八年级数学上尺规作图题练习强烈推荐

合集下载

初二上册数学尺规作图练习题

初二上册数学尺规作图练习题

初二上册数学尺规作图练习题尺规作图是数学中的一项重要技能,本文将为你提供一些初二上册数学尺规作图练习题,帮助你巩固这一技巧。

1. 作一个正三角形ABC,已知边长为5cm。

首先,使用尺子在纸上画一条直线段,作为边AB的长度,标记为点A和点B。

接下来,以点A为圆心,以边长为半径,使用圆规画一个圆弧,交直线段AB于点C。

连接点B和C,得到正三角形ABC。

2. 作一个等边五边形ABCDE,已知边长为6cm。

先绘制一个正三角形ABC,其中AB的长度为6cm,并连接点C和点A。

接着,以点C为圆心,以边长为半径,使用圆规画一个圆弧,交直线段AC于点D。

再以点D为圆心,以边长为半径,使用圆规画一个圆弧,交直线段AD于点E。

连接点E与点B,得到等边五边形ABCDE。

3. 作一个平行四边形ABCD,已知边长AB为7cm,AD为5cm,且AD平行于BC。

首先,使用尺子在纸上作一条长度为7cm的直线段,标记为点A 和点B。

接下来,以点A为起点,使用圆规在直线上切取长度为5cm 的线段,标记为点D。

连接点B和点D,得到平行四边形ABCD。

通过以上练习题,我们可以巩固尺规作图的技巧。

在进行尺规作图时,需要注意以下几点:
- 确定给定的边长或者角度,合理利用这些已知信息;
- 使用尺规和圆规进行绘图时,要保持工具的垂直和水平;
- 使用直尺时,要注意尺子的一端与绘图纸对齐,以确保准确度。

希望通过这些练习题,你能更好地掌握初二上册数学尺规作图的方法和技巧。

请继续进行更多的练习,熟能生巧!。

1.6 尺规作图 浙教版八年级数学上册同步练习(含解析)

1.6 尺规作图 浙教版八年级数学上册同步练习(含解析)

第1章 三角形的初步知识1.6 尺规作图基础过关全练知识点1 基本作图1.(2022浙江义乌绣湖教育集团期中)用直尺和圆规作一个角等于已知角的示意图如下,说明∠A'O'B'=∠AOB的依据是( )A.SSSB.SASC.ASAD.AAS2.(2022浙江宁波春晓中学期中)观察下列作图痕迹,所作CD为△ABC的边AB上的中线的是( )A B C D3.(2022浙江绍兴柯桥联盟学校期中)如图,在△ABC中,按以下步骤作图:①分别以点BBC的长为半径作弧,两弧相交于点M和N;②作直线MN交AC于和C为圆心,以大于12点D,连结BD.若AC=6,AD=2,则BD的长为( )A.2B.3C.4D.6知识点2 按要求进行尺规作图4.(2022浙江台州和合教育联盟期中)已知△ABC(AB<AC<BC),用尺规作图的方法在BC 上取一点P,使PA+PC=BC,下列选项正确的( )A B C D5.(2022浙江杭州之江实验中学期中)如图是作△ABC的作图痕迹,则此作图的已知条件是( )A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角能力提升全练6.(2022浙江宁波海曙期中)以下尺规作图中,点D为线段BC边上一点,一定能得到线段AD=BD的是( )A B C D7.(2020湖北襄阳中考)如图,Rt△ABC中,∠ABC=90°,根据尺规作图的痕迹判断以下结论错误的是( )A.DB=DEB.AB=AEC.∠EDC=∠BACD.∠DAC=∠C8.(2022浙江温州期中)如图,若∠α=38°,根据尺规作图的痕迹,则∠AOB的度数为 .9.如图,在△ABC中,AB=5,AC=8,BC=9,以A为圆心,以适当的长为半径作弧,交AB于点M,MN的长为半径作弧,两弧在∠BAC的内部相交交AC于点N,分别以M,N为圆心,以大于12于点G,作射线AG,交BC于点D,点F在AC边上,AF=AB,连结DF,则△CDF的周长为 .10.(2022浙江慈溪期中)如图,已知△ABC,P为AB上一点,请用尺规作图的方法在AC上找一点Q,使得AQ+PQ=AC(保留作图痕迹,不写作法).11.(2022浙江杭州之江实验中学期中)如图,在Rt△ABC中,∠C=90°,AC<BC.(1)动手操作:要求尺规作图,不写作法,但保留作图痕迹.①作出AB的垂直平分线MN,MN与AB交于点D,与BC交于点E;②过点B作BF垂直于AE,垂足为F;(2)推理证明:求证AC=BF.素养探究全练12.[数学抽象](2022独家原创)郑州“7.20”特大暴雨灾害发生后,公路抢修队发现三条两两相交于A、B、C三点的公路(如图所示)遭到了破坏,现计划迅速建立抢修站,要求抢修站到三条公路的距离相等,则可供选择的位置P有几个?用尺规作图在图中标出抢修站点P的位置.答案全解全析基础过关全练1.A 由作图可知OD=OC=O'D'=O'C',CD=C'D',∴△DOC≌△D'O'C'(SSS),∴∠A'O'B'=∠AOB.故选A.2.D 选项A,CD⊥AB,但不一定平分AB,故不符合题意;选项B,CD为△ABC的角平分线,故不符合题意;选项C,不符合基本作图过程,故不符合题意;选项D,点D为AB的中点,所以CD为△ABC边AB上的中线,故D符合题意.故选D.3.C 由作图可知,MN是线段BC的垂直平分线,∴BD=CD=AC-AD=6-2=4.故选C.4.B 作AB的垂直平分线,交BC于点P,连结PA,则PA=PB,∵BC=PB+PC,∴PA+PC=BC,选项B符合题意.故选B.5.C 观察作图痕迹可得,已知线段AB,∠CAB=α,∠CBA=β.故选C.能力提升全练6.D 选项A中,AD为BC边上的高;选项B中,AD为∠BAC的平分线;选项C中,D点为BC的中点,∴AD为BC边上的中线;选项D中,点D为AB的垂直平分线与BC的交点,则DA=DB.故选D.7.D 由作图可知,∠DAE=∠DAB,∠DEA=90°,∴∠DEA=∠B,又∵AD=AD,∴△ADE≌△ADB,∴DB=DE,AB=AE,∵∠DEA=∠B=90°,∴∠BAC+∠C=90°,∠EDC+∠C=90°,∴∠EDC=∠BAC,故A,B,C中的结论均正确.∠DAC与∠C的大小关系不能确定,故D中的结论错误.故选D.8.76°解析 由尺规作图可知∠AOB=2∠α,∵∠α=38°,∴∠AOB=76°.9.12解析 根据作图可得∠BAD=∠CAD,在△ABD 和△AFD 中,AB =AF ,∠BAD =∠FAD ,AD =AD ,∴△ABD ≌△AFD(SAS),∴AF=AB=5,BD=DF,∴CF=AC-AF=8-5=3,∴△CDF 的周长=DF+DC+FC=BD+DC+FC=BC+FC=9+3=12.10.解析 如图,点Q 即为所求.11.解析 (1)①如图,DE 即为所作.②如图,BF 即为所作.(2)证明:∵ED 垂直平分AB,∴EA=EB,∵BF ⊥AE,∴∠BFE=90°,在△ACE 和△BFE 中,∠C =∠BFE ,∠AEC =∠BEF ,AE =BE ,∴△ACE ≌△BFE(AAS),∴AC=BF.素养探究全练12.解析 4处,如图所示,点P,P 1,P 2,P 3即为抢修站的位置.。

