学大纲课程名称: 半导体器件物理学分: 4 总学时:64 实验学时:(单独设课)其它实践环节:半导体技术课程设计适用专业:集成电路设计与集成系统一、本课程的性质和任务本课程是高等学校本科集成电路设计与集成系统、微电子技术专业必修的一门专业主干课,是研究集成电路设计和微电子技术的基础课程。

本课程是本专业必修课和学位课。

本课程的任务是:通过本课程的学习,掌握半导体物理基础、半导体器件基本原理和基本设计技能,为学习后续的集成电路原理、CMOS模拟集成电路设计等课程以及为从事与本专业有关的集成电路设计、制造等工作打下一定的基础。

二、本课程的教学内容和基本要求一、半导体器件简介1.掌握半导体的四种基础结构;2.了解主要的半导体器件;3.了解微电子学历史、现状和发展趋势。

二、热平衡时的能带和载流子浓度1.了解主要半导体材料,掌握硅、锗、砷化镓晶体结构;2.了解基本晶体生长技术;3.掌握半导体、绝缘体、金属的能带理论;4.掌握本征载流子、施主、受主的概念。

三、载流子输运现象1.了解半导体中两个散射机制;掌握迁移率与浓度、温度的关系;2.了解霍耳效应;3.掌握电流密度方程式、爱因斯坦关系式;4.掌握非平衡状态概念;了解直接复合、间接复合过程;5.掌握连续性方程式;6.了解热电子发射过程、隧穿过程和强电场效应。

四、p-n结1.了解基本工艺步骤:了解氧化、图形曝光、扩散和离子注入和金属化等概念;2.掌握热平衡态、空间电荷区的概念;掌握突变结和线性缓变结的耗尽区的电场和电势分布、势垒电容计算;3.了解理想p-n结的电流-电压方程的推导过程;4.掌握电荷储存与暂态响应、扩散电容的概念;5.掌握p-n结的三种击穿机制。

6.了解异质结的能带图。

五、双极型晶体管及相关器件1.晶体管的工作原理:掌握四种工作模式、电流增益、发射效率、基区输运系数;2.双极型晶体管的静态特性:掌握各区域的载流子分布;了解放大模式下的理想晶体管的电流-电压方程;掌握基区宽度调制效应;3.双极型晶体管的频率响应与开关特性:掌握跨导、截止频率、特征频率、最高振荡频率的概念;4.了解异质结双极型晶体管HBT的结构及电流增益;5.了解可控硅器件基本特性及相关器件。

半导体器件物理(第七章)施敏第二版课件

半导体器件物理(第七章)施敏第二版课件

7.2.3 电流电压特性
I IPVVDP 32VDVVGPVbi3/232VGVPVbi3/2
IPZn2q2NSLD2a3,VPq2NDSa2
电流电压方程式
ID
IP VP
1
VG Vbi VP
1/ 2
VD
gm
I D VG
VD
IP 2VP 2
VP VG Vbi
VD
线性区
I Dsat
I
P
1
A qnN D A
MESFET耗尽 区宽度变化
L
与输出特性
qnN DZ (a W )
沟道电阻
VDsat q2NDSa2Vbi,VG0
饱和电压
VDsat q2NDSa2 VbiVG
在此漏极电压时,漏极和源极被夹断, 此时漏极电流称为饱和电流IDsat 。
加入VG使得栅极接触被反偏,当VG 增大至一特定值时,耗尽区将触到 半绝缘衬底,此时VD为饱和电压。
q(BnBp)Eg
内建电势:
VbiBnVn
电荷、电场分布 S
qND
0
W
X
➢与单边突变结p+-n结类似
E W
0 X
-Em
相关公式1
E(x)
qND
S
Wx
Em
qND
S
x
Em
qNDW
S
相关公式2
Vbi
V
EmW 2
qNDW 2
2S
W 2S Vbi V
qND
QSC qNDW 2qS ND ( Vbi V )
3
VG Vbi VP
2 3
V
G
V VP
bi

