正弦波信号发生器设计(课设)
EDA正弦波信号发生器的设计
![EDA正弦波信号发生器的设计](https://img.taocdn.com/s3/m/b37f5b57326c1eb91a37f111f18583d049640f73.png)
利用LPM 设计正弦信号发生器一、设计目的:进一步熟悉maxplu sII 及其LPM 设计的运用。
二、设计要求:1、利用原理图输入方式。
2、信号数据点值自行想法实现。
3、得出正确时序仿真文件。
三、设计原理:图1 正弦信号发生器结构框图图1所示的正弦波信号发生器的结构由三部分组成计数器或地址发生器(这里选择8位),正弦信号数据ROM (8位地址线,8位数据线),含有256个8位数据(一个周期)。
四、VHDL 顶层设计。
设计步骤:1、建立.mif 格式文件建立C 语言文件sin.cpp ,运行产生sin.exe 文件。
sin.cpp 程序代码:#include <iostream>#include <cmath>#include <iomanip>using namespace std;int main(){int i;float s;VHDL 顶层设计sin.vhd8位计数器 (地址发生器) 正弦波数据 存储ROM 产生波形数据cout<<"WIDTH=8;\nDEPTH=256;\n\nADDRESS_RADIX=HEX;\nDA TA_R ADIX=HEX;\n\nCONTENT\nBEGIN\n";for(i=0;i<256;i++){s=sin(atan(1)*8*i/256);cout<<" "<<i<<" : "<<setbase(16)<<(int)((s+1)*255/2)<<";"<<endl;}cout<<"END"<<endl;return 0;}把上述程序编译后,在DOS命令行下执行命令:sin.exe > sin.mif;将生成的sin.mif 文件。
vhdl语言正弦波信号发生器设计
![vhdl语言正弦波信号发生器设计](https://img.taocdn.com/s3/m/98df38b41ed9ad51f11df2b9.png)
AS正弦波信号发生器设计一、实验内容1.设计一正弦信号发生器,采用ROM进行一个周期数据存储,并通过地址发生器产生正弦信号。
(ROM:6位地址8位数据;要求使用两种方法:VHDL编程和LPM)2.正弦信号六位地址数据128,140,153,165,177,188,199,209,219,227,235,241,246,250,253,255,255,254,252,248,244,238,231,223,214,204,194,183,171,159,147,134,121,109,96,84,72,61,51,41,32,24,17,11,7, 3,1,0,0,2,5,9,1420,28,36,46,56,67,78,90,102,115,127。
二、实验原理正弦波信号发生器是由地址发生器和正弦波数据存储器ROM两块构成,输入为时钟脉冲,输出为8位二进制。
1.地址发生器的原理地址发生器实质上就是计数器,ROM的地址是6位数据,相当于64位循环计数器。
2.只读存储器ROM的设计(1)、VHDL编程的实现①基本原理:为每一个存储单元编写一个地址,只有地址指定的存储单元才能与公共的I/O相连,然后进行存储数据的读写操作。
②逻辑功能:地址信号的选择下,从指定存储单元中读取相应数据。
(2)、基于LPM宏功能模块的存储器的设计①LPM:Library of Parameterized Modules,可参数化的宏功能模块库。
②Quartus II提供了丰富的LPM库,这些LPM函数均基于Altera器件的结构做了优化处理。
③在实际的工程中,设计者可以根据实际电路的设计需要,选择LPM库中适当的模块,并为其设置参数,以满足设计的要求,从而在设计中十分方便的调用优秀的电子工程技术人员的硬件设计成果。
三、设计方案1.基于VHDL编程的设计在地址信号的选择下,从指定存储单元中读取相应数据系统框图如下:2.基于LPM宏功能模块的设计LPM宏功能具有丰富的由优秀的电子工程技术人员设计的硬件源代码可供调用,我们只需要调用其设计的模块并为其设计必要的参数即可。
EDA实验-正弦波信号发生器设计
![EDA实验-正弦波信号发生器设计](https://img.taocdn.com/s3/m/32917f3b0c22590103029d8f.png)
实验八正弦信号发生器的设计一、实验目的1、学习用VHDL设计波形发生器和扫频信号发生器。
2、掌握FPGA对D/A的接口和控制技术,学会LPM_ROM在波形发生器设计中的实用方法。
二、实验仪器PC机、EDA实验箱一台Quartus II 6.0软件三、实验原理如实验图所示,完整的波形发生器由4部分组成:• FPGA中的波形发生器控制电路,它通过外来控制信号和高速时钟信号,向波形数据ROM 发出地址信号,输出波形的频率由发出的地址信号的速度决定;当以固定频率扫描输出地址时,模拟输出波形是固定频率,而当以周期性时变方式扫描输出地址时,则模拟输出波形为扫频信号。
•波形数据ROM中存有发生器的波形数据,如正弦波或三角波数据。
当接受来自FPGA的地址信号后,将从数据线输出相应的波形数据,地址变化得越快,则输出数据的速度越快,从而使D/A输出的模拟信号的变化速度越快。
波形数据ROM可以由多种方式实现,如在FPGA外面外接普通ROM;由逻辑方式在FPGA中实现(如例6);或由FPGA中的EAB模块担当,如利用LPM_ROM实现。
相比之下,第1种方式的容量最大,但速度最慢;,第2种方式容量最小,但速度最最快;第3种方式则兼顾了两方面的因素;• D/A转换器负责将ROM输出的数据转换成模拟信号,经滤波电路后输出。
输出波形的频率上限与D/A器件的转换速度有重要关系,本例采用DAC0832器件。
DAC0832是8位D/A转换器,转换周期为1µs,其引脚信号以及与FPGA目标器件典型的接口方式如附图2—7所示。
其参考电压与+5V工作电压相接(实用电路应接精密基准电压).DAC0832的引脚功能简述如下:•ILE(PIN 19):数据锁存允许信号,高电平有效,系统板上已直接连在+5V上。
•WR1、WR2(PIN 2、18):写信号1、2,低电平有效。
•XFER(PIN 17):数据传送控制信号,低电平有效。
•VREF(PIN 8):基准电压,可正可负,-10V~+10V.•RFB(PIN 9):反馈电阻端。
方波-三角波-正弦波函数发生器设计