八年级数学上册 13.4 尺规作图 13.4.1 作一条线段等于已知线段同步练习 (新版)华东师大版

八年级数学上册 13.4 尺规作图 13.4.1 作一条线段等于已知线段同步练习 (新版)华东师大版

13.4.1作一条线段等于已知线段一.选择题1.下列属于尺规作图的是()A.用量角器画∠AOB的平分线OPB.利用两块三角板画15°的角C.用刻度尺测量后画线段AB=10cmD.在射线OP上截取OA=AB=BC=a答案:D解答:根据尺规作图的定义可得:在射线OP上截取OA=AB=BC=a,属于尺规作图,故选:D.分析:根据尺规作图的定义:是指用没有刻度的直尺和圆规作图可直接选出答案.2.用一把带有刻度的直角尺,①可以画出两条平行线;②可以画出一个角的平分线;③可以确定一个圆的圆心.以上三个判断中正确的个数是()A.0个 B.1个 C.2个 D.3个答案:D解答:(1)任意画出一条直线,在直线的同旁作出两条垂线段,并且这两条垂线段相等.过这两条垂线段的另一端点画直线,与已知直线平行,正确;(2)可先在这个角的两边量出相等的两条线段长,过这两条线段的端点向角的内部应垂线,过角的顶点和两垂线的交点的射线就是角的平分线,正确;(3)可让直角顶点放在圆上,先得到直径,进而找到直径的中点就是圆心,正确.故选:D.分析:根据基本作图的方法,逐项分析,从而得出正确个数.3.下列关于作图的语句中正确的是()A.画直线AB=10厘米B.画射线OB=10厘米C.已知A,B,C三点,过这三点画一条直线D.过直线AB外一点画一条直线和直线AB平行答案:D解答:A.直线没有长度,故A选项错误;B.射线没有长度,故B选项错误;C.三点有可能在一条直线上,可画出一条直线,也可能不在一条直线上,此时可画出三条直线,故选项错误;D.正确.故选:D.分析:根据基本作图的方法,逐项分析,从而得出正确的结论.4.下列作图语句错误的是()A.过直线外的一点画已知直线的平行线B.过直线上的一点画已知直线的垂线C.过∠AOB内的一点画∠AOB的平分线D.过直线外一点画此直线的两条斜线,一条垂线答案:C解答:A.过直线外的一点画已知直线的平行线,此说法正确,故本选项错误;B.过直线上的一点画已知直线的垂线,此说法正确,故本选项错误;C.过∠AOB内的一点画∠AOB的平分线,此说法不正确,故本选项正确;D.过直线外一点画此直线的两条斜线,一条垂线,此说法正确,故本选项错误;故选C.分析:根据平行线的作法.垂线的作法.角平分线的作法进行选择即可.5.按下列条件画三角形,能唯一确定三角形形状和大小的是()A.三角形的一个内角为60°,一条边长为3cmB.三角形的两个内角为30°和70°C.三角形的两条边长分别为3cm和5cmD.三角形的三条边长分别为4cm、5cm和8cm答案:D解答:A.三角形的一个内角为60°,一条边长为3cm,既不能唯一确定三角形形状和也不能唯一确定大小,不符合题意;B.三角形的两个内角为30°和70°,能唯一确定三角形形状和但不能唯一确定大小,不符合题意;C.三角形的两条边长分别为3cm和5cm,既不能唯一确定三角形形状和也不能唯一确定大小,不符合题意;D.三角形的三条边长分别为4cm、5cm和8cm,能唯一确定三角形形状和大小,符合题意.故选D.分析:根据基本作图的方法,及唯一确定三角形形状和大小的条件可知.6.下列作图语句中,不准确的是()A.过点A、B作直线ABB.以O为圆心作弧C.在射线AM上截取AB=aD.延长线段AB到D,使DB=AB答案:B解答:A.根据直线的性质公理:两点确定一条直线,可知该选项正确;B.画弧既需要圆心,还需要半径,缺少半径长,故该选项错误;C.射线有一个端点,可以其端点截取任意线段,故选项正确;D.线段有具体的长度,可延长,正确;故选B.分析:根据基本作图的方法,逐项分析,从而得出正确的结论.7.尺规作图是指()A.用量角器和刻度尺作图B.用圆规和有刻度的直尺作图C.用圆规和无刻度的直尺作图D.用量角器和无刻度的直尺作图答案:C解答:尺规作图所用的作图工具是指不带刻度的直尺和圆规.故选:C.分析:根据尺规作图的定义:尺是不带刻度的直尺,规是圆规进而得出答案.8.下列画图语句中正确的是()A.画射线OP=5cm B.画射线OA的反向延长线C.画出A、B两点的中点 D.画出A、B两点的距离答案:B解答:A.画射线OP=5cm,错误,射线没有长度,B.画射线OA的反向延长线,正确.C.画出A、B两点的中点,错误,中点是线段的不是两点的,D.画出A、B两点的距离,错误,画出的是线段不是距离.故选:B.分析:利用射线的定义,线段中点及距离的定义判定即可.9.尺规作图的画图工具是()A.刻度尺、量角器 B.三角板、量角器C.直尺、量角器 D.没有刻度的直尺和圆规答案:D解答:尺规作图的画图工具是没有刻度的直尺和圆规.故选D.分析:根据尺规作图的定义可知.10.下列属于尺规作图的是()A.用刻度尺和圆规作△ABCB.用量角器画一个300的角C.用圆规画半径2cm的圆D.作一条线段等于已知线段答案:D解答:A.用刻度尺和圆规作△ABC,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确.故选:D.分析:根据尺规作图的定义分别分析得出即可.11.下列作图语句正确的是()A.以点O为顶点作∠AOBB.延长线段AB到C,使AC=BCC.作∠AOB,使∠AOB=∠αD.以A为圆心作弧答案:C解答:A.画角既需要顶点,还需要角度的大小,错误;B.延长线段AB到C,则AC>BC,即AC=BC不可能,错误;C.作一个角等于已知角是常见的尺规作图,正确;D.画弧既需要圆心,还需要半径,缺少半径长,错误.故选C.分析:根据画角的条件判断A;根据线段延长线的等腰判断B;根据基本作图判断C;根据确定弧的条件判断D.12..已知三边作三角形,用到的基本作图是()A.作一个角等于已知角B.作已知直线的垂线C.作一条线段等于已知线段D.作一条线段等于已知线段的和答案:C解答:根据三边作三角形用到的基本作图是:作一条线段等于已知线段.故选C.分析:根据三边作三角形用到的基本作图是:作一条线段等于已知线段.13.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C..两直线平行,同位角相等D.两直线平行,内错角相等答案:A解答:如图:∵∠DPF=∠BAF,∴AB∥PD(同位角相等,两直线平行).故选:A.分析:由已知可知∠DPF=∠BAF,从而得出同位角相等,两直线平行.14.以下作图,用一对三角尺不能办到的是()A.画一个45°的角,再把它三等分B.画一个15°的角,再把它三等分C..画一个周角,再把它三等分D.画一个平角,再把它三等分答案:C解答:A.画一个45°角,把它三等分,每一份都是15°,一副三角板可以画出15°角,可以用一副三角板办到,故此选项不合题意;B.画一个15°角,把它三等分,每一份都是5°,一副三角板不能画出5°角,不能用一副三角板办到,故此选项不符合题意;C.画一个周角,把它三等分,每一份都是120°,一副三角板可以画出120°角,可以用一副三角板办到,故此选项不合题意;D.画一个平角,把它三等分,每一份都是60°,一副三角板可以画出60°角,可以用一副三角板办到,故此选项不合题意;故选:B.分析:一幅三角板有以下几个角度:90°,60°,45°,30°;只要其中的两个角相加或者相减后能得出的角都可以用一副三角板拼出.15.下列作图属于尺规作图的是()A.画线段MN=3cmB.用量角器画出∠AOB的平分线C.用三角尺作过点A垂直于直线L的直线D.作一条线段等于已知线段答案:D解答:A.画线段MN=3cm,需要知道长度,而尺规作图中的直尺是没有长度的,错误;B.用量角器画出∠AOB的平分线,量角器不在尺规作图的工具里,错误;C.用三角尺作过点A垂直于直线L的直线,三角尺也不在作图工具里,错误;D.正确.故选D.分析:根据尺规作图的定义可知.二.填空题16.所谓尺规作图中的尺规是指:.答案:没有刻度的直尺和圆规解答:由尺规作图的概念可知:尺规作图中的尺规指的是没有刻度的直尺和圆规.分析:本题考的是尺规作图的基本概念.17.作图题的书写步骤是、、,而且要画出和,保留.答案:已知|求作|作法|图形|结论|作图痕迹解答:作图题的书写步骤是已知.求作.作法,而且要画出图形和结论,保留作图痕迹.故答案为:已知.求作.作法,图形,结论,作图痕迹.分析:根据作图题的书写步骤和尺规作图的要求作答.18.已知一条线段作等边三角形,使其边长等于已知线段,则作图的依据是.答案: SSS解答:等边三角形三边相等,依题意得使其边长等于已知线段,则按全等三角形的判定定理(SSS)可得作图.分析:等边三角形三边相等,按全等三角形的判定定理(SSS)即可作图.19.用尺规作一个直角三角形,使其两直角边分别等于已知线段,则作图的依据是.答案: SAS解答:用尺规做直角三角形,已知两直角边.可以先画出两条已知线段和确定一个直角,作图的依据为SAS.分析:隐含的条件是直角,是两直角边的夹角,即可得出作图的依据为SAS.20.如图,使用直尺作图,看图填空:延长线段到,使BC=2AB.答案:AB| C解答:延长线段AB到C,使BC=2AB.分析:延长线段AB到C,使BC=2AB.三.解答题21.已知:线段a,画出一条线段,使它等于2a.答案:解答:首先作射线,然后截取AB=BC=a,则AC=2a,即AC就是所求的线段.分析:利用直尺和圆规作一条线段等于已知线段,即可求解.22.作图:已知线段a.b,画一条线段使它等于2a+b(要求:用尺规作图,并写出已知.求作.结论,保留作图痕迹,不写作法)答案:解答:已知:线段a.b,求作:线段AC,使线段AC=2a+b.结论:AC即为所求.分析:可先画出一条线段等于2a,然后再在这条线段延长线上上截去b,即为所求线段.23.用直尺.圆规作图,不写作法,但要保留作图痕迹.已知:线段a,b求作:线段AB,使AB=a+b答案:解答:如图:线段AB就是所求的线段.分析:首先作射线,然后截取线段AC=a,CB=b,则AB即为所求.24.作图题(利用直尺与圆规画图,不写作法,保留作图痕迹):如图,已知线段a.b,作一条线段,使它等于a-2b.答案:解答:如图,BD就是所求的线段.分析:画线段AB=a,AC=b,CD=b,线段BD就是所求线段.25.已知三条线段a.b.c,用尺规作出△ABC,使BC=a,AC=b,AB=c.(不写作法,保留作图痕迹)答案:解答:如图所示:分析:作线段BC=a,以点B为圆心,c为半径画弧,再以点C为圆心,b为半径画弧两弧的交点就是点A的位置,连接AB,AC即可.。

初二上册数学尺规作图练习题

初二上册数学尺规作图练习题

初二上册数学尺规作图练习题1. 给定线段AB,利用尺规作图方法,构造平行于AB且离AB距离为3cm的直线段CD。

2. 给定线段EF和直线L,利用尺规作图方法,将直线L上的点P 与线段EF做垂线,垂足为点G。

3. 给定一个等边三角形ABC,利用尺规作图方法,找到三角形外部与三边等长的三点D、E、F,即DE=EF=FD。

4. 给定两个已知点A和B,利用尺规作图方法,找到与已知直线段AB等长的线段CD,使得CD垂直于已知直线段AB。

5. 给定两个已知点A和B,以及已知的一个直线段CD,利用尺规作图方法,找到一条经过点A且与线段CD垂直的直线L。

6. 给定一个已知角度,利用尺规作图方法,将已知角度的两边分别延长到任意长度,并找到它们的交点P。

7. 给定两个已知点A和B,以及已知的一个直线段CD,利用尺规作图方法,找到一条经过点A且与直线CD平行的直线L。

8. 给定两个已知点A和B,以及已知的一个直线段CD,利用尺规作图方法,找到一条经过点A且与直线CD相交于点E的直线L。

9. 给定一个已知角度,以及已知的一个直线段CD,利用尺规作图方法,找到一个与已知角度的一边重合且与线段CD相交于点F的直线L。

10. 给定一个已知角度,利用尺规作图方法,找到一个与已知角度的一边重合且经过点A的直线L。

以上是初二上册数学尺规作图的练习题。

通过这些练习题,可以帮助同学们熟悉数学尺规作图的基本方法和步骤,并提高他们的几何思维和空间想象能力。

尺规作图是一种重要的几何工具,对于解决几何问题和理解几何定理有着重要的作用。

通过反复练习和掌握尺规作图的技巧,同学们可以在几何学习中更加游刃有余,提高数学成绩。

在实际操作尺规作图时,同学们需要注意以下几点:1. 选取适当的比例尺:在作图中,要根据实际情况选择适当的比例尺,使得图形能够在纸上完整呈现,并且尽可能占用纸面的空间。

2. 使用准确的标志点:作图中需要准确的标记点、线段和角度大小。

13.4 尺规作图 华东师大版数学八年级上册素养提升练(含解析)

13.4 尺规作图 华东师大版数学八年级上册素养提升练(含解析)