半导体器件物理施敏答案

半导体器件物理施敏答案

半导体器件物理施敏答案【篇一:施敏院士北京交通大学讲学】t>——《半导体器件物理》施敏 s.m.sze,男,美国籍,1936年出生。

台湾交通大学电子工程学系毫微米元件实验室教授,美国工程院院士,台湾中研院院士,中国工程院外籍院士,三次获诺贝尔奖提名。

学历:美国史坦福大学电机系博士(1963),美国华盛顿大学电机系硕士(1960),台湾大学电机系学士(1957)。

经历:美国贝尔实验室研究(1963-1989),交通大学电子工程系教授(1990-),交通大学电子与资讯研究中心主任(1990-1996),国科会国家毫微米元件实验室主任(1998-),中山学术奖(1969),ieee j.j.ebers奖(1993),美国国家工程院院士(1995), 中国工程院外籍院士 (1998)。

现崩溃电压与能隙的关系,建立了微电子元件最高电场的指标等。

施敏院士在微电子科学技术方面的著作举世闻名,对半导体元件的发展和人才培养方面作出了重要贡献。

他的三本专著已在我国翻译出版,其中《physics of semiconductor devices》已翻译成六国文字,发行量逾百万册;他的著作广泛用作教科书与参考书。

由于他在微电子器件及在人才培养方面的杰出成就,1991年他得到了ieee 电子器件的最高荣誉奖(ebers奖),称他在电子元件领域做出了基础性及前瞻性贡献。

施敏院士多次来国内讲学,参加我国微电子器件研讨会;他对台湾微电子产业的发展,曾提出过有份量的建议。

主要论著:1. physics of semiconductor devices, 812 pages, wiley interscience, new york, 1969.2. physics of semiconductor devices, 2nd ed., 868 pages, wiley interscience, new york,1981.3. semiconductor devices: physics and technology, 523 pages, wiley, new york, 1985.4. semiconductor devices: physics and technology, 2nd ed., 564 pages, wiley, new york,2002.5. fundamentals of semiconductor fabrication, with g. may,305 pages, wiley, new york,20036. semiconductor devices: pioneering papers, 1003 pages, world scientific, singapore,1991.7. semiconductor sensors, 550 pages, wiley interscience, new york, 1994.8. ulsi technology, with c.y. chang,726 pages, mcgraw hill, new york, 1996.9. modern semiconductor device physics, 555 pages, wiley interscience, new york, 1998. 10. ulsi devices, with c.y. chang, 729 pages, wiley interscience, new york, 2000.课程内容及参考书:施敏教授此次来北京交通大学讲学的主要内容为《physics ofsemiconductor device》中的一、四、六章内容,具体内容如下:chapter 1: physics and properties of semiconductors1.1 introduction 1.2 crystal structure1.3 energy bands and energy gap1.4 carrier concentration at thermal equilibrium 1.5 carrier-transport phenomena1.6 phonon, optical, and thermal properties 1.7 heterojunctions and nanostructures 1.8 basic equations and exampleschapter 4: metal-insulator-semiconductor capacitors4.1 introduction4.2 ideal mis capacitor 4.3 silicon mos capacitorchapter 6: mosfets6.1 introduction6.2 basic device characteristics6.3 nonuniform doping and buried-channel device 6.4 device scaling and short-channel effects 6.5 mosfet structures 6.6 circuit applications6.7 nonvolatile memory devices 6.8 single-electron transistor iedm,iscc, symp. vlsi tech.等学术会议和期刊上的关于器件方面的最新文章教材:? s.m.sze, kwok k.ng《physics of semiconductordevice》,third edition参考书:? 半导体器件物理(第3版)(国外名校最新教材精选)(physics of semiconductordevices) 作者:(美国)(s.m.sze)施敏 (美国)(kwok k.ng)伍国珏译者:耿莉张瑞智施敏老师半导体器件物理课程时间安排半导体器件物理课程为期三周,每周六学时,上课时间和安排见课程表:北京交通大学联系人:李修函手机:138******** 邮件:lixiuhan@案2013~2014学年第一学期院系名称:电子信息工程学院课程名称:微电子器件基础教学时数: 48授课班级: 111092a,111092b主讲教师:徐荣辉三江学院教案编写规范教案是教师在钻研教材、了解学生、设计教学法等前期工作的基础上,经过周密策划而编制的关于课程教学活动的具体实施方案。