![方波-三角波-正弦波函数发生器设计](https://img.taocdn.com/s3/m/222f5d06f78a6529647d53e4.png)
湖北民族学院课程设计报告课程设计题目课程:电子线路课程设计专业:班级:学号:学生姓名:指导教师:2014年 6 月20 日信息工程学院课程设计任务书2014年6月20日信息工程学院课程设计成绩评定表摘要函数信号发生器是一种能够产生多种波形,如方波、三角波、正弦波的电路。
函数发生器在电路实验和设备检测中具有十分广泛的用途。
通过对函数波形发生器的原理以及构成分析,可设计一个能变换出方波、三角波、正弦波、方波的函数波形发生器。
该系统通过介绍一种电路的连接,实现函数发生器的基本功能。
将其接入电源,并通过在示波器上观察波形及数据,得到结果。
其中电压比较器实现方波的输出,又连接积分器得到三角波,并通过三角波-正弦波转换电路看到正弦波,得到想要的信号。
该系统利用了Protues电路仿真软件进行电路图的绘制以及仿真。
Protues软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。
凭借Protues,可以立即创建具有完整组件库的电路图,并让设计者实现相应的技术指标。
本课题采用集成芯片ICL8038制作方波-三角波-正弦波函数发生器的设计方法,经过protues仿真得出了方波、三角波、正弦波、方波-正弦波转换及三角波-正弦波转换的波形图。
关键词:电源,波形,比较器,积分器,转换电路,低通滤波,Protues目录1引言-------------------------------------------------------------- 51.1课程设计任务------------------------------------------------- 51.2课程设计的目的----------------------------------------------- 51.3课程设计要求------------------------------------------------ 52 任务提出与方案论证------------------------------------------------ 62.1函数发生器的概述--------------------------------------------- 62.2方案论证 --------------------------------------------------- 63 总体设计---------------------------------------------------------- 83.1总电路图----------------------------------------------------- 83.2 电路仿真与调试技术------------------------------------------ 94 详细设计及仿真--------------------------------------------------- 10 4.1 方波发生电路的工作原理与运放741工作原理-------------------- 10 4.2方波—三角波产生电路的工作原理------------------------------ 104.3三角波—正弦波转换电路的工作原理---------------------------- 114.4整体仿真效果图---------------------------------------------- 135 总结------------------------------------------------------------- 14 参考文献----------------------------------------------------------- 151引言现在世界中电子技术和电子产品的应用越加广泛,人们对电子技术的要求也越来越高。
设计制作一个方波-三角波-正弦波函数信号发生器 Microsoft Word 文档
![设计制作一个方波-三角波-正弦波函数信号发生器 Microsoft Word 文档](https://img.taocdn.com/s3/m/72bed259312b3169a451a46a.png)
课程设计说明书课程设计名称:模拟电子课程设计课程设计题目:设计制作一个方波-三角波-正弦波函数转换器学院名称:信息工程学院专业:通信工程班级:090422学号:******** 姓名:龙敏丽评分:教师:欧巧凤、张华南20 11 年 3 月23 日模拟电路课程设计任务书20 10 -20 11 学年第2 学期第1 周- 2 周题目设计制作一个方波-三角波-正弦波函数转换器内容及要求①输出波形频率范围为0.02Hz~20KHz且连续可调;②正弦波幅值为±2v;③方波幅值为±2v;④三角波峰-峰值为2v,占空比可调。
能根据题目的要求,综合所学知识,进行资料查询、系统设计、选用合适的元器件,先仿真通过后,用万能板/实验箱制作调试和进行结果分析,按学院要求的格式写出总结报告进度安排1. 布置任务、查阅资料、选择方案,领仪器设备: 3天;2. 领元器件、制作、焊接:3天3.调试: 3.5天4. 验收:0.5天学生姓名:龙敏丽指导时间:2011年2月24日—3月3日指导地点: E-508 室任务下达2011年 2月22日任务完成2011 年 3 月 3 日考核方式 1.评阅□√ 2.答辩□ 3.实际操作□√ 4.其它□√指导教师欧巧凤系(部)主任付崇芳摘要当今世界在以电子信息技术为前提下推动了社会跨越式的进步,科学技术的飞速发展日新月异带动了各国生产力的大规模提高。
由此可见科技已成为各国竞争的核心,尤其是电子通信方面更显得尤为重要,在国民生产各部门都得到了广泛的应用,而各种仪器在科技的作用性也非常重要,如信号发生器、单片机、集成电路等。
信号发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。
常用超低频信号发生器的输出只有几种固定的波形,有方波、三角波、正弦波、锯齿波等,不能更改信号发生器作为一种常见的应用电子仪器设备,传统的可以完全由硬件电路搭接而成,如采用LM324振荡电路发生正弦波、三角波和方波的电路便是可取的路径之一,不用依靠单片机。
信号发生器设计(正弦,方波,三角,多用信号发生器)
![信号发生器设计(正弦,方波,三角,多用信号发生器)](https://img.taocdn.com/s3/m/b8c92d1afad6195f312ba640.png)