第13章 全等三角形13.4 尺规作图基础过关全练知识点1 作一条线段等于已知线段1.(2023山东临清期中)如图,已知线段a,b.按如下步骤完成尺规作图,则AC的长是( )①作射线AM;②在射线AM上顺次截取AD,DB,使AD=DB=a;③在线段AB上截取BC=b.A.2a+bB.2a-bC.a+bD.b-a知识点2 作一个角等于已知角2.如图,尺规作∠HFG=∠ABC,作图痕迹中弧MN是( )A.以点F为圆心,以BE长为半径的弧B.以点F为圆心,以DE长为半径的弧C.以点G为圆心,以BE长为半径的弧D.以点G为圆心,以DE长为半径的弧3.(2023北京东城期末)已知∠AOB.下面是“作一个角等于已知角,即作∠A'O'B'=∠AOB”的尺规作图痕迹.该尺规作图的依据是( )A.S.A.S.B.S.S.S.C.A.A.S.D.A.S.A.4.【一题多解】【新独家原创】如图,D是△ABC的边BA延长线上一点,AB=BC,∠B=40°,结合作图痕迹,求证:AC平分∠BAE.知识点3 作已知角的平分线5.【尺规作图】【新考法】(2023吉林长春四十五中期末(线上))如图,已知AB=AC,BC=6,由尺规作图痕迹可得BD=( )A.2B.3C.4D.56.【易错题】(2023山东烟台期中)用尺规作图如图所示,首先以A为圆心,任意长为半径画弧,分别交AB,AC于点E,F;再分别以E,F为圆心,以EF长为半径画弧,两弧交于D点,最后作射线AD.下列结论不一大于12定正确的是( )A.AF=DFB.∠BAD=∠CADC.∠AFD=∠AEDD.DE=DF7.(2022吉林长春吉大附中期中)如图,在△ABC中,∠A=50°,∠B=80°,观察图中尺规作图的痕迹,则∠DCE的度数为 .知识点4 经过一已知点作已知直线的垂线8.(2023辽宁大连甘井子期中)已知钝角△ABC,用直尺和圆规作边BC 上的高.(不写作法,保留作图痕迹)知识点5 作已知线段的垂直平分线9.根据图中尺规作图的痕迹,可判断AD一定为三角形ABC的( )A.角平分线B.中线C.高线D.都有可能10.(2022四川三台期中)如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA长为半径画弧①;步骤2:以B为圆心,BA长为半径画弧②,交弧①于点D;步骤3:连结AD,交BC的延长线于点H.下列叙述正确的是( )A.AB=ADB.BH⊥ADC.S△ABC=BC·AHD.AC平分∠BAD11.【教材变式·P90T2】如图,在Rt△ABC中,∠C=90°,AC<BC.(1)动手操作:要求尺规作图,不写作法,但保留作图痕迹.①作出线段AB的垂直平分线MN,MN与AB交于点D,与BC交于点E;②连结AE,过点B作BF垂直于AE,垂足为F;(2)推理证明:求证:AC=BF.能力提升全练12.(2021四川广元中考,6,★☆☆)观察下列作图痕迹,线段CD为△ABC的角平分线的是( )A BC D13.(2022海南中考,10,★★☆)如图,在△ABC中,AB=AC,以点B为圆心,适当长为半径画弧,交BA于点M,交BC于点N,分别以点M、N为圆MN的长为半径画弧,两弧在∠ABC的内部相交于点P,画射心,大于12线BP,交AC于点D,若AD=BD,则∠A的度数是( )A.36°B.54°C.72°D.108°14.(2022山西平定期中,18,★☆☆)如图,已知等腰△ABC的顶角∠A=36°.(1)根据要求用尺规作图:作∠ABC的平分线交AC于点D;(不写作法,只保留作图痕迹)(2)在(1)的条件下,求证:△BDC是等腰三角形.15.【新考法】(2022广西贵港中考,20,★★☆)尺规作图(保留作图痕迹,不要求写出作法).如图,已知线段m,n.求作△ABC,使∠A=90°,AB=m,BC=n.素养探究全练16.【推理能力】数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角的平分线,作法如下(如图1):①在OA和OB上分别截取OD、OE,使OD=OE.DE的长为半径作弧,两弧在∠AOB内交②分别以D、E为圆心,大于12于点C.③作射线OC,则OC就是∠AOB的平分线.小聪只带了直角三角板,他发现利用三角板也可以作角的平分线,作法如下(如图2):①利用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.②分别过M、N作OM、ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角的平分线.图1 图2根据以上情境,解决下列问题:(1)李老师用尺规作角的平分线时,用到的三角形全等的判定方法是 ;(2)小聪的作法正确吗?请说明理由;(3)请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)答案全解全析基础过关全练1.B 如图,AC=AB-BC=AD+BD-BC=2a-b.故选B.2.D 3.B 由作图得DO=D'O'=CO=C'O',CD=C'D',在△DOC和△D'O'C'中,DO=D'O', CO=C'O', CD=C'D',∴△DOC≌△D'O'C'(S.S.S.),∴∠O'=∠O.故选B.4.证明 证法一:根据作图痕迹可知∠DAE=∠B.∵∠B=40°,∴∠DAE=40°.∵AB=BC,∴∠BAC=∠C,∴∠BAC=180°-∠B2=180°-40°2=70°,∴∠CAE=180°-∠BAC-∠DAE=180°-70°-40°=70°,∴∠BAC=∠CAE,∴AC平分∠BAE.证法二:根据作图痕迹可知∠DAE=∠B,∴AE∥BC,∴∠EAC=∠C,∵AB=BC,∴∠BAC=∠C,∴∠BAC=∠CAE,∴AC平分∠BAE.5.B 本题将尺规作图与等腰三角形的三线合一的性质结合起来考查.由尺规作图痕迹可知AD平分∠BAC,∵AB=AC,BC=6,∴BD=CD=3,故选B.6.A 解答此题时易因不理解基本的尺规作图步骤导致判断错误.由作图可得AF=AE,FD=DE,在△AFD 和△AED 中,AF =AE ,AD =AD ,FD =DE ,∴△AFD ≌△AED(S.S.S.),∴∠BAD=∠CAD,∠AFD=∠AED,故选项B,C,D 中的结论正确,不合题意;无法得出AF=DF,故选项A 中的结论不一定正确,符合题意.故选A.7.答案 65°解析 ∵∠A=50°,∠B=80°,且∠ACD 是△ABC 的外角,∴∠ACD=∠A+∠B=50°+80°=130°,观察题图中尺规作图的痕迹,可得CE 平分∠ACD,∴∠DCE=12∠ACD=12×130°=65°.8.解析 如图,AD 即为所作.9.B 由作图可知,D 是线段BC 的中点,故AD 是△ABC 的中线,故选B.10.B 由作图可知,直线BC 是线段AD 的垂直平分线,所以BH ⊥AD,故选B.11.解析 (1)①②如图所示:(2)证明:∵直线MN 是线段AB 的垂直平分线,∴AD=BD,∠ADE=∠BDE=90°,在△ADE 和△BDE 中,AD =BD ,∠ADE =∠BDE ,ED =ED ,∴△ADE ≌△BDE(S.A.S.),∴EA=EB,∵BF ⊥AE,∴∠BFE=90°=∠C,在△ACE 和△BFE 中,∠C =∠BFE ,∠AEC =∠BEF ,AE =BE ,∴△ACE ≌△BFE(A.A.S.),∴AC=BF.能力提升全练12.C A 、D 选项中的线段CD 为△ABC 的高,B 选项中的线段CD 为△ABC 的中线,C 选项中的线段CD 为△ABC 的角平分线.故选C.13.A 由题意可得射线BP 为∠ABC 的平分线,∴∠ABD=∠CBD,∵AD=BD,∴∠A=∠ABD,∴∠A=∠ABD=∠CBD,∴∠ABC=2∠A,∵AB=AC,∴∠ABC=∠C=2∠A,∴∠A+∠ABC+∠C=∠A+2∠A+2∠A=180°,解得∠A=36°.故选A.14.解析 (1)如图所示,BD即为所求.(2)证明:∵∠A=36°,AB=AC,∴∠ABC=∠C=(180°-36°)÷2=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=72°÷2=36°,∴∠CDB=180°-36°-72°=72°,∴∠C=∠CDB,∴BD=BC,∴△BDC是等腰三角形.15.解析 如图所示,△ABC即为所求.注: (1)作直线l及l上一点A;(2)过点A作l的垂线AD;(3)在l上截取AB=m;(4)作BC=n交l的垂线于C.△ABC即为所作.素养探究全练16.解析 (1)S.S.S..(2)小聪的作法正确.理由如下:∵PM⊥OM,PN⊥ON,∴∠OMP=∠ONP=90°,在Rt△OMP和Rt△ONP中,OP=OP, OM=ON,∴Rt△OMP≌Rt△ONP,∴∠MOP=∠NOP,∴OP平分∠AOB.(3)步骤:①利用刻度尺在OA、OB上分别截取OG、OH,使OG=OH.②连结GH,利用刻度尺作出GH的中点Q.③作射线OQ,则OQ就是∠AOB的平分线.如图所示.。