复旦大学微电子研究生博士生考试参考书目

复旦大学微电子研究生博士生考试参考书目

1.微电子学与固体电子学专业集成电路设计、计算机辅助设计与测试研究方向:
①《数字逻辑基础》,陈光梦编,复旦大学出版社
②《模拟电子学基础》,陈光梦编,复旦大学出版社;或者《模拟电子技术基础》(第三版),童诗白编,高等教育出版社
③《专用集成电路设计方法》,复旦大学微电子学系自编讲义
④《Digital Integrated Circuits: A Design Perspective》,Jan M. Rabaey著,英文翻印《数字集成电路设计透视》,清华大学出版社,1999年
⑤《模拟CMOS集成电路设计》,拉扎维著,陈贵灿译,西安交通大学出版社2003年
2.微电子学与固体电子学专业集成电路工艺与器件研究方向:
①《双极型与MOS半导体器件原理》,黄均鼐等编,复旦大学出版社
②《半导体器件物理基础》(第1、2、3、5章),曾树荣编,北京大学出版社。

半导体器件物理6施敏

半导体器件物理6施敏

半导体器件的应用领域
电子设备:包括计算机、手机、电视等 通信系统:包括移动通信、卫星通信等 电力系统:包括太阳能电池、风力发电等 医疗设备:包括医疗影像系统、医疗机器人等 军事领域:包括雷达、导弹等
03
施敏的生平与贡献
施敏的生平简介
施敏的出生背景
施敏的教育经历
施敏的学术成就
施敏的社会影响
施敏在半导体器件物理领域的贡献
施敏对半导体器 件物理理论的贡 献
施敏对半导体器 件物理领域的影 响力
施敏的学术贡献 对半导体器件物 理领域的影响
对半导体器件物理领域的展望和未来发展方向的探 讨
新材料和新技术的 引入将推动半导体 器件物理领域的进 步
人工智能和大数据 将在半导体器件物 理领域发挥重要作 用
未来半导体器件将 更加智能化和自适 应
半导体器件的基本原理
半导体材料特性:介绍半导体材料的导电特性、能带结构等基本知识。
半导体器件的基本结构:介绍半导体器件的基本结构和工作原理, 包括PN结、二极管、晶体管等。 半导体器件的工作原理:详细介绍半导体器件的工作原理,包括电流、 电压、电容等物理量的变化和相互作用。 半导体器件的特性参数:介绍半导体器件的特性参数,如伏安特性、 频率特性、噪声系数等,以及这些参数对器件性能的影响。
06
半导体器件物理的 应用领域
微电子学领域的应用
集成电路:将大量电子元件集成在一块芯片上,实现电子设备的微型化和高效化
晶体管:用于放大、开关、稳压等作用,是现代电子设备的基本元件
二极管:用于整流、检波、稳压等,是数字和模拟电路中的重要元件 集成电路在微电子学领域的应用:将大量电子元件集成在一块芯片上,实现电子设备的微 型化和高效化

半导体器件物理课后习题(施敏)

半导体器件物理课后习题(施敏)

因为热平衡时,样品内部没有载流子的净流动,所以有
J n漂移 J n扩散 J n 0
根据欧姆定律的微分形式
J n漂移 E ( x)
(a) q
E
J n扩散 ( x)


Dn N 0 exp( ax)
a q kT n N 0 exp( ax) q a kT n N 0 exp( ax) a kT n N D q n N D a kT q
ni (9.65 109 ) 2 4 3 n 1 . 86 3.57cm 19 15 qp p 1.6 10 5 10 350
(c) 51015硼原子/cm3、1017砷原子/cm3及1017镓 原子/cm3

答:因为镓为III族元素,最外层有3个电子;锡为IV族元 素,最外层有4个电子,所以锡替换镓后作为施主提供电 子,此时电子为多子,所以该半导体为n型。
12. 求出在300K时一非简并n型半导体导带中电
子的动能。
解:在能量为dE范围内单位体积的电子数 N(E)F(E)dE, 而导带中每个电子的动能为E-Ec 所以导带中单位体积电子总动能为
(b)
注,可用题十中的公式:

kT dN D ( x) 1 E(x) q N ( x) dx D
a kT 6 E ( x) 110 0.026 260V / cm q
12. 一个厚度为L的n型硅晶薄片被不均匀地掺杂了施主磷, 其中浓度分布给定为ND(x) = No + (NL - No) (x/L)。当样品在 热平衡状态下且不计迁移率及扩散系数随位置的变化,前后 表面间电势能差异的公式为何?对一个固定的扩散系数及迁 移率,在距前表面x的平面上的平衡电场为何?