模拟电路课程设计报告设计课题:信号发生器设计班级:10通信工程三班学生姓名:陶冬波学号:2010550921指导教师:设计时间:目录一、信号发生器摘要--------------------3二、设计目的---------------------3三、设计内容和要求四、设计方案------------------------------------------34.1 RC桥式正弦波产生电路--------------------------------------3 4.2方波产生电路----------------------------------------------------6 4.3三角波产生电路-------------------------------------------------84.4多用信号发生器-------------------------------------------------9五、组装调试及元件清单---------------------------105.1 测试仪器---------------------------------------------------------10 5.2信号发生器元件清单-----------------------------------------------115.3调试中出现的故障、原因及排除方法----------------------11六、总结设计电路,改进措施----------------------116.1 正弦波产生电路改进措施--------------------------------------116.2多用信号发生器改进措施---------------------------------------11七、收获和体会-----------------------------------------12八、参考文献--------------------------------------------12信号发生器设计一、信号发生器设计摘要:本设计介绍了波形发生器的制作和设计过程,并根据输出波形特性研究该电路的可行性。
EDA课程设计正弦信号发生器的设计
![EDA课程设计正弦信号发生器的设计](https://img.taocdn.com/s3/m/7192b4644b73f242326c5f3e.png)
《EDA技术》设计报告设计题目正弦信号发生器的设计院系:信息工程学院专业:通信工程学姓号:名:RST7 根地址线CLK计 数器8 位R O M并转串输出TLV5620 D/A 转换一.设计任务及要求1. 设计任务 :利用实验箱上的 D/A 转换器和示波器设计正弦波发生器,可以在示波器上观察到正弦波2. 设计要求 :(1) 用 VHDL 编写正弦波扫描驱动电路 (2) 设计可以产生正弦波信号的电路(3) 连接实验箱上的 D/A 转换器和示波器,观察正弦波波形二.设计方案(1)设计能存储数据的 ROM 模块,将正弦波的正弦信号数据存储在在 ROM 中,通过地址发生器读取,将正弦波信号输入八位 D/A 转化器,在示波器上观察波形(2)用 VHDL 编写正弦波信号数据, 将正弦波信号输入八位 D/A 转化器, 在示波器上观察波形三.设计框图图 1 设计框图信号发生器主要由以下几个部分构成:计数器用于对数据进行采样,ROM用于存储待采样的波形幅度数值, TLV5620 用于将采集的到正弦波数字量变为模拟量,最后通过示波器进行测量获得的波形。
其中,ROM 设置为 7 根地址线, 8个数据位,8 位并行输出。
TLV5260 为串行输入的 D/A 转换芯片,因此要把 ROM 中并行输出的数据进行并转串。
四.实现步骤1. 定制 ROMROM 的数据位选择为8 位,数据数选择128 个。
利用megawizard plug-in manager定制正弦信号数据ROM 宏功能块,并将上面的波形数据加载于此ROM 中。
如图 3 所示。
图2 ROM 存储的数据图3 调入ROM 初始化数据文件并选择在系统读写功能2. 设计顶层.顶层设计主要是通过编写VHDL 语言或设计原理图用于产生计数信号和调用room 存储的数据并输出。
在此步骤里要建立EDA 工程文件,工程文件结构如图4 所示,SIN_CNT 中的VHDL 代码如下:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY SIN_GNT ISPORT ( RST, CLK, EN : IN STD_LOGIC;ADDR : OUT STD_LOGIC_VECTOR(6 DOWNTO 0);DOUT : OUT STD_LOGIC_VECTOR(7 DOWNTO 0) );END SIN_GNT;ARCHITECTURE BEHA VIOR OF SIN_GNT ISCOMPONENT ROM ISPORT ( address : IN STD_LOGIC_VECTOR(6 DOWNTO 0);inclock : IN STD_LOGIC;q : OUT STD_LOGIC_VECTOR(7 DOWNTO 0) );END COMPONENT;SIGNAL Q : STD_LOGIC_VECTOR(6 DOWNTO 0);BEGINU : ROM PORT MAP ( address => Q,inclock => CLK,q => DOUT);PROCESS(CLK, RST, EN)BEGINIF RST = '0' THENQ <= "0000000";ELSIF CLK'EVENT AND CLK = '1' THENIF EN = '1' THENQ <= Q + 1;END IF;END IF;END PROCESS;ADDR <= Q;END BEHA VIOR;工程文件的建立步骤简述如下:1、新建一个文件夹。
正弦波信号发生器的设计及电路图
![正弦波信号发生器的设计及电路图](https://img.taocdn.com/s3/m/5425466a26d3240c844769eae009581b6bd9bd31.png)
正弦波信号发生器的设计及电路图正弦波信号发生器的设计结构上看,正弦波振荡电路就是一个没有输入信号的带选频网络的正反馈放大电路。
分析RC串并联选频网络的特性,根据正弦波振荡电路的两个条件,即振幅平衡与相位平衡,来选择合适的放大电路指标,来构成一个完整的振荡电路。