初二数学尺规作图练习题

初二数学尺规作图练习题

初二数学尺规作图练习题尺规作图是数学中的重要内容,通过使用尺规来解决几何问题。

在初二数学中,尺规作图是一项基础技能,帮助学生理解几何概念并锻炼解决问题的能力。

本文将介绍一些初二数学尺规作图的练习题,并提供相应的解答。

【练习题一】已知正方形ABCD的边长为2cm,E为边AB上的一点,连接DE并延长至与边BC相交于点F,请使用尺规作图的方法求出DF的长度。

解答:1. 作辅助线:过点D作DE的垂线,交边BC于点G。

2. 以尺规的一点放在点D上,另一点固定在边DE上,画弧与边BC相交于点G。

3. 以尺规的一点放在点G上,另一点放在点F上,画弧与边DC相交于点H。

4. 连接DH,DH即为所求的DF的长度。

【练习题二】已知直角三角形ABC,其中∠ABC=90°,AB=3cm,BC=4cm,请使用尺规作图的方法求出三角形ABC的内切圆的半径。

解答:1. 作辅助线:连接AB和AC,延长AC至点D。

2. 以尺规的一点放在点A上,另一点固定在边AC上,画弧与边AB相交于点E。

3. 以尺规的一点放在点E上,另一点放在点C上,画弧与边BC相交于点F。

4. 连接AF,AF即为三角形ABC的内切圆的半径。

【练习题三】已知正方形ABCD的边长为6cm,E为边AB上的一点,连接DE 并延长至与边BC相交于点F,连接CF,请使用尺规作图的方法求出三角形CEF的周长。

解答:1. 作辅助线:过点D作DE的垂线,交边BC于点G。

2. 以尺规的一点放在点D上,另一点固定在边DE上,画弧与边BC相交于点G。

3. 以尺规的一点放在点G上,另一点放在点F上,画弧与边FC相交于点H。

4. 连接CF和FH,CHFH即为三角形CEF。

5. 使用尺规测量边CH、HF和FC的长度,计算出三角形CEF的周长。

通过以上三个练习题,我们了解了尺规作图的基本方法和步骤。

在实际操作中,我们需要准确使用尺规,并且要仔细观察图形的性质和特点,以便选择合适的作图方法。

初二尺规作图练习题

初二尺规作图练习题

初二尺规作图练习题在初二的几何学学习中,尺规作图是一个重要的议题。

通过使用尺规,我们可以准确地绘制各种几何图形,从而帮助我们更好地理解几何学的概念和原理。

在本篇文章中,我将向大家介绍一些初二尺规作图的练习题,以帮助大家提高几何作图的能力。

1. 给定一条线段AB,要求将其平分。

解题思路:首先,使用尺子将AB两个端点连线,得到直线l。

然后,用尺子量取一个较长的距离,将其分成两段。

第一个刻度对应A 点,第二个刻度对应B点。

连接两个刻度点,得到直线m。

直线m即为线段AB的平分线。

2. 给定一条线段AB和一点C,要求在线段AB上构造一个与线段AB等长的线段CD。

解题思路:首先,将AB的长度量取到尺子上。

然后,将尺子的一端放在点C上,另一端与A对齐。

在尺子上的刻度上找到点D,将D与C连线,得到线段CD,它与线段AB等长。

3. 给定一个角AOB和一条线段CD,要求在线段CD上构造一个与角AOB相等的角。

解题思路:首先,将尺子的一边放在A点上,另一边与O点对齐。

然后,保持尺子的角度不变,将尺子的一边放在C点上,另一边与D连线。

调整尺子的位置,直到尺子的另一边与B点重合。

然后,将尺子沿着CD方向平移到与A点重合,即可得到所要构造的角。

4. 给定一条线段AB和一点C,要求将线段AB向点C平移。

解题思路:首先,将尺子的一边放在A点上,另一边与B点对齐。

然后,在尺子的延长线上找到点D,使得CD与AB重合。

接着,将尺子的一边放在C点上,另一边与D点对齐。

最后,将尺子保持不动,将整个尺子与AD连线平移至C点,线段AB就成功地向点C平移了。

通过以上的几个练习题,相信大家对初二尺规作图有了更深入的理解。

几何学是一门需要实践和动手能力的学科,通过反复练习尺规作图,我们可以不断提高自己的几何直观和几何思维能力。

希望大家能够充分利用课后时间,练习更多的尺规作图题目,提升自己在几何学上的能力。

尺规作图不仅仅是课堂上的一项学习内容,它还具有实际应用的价值。

尺规作图初二上册练习题

尺规作图初二上册练习题

尺规作图初二上册练习题在初中数学学习中,尺规作图是一个很重要的章节。

通过尺规作图,我们可以绘制出各种形状的图形,并解决与这些图形相关的问题。

本文将针对初二上册的尺规作图练习题进行讲解和解答。

1. 给定一个线段AB,要求将其平分。

解析:我们可以使用尺规作图的方法来达到平分线段AB的目的。

a) 以A为圆心,以AB为半径画一个弧,再以B为圆心,以BA为半径画一个弧。

b) 这两个弧交于点C,连接AC和BC,则AC和BC为所求平分线段AB的两部分。

2. 给定一个角AOB,要求将其平分。

解析:类似于问题1,我们可以通过尺规作图的方法来平分角AOB。

a) 以O为圆心,以任意半径画一个弧,将OA、OB分别交于点C、D。

b) 以C和D为圆心,相同的半径画两个弧。

这两个弧将会交于一点E。

c) 以O和E为起点,以相同的长度画两条弧,这两条弧将分别交于两点F、G。

d) 连接OF和OG,则OF和OG为所求平分角AOB的两部分。

3. 给定一个线段AB和一点O,要求以点O为圆心,以AB为半径画一个圆。

解析:使用尺规作图可以很方便地以给定的点为圆心,以给定的线段为半径画一个圆。

a) 以点O为圆心,以任意半径作一个弧。

这个弧将会和线段AB 交于两点C、D。

b) 以C和D为圆心,相同的半径分别作两个弧。

这两个弧将会交于两点E、F。

c) 连接OE和OF,则OE和OF为所求的圆的直径。

4. 给定一个角AOB和一点C,要求以点C为圆心,绕过A和B分别画两个弧。

解析:我们可以使用尺规作图的方法绕过给定的两个点分别画出两个弧。

a) 以点C为圆心,以任意半径作一个弧,将OA、OB分别交于点D、E。

b) 以D和E为圆心,相同的半径分别作两个弧。

这两个弧将会交于两点F、G。

c) 连接CF和CG,则CF和CG为所求的两个弧。

通过以上练习题的详细解析,我们对初二上册的尺规作图有了更深入的了解。

通过尺规作图的方法,我们可以解决很多与图形相关的问题,并且可以通过直观的图示帮助我们更好地理解和掌握数学知识。

八上第二章尺规作图专题训练(有答案)

八上第二章尺规作图专题训练(有答案)

尺规作图班级姓名得分一、选择题1.如图,已知线段AB,分别以A、B为圆心,大于1AB为半径作弧,连接弧的交点得2到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A. B. C. D.2.尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A. B.C. D.3.用直尺和圆规画出一个角等于已知角,是运用全等三角形来解决的,其中判定全等的方法是()A. SSSB. SASC. ASAD. HL4.下列作图属于尺规作图的是()A. 用量角器画出∠AOB的平分线OCB. 借助直尺和圆规作∠AOB,使∠AOB=2∠αC. 画线段AB=3cmD. 用三角尺过点P作AB的垂线5.下列尺规作图的语句正确的是()A. 延长射线AB到DB. 以点D为圆心,任意长为半径画弧C. 作直线AB=3cmD. 延长线段AB至C,使AC=BC6.下列尺规作图,能判断AD是△ABC边上的高是()A. B.C. D.7.已知:直线AB和AB外一点C.作法:(1)任意取一点K,使K和C在AB的两旁.(2)以C为圆心,CK长为半径作弧,交AB于点D和E.DE的长为半径作弧,(3)分别以D和E为圆心,大于12两弧交于点F.(4)作直线CF,直线CF就是所求的垂线.这个作图是()A. 平分已知角B. 作一个角等于已知角C. 过直线上一点作此直线的垂线D. 过直线外一点作此直线的垂线二、填空题8.如图,在△ABC中,用直尺和圆规作AB、AC的垂直平分线,分别交AB、AC于点D、E,连接DE.若BC=10cm,则DE=______cm.9.如图,以A点为圆心,以相同的长为半径作弧,分别与射线AM,AN交于B,C两点,连接BC,再分别以B,C为圆心,BC)为半径作弧,两弧相交于点D,连接以相同长(大于12AD,BD,CD.若∠MBD=40°,则∠NCD的度数为______.10.小为同学和小辰同学研究一个数学问题:尺规作图:作三角形的高线.已知:△ABC.尺规作图:作BC边上的高AD.他们的作法如下:BE长为半径画弧,两弧交于点F.①分别以B,E为圆心,大于12②连接AF,与BC交于点D,则线段AD即为所求.③以A为圈心,AB为半径画弧,与BC交于点E.老师说:“你们的作法思路正确,但作图顺序不对.”请回答:其中顺序正确的作图步骤是(填写序号)______.判断线段AD为BC边上的高的作图依据是______.11.如图,以点O为圆心,任意长为半径画弧,与射线OP交于点A,再以点A为圆心,OA长为半径画弧,两弧交于点B,画射线OB,则∠AOB=_________°.12.如图,在△ABC中,∠C=90°,分别以点A,B为圆心,大于1AB长为半径作弧,两2弧分别交于M,N两点,过M,N两点的直线交BC于点D,若AC=2,∠B=15°,则BD的长______.13.如图,用三角尺可按下面方法画角平分线:在已知的∠AOB的两边上,分别取______,再分别过点M,N作OA、OB的垂线,交点为P,画射线OP,可利用______(填写判定方法)证明△POM≌△PON,然后根据______得∠POM=∠PON,则OP平分∠AOB.14.如图,画线段PQ的垂直平分线.PQ长为半径画弧,两弧分解:(1)分别以点_________和点_________为圆心,大于12别交于点________和点________;(2)过点________和点________作直线,则直线________就是线段PQ的垂直平分线.15.如图,在△ABC,∠C=90°,∠ABC=40°,按以下步骤作图:①以点A为圆心,小于AC的长为半径.画弧,分别交AB、AC于点E、F;EF的长为半径画弧,两②分别以点E、F为圆心,大于12弧相交于点G;③作射线AG,交BC边于点D,则∠ADC的度数为______.三、解答题16.如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.17.如图,已知∠AOB及点C、D,求作一点P,使PC=PD,并且使点P到OA、OB的距离相等.(尺规作图)18.如图,已知△ABC,∠BAC=90°,(1)尺规作图:作∠ABC的平分线交AC于D点(保留作图痕迹,不写作法)(2)若∠C=30°,求证:DC=DB.19.如图,已知在△ABC中,BC=4,AC=8.(1)作边AB的垂直平分线MN,交AC于点D,连接BD(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,求△BCD的周长.20.如图,在△ABC中,AB=AC,∠BAC=120°.(1)尺规作图:作线段AB的垂直平分线DE,交BC于点D,交AB于点E(保留作图痕迹,不写作法);DC.(2)求证:BD=1221.如图,已知△ABC.(1)请用尺规作图作出AC的垂直平分线,垂足为点D,交AB于点E(保留作图痕迹,不要求写作法);(2)连接CE,如果△ABC的周长为27,DC的长为5,求△BCE的周长.答案和解析1.【答案】B【解析】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选:B.根据作法可知直线l是线段AB的垂直平分线,故可得出AC=BC,再由三角形外角的性质即可得出结论.本题考查的是作图-基本作图,熟知线段垂直平分线的作法是解答此题的关键.2.【答案】B【解析】已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使K和C在AB的两旁.(2)以C为圆心,CK的长为半径作弧,交AB于点D和E.DE的长为半径作弧,两(3)分别以D和E为圆心,大于12弧交于点F,(4)作直线CF.直线CF就是所求的垂线.故选:B.根据过直线外一点向直线作垂线即可.此题主要考查了过一点作直线的垂线,熟练掌握基本作图方法是解决问题的关键.3.【答案】A【解析】解:用直尺和圆规画出一个角等于已知角,是运用了SSS定理来判定全等的,故选:A.根据作一个角等于已知角的做法可得答案.此题主要考查了全等三角形的判定,以及作一个角等于已知角的做法,关键是熟练掌握作一个角等于已知角的做法.4.【答案】B【解析】解:根据尺规作图的定义可知:助直尺和圆规作∠AOB,使∠AOB=2∠α属于尺规作图,故选:B.根据尺规作图的定义即可判定.本题考查尺规作图的定义,解题的关键是理解尺规作图的定义,属于中考基础题.5.【答案】B【解析】解:A.根据射线AB是从A向B无限延伸,故延长射线AB到D是错误的;B.根据圆心和半径长即可确定弧线的形状,故以点D为圆心,任意长为半径画弧是正确的;C.根据直线的长度无法测量,故作直线AB=3cm是错误的;D.延长线段AB至C,则AC>BC,故使AC=BC是错误的;故选:B.根据线段、射线以及直线的概念,利用尺规作图的方法进行判断即可得出正确的结论.本题主要考查了尺规作图的定义的运用,解题时注意:尺规作图是指用没有刻度的直尺和圆规作图,只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.6.【答案】B【解析】解:过点A作BC的垂线,垂足为D,故选:B.过点A作BC的垂线,垂足为D,则AD即为所求.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图7.【答案】D【解析】解:利用作法得CF⊥AB,所以这个作图为过直线外一点作此直线的垂线.故选:D.利用基本作图(过一点作直线的垂线)进行判断.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.8.【答案】5【解析】【分析】此题主要考查了基本作图以及线段垂直平分线的性质,三角形的中位线的性质,正确得出DE是△ABC的中位线是解题关键.直接利用线段垂直平分线的性质得出DE是△ABC的中位线,进而得出答案.【解答】解:∵用直尺和圆规作AB、AC的垂直平分线,∴D为AB的中点,E为AC的中点,∴DE是△ABC的中位线,∴DE=1BC=5cm.2故答案为5.9.【答案】40°【解析】解:∵AB=AC,DB=DC,∴∠ABC=∠ACB,∠DBC=∠DCB,∴∠ABD=∠ACD,∴∠MBD=∠NCD=40°,故答案为:40°根据等腰三角形的性质得到∠ABC=∠ACB,∠DBC=∠DCB,则∠ABD=∠ACD,然后根据邻补角得出∠MBD=∠NCD.本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).10.【答案】③①②到线段两点的距离相等的点在线段的垂直平分线上【解析】解:作法如下:先以A为圈心,AB为半径画弧,与BC交于点E,再分别以B,BE长为半径画弧,两弧交于点F,然后连接AF,与BC交于点D,因E为圆心,大于12为根据到线段两点的距离相等的点在线段的垂直平分线上,所以线段AD⊥BC,即AD 为高.故答案为③①②;到线段两点的距离相等的点在线段的垂直平分线上.利用基本作图(作已知线段的垂直平分线)可得到正确的作图步骤,然后根据线段垂直平分线的性质定理的逆定理可判断AD⊥BC.本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).11.【答案】60【解析】【分析】本题考查了尺规作图和等边三角的判断,解题的关键是能根据尺规作图得到相等的线段.由尺规作图可知AO=BO=AB,由此可得△AOB是等边三角形,得出∠AOB的度数.【解答】解:由作图可得:AO=BO=AB,∴△AOB是等边三角形,∴∠AOB=60°.故答案为60.12.【答案】4【解析】解:连接AD,如图,由作法得MN垂直平分AB,则DA=DB,∴∠B=∠BAD=15°,∴∠ADC=∠B+∠BAD=30°,在Rt△ADC中,AD=2AC=4,∴BD=DA=4.故答案为4.连接AD,如图,由作法得MN垂直平分AB,则DA=DB,根据等腰三角形性质和三角形外角性质得到∠ADC=30°,所以AD=2AC=4,从而得到BD的长.本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.13.【答案】OM=ON;HL;全等三角形的对应角相等【解析】解:在已知的∠AOB的两边上,分别取OM=ON,再分别过点M,N作OA、OB的垂线,交点为P,画射线OP,可利用HL(填写判定方法)证明△POM≌△PON,然后根据全等三角形的对应角相等得∠POM=∠PON,则OP平分∠AOB.故答案为:OM=ON,HL,全等三角形的对应角相等.根据作图的作法得到OM=ON,根据全等三角形的判定定理得到HL,根据全等三角形的性质得到结论.本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定方法.14.【答案】(1)P;Q;M;N;(2)M;N;MN.【解析】【分析】本题主要考查线段的垂直平分线的画法,需熟练掌握作图语言才能解决问题.通过观察可发现是作线段PQ的垂直平分线.【解答】解:通过观察可发现是作线段PQ的垂直平分线,根据线段的垂直平分线的画法,PQ的长为半径作弧,两弧分别交于点M和点所以分别以点P和点Q为圆心,以大于12N,再过点M和点N作直线,则直线MN就是线段PQ的垂直平分线.故答案为(1)P;Q;M;N;(2)M;N;MN.15.【答案】65°【解析】解:解法一:连接EF.∵点E、F是以点A为圆心,小于AC的长为半径画弧,分别与AB、AC的交点,∴AF=AE;∴△AEF是等腰三角形;EF的长为半径画弧,两弧相交于点G;又∵分别以点E、F为圆心,大于12∴AG是线段EF的垂直平分线,∴AG平分∠CAB,∵∠ABC=40°∴∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);解法二:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);故答案是:65°.根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质解答即可.本题综合考查了作图--复杂作图,直角三角形的性质.根据作图过程推知AG是∠CAB 平分线是解答此题的关键.16.【答案】解:(1)如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.【解析】(1)根据题意作出图形即可;(2)由于DE是AB的垂直平分线,得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B=50°,由三角形的外角的性质即可得到结论.本题考查了作图-基本作图,线段垂直平分线的性质,三角形的外角的性质,等腰三角形的性质,熟练掌握线段垂直平分线的性质是解题的关键.17.【答案】解:(1)以O为圆心,以任意长为半径画弧,交OA、OB于M、N两点,MN长为半径画弧,两弧交于K点,(2)再以M、N为圆心,大于12(3)作射线OK,(4)分别以C、D为圆心画弧,两弧分别交于H、T两点,连接HT,(5)CD的垂直平分线与∠AOB的角平分线交点即为P点【解析】本题考查了尺规作图的一般作法.解答本题的关键在于知道怎么作出线段CD的垂直平分线及∠AOB的角平分线,通过两条直线的交点即为我们所要求的P点.18.【答案】(1)解:射线BD即为所求;(2)∵∠A=90°,∠C=30°,∴∠ABC=90°-30°=60°,∵BD平分∠ABC,∠ABC=30°,∴∠CBD=12∴∠C=∠CBD=30°,∴DC=DB.【解析】(1)根据角平分线的作法求出角平分线BD;(2)想办法证明∠C=∠CBD即可;本题考查作图-基本作图,等腰三角形的判断等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.19.【答案】解:(1)(2):∵MN 是AB 的垂直平分线.∴AD =BD∴△BCD 的周长=BD +CD +BC=AD +CD +BC=AC +BC =8+4=12【解析】此题主要考查了基本作图,关键是掌握线段垂直平分线的作法和性质.垂直平分线上任意一点,到线段两端点的距离相等.(1)根据线段垂直平分线的作法作图即可;(2)根据线段垂直平分线的性质可得“DB =DC ,进而得到AD +DC =AD +BD =5cm ,然后可得周长.20.【答案】(1)解:如图,DE 为所作;(2)证明:连接AD ,如图,∵AB =AC ,∴∠B =∠C =12(180°-∠BAC )=12(180°-120°)=30°, ∵DE 垂直平分AB ,∴DA =DB ,∴∠DAB =∠B =30°,∴∠CAD =120°-30°=90°,在Rt △ADC 中,AD =12CD ,∴BD =12CD .【解析】(1)利用基本作图(作已知线段的垂直平分线)作出DE 垂直平分AB ; (2)连接AD ,如图,先利用等腰三角形的性质和三角形内角和计算出∠B =∠C =30°,再根据线段垂直平分线的性质得DA =DB ,则∠DAB =∠B =30°,接着计算出∠CAD =90°,利用含30度的直角三角形三边的关系得到AD =12CD ,从而得到结论.∴BD =12CD .本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).21.【答案】解:(1)如图,DE为所作;(2)∵DE垂直平分AC,∴EA=EC,AD=CD=5,∴AC=10,∵△ABC的周长=AB+BC+AC=27,∴AB+BC=27-10=17,∴△AEC的周长=BE+EC+BC=BE+AE+BC=AB+BC=17.【解析】(1)利用基本作图作DE垂直平分AC;(2)根据线段垂直平分线的性质得到EA=EC,AD=CD=5,则利用△ABC的周长得到AB+BC=17,然后根据等线段代换可求出△AEC的周长.本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).。