半导体器件物理复习(施敏)

半导体器件物理复习(施敏)

半导体器件物理复习(施敏)第⼀章1、费⽶能级和准费⽶能级费⽶能级:不是⼀个真正的能级,是衡量能级被电⼦占据的⼏率的⼤⼩的⼀个标准,具有决定整个系统能量以及载流⼦分布的重要作⽤。

准费⽶能级:是在⾮平衡状态下的费⽶能级,对于⾮平衡半导体,导带和价带间的电⼦跃迁失去了热平衡,不存在统⼀费⽶能级。

就导带和价带中的电⼦讲,各⾃基本上处于平衡态,之间处于不平衡状态,分布函数对各⾃仍然是适应的,引⼊导带和价带费⽶能级,为局部费⽶能级,称为“准费⽶能级”。

2、简并半导体和⾮简并半导体简并半导体:费⽶能级接近导带底(或价带顶),甚⾄会进⼊导带(或价带),不能⽤玻尔兹曼分布,只能⽤费⽶分布⾮简并半导体:半导体中掺⼊⼀定量的杂质时,使费⽶能级位于导带和价带之间3、空间电荷效应当注⼊到空间电荷区中的载流⼦浓度⼤于平衡载流⼦浓度和掺杂浓度时,则注⼊的载流⼦决定整个空间电荷和电场分布,这就是空间电荷效应。

在轻掺杂半导体中,电离杂质浓度⼩,更容易出现空间电荷效应,发⽣在耗尽区外。

4、异质结指的是两种不同的半导体材料组成的结。

5、量⼦阱和多量⼦阱量⼦阱:由两个异质结或三层材料形成,中间有最低的E C和最⾼的E V,对电⼦和空⽳都形成势阱,可在⼆维系统中限制电⼦和空⽳当量⼦阱由厚势垒层彼此隔开时,它们之间没有联系,这种系统叫做多量⼦阱6、超晶格如果势垒层很薄,相邻阱之间的耦合很强,原来分⽴的能级扩展成能带(微带),能带的宽度和位置与势阱的深度、宽度及势垒的厚度有关,这种结构称为超晶格。

7、量⼦阱与超晶格的不同点a.跨越势垒空间的能级是连续的b.分⽴的能级展宽为微带另⼀种形成量⼦阱和超晶格的⽅法是区域掺杂变化第⼆章1、空间电荷区的形成机制当这两块半导体结合形成p-n结时,由于存在载流⼦浓度差,导致了空⽳从p区到n 区,电⼦从n区到p区的扩散运动。

对于p 区,空⽳离开后,留下了不可动的带负电的电离受主,这些电离受主,没有正电荷与之保持电中性,所以在p-n结附近p 区⼀侧出现了⼀个负电荷区。

半导体器件物理(第七章) 施敏 第二版

半导体器件物理(第七章) 施敏 第二版

VD
饱和区
I Dsat
I
P
1 3
VG Vbi VP
2 3
VG Vbi VP
3
/
2
VDsat VP VG Vbi
gm
ZnqNDa
L
1
VG Vbi VP
击穿区
击穿电压: VB=VD+|VG|
MESFET增强型模式
阈值电压:VT Vbi VP
I Dsat
Zn S
2aL
VG VT
肖特基势垒电流电压特性
在热电子发射情况下,金属半导 体接触的电流电压表示为
J
JS
exp
qV kT
1
JS
A*T 2
exp
qBn
kT
A*称为有 效理查逊 常数
少数载流子电流密度
JP
J
P
0
exp(
qV kT
)
1
J P0
qDp ni 2 LP ND
通常,少数载流子电流比多数载 流子电流少数个数量级。
线性区 饱和区
I
Z L
nCi VG
VT
VD
VDsat VG VT
I
Zn S2Ld1 d0 d NhomakorabeaVG
VT
2
对高速工作状态而言,载流子速度 达到饱和,此时饱和区电流、跨导 和截止频率:
Isat Zvsqns ZvsCi (VG VT )
gm ZvsCi
fT
gm
2C总电容
vs
2 L
CP ZCi
7.2.3 电流电压特性
电流电压方程式
I
IP
VD VP
2 3

半导体器件物理课后习题答案中文版(施敏)

半导体器件物理课后习题答案中文版(施敏)
g
E�
2 3
2 1
得�简化并式上入代
)
2
h / T k n m �2 ( 21 �
C
N和2/3)2h/Tkpm�2(2≡ VN将
DN=iN�时度温征本
3�
mc 01 � D N
51
,)Tk2/ g E-( pxe v N c N
� i n 有意题据根�解