很多应用中都要用到范围可调的LC振荡器,它能够在电路输出负载变化时提供近似恒定的频率、几乎无谐波的输出。
电路必须提供足够的增益才能使低阻抗的LC电路起振,并调整振荡的幅度,以提高频率稳定性,减小THD(总谐波失真)。
1引言在实践中,广泛采用各种类型的信号产生电路,就其波形来说,可能是正弦波或非正弦波。
在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,这就需要能产生高频信号的振荡器。
在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火,超声波焊接,超声诊断,核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。
可见,正弦波振荡电路在各个科学技术部门的应用是十分广泛的。
2正弦波振荡电路的振荡条件从结构上来看,正弦波振荡电路就是一个没有输入信号的带选频网络的正反馈放大电路。
图1表示接成正反馈时,放大电路在输入信号某i=0时的方框图,改画一下,便得图2。
由图可知,如在放大电路的输入端(1端)外接一定频率、一定幅度的正弦波信号某a,经过基本放大电路和反馈网络所构成的环路传输后,在反馈网络的输出端(2端),得到反馈信号某f,如果某f与某a在大小和相位上一致,那么,就可以除去外接信号某a,而将1、2两端连接在一起(如图中的虚线所示)而形成闭环系统,其输出端可能继续维持与开环时一样的输出信号。
DSP原理及应用课程设计
![DSP原理及应用课程设计](https://img.taocdn.com/s3/m/8be957154431b90d6c85c7fd.png)
DSP原理及应用课程设计正弦信号发生器的实现专业班级:通信0902姓名:高雯菁学号:2009001342同组人:扆立人、陈威、段进涛、侯勇强、黄飞、冀鑫、贾华萍一、设计目的1、学会用CCS 集成开发软件,在开发环境下完成工程项目创建,程序编辑,编译,链接,调试和数据分析。
2、掌握正弦波信号的DSP 实现原理和C54X 编程技巧,进一步加深对CCS 的认识3、学习使用CCS 的波形能通过 CCS 的图形显示工具观察正弦信号波形二、设计内容用DSP 汇编语言进行编程,利用CCS 软件产生正弦波三、设计原理正弦波信号发生器已被广泛地应用于通信、仪器仪表和工业控制等领域的信号处理系统中。
通常有两种方法可以产生正弦波,分别为查表法和泰勒级数展开法。
查表法是通过查表的方式来实现正弦波,主要用于对精度要求不高的场合。
泰勒级数展开法是根据泰勒展开式进行计算来实现正弦信号,它能精确地计算出一个角度的正弦和余弦值,且只需要较小的存储空间。
本次主要用泰勒级数展开法来实现正弦波信号。
产生正弦波的算法正弦函数和余弦函数可以展开成泰勒级数,其表达式:取泰勒级数的前5项,得近似计算式:-+-+-=!9!7!5!3)sin(9753x x x x x x-+-+-=!8!6!4!21)cos(8642xx x x x ))))((((981761541321 !9!7!5!3)sin(22229753⨯-⨯-⨯-⨯-=+-+-=x x x x x x x x x x x递推公式: sin(nx ) = 2cos(x )sin[(n -1)x ]-sin[(n -2)x ] cos(nx ) = 2cos(x )sin[(n -1)x ]-cos[(n -2)x ]由递推公式可以看出,在计算正弦和余弦值时,需要已知cos(x )、sin(n -1)x 、sin(n -2)x 和cos(n -2)x 。
利用计算一个角度的正弦值和余弦值程序可实现正弦波。
制作一个正弦信号发生器的设计
![制作一个正弦信号发生器的设计](https://img.taocdn.com/s3/m/59a8855654270722192e453610661ed9ad5155bf.png)
制作一个正弦信号发生器的设计
一、正弦信号发生器的概念
正弦信号发生器是一种可以产生所需频率的正弦波信号的设备,可以
帮助开发者测量和分析频率特性,也可以用于相关系统的诊断。
正弦信号
发生器可以产生指定频率的正弦波形,以满足不同系统的需求。
它也可以
通过波形对比法进行精确的波形测量,用于分析电子系统特性。
(1)电路设计
正弦信号发生器的电路设计主要有两种:一种是基于模拟电路的设计,另一种是基于数字电路的设计。
(1)模拟电路
模拟电路设计采用的是电路模块,主要有振荡器、滤波器、缓冲器和
调制电路。
(a)振荡器
振荡器主要由振荡电路和调整元件组成,振荡器的作用是形成振荡的
正弦波,以满足信号发生器产生不同频率的要求。
(b)滤波器
滤波器的作用是滤除振荡器产生的额外噪声,以得到纯净的正弦信号。
(c)缓冲器
缓冲器的主要作用是将振荡器的正弦波输出,缓冲器的作用是减少信
号失真,使正弦波更加完美。
(d)调制电路
调制电路的作用是对信号发生器产生的正弦波进行调制,使其能够输出更加稳定的信号频率。
(2)数字电路
采用数字电路设计的正弦信号发生器。
信号发生器的课程设计
![信号发生器的课程设计](https://img.taocdn.com/s3/m/73000d14e418964bcf84b9d528ea81c759f52e6a.png)
信号发生器的课程设计一、课程目标知识目标:1. 学生能够理解信号发生器的原理与功能,掌握其基本组成部分和使用方法。
2. 学生能够描述信号发生器在不同波形下的特点,如正弦波、方波、三角波等。
3. 学生能够运用信号发生器进行简单的信号生成与处理。
技能目标:1. 学生能够独立操作信号发生器,进行基本信号的产生和调整。
2. 学生能够通过信号发生器完成简单的实验,如观察波形、测量频率等。
3. 学生能够运用所学知识解决实际电路中与信号发生相关的问题。
情感态度价值观目标:1. 学生培养对电子技术实验的兴趣,增强实践操作的自信心。
2. 学生形成良好的团队合作意识,能够在实验过程中相互协作、共同进步。
3. 学生认识到信号发生器在电子技术领域的重要性,激发对相关学科的学习热情。
分析课程性质、学生特点和教学要求:本课程为电子技术实验课程,以信号发生器为核心,结合教材内容,使学生掌握信号发生器的原理、使用方法及在实际电路中的应用。
针对高中年级学生,课程注重理论与实践相结合,培养学生动手操作能力和实验技能。
教学要求明确、具体,注重培养学生的实际操作能力和解决问题的能力。
课程目标分解:1. 知识目标:通过课堂讲解、实验演示和课后复习,使学生掌握信号发生器的相关知识。
2. 技能目标:通过分组实验、课后练习和实际操作,提高学生的动手能力和实验技能。