初二上册尺规作图练习题

初二上册尺规作图练习题

初二上册尺规作图练习题尺规作图是几何学的基础内容之一,通过使用尺和直尺进行作图,可以锻炼学生的观察力、逻辑思维和空间想象力。

在初二上册的学习过程中,我们也会接触到一些尺规作图的练习题,下面我将为大家介绍几道常见的练习题,以便更好地掌握尺规作图的技巧。

1. 作图题目:用尺规作图,将一个已知直径为AB的圆,分成互相垂直的四等分。

首先,我们需要明确题目的要求,即将已知直径为AB的圆分成互相垂直的四等分。

根据尺规作图的基本原理,我们可以从以下步骤着手解答这个题目:步骤一:作圆- 以点A为圆心,以AB的一半为半径,作圆弧,交AB于点C;- 以点B为圆心,以BA的一半为半径,作圆弧,交AB于点D。

步骤二:作直径- 连接BC和CD,分别以点B和点C为圆心,以BC和CD的长度为半径,作圆弧,交于点E;- 连接CE并延长至交AB于点F。

至此,我们已经完成了将已知直径为AB的圆分成互相垂直的四等分的尺规作图。

2. 作图题目:用尺规作图,求一个边长为AB的正方形的对角线。

本题要求通过尺规作图求解一个边长为AB的正方形的对角线。

以下是解题的步骤:步骤一:作正方形- 以点A为圆心,以AB为半径,作一个圆;- 以点B为圆心,以AB为半径,作一个圆;- 圆弧AB和圆弧BA交于点C和点D,连接AC、CB和BD。

步骤二:作对角线- 连接AB,将线段AB延长至相交于直线CE的点E;- 连接AE,即AE为所求的正方形对角线。

通过以上步骤,我们成功地利用尺规作图求解了一个边长为AB的正方形的对角线。

尺规作图是数学中重要的内容,掌握了尺规作图的基本原理和方法,我们能够更好地理解几何形体之间的关系,同时也提升了我们的观察力和逻辑思维能力。

通过不断练习尺规作图练习题,我们能够更加熟练地运用尺规工具进行作图,并且在实际问题中能够应用几何知识进行解决。

以上是初二上册尺规作图练习题的介绍,希望能够对大家的学习有所帮助,同时也希望大家能够继续努力,深入学习数学知识,提高自己的数学水平。

八年级数学上册1-3第7课时尺规作图习题课件新版苏科版

八年级数学上册1-3第7课时尺规作图习题课件新版苏科版
痕迹)
①作∠ ABC 的平分线 BD ,交 AC 于点 D ;
②在边 AB 上截取线段 AE ,使得 AE = AD ,连接 CE ;
1
2
3
4
5
6
7
8
9
10
11
(1)解:①如图, BD 即为所作.②如图, AE 、 CE
即为所作.
1
2
3
4
5
6
7
8
9
10
11
(2)求证: BD = CE .
(2)证明:在△ ABD 和△ ACE 中,
∴∠ CAD =∠ EAD .
∠=∠,
在△ ACD 和△ AED 中ቐ∠=∠,
=,
∴△ ACD ≌△ AED (AAS),∴ AC = AE .
1
2
3
4
5
6
7
8
9
10
11
7. [2024宿迁宿豫区期末]如图,在△ ABC 中, AB = AC .
(1)用直尺和圆规按下列要求作图:(不写作法,保留作图
∴△ OPM ≌△ OPN (SSS).
∴∠ POM =∠ PON . ∴ OP 平分∠ AOB .
1
2
3
4
5
6
7
8
9
10
11
11. [2023南京栖霞区期中]如图,在14×8的网格中,每个小
正方形的边长均为1,小正方形的每一个顶点叫做格点,
线段 ED 的端点和三角形 ABC 的顶点都在格点上.
1
分别为点 C 、 D .
解:如图, PC 、 PD 即为所作.
1
2
3
4
5