。度温征本的品样硅的米厘 方立/子原磷 5101杂掺出找。度温的时度浓质杂于 等度浓子流载征本当为度温征本的体导半一 .41

) 2/3-aT : a�( = ) 2/3-T : n�( �解 。2度浓质杂总为TN中其 �化变而 TN/2/3T 着随为视可上论理 I�率移迁的成造所射散质 杂由。少减式方的 2/3-T 随将 L�率移迁的成造所射散格晶示 显析分论理。�页94书�系关例比的 2/3-T与L�用利以可实其

��
) x ( 散扩n J

��E
)x ( E � � �
移漂 n
J
式形分微的律定姆欧据根
移漂n
0 � nJ �
散扩n
J�
J
有以所�动流净的子流载有没部内品样�时衡平热为因
)x(E的时1-m�1 = a当出算计)b(。法示表的)x(E场电建内下态状衡 平在求�中围范的in >> DN在)a(。)xa-( pxeoN = DN 得使而�主施了杂掺端一从品样晶硅征本个一 .11
1

� pq
1
。之示表DN以并AN求�05 = pD/nD若。阻电 的1R 5.0个一了生产而��DN>>AN�AN主受的量知 未个一了杂掺又后之体导半个一同。1R阻电一有具且 �质杂的�in >> DN�DN为度浓了杂掺体导半个一 .9