3. 情感态度价值观目标:通过课程学习,激发学生对电子技术的兴趣,培养良好的团队合作意识和学习态度。
二、教学内容本课程教学内容以教材中信号发生器相关章节为基础,涵盖以下方面:1. 信号发生器原理:介绍信号发生器的工作原理、基本组成部分及其功能。
2. 信号发生器种类:分析不同类型的信号发生器,如模拟信号发生器、数字信号发生器等。
3. 波形生成与调整:讲解正弦波、方波、三角波等常见波形的生成原理,以及如何使用信号发生器进行波形的调整。
4. 信号发生器应用:介绍信号发生器在实际电路中的应用,如模拟信号源、时钟信号发生等。
EDA课程报告_正弦波信号发生器的设计
![EDA课程报告_正弦波信号发生器的设计](https://img.taocdn.com/s3/m/ac1db84f767f5acfa1c7cd08.png)
《EDA》课程设计报告——正弦波信号发生器的设计一、设计目的通过本次课程设计,进一步了解QUARTUS Ⅱ与LPM_ROM与FPGA硬件功能的使用方法。
培养自己查阅资料及解决问题的能力。
二、设计要求1、通过按键,可以控制输出的是正弦波或三角波。
2、通过ADC0832输出正弦波与三角波,电压V范围在0至-10V之间3、通过示波器观察波形。
三、设计内容:在QUARTUSII上完成信号发生器的设计。
最后在实验板上实测,包括FPGA中ROM的在系统数据读写测试和利用示波器测试。
信号输出的D/A使用实验板上的ADC0832。
四、设计原理:图1所示的波信号发生器的结构由五部分组成:1、计数器或地址发生器(这里选择8位)。
正弦信号数据ROM(8位地址线,8位数据线),含有256个8位数据(一个周期)。
2、VHDL顶层设计。
3、8位D/A图1所示的信号发生器结构图中,顶层文件adc.vhd在FPGA中实现,包含两个部分:ROM的地址信号发生器,由8位计数器担任;一个正弦数据ROM(或者一个三角波数据ROM),由LPM_ROM模块构成。
地址发生器的时钟clk的输入频率fo与每周期的波形数据点数(在此选择256点),以及D/A输出的频率f的关系是:f=fo/256图1 正弦信号发生器结构框图图一 信号发生器结构图FPGA DAC08328clk 运放Vo按键图2 信号发生器的设计图五、 设计步骤:1、 建立.mif 格式文件 mif 文件可用C 语言程序生成, 产生正弦波数值的C 程序如下: #include<stdio.h> #include<math.h>VHDL 顶层 设计adc.vhd 8位计数器 (地址发正弦波数据存储ROM18位D/A三角波数据存储ROM2按键3 20分频main(){int i;float s;for(i=0;i<256;i++){s=sin(atan(1)*8*i/256);printf("%d :%d;\n",i,(int)((s+1)*255/2)) }}以zx.c保存。
制作一个正弦信号发生器的设计
![制作一个正弦信号发生器的设计](https://img.taocdn.com/s3/m/ace2ba7d27284b73f24250c9.png)
★项目2:数字信号源
项目简述:设计制作一个正弦信号发生器。
(1)正弦波输出频率范围:1kHz~10MHz;
(2)具有频率设置功能,频率步进:100Hz;
(3)输出信号频率稳定度:优于10-2;
(4)输出电压幅度:1V到5V这间;
(5)失真度:用示波器观察时无明显失真。
(6)输出电压幅度:在频率范围内
50负载电阻上正弦信号输出电压的峰-峰值V opp=6V±1V;
(7)产生模拟幅度调制(AM)信号:在1MHz~10MHz范围内调制度m a可在30%~100%之间程控调节,步进量50%,正弦调制信号频率为1kHz,调制信号自行产生;
(8)产生模拟频率调制(FM)信号:在100kHz~10MHz频率范围内产生20kHz最大频偏,正弦调制信号频率为1kHz,调制信号自行产生;
(9)产生二进制PSK、ASK信号:在100kHz固定频率载波进行二进制键控,二进制基带序列码速率固定为10kbps,二进制基带序列信号自行产生;
开发时间:2007 开发人数:1
运行环境:windows xp、Quartus II
相关内容:(还未整体综合)
下面是调幅原理图:
下面是调频原理图:
下面是正弦信号发生器设计原理图:
下面是PSK设计原理图:。
模拟电子电路课程设计——正弦波三角波方波函数发生器
![模拟电子电路课程设计——正弦波三角波方波函数发生器](https://img.taocdn.com/s3/m/c4289951b0717fd5370cdcc2.png)
适用标准文案课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目:正弦波-三角波-方波函数发生器初始条件:具备模拟电子电路的理论知识;具备模拟电路基本电路的设计能力;具备模拟电路的基本调试手段;自选有关电子器件;能够使用实验室仪器调试。
要求达成的主要任务:(包含课程设计工作量及其技术要求,以及说明书撰写等详细要求)1、频次范围三段: 10~100Hz,100 Hz~ 1KHz,1 KHz~10 KHz;2、正弦波Uopp≈ 3V,三角波 Uopp≈ 5V,方波 Uopp≈14V;3、幅度连续可调,线性失真小;4、安装调试并达成切合学校要求的设计说明书时间安排:一周,此中 3 天硬件设计, 2 天硬件调试指导教师署名:年月日系主任(或责任教师)署名:年月日目录1.综述...........................................................1 1.1信号发生器概论...................................................11.2 Multisim简介....................................................21.3 集成运放 lm324 简介...............................................32.方案设计与论证...............................................4 2.1 方案一...................................................4 2.2 方案二..................................................42.3 方案三..................................................53.