2022-2023学年人教版八年级数学上册尺规作图专题练习

2022-2023学年人教版八年级数学上册尺规作图专题练习

尺规作图汇总一、(作一个角等于已知角)1.已知AOB ∠,利用尺规作A O B '''∠,使A O B AOB '''∠=∠.(不写作法,保留作图痕迹)2.在△ABC 中,在边AC 上找一点D ,使得∠CBD =∠A .请用尺规作图的方法找出点D 的位置(要求:不写作图过程,保留作图痕迹).3.作图题.已知,α∠,∠β,且α∠大于∠β,求作AOB αβ∠=∠-∠(不写作法,保留作图痕迹,不在原图上作图)4.尺规作图:以点B 为顶点,射线BC 为一边,作EBC ∠,使∠EBC =∠A (不写作法,只保留作图痕迹).5.如图,AD是一条公路桥梁,现要在上游B处再建一座与AD平行的大桥BE,请用尺规作出BE的方向.(不写作法,保留作图痕迹)二、(作一个角的角平分线)6.尺规作图:如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,这个集贸市场应建于何处?(不写作法,保留作图痕迹)7.如图,已知△ABC,利用直尺和圆规作图.(保留作图痕迹,不写作法)(1)作△ABC的角平分线AD;(2)在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,直接写出CD和AB的关系.8.如图,已知△ABC,利用尺规在BC上找一点D,使得∠BAD=∠CAD.(保留作图痕迹,不写作法)9.如图,已知ABC V ,请利用尺规作图法在AC 上求作一点P ,使得BP 平分.(ABC 保留作图痕迹,不写作法)10.在△ABC 内找一点P ,使它到各边距离相等.11.如图,已知MN P BC .求作:在MN 上确定一点P ,使点P 到AB ,BC 的距离相等.12.已知:如图公路AE 、AF 、BC 两两相交.求作:加油站O ,使得O 到三条公路的距离相等.(尺规作图,保留作图痕迹,不写作法)三、(作垂线)13.如图,过直线m 外的一点P ,画出直线m 的垂线段PC .14.如图,已知△ABC ,试用直尺和圆规作出△ABC 的角平分线CE 、高AD .(尺规作图,保留痕迹,不写作法)15.如图,在Rt ABC V 中,90ACB ∠=︒.(1)用直尺和圆规作斜边AB 的垂直平分线,交BC 于点P (不写作法,保留作图痕迹)(2)写出PC ,PA ,BC 之间的数量关系并加以证明.16.尺规作图(不写作法,保留作图痕迹)如图,已知ABC V ,求作ABC V 的高AD .17.如图,已知△ABC .(1)作中线AD ;(2)尺规作出角平分线BE ;(3)作BC 边的高线.18.尺规作图:如图,在两条公路OA和OB之间,要建一个加油站P,使加油站P到两村庄M、N的距离相等,且到两条公路的距离相等.保留作图痕迹,不写作图步骤.19.尺规作图(不写作法,但要保留作图痕迹)∠的对称轴AM.(1)如图,作BAC∠边AC上一点,在AM上找一点F,使F点到点A、E距离相等.(2)点E为BAC20.如图,已知ABC△.(1)画中线AD;(2)画ABD△的高BE及ACD△的角平分线CF.参考答案:1.见解析【分析】根据尺规作图的步骤逐步完成即可求解:①画射线O B '',②以O 为圆心,任意长为半径作弧交OA 于C ,交OB 于D ,③以O '为圆心,以同样长(OC 长)为半径作弧,交O B ''于D ',④以D '为圆心,CD 长为半径作弧交前弧于C ',⑤过C '作射线O A '',则A O B '''∠即为所求.【详解】解:如图所示,A O B '''∠即为所求.【点睛】本题考查了尺规作图,解题的关键是熟练掌握作一个角等于已知角的步骤.2.见解析【分析】根据作一角等于已知角的方法作图即可.【详解】解:如图,点D 即为所求.【点睛】此题考查了作图—作一角等于已知角,熟练掌握作图方法是解题的关键.3.见解析【分析】在射线OC 的同侧作∠AOC =α∠,∠BOC =∠β,即可解决问题.【详解】解∶如图,∠AOB 即为所求.【点睛】本题考查作图——基本作图,解题的关键是熟练掌握五种基本作图,属于常考题型.4.图见解析【分析】分①EBC ∠在射线BC 的上方和②EBC ∠在射线BC 的下方两种情况,根据作一个角等于已知角的尺规作图方法即可得.【详解】解:由题意,分以下两种情况:①当EBC ∠在射线BC 的上方时,如图,EBC ∠即为所作.②当EBC ∠在射线BC 的下方时,如图,EBC ∠即为所作.【点睛】本题考查了作一个角等于已知角的尺规作图,熟练掌握尺规作图,并分两种情况是解题关键.5.见解析【分析】根据同位角相等,两直线平行画出内错角相等即可.【详解】解:如图所示,BE 即为所求作:【点睛】本题考查作图-应用与设计作图,平行线的判定的应用,主要考查学生的动手操作能力和理解能力.6.(1)画图见解析(2)画图见解析,,,AB CD AB CD =∥ 证明见解析【分析】(1)以A 为圆心,任意长为半径画弧,交AB ,AC 于两点,再分别以这两个交点为圆心,大于这两个交点间距离的一半为半径画弧得到两弧的交点,过三角形的顶点A 与两弧交点作射线,于BC 交于点D ,则线段AD 即为所求;(2)先以C 为圆心,任意长为半径画弧,得到两弧与CA ,CB 的交点G ,H ,再以A 为圆心,CG 为半径画弧,与AC 的交点为J ,再以J 为圆心,GH 为半径画弧,两弧的交点I ,再以A 为端点,过I 画射线AE ,再在射线AE 上截取AD =BC ,连接CD ,再证明即可.(1)解:线段AD 即为所求作的ABC V 的角平分线,(2)如图,画图如下:由作图可得:,,AD BC ACB CAE =∠=∠ 而,AC CA =∴,ACB CAD V V ≌∴,,AB CD CAB ACD =∠=∠∴.AB CD ∥∴,AB CD 的关系是,.AB CD AB CD =∥【点睛】本题考查的是作三角形的角平分线,作一个角等于已知角,全等三角形的判定与性质,熟练的掌握作图的基本方法是解本题的关键.7.图见解析,这个集贸市场应建于何处公路、铁路的角平分线上.【分析】利用角的平分线上的点到角的两边的距离相等可知集贸市场在公路、铁路相交的角平分线上.【详解】解:如图所示:答:这个集贸市场应建于何处公路、铁路的角平分线上.【点睛】此题考查了作图与应用设计,解题的关键是掌握角平分线上的点到角两边的距离相等.8.见解析【分析】作∠BAC的平分线即可.【详解】解:如图,点D为所作.【点睛】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.9.见解析【分析】根据要求作出图形即可.【详解】解:如图,点P即为所求.【点睛】本题考查作图-基本作图,解题的关键是熟练掌握五种基本作图,属于中考常考题型.10.见解析【分析】根据角平分线上的点到角的两边距离相等解答即可.【详解】解:∵点P到△ABC的三边的距离相等,∴点P应是△ABC三条内角平分线的交点.如图:【点睛】本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解答本题的关键.11.见解析【分析】作出∠ABC的角平分线,与MN的交点即为点P.【详解】解:如图所示:P 点即为所求.【点睛】本题主要考查了角平分线的性质,熟练掌握角平分线上的点到两边的距离相等的性质是解题的关键.12.作图见解析【分析】根据角平分线的性质及作法,即可作得.【详解】解:作法如下:1.尺规作出∠A 、∠EBC 、∠BCF 中任意两个角的角平分线,交点即为1O 点;2.尺规作出∠A 、∠ABC 、∠ACB 中任意两个角的角平分线,交点即为2O 点.证明: 点1O 是∠A 与∠BCF 平分线的交点,∴点1O 到公路AE 、AF 、BC 的距离相等;点2O 是∠A 与∠ABC 平分线的交点,∴点2O 到公路AE 、AF 、BC 的距离相等;∴点1O 、点2O 即为所求作的点【点睛】本题考查了尺规作图—角平分线,角平分线的性质,熟练掌握和运用角平分线的作法及性质是解决本题的关键.13.见解析【分析】过P 点作m 的垂线即可.【详解】如图,垂线段PC 即为所求.【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.14.见解析【分析】利用基本作图(过一点作直线的垂线),过点A作AD⊥BC于D得到高AD,利用作已知角的平分线作CE平分∠ACB.【详解】解:如图,CE和AD为所作.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.15.(1)见解析(2)BC PC PA=+,理由见解析【分析】(1)利用基本作图,作AB的垂直平分线即可;(2)根据线段垂直平分线的性质得到PA PB=,则BC PC PA=+.(1)解:如图,点P为所作,;(2)解:BC PC PA=+.理由:∵点P为AB的垂直平分线与BC的交点,∴PA PB=,∴PC PA PC PB BC+=+=.【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段的垂直平分线的性质.16.见解析【分析】以点A为圆心,任意长为半径画圆,交BC于点E,F,再作线段EF的垂直平分线即可.【详解】解:如图,AD即为所求..【点睛】本题考查了尺规作图之过直线外一点作已知直线的垂线,熟知过直线外一点作直线垂线的作法是解答此题的关键.17.(1)答案见解析(2)答案见解析(3)答案见解析【分析】(1)作线段BC的垂直平分线可得BC的中点D,连接AD即可.(2)根据角平分线的作图步骤作图即可.(3)根据高线的作图步骤作图即可.(1)解:如图,AD即为所求.(2)解:如图,BE即为所求.(3)解:如图,AF即为所求.【点睛】本题考查作图-复杂作图、三角形的角平分线、中线和高,熟练掌握角平分线、中线和高线的作图步骤是解答本题的关键.18.见解析【分析】作∠AOB的平分线,再作线段MN的垂直平分线,两线的交点P就是所求点.【详解】解:如图所示:点P即为所求.【点睛】此题主要考查了角平分线的性质、线段垂直平分线的性质的应用以及作法,关键是熟练掌握角平分线、线段垂直平分线的基本作图方法.19.(1)见解析(2)见解析【分析】(1)作出∠BAC的角平分线即可;(2)作线段AE的垂直平分线,与AM的交点即为点F.(1)解:如图:AM即为所求.(2)解:如图:点F即为所求.【点睛】本题主要考查了角平分线的作法、垂直平分线的作法等知识,角的对称轴为其角平分线,到线段两端点距离相等的点在线段的垂直平分线上.20.(1)见详解(2)见详解【分析】(1)作BC的垂直平分线交BC于点D,即D为BC中点,连接AD,AD即ABC△为中线;(2)以B为圆心,BD为半径画弧交AD的延长线于点G,再分别为D、G为圆心,以大于DG一半的长度为半径画弧,两弧分别交于两个点,连接这两个交点的直线交AD的延长线于点E,该直线经过B点,BE即为所求;以C为圆心,以任意长度画弧,交AC、CD于点M、N,再分别以M、N为圆心,以大于MN一半的长度为半径画弧,两弧交于一点,将该点与C点连接,交AD于点F,则角平分线AD即为所求.(1)分别为B、C为圆心,以大于BC一半的长度为半径画弧,两弧分别交于两个点,连接这两个交点的直线交BC于点D,连接AD,作图如下:即中线AD即为所求;(2)以B为圆心,BD为半径画弧交AD的延长线于点G,再分别为D、G为圆心,以大于DG 一半的长度为半径画弧,两弧分别交于两个点,连接这两个交点的直线交AD的延长线于点E,即该直线是DG的垂直平分线,根据作图可知B点在DG的垂直平分线,即该直线经过B 点,作图如下:即高线BE即为所求;以C为圆心,以任意长度画弧,交AC、CD于点M、N,再分别以M、N为圆心,以大于MN 一半的长度为半径画弧,两弧交于一点,将该点与C点连接,交AD于点F,连接CF,作图如下:即角平分线CF即为所求.【点睛】本题主要考查了基本作图,掌握垂直平分线和角平分线的尺规作图法是解答本题的关键.。

八年级数学上册 尺规作图(习题及答案)(人教版)

八年级数学上册 尺规作图(习题及答案)(人教版)