半导体器件物理 施敏 第二版页PPT文档

半导体器件物理 施敏 第二版页PPT文档
第4章 PN结
4.1 基本工艺步骤 4.2 热平衡状态 4.3 耗尽层 4.4 耗尽层势垒电容 4.5 电流-电压特性 4.6 电荷储存与暂态响应 4.7 结击穿 4.8 异质结
本章主题
电特性和物理特性上p-n结的形成 在偏压下,结耗尽层的特性 电流在p-n结的输运,产生及复合对其的影响 p-n结的电荷储存对其暂态响应的影响 发生在p-n结的雪崩倍增及其对最大反向电压
变容器
许多电路应用p-n结在反向偏压电压变 化特性,达此目的的p-n结称为变容器
反向偏压势垒电容
C J V b i V R ( n当 V RV b i时 , C J V R n )
其中对线性缓变结n=1/3,突变结n=1/2 ,超突变结 n>1/2 电压灵敏度:超突变结>突变结>线性缓变结
VR p+
n
超突变结m=-3/2 线性缓变结m=1 突变结m=0
三种结的杂质分布
耗尽区宽度和反向偏压的关系 w (VR)1/(m+2)
CJ W S VR 1( / m2)
4.5 电流电压特性
理想电流电压特性基于如下假设
1 耗尽区为突变边界,边界之外为电中性 2 在边界的载流子浓度和静电电势有关 3 小注入情况,(在中性区边界,多数载 流子因加上偏压改变的量可忽略) 4 在耗尽区内无产生和复合电流,空穴电 子为常数
继续扩散。
在平衡态,扩散=漂移, BJ =常数
p
-- ++ -- ++
n
电荷和电势分布满足Poisson方程: BJ
ddx22 ss,sq(NDNApn)
内建电势
内建电势概念
在热平衡时p型和n型中性区的总静电势差
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性区 饱和区
I
Z L
nCi VG
VT
VD
VDsat VG VT
I
Zn S
2Ld1 d0
d
VG
VT
2
对高速工作状态而言,载流子速度 达到饱和,此时饱和区电流、跨导 和截止频率:
Isat Zvsqns ZvsCi (VG VT )
gm ZvsCi
fT
gm
2C总电容
vs
2 L
CP ZCi
肖特基势垒电流电压特性
在热电子发射情况下,金属半导 体接触的电流电压表示为
J
JS
exp
qV kT
1
JS
A*T 2
exp
qBn
kT
A*称为有 效理查逊 常数
少数载流子电流密度
JP
J
P
0
exp(
qV kT
)
1
J P0
qDp ni 2 LP ND
通常,少数载流子电流比多数载 流子电流少数个数量级。
7.2.3 电流电压特性
电流电压方程式
I
IP
VD VP
2 3
VD
VG VP
Vbi
3/2
2 3
VG Vbi VP
3/2
IP
Zn q 2 N D 2a3 2S L
,VP
qNDa2
2 S
线性区
ID
IP VP
1
VG Vbi VP
1/ 2
VD
gm
I D VG
VD
IP 2VP 2
VP VG Vbi
7.1 金属-半导体接触
7.1.1 基本特性
金属与n型,理想情况,势垒高度为金属 功函数与电子亲和力之差:
qBn qm qx
金属与p型,势垒高度为:
qBp Eg qm qx
➢金属和n半导体接触能带图(Wn>Ws)
(a)接触前 (b)间隙很大 (c)紧密接触 (d)忽略间隙
对已知半导体与任一金属而言, 在n型和p型衬底上势垒高度和恰好 为半导体的禁带宽度公式如下
7.2 金半场效应晶体管
7.2.1 器件结构
MESFET具有三个金属半导体接触,
一个肖特基接触作为栅极以及两个当作源 极与漏极的欧姆接触,主要器件参数包含 栅极长度L,栅极宽度Z以及外延层厚度a, 大部分MESFET是用n型Ⅲ-Ⅴ族化合物半 导体制成。
7.2.2 工作原理
不同偏压下, MESFET耗尽 区宽度变化 与输出特性
沟道电阻
R L L A qn ND A
L
qn NDZ (a W )
饱和电压
VDsat
qNDa2
2 S
Vbi ,VG
0
在此漏极电压时,漏极和源极被夹断,
此时漏极电流称为饱和电流IDsat 。
VDsat
qNDa2
2 S
Vbi
VG
加入VG使得栅极接触被反偏,当VG 增大至一特定值时,耗尽区将触到 半绝缘衬底,此时VD为饱和电压。
q(Bn Bp ) Eg
内建电势:
Vbi Bn Vn
电荷、电场分布 S
qND
0
W
X
➢与单边突变结p+-n结类似
E W
0 X
-Em
相关公式1
E(x)
qND
S
W
x
Em
qND
S
x
Em
qNDW
S
相关公式2
Vbi
V
EmW 2
qNDW 2
2S
W 2S Vbi V
qND
QSC qNDW 2qS ND ( Vbi V )
2
跨导:
gm
Zn S
aL
VG
VT
两 种 模 式 特 性 比 较
7.2.4 高频性能
截止频率:MESFET无法再将输入信号 放大的频率。
fT
gm
2CG
Zvs s /W 2ZL s /W
vs
2L
要增加截止频率必须缩小栅极长度和使 用高速度的半导体。
不同种类半导体中,电子漂移速度与电场关系图
7.3 调制掺杂场效应晶体管
7.1.3 欧姆接触
当一金属半导体的接触电阻相对于半导 体主体或串联电阻可以忽略不计,就叫 做欧姆电阻
欧姆电阻的一个指标为特定接触电阻
RC
J V
1 v0
低掺杂浓度 的金半
RC
k qA*T
exp( qBn )
kT
高掺杂浓 度的金半
RC
~
exp
C2Bn
ND
exp 4
mn S Bn
N D
传统MODFET结构
7.3.1 MODFET的基本原理
M
S
d 0
ND (x)xdx
qN D d12
2 S
公 式
VT
Bn
EC q
VP
增强型MODFET 的能带图
7.3.2 电流-电压特性
MODFET的电流-电压特性可利用类似 MOSFET的渐变沟道近似法来求得。
作业:
P243 1、7、9 比较MOSFET和MESFET两种器件? 比较PN结二极管和肖特基势垒二极管两种器件?
第7章 MESFET及相关器件
7.1 金属-半导体接触 7.2 金半场效应晶体管(MESFET) 7.3 调制掺杂效应晶体管
本章主题
整流性金半接触及电流电压特性 欧姆性金半接触及特定接触电阻 MESFET及其高频表现 MODFET及二维电子气 MOSFET、MESFET、MODFET比较
相关公式3
C QSC S
V W
1 C2
2(Vbi V )
q S N D
ND
2
q S
1
d
(1
/
C
2
)
/
dV
7.1.2 肖特基势垒
肖特基势垒指一具有大的势垒
高度(也就是,Bn或Bp kT )
以及掺杂浓度比导带或价带上态密 度低的金属半导体接触,其电流主 要由多数载流子完成。
热电子发射过程的电流输运
VD
饱和区
I Dsat
I
P
1 3
VG Vbi VP
2 3
VG Vbi VP
3
/
2
VDsat VP VG Vbi
gm
ZnqNDa
L
1
VG Vbi VP
击穿区
击穿电压: VB=VD+|VG|
MESFET增强型模式
阈值电压:VT Vbi VP
I Dsat
Zn S
2aL
VG VT
相关文档
最新文档