单元电路设计.............................................. 6 3.1 正弦波发生电路的工作原理...............................63.2 正弦波变换成方波的工作原理.............................83.3 方波变换成三角波的工作原理.............................9正负12V 直流稳压电源的设计............................10 4.电路仿真................................................ 12总波形发生电路............................................12正弦波仿真................................................13方波仿真...................................................14三角波仿真...............................................14 5.实物制作与调试.......................................... 15 5.1 焊接过程............................................. 155.2 实物图............................................... 155.3 调试波形............................................. 186.数据记录................................................ 197.课设总结................................................ 208.参照书目................................................ 219.附录.................................................... 22 本科生课程设计成绩评定表.................................... 241.综述1.1 信号发生器概论在人们认识自然、改造自然的过程中,常常需要对各种各种的电子信号进行丈量,因此怎样依据被丈量电子信号的不同特色和丈量要求,灵巧、快速的采纳不同特色的信号源成了现代丈量技术值得深入研究的课题。
信号发生器模电课程设计
![信号发生器模电课程设计](https://img.taocdn.com/s3/m/13780a92680203d8ce2f24bf.png)
萍乡学院14级电子信息工程《模拟电子技术》课程设计课程设计报告课程名称模拟电子技术设计题目方波、三角波、正弦波信号发生器设计系部名称机械电子工程系专业班级电子信息工程2013级姓名学号成绩指导教师2014年12月目录1.设计目的、任务、要求与技术指标1.1课程设计目的 (2)1.2设计任务 (2)1.3设计的技术指标要求 (2)2.方案比较与论证2.1方案一 (2)2.2方案二 (3)3系统组成及工作原理3.1 RC桥式正弦波振荡产生正弦波电路 (3)3.2 滞回比较器产生方波 (4)3.3 积分电路将方波转换为三角波 (6)4.系统总电路图 (7)5.总结 (7)6.元件清单 (8)附录1:正弦波仿真结果 (10)附录2:方波仿真电路 (11)附录3:三角波仿真电路 (12)附录4:《模拟电子技术》课程设计任务书(二) (13)方波、三角波、正弦波信号发生器设计作者:同组:1课程设计目的、任务、要求与技术指标1.1 课程设计目的通过本次课程设计所要达到的目的是:提高学生在模拟集成电路应用方面的技能,树立严谨的科学作风,培养学生综合运用理论知识解决实际问题的能力。
学生通过电路设计初步掌握工程设计方法,逐步熟悉开展科学实践的程序和方法,为后续课程的学习和今后从事的实际工作打下必要的基础1.2设计任务(1)设计一个方波、三角波、正弦波函数发生器;(2)能同时输出一定频率一定幅度的三种波形:正弦波、方波和三角波;(3)用±5V电源供电;(4)运用模拟电子技术的理论、技术和器件。
1.3设计的技术指标要求(1)输出波形:正弦波、方波、三角波;(2)频率范围:在1 Hz~20000 Hz范围内可调;(3)幅度范围:在0~1.0 Vpp范围内可调;(4)比较器用LM339,运算放大器用LM324,双向稳压管用两个稳压管代替。
2.方案比较与论证2.1方案一首先用一个RC振荡电路产生正弦波,然后在用一个滞回电压比较器产生方波,最后在方波基础上利用积分电路产生三角波。
简单正弦信号发生器设计实验报告
![简单正弦信号发生器设计实验报告](https://img.taocdn.com/s3/m/9274e7f29b89680202d82507.png)
简单正弦信号发生器设计实验报告专业:电子信息工程班级课题名称:简单正弦信号发生器设计一:实验要求(1)设计一个正弦信号发生器,要求ROM是8位数据线,8位地址。
256个8位波形数据的mif文件通过两种方式建立,一种用Quartus II的专用编辑器建立,另一种是使用附录的mif文件生成器建立。
首先创建原理图工程,调用LPM_ROM等模块;在原理图编辑窗中绘制电路图,全程编译,对设计进行时序仿真,根据仿真波形说明此电路的功能,引脚锁定编译,编程下载于FPGA中,用实验系统上的DAC0832做波形输出,用示波器来观察波形。
完成实验报告。
(2)学习使用Quartus II的In-System Memory Content Editor来观察FPGA 中的LPM_ROM中的z形波数据,并在在线改变数据后,从示波器上观察对应的输出波形的改变情况。
(3)学习使用Quartus II的Signal Tap II观察FPGA的正弦波形。
二:实验原理正弦信号发生器的结构框图由四个部分组成:(1)计数器或地址发生器,用来作为正弦波数据ROM的地址信号发生器。
ROM中的数据将随地址数据的递增而输出波形数据,然后由DAC输出波形。
(2)正弦信号数据ROM,含64个8位数据。
(3)原理图顶层设计。
(4)8位D/A。
DAC的输出接示波器。
三:实验内容1、定制初始化波形数据文件:建立.mif格式文件。