尺规作图(习题)➢巩固练习1.下列作图语言描述正确的是()A.延长线段AB至点C,使AB=ACB.过∠AOB内部一点P,作∠AOB的平分线C.以点O为圆心,AC长为半径作弧D.在射线OA上截取OB=a,BC=b,则有OC=a+b2.已知边长作等边三角形.已知:线段a.求作:等边△ABC,使△ABC的三边长均为a.a作法:(1)作线段_____________;(2)分别以______,______为圆心,_______为半径作弧,两弧交于________;(3)连接________,_________.____________________.3.按下列要求作图,保留作图痕迹,不写作法.已知:如图,∠ABC.求作:∠DEF,使∠DEF=32∠ABC.ACB4.已知∠AOB=45°,点P在边OA上.请以点P为顶点,射线P A为一边作∠APC=∠O(作出所有可能的图形).5.如图,分别过A,B两个加油站的公路l1,l2相交于点O,现准备在∠AOB内建一个油库,要求油库的位置点P满足在两个加油站的连线上,且到两条P(保留作图痕迹).公路l1,l2的距离相等.请用尺规作图作出点6.请画出草图,并根据图形完成下列各题:(1)在△ABC中,AD平分∠BAC交BC于点D,过点B作BF∥AD交CA 的延长线于点F,则AF和AB的数量关系是_________________.(2)在△ABC中,点D是BC上的一点,过D作DE∥AC交AB于点E,DF∥AB交AC于点F,则∠EDF与∠A的数量关系是__________________.(3)已知,在锐角△ABC中,AD⊥BC于点D,CE⊥AB于点E,若AD与CE所夹的锐角是58°,则∠ABC=______.(4)已知,在锐角△ABC中,∠BAC=50°,AD平分∠BAC交BC于点D,BE⊥AC于点E,若∠EBC=20°,则∠ADC=_______.➢思考小结阅读材料:尺规作图是起源于古希腊的数学课题.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.古希腊的安那萨哥拉斯首先提出作图要有次数限制.他因政治上的纠葛,被关进监狱,并被判处死刑.在监狱里,他思考改圆成方以及其他有关问题,用来打发令人苦恼的无所事事的生活.他不可能有规范的作图工具,只能用一根绳子画圆,用随便找来的破木棍作直尺,当然这些尺子上不可能有刻度.另外,对他来说,时间是不多了,因此他很自然地想到要有限次地使用尺规解决问题.尺规作图三大难题:①化圆为方问题求一个正方形的边长,使其面积与一已知圆的面积相等;②三等分角问题求一角,使其角度是一已知角度的三分之一;③倍立方问题求一立方体的棱长,使其体积是一已知立方体的二倍.【参考答案】1. C2.作法:(1)作线段AB使AB=a;(2)分别以点A,点B为圆心,a长为半径作弧,两弧交于点C;(3)连接AC,BC.△ABC即为所求.3.略4.略(有两种情况)5.略6.(1)AF=AB(2)∠EDF=∠A(3)58°(4)85°。

初二数学尺规作图练习题

初二数学尺规作图练习题

初二数学尺规作图练习题数学尺规作图让初二学生在几何学中学习和应用基本的几何概念和技能。

通过练习尺规作图,学生可以加深对几何形状的理解,培养几何思维和空间想象能力。

本文将为您呈现一系列的初二数学尺规作图练习题,以帮助学生巩固知识和提升技能。

1. 作图一个边长为5cm的正方形。

2. 作图一个直径为8cm的圆。

3. 在直线上用尺规作图,将一段长为6cm的线段等分为三等分。

4. 作图一个边长为3cm的等边三角形。

5. 作图一个边长为4cm的正五边形。

6. 作图一个半径为5cm的正圆。

7. 在一个已知角度的线段上,用尺规作图,将这个角度等分为4等分。

8. 已知直线段AB和点C,用尺规作图,将直线段AB的长度放大3倍。

9. 作图一个半径为6cm的正方形。

10. 在一个已知角度的线段上,用尺规作图,将这个角度等分为5等分。

11. 已知直线段EF和点G,用尺规作图,将直线段EF的长度缩小一半。

12. 作图一个半径为7cm的正五边形。

通过以上的练习题,学生可以灵活运用尺规作图的基本技能。

在解答练习题时,学生需要明确每道题的要求并合理规划作图步骤。

首先,根据题目要求确定作图所需要的基本图形,如正方形、圆形等。

其次,根据已知条件使用尺规进行测量和划线,确保图形的准确性。

最后,检查作图结果是否满足题目要求,如线段长度、角度等。

在尺规作图的过程中,学生应该注意以下几点:1. 尺规的正确使用:学生应熟练掌握尺规的使用方法,确保测量和画线的准确性。

2. 作图步骤的合理性:学生应根据题目要求和已知条件合理规划作图步骤,避免不必要的重复或遗漏。

3. 图形的准确性:学生在作图过程中应注意保持图形的准确性,如边长、角度等,避免误差的出现。

4. 用尺规作图后,用铅笔将直线粗化,圆心、交点等标记清晰,使图形更加美观。

通过反复练习尺规作图,初二学生可以提升几何思维和空间想象能力,培养几何学习的兴趣。

同时,尺规作图也是培养学生解决问题能力和推理能力的有效方法之一。

数学 八年级上 尺规作图练习题

数学 八年级上 尺规作图练习题

图1图2之欧侯瑞魂创作1用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(SAS) B.(SSS) C.(ASA) D.(AAS)2 如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是()作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;②分别以D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB内交于一点C;③画射线OC,射线OC就是∠AOB的角平分线.A. ASA B.SAS C.SSSD. AAS3 如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是()A.①②③ B.①②④ C.①③④ D.②③④图3 图44 如图,分别以线段AC的两个端点A,C为圆心,大于AC的长为半径画弧,两弧相交于B,D两点,连接BD,AB,BC,CD,DA,以下结论:①BD垂直平分AC;②AC 平分∠BAD;③AC=BD;④四边形ABCD是中心对称图形.其中正确的有()A.①②③ B.①③④ C.①②④D.②③④ 第1页5 观察图中尺规作图痕迹,下列结论错误的是()A. PQ为∠APB的平分线 B. PA=PB C.点A、B到PQ的距离不相等 D.∠APQ=∠BPQ图5图7图86 已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A. 6条 B.7条 C. 8条D. 9条7 尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,作射线OP.由作法得△OCP≌△ODP的根据是()A. SAS B.ASA C.AASD. SSS8如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC,作图痕迹中,弧FG 是()A.以点C为圆心,OD为半径的弧 B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧 D.以点E为圆心,DM为半径的弧9 如图,在△ABC中,按以下步调作图:②分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于M,N两点;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为.图9图1010 如图,在△ABC中,AC=BC,∠B=70°,分别以点A、C为圆心,大于AC的长为半径作弧,两弧相交于点M、N,作直线MN,分别交AC、BC于点D、E,连结AE,则∠AED的度数是°.第2页11 如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E、F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线AP,交CD于点M.若∠ACD=120°,则∠MAB的度数为.图11图1212 如图,图中的两条弧属于同心圆,你认为是否存在一条也属于此同心圆的能平分此阴影部分的面积存在(填写“存在”或“不存在”);若你认为存在,请你将图中的阴影部分分为面积相等但不全等的两部分,简要说明作法;若你认为不存在,请说明理由..13 如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步调作图:②分别以A,B为圆心,以大于AB的长为半径做弧,两弧相交于点P和Q.②作直线PQ交AB于点D,交BC于点E,连接AE.若CE=4,则AE=.图13图1414 如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保存作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).15 如图,在Rt△ABC中,∠B=90°,分别以点A、C为圆心,大于AC长为半径画弧,两弧相交于点M、N,连接MN,与AC、BC分别交于点D、E,连接AE.(1)求∠ADE;(直接写出结果)(2)当AB=3,AC=5时,求△ABE的周长.第3页图15 图1616 如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.(保存作图痕迹,不要求写作法和证明);(2)连接BD,求证:BD平分∠CBA.17 已知△ABC中,∠A=25°,∠B=40°.(1)求作:⊙O,使得⊙O经过A、C两点,且圆心O落在AB边上.(要求尺规作图,保存作图痕迹,不必写作法)(2)求证:BC是(1)中所作⊙O的切线.18 如图,在Rt△ABC中,∠ACB=90°.(1)先作∠ABC的平分线交AC边于点O,再以点O为圆心,OC为半径作⊙O(要求:尺规作图,保存作图痕迹,不写作法);(2)请你判断(1)中AB与⊙O的位置关系,并证明你的结论./paper/34276/答案1 B 解:作图的步调:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;作图完毕.在△OCD与△O′C′D′,,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.2 C 解:如图,连接EC、DC.根据作图的过程知,在△EOC与△DOC中,,△EOC≌△DOC(SSS).故选:C.3 B 解:根据作图过程可知:PB=CP,∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确;∵∠ABC=90°,∴PD∥AB,∴E为AC的中点,∴EC=EA,∵EB=EC,∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确,故正确的有①②④,4 C 解:①∵分别以线段AC的两个端点A,C为圆心,大于AC的长为半径画弧,∴AB=BC,∴BD垂直平分AC,故此小题正确;②在△ABC与△ADC中,∵,∴△ABC≌△ADC(SSS),∴AC平分∠BAD,故此小题正确;③只有当∠BAD=90°时,AC=BD,故本小题错误;④∵AB=BC=CD=AD,∴四边形ABCD是菱形,∴四边形ABCD是中心对称图形,故此小题正确.5 C 解:∵由图可知,PQ是∠APB的平分线,∴A,B,D正确;∵PQ是∠APB的平分线,PA=PB,∴点A、B到PQ的距离相等,故C错误.6 B 解:如图所示:当BC1=AC1,AC=CC2,AB=BC3,AC4=CC4,AB=AC5,AB=AC6,BC7=CC7时,都能得到符合题意的等腰三角形.故选:B.7 D 解:∵以O为圆心,任意长为半径画弧交OA,OB于C,D,即OC=OD;以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,即CP=DP;在△OCP和△ODP中,,∴△OCP≌△ODP(SSS)8D 解:根据作一个角等于已知角可得弧FG是以点E为圆心,DM为半径的弧.9 105°解:由题中作图方法知道MN为线段BC的垂直平分线,∴CD=BD,∵∠B=25°,∴∠DCB=∠B=25°,∴∠ADC=50°,∵CD=AC,∴∠A=∠ADC=50°,∴∠ACD=80°,∴∠ACB=∠ACD+∠BCD=80°+25°=105°,10 50 解:∵由作图可知,MN是线段AC的垂直平分线,∴CE=AE,∴∠C=∠CAE,∵AC=BC,∠B=70°,∴∠C=40°,∴∠AED=50°,11 30°解:∵AB∥CD,∴∠ACD+∠CAB=180°,又∵∠ACD=120°,∴∠CAB=60°,由作法知,AM是∠CAB的平分线,∴∠MAB=∠CAB=30°.12 作OD的垂线OM,取OM=OA,连接MD,以MD为斜边作等腰直角三角形△MND,以O为圆心,以MN为半径作弧,交BC于Q,交AD于P,弧PQ即为所求.解:作OD的垂线OM,取OM=OA,连接MD,以MD为斜边作等腰直角三角形△MND,以O为圆心,以MN为半径作弧,交BC于Q,交AD于P,弧PQ即为所求.13 8 解:由题意可得出:PQ是AB的垂直平分线,∴AE=BE,∵在△ABC中,∠C=90°,∠CAB=60°,∴∠CBA=30°,∴∠EAB=∠CAE=30°,∴CE=AE=4,∴AE=8.14 解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.15 解:(1)∵由题意可知MN是线段AC的垂直平分线,∴∠ADE=90°;(2)∵在Rt△ABC中,∠B=90°,AB=3,AC=5,∴BC==4,∵MN是线段AC的垂直平分线,∴AE=CE,∴△ABE的周长=AB+(AE+BE)=AB+BC=3+4=7.16 (1)解:如图所示,DE就是要求作的AB边上的中垂线;(2)证明:∵DE是AB边上的中垂线,∠A=30°,∴AD=BD,∴∠ABD=∠A=30°,∵∠C=90°,∴∠ABC=90°﹣∠A=90°﹣30°=60°,∴∠CBD=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠ABD=∠CBD,∴BD平分∠CBA.17 解:(1)作图如图1:(2)证明:如图2,连接OC,∵OA=OC,∠A=25°∴∠BOC=50°,又∵∠B=40°,∴∠BOC+∠B=90°∴∠OCB=90°∴OC⊥BC∴BC是⊙O的切线.18 解:(1)如图:(2)AB与⊙O相切.证明:作OD⊥AB于D,如图.∵BO平分∠ABC,∠ACB=90°,OD⊥AB,∴OD=OC,∴AB与⊙O相切.。