File—new—other files,选择 Memory Initialization File选项,选择64点8位的正弦数据,弹出表格后输入教材图4-38中的数据。
然后以romd.mif的名字保存至新建的文件夹中。
2、定制LPM_ROM元件:利用MegaWizard Plug-In Manager定制正弦信号数据ROM宏功能块,并将以上的波形数据加载于此ROM中。
并以data_rom.vhd名字将生成的用于例化的波形数据ROM文件保存至上述文件夹中。
函数信号发生器课程设计之正弦波
![函数信号发生器课程设计之正弦波](https://img.taocdn.com/s3/m/e88f285131b765ce050814c2.png)
函数信号发生器课程设计之正弦波华北科技学院《模拟电子技术》课程设计目录一、概述 (2)二、技术性能指标 (2)2.1 设计内容及技术要求 (2)2.2 设计目的 (3)2.3 设计要求 (3)三、方案的选择 (3)3.1 方案一 (4)3.2 方案二 (5)3.3 最终方案 (6)四、单元电路设计 (6)4.1 矩形波产生电路 (6)4.2 三角波产生电路 (8)4.3 正弦波产生电路 (10)五、总电路图 (14)六、波形仿真结果 (14)6.1 矩形波仿真结果 (14)6.2 三角波仿真结果 (15)6.3 正弦波仿真结果 (16)6.4 三种波形同时仿真结果 (17)七、PCB版制作与调试 (17)结论 (19)总结与体会 (20)致谢 (20)附录1 元件清单 (21)附录2 参考文献 (22)1华北科技学院《模拟电子技术》课程设计函数信号发生器设计报告一、概述信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。
各种波形曲线均可以用三角函数方程式来表示。
能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。
函数信号发生器在电路实验和设备检测中具有十分广泛的用途。
例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。
在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。
二、技术性能指标2.1 设计内容及技术要求设计并制作一个信号发生器,具体要求如下:1、能够输出正弦波、方波、三角波;2、输出信号频率范围为1——10Hz,10——100Hz;3、输出信号幅值:方波Up-p=24V,三角波Up-p=0——20V,正弦波U>1V;4、波形特征:方波Tr<10s(100Hz,最大输出时),三角波失真系数THD<2%,正弦波失真系数THD<5%;5、电源:±13V直流电源供电;2华北科技学院《模拟电子技术》课程设计按照以上技术完成要求设计出电路,绘制电路图,对设计的电路用Multisim进行必要的仿真,用PROTEL软件进行制板、焊接,然后对制作的电路完成调试,撰写设计报告测,通过答辩。
方波三角波:正弦波函数信号发生器精编版
![方波三角波:正弦波函数信号发生器精编版](https://img.taocdn.com/s3/m/d3e7245e524de518964b7dfc.png)
方波三角波:正弦波函数信号发生器精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】苏州科技学院天平学院模拟电子技术课程设计指导书课设名称正弦波-方波-三角波信号发生器设计学生姓名王凌飞徐跃高尚专业物联网1021指导教师胡伏原一设计课题名称正弦波-方波-三角波信号发生器设计二课程设计目的、要求与技术指标课程设计目的(1)巩固所学的相关理论知识;(2)实践所掌握的电子制作技能;(3)会运用EDA工具对所作出的理论设计进行模拟仿真测试,进一步完善理论设计;(4)通过查阅手册和文献资料,熟悉常用电子器件的类型和特性,并掌握合理选用元器件的原则;(5)掌握模拟电路的安装\测量与调试的基本技能,熟悉电子仪器的正确使用方法,能力分析实验中出现的正常或不正常现象(或数据)独立解决调试中所发生的问题;(6)学会撰写课程设计报告;(7)培养实事求是,严谨的工作态度和严肃的工作作风;(8)完成一个实际的电子产品,提高分析问题、解决问题的能力。
课程设计要求(1)根据技术指标要求及实验室条件设计出电路图,分析工作原理,计算元件参数;(2)列出所有元器件清单;(3)安装调试所设计的电路,达到设计要求;(4)记录实验结果。
技术指标(1)输出波形:方波-三角波-正弦波;(2)频率范围:100HZ~200HZ连续可调;(3)输出电压:正弦波-方波的输出信号幅值为6V.三角波输出信号幅值为0~2V连续可调;γ。
(4)正弦波失真度:%5≤图函数发生器设计原理函数发生器组成框图,主要有RC 桥式振荡电路,过零比较器,积分器三大主要模块电路构成。
经过RC 桥式振荡电路产生正弦波波 ,再经过零比较器产生方波,然后由积分器产生三角波。
其总的原理设计框如图:图1 总的原理框图 正弦波产生电路利用RC 桥式振荡电路产生正弦波,原理如下图所示;其中RC 串并联电路构成正反馈支路,同时兼并选频网络,R1,R4,R5及二极管等原件构成负反馈和稳幅环节。
DSP课设——正弦波发生器
![DSP课设——正弦波发生器](https://img.taocdn.com/s3/m/779fd03b67ec102de2bd89d7.png)
摘要数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。
20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。
数字信号处理是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。
数字信号处理器(DSP)是在模拟信号变成数字信号以后进行高速实时处理的专用处理器。
DSP 芯片以其独特的结构和快速实现各种数字信号处理算法的突出优点,发展十分迅速。
本文中提出的基于DSP技术设计的正弦波信号发生器已被广泛地应用于通信、仪器仪表和工业控制等领域的信号处理系统中。
在本文中简要的概括了一种基于TMS320C5402实现正弦信号发生器的设计原理与方法,介绍了所设计的正弦信号发生器硬件电路结构和软件程序流程图。
结合DSP硬件特性,通过使用泰勒级数展开法得到设定参数的正弦波形输出,达到设计目的。
该信号发生器弥补了通常信号发生器模式固定,波形不可编程的缺点,其具有实时性强,波形精度高,可方便调节频率和幅度、稳定性好等优点。