尺规作图初二上练习题

尺规作图初二上练习题

尺规作图初二上练习题尺规作图是几何学中的重要内容之一,通过尺和规这两种工具,可以实现诸多几何图形的精确绘制。

下面是一些初二上学期尺规作图的练习题,通过完成这些题目,可以更好地理解和掌握尺规作图的方法和技巧。

1. 作一个等腰三角形ABC,知道底边BC和顶角A的大小。

2. 作一个等边三角形XYZ,已知边长为a。

3. 作一个与已知直线平行的直线。

4. 作一个与已知直线垂直的直线。

5. 过已知点P作一条平行于已知直线的直线。

6. 过已知点P作一条垂直于已知直线的直线。

7. 作一个直角三角形,已知两条直角边的长度。

8. 作一个正方形,已知边长。

9. 过已知点P作一条经过已知点Q的直线。

10. 作一个与已知线段AB等长的线段。

以上是初二上学期尺规作图的一些练习题,通过动手实践这些题目,可以帮助同学们更好地掌握尺规作图的方法和技巧。

尺规作图在几何学中具有重要的意义,它不仅可以帮助我们准确地绘制各种几何图形,还可以培养我们的观察力、分析能力和解决问题的能力。

尺规作图的基本原理是通过尺上的刻度和规上的固定长度,结合直尺和圆规这两种工具,来绘制几何图形。

在作图过程中,需要注意以下几点:1. 清晰准确地标出已知条件。

在作图前,要仔细阅读题目,理解图形的已知条件,将这些条件清晰地标出来,为后续的作图提供依据。

2. 确定作图的步骤和顺序。

尺规作图一般需要按照一定的步骤和顺序进行,不可随意涂抹或直接描绘,要有条不紊地进行作图。

3. 使用规时要保持长度不变。

规上的固定长度是尺规作图的关键,要保证在作图过程中不改变规的长度,以保证绘制的图形准确无误。

4. 仔细检查作图结果。

完成作图后,要仔细检查绘制的图形是否符合已知条件和要求,确保没有错误。

通过反复练习和不断实践,同学们可以逐渐掌握尺规作图的方法和技巧。

在解决数学和几何问题时,尺规作图可以起到辅助的作用,帮助理解和解决问题。

同时,尺规作图也是培养同学们观察力、分析能力和解决问题能力的有效方法之一。

八年级数学上册 尺规作图(习题及答案)(人教版)

八年级数学上册 尺规作图(习题及答案)(人教版)

尺规作图(习题)➢巩固练习1.下列作图语言描述正确的是()A.延长线段AB至点C,使AB=ACB.过∠AOB内部一点P,作∠AOB的平分线C.以点O为圆心,AC长为半径作弧D.在射线OA上截取OB=a,BC=b,则有OC=a+b2.已知边长作等边三角形.已知:线段a.求作:等边△ABC,使△ABC的三边长均为a.a作法:(1)作线段_____________;(2)分别以______,______为圆心,_______为半径作弧,两弧交于________;(3)连接________,_________.____________________.3.按下列要求作图,保留作图痕迹,不写作法.已知:如图,∠ABC.求作:∠DEF,使∠DEF=32∠ABC.ACB4.已知∠AOB=45°,点P在边OA上.请以点P为顶点,射线P A为一边作∠APC=∠O(作出所有可能的图形).5.如图,分别过A,B两个加油站的公路l1,l2相交于点O,现准备在∠AOB内建一个油库,要求油库的位置点P满足在两个加油站的连线上,且到两条P(保留作图痕迹).公路l1,l2的距离相等.请用尺规作图作出点6.请画出草图,并根据图形完成下列各题:(1)在△ABC中,AD平分∠BAC交BC于点D,过点B作BF∥AD交CA 的延长线于点F,则AF和AB的数量关系是_________________.(2)在△ABC中,点D是BC上的一点,过D作DE∥AC交AB于点E,DF∥AB交AC于点F,则∠EDF与∠A的数量关系是__________________.(3)已知,在锐角△ABC中,AD⊥BC于点D,CE⊥AB于点E,若AD与CE所夹的锐角是58°,则∠ABC=______.(4)已知,在锐角△ABC中,∠BAC=50°,AD平分∠BAC交BC于点D,BE⊥AC于点E,若∠EBC=20°,则∠ADC=_______.➢思考小结阅读材料:尺规作图是起源于古希腊的数学课题.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.古希腊的安那萨哥拉斯首先提出作图要有次数限制.他因政治上的纠葛,被关进监狱,并被判处死刑.在监狱里,他思考改圆成方以及其他有关问题,用来打发令人苦恼的无所事事的生活.他不可能有规范的作图工具,只能用一根绳子画圆,用随便找来的破木棍作直尺,当然这些尺子上不可能有刻度.另外,对他来说,时间是不多了,因此他很自然地想到要有限次地使用尺规解决问题.尺规作图三大难题:①化圆为方问题求一个正方形的边长,使其面积与一已知圆的面积相等;②三等分角问题求一角,使其角度是一已知角度的三分之一;③倍立方问题求一立方体的棱长,使其体积是一已知立方体的二倍.【参考答案】1. C2.作法:(1)作线段AB使AB=a;(2)分别以点A,点B为圆心,a长为半径作弧,两弧交于点C;(3)连接AC,BC.△ABC即为所求.3.略4.略(有两种情况)5.略6.(1)AF=AB(2)∠EDF=∠A(3)58°(4)85°。

尺规作图练习题及答案初二

尺规作图练习题及答案初二

尺规作图练习题及答案初二尺规作图是几何学中的重要概念,它是通过直尺和圆规进行的一种绘图方式。

尺规作图在初中数学学习中占据着重要地位,它可以帮助学生锻炼观察、分析和解决问题的能力。

下面是一些初二尺规作图练习题及答案,帮助学生更好地理解和掌握这一知识点。

1. 绘制一个直角三角形ABC,已知∠B=90°,AB=5cm,BC=7cm。

求AC的长度。

解答:根据勾股定理,直角边的平方之和等于斜边的平方。

所以我们可以利用这个定理来求解AC的长度。

首先,使用尺规测量出AB的长度,在纸上画出点A和点B,将尺子的一边放在点A上,然后利用圆规画一个半径为5cm的圆,记为⊙A。

接着,将尺子的一边放在点B 上,利用圆规画一个半径为7cm的圆,在圆⊙A上与弧交于点C。

然后,连接AC。

测量AC的长度为8cm,所以AC的长度为8cm。

2. 绘制一个等边三角形ABC,给出三角形的边长为6cm。

解答:要绘制一个等边三角形ABC,我们可以利用圆规和尺子来进行绘制。

首先,在纸上画出一个点A,然后使用尺子来测量出线段AB的长度为6cm。

将圆规的一只脚放在点A上,调整另一只脚的距离为6cm。

然后,固定住圆规的一只脚,以A为圆心,利用圆规画一个弧,与扇形交于点B。

接着,固定住另一只脚,以点B为圆心,利用圆规再次画一个弧,与第一个弧交于点C。

最后,连接线段AC和线段CB,得到一个等边三角形ABC。

3. 绘制一个四边形ABCD,已知AB=3cm,BC=4cm,CD=5cm,∠B=90°,∠C=120°。

解答:根据题目描述,我们可以绘制出一个四边形ABCD。

首先,在纸上画出点A,然后使用尺子测量出线段AB的长度为3cm,画出线段AB。

接下来,将尺子的一只脚放在点B上,固定住另一只脚,以B 为圆心,利用圆规画一个半径为4cm的圆,在圆上分别标记出点C和D。

然后,连接线段CD和线段AD,得到四边形ABCD。

由于∠B=90°,∠C=120°,我们可以利用尺规作图的方法,将∠B平分为两个角,然后将∠C平分为三个角,最后连接线段AC和线段BD,得到所需的四边形ABCD。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上尺规作图题练习
姓名班别座号基本作图一:作一条线段等于已知线段
已知:如图,线段a .
求作:线段AB,使AB = a .
基本作图二:作一个角等于已知角
已知:如图,已知∠AOB
求作:∠A’O’B’,使A’O’B’=∠AOB
基本作图三:作线段的垂直平分线
已知:线段AB(如图).
求作:线段AB的垂直平分线CD.
A B
基本作图四:利用尺规作一个角的平分线
已知∠AOB ,请作出它的角平分线OP.
基本作图五:作已知直线的垂线
(1)过直线上一点作一条直线与已知直线垂直
已知:如图,点A 在1l 上,
求作:直线2l ,使2l 经过点A ,且2l ⊥1l
作法:①以点A 为圆心,以为适当长为半径画弧交1l 于B 、C
②分别以点B 、C 为圆心,以大于21BC 为半径,在1l 一侧作弧,交点为D ③连接AD
∴AD 就是所求作的直线2l
(2)过直线外一点作一条直线与已知直线垂直
已知:如图,直线1l 及直线1l 外一点A
求作:直线2l ,使2l 经过点A ,且2l ⊥1l
作法:①以点A 为圆心,以大于点A 到1l 的距离的长度为半径画弧交1l 于B 、C
②分别以点B 、C 为圆心,以大于2
1BC 为半径,在另一侧作弧,两弧交于点D ③连接AD
∴AD 就是所求作的直线2l
练习:
1、请在图中作出△ABC的 .
角平分线BD(要求保留作图痕迹).
3、已知:如图,∠AOB内有两定点C、D
求作:一点P使PC=PD,且P到∠AOB的
两边之距相等
要求:用尺规作图,不写作法,但要保留作图痕迹
4、张庄A、李庄B位于河沿L的同侧,现在河沿
L上修一泵站C向张庄A、李庄B供水,问泵站修
在河沿L的什么地方,所用水管最少?。

相关文档
最新文档