关键字:DSP;TMS320C5402;信号发生器;正弦信号;目录1 设计目的及要求 (1)1.1 设计目的 (1)1.2 设计内容及要求 (1)2设计方案及原理 (2)2.1总体方案 (2)2.2设计原理 (2)3系统硬件设计 (3)3.1系统硬件框图 (3)3.2 TMS320C5402简介 (4)3.3 D/A转换部分设计 (5)4系统软件设计及调试 (6)4.1变频调幅的方法 (6)4.2程序设计 (6)4.3程序编写 (8)4.4 CCS简介 (14)4.5运行步骤及结果 (15)5 设计心得 (19)参考文献 (20)附录设计程序 (21)1 设计目的及要求1.1 设计目的DSP课程设计是对《数字信号处理》、《DSP原理及应用》等课程的较全面练习和训练,是实践教学中的一个重要环节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计I(论文)说明书
(正弦波信号发生器设计)
2010年1月19日
摘要
正弦波是通过信号发生器,产生正弦信号得到的波形,方波是通过对原信号进行整形得到的波形。
本文主要介绍了基于op07和555芯片的正弦波-方波函数发生器。
以op07和555定时器构成正弦波和方波的发生系统。
Op07放大器可以用于设计正弦信号,而正弦波可以通过555定时器构成的斯密特触发器整形后产生方波信号。
正弦波方波可以通过示波器检验所产生的信号。
测量其波形的幅度和频率观察是否达到要求,观察波形是否失真。
关键词:正弦波方波 op07 555定时器
目录
引言 (2)
1 发生器系统设计 (2)
1.1系统设计目标 (2)
1.2 总体设计 (2)
1.3具体参数设计 (4)
2 发生器系统的仿真论证 (4)
3 系统硬件的制作 (4)
4 系统调试 (5)
5 结论 (5)
参考文献 (6)
附录 (7)
1
引言
正弦波和方波是在教学中经常遇到的两种波形。
本文简单介绍正弦波和方波产生的一种方式。
在这种方式中具体包含信号发生器的设计、系统的论证、硬件的制作,发生器系统的调制。
1、发生器系统的设计
1.1发生器系统的设计目标
设计正弦波和方波发生器,性能指标要求如下:
1)频率范围100Hz-1KHz ;
2)输出电压p p V ->1V ;
3)波形特性:非线性失真~γ<5%。
1.2总体设计
(1)正弦波设计:正弦波振荡电路由基本放大电路、反馈网络、选频网络组成。
2
图1.1
正弦波振荡电路产生的条件是要满足振幅平衡和相位平衡,即AF=1;
φa+φb=±2nπ;A=X。
/Xid; F=Xf/X。
;正弦波振荡电路必须有基本放大电路,本设计以op07芯片作为其基本放大电路。
基本放大电路的输出和基本放大电路的负极连接电阻作为反馈网络。
反馈网络中两个反向二极管起到稳压的作用。
振荡电路的振荡频率f0是由相位平衡条件决定的。
一个振荡电路只在一个频率下满足相位平衡条件,这要求AF环路中包含一个具有选频特性的选频网络。
f0=1/2πRC。
要实现频率可调,在电容C不变的情况下电阻R可调就可以实现频率f0的变化。
(2)方波设计:方波可以把正弦波通过斯密特触发器整形后产生。
基于555定时器接成的斯密特触发器。
设斯密特触发器输出波形为V1,V2且V1>V2。
输入正弦波v1从0逐渐升高的过程:v1<1/3Vcc时,输出v0=V1;
当1/3Vcc<v1<2/3Vcc时,输出v0=V2保持不变;
v1>2/3Vcc时,v0=V2;
输入正弦波v1从高于2/3Vcc开始下降的过程:当1/3Vcc<v1<2/3Vcc时,
输出v0=V2保持不变;v1<1/3Vcc时,输出v0=V1;
此电路中会产生V=1/3Vcc的回差电压。
这个电压就是就是方波的振幅。
而方波的频率是随着正弦波的频率变化的。
所以方波的频率等于正弦波的频率f0。
3
(3)正弦波和方波的连接框图:
图1.2
1.3 具体参数设计
根据设计的频率范围要求:100Hz-1KHz;由f0=1/2πRC,在电容为0.1uF时。
可以计算出1.59k<R<15.9k,为了满足设计要求选择50k的级联电阻。
而正弦波的振幅由反馈网络中的R1、R2、二极管构成的稳压管电压VD决定。
正弦波输出电压V1=3R1/(2R1-R2);为了能够起振,要求R1+R2>2R1,选择R1=5.1k,那么R2>5.1k,所以选择阻值为20k的可变电阻。
而在电源提供给芯片的电压中还有一些杂波,所以在接入C4、C5、C6起到滤波的作用。
C7是起到积分的作用和隔直流的作用。
总而使得方波的输出波形更加的稳定。
原理图(见附录图d)2、发生器系统的仿真论证
在实际制作之前,根据设计的原理图,通过multisim10.0仿真软件进行仿真,完善原理图的设计。
仿真原理图(见附录图a),通过示波器检测得到的正弦波形(见附录图b),通过示波器检测得到的方波形(见附录图c);
4
3 、系统硬件的制作
电路板的绘画可以通过DXP2004来完成,根据设计的电路绘制原理图(见附录)绘制出的原理图导出PCB,再通过人工的排序后,设置线条的大小和安全距离,自动布线,再对自动布线后的结构做必要的修改,只PCB板更加的美观(见附录)。
根据PCB板做出电路板。
并焊接。
完成电路板硬件的制作。
4、系统调制
用万用表根据原理图线路的连接对电路板进行检测是否有短路、虚焊、断路现象。
完成这些操作后,正确的把电路板接入电源。
用示波器检测波形的幅频特性和观察波形是否失真。
开始调制时。
由于设计的时候没有考虑到要频率的可调性,在选频网路中没有用到可调电阻,所以频率只能在一个频率点上,并不能满足频率可调的要求,根据频率的范围选择50k的级联电阻,使得选频网络中的电阻能够达到同步可调。
用级联电阻调节正弦函数的频率。
产生的正弦波导入斯密特触发器是,回出项较大程度的失真,可能是因为导入的正弦波中存在着杂波,导致整形后得到的方波出现毛尖的问题。
在导入正弦波之前加一个积分电容。
得到的波形基本达到要求。
调制完善后。
用示波器对波形进行测量,在大致不是真的情况下,频率在32Hz~4kHz,正弦波的峰峰值为:6.8V,方波的峰峰值为3.1V。
基本达到了设计的要求。
频率理论值计算如下;
C3=0.1uF;Rp=0~50k;
f<∞;。
=>31.8Hz<。
fπ2/1
=
RC
但是在电路的调制过程中当调制的范围大于4kHz后,波形出项较严重的失真。
5、总结
正弦波-方波函数发生器可以分为正弦波产生部分和方波产生部分。
正弦波的产生电路时基于op07的放大电路实现的,通过放大电路的自激振荡来完成,这需要放大器满足自激振荡的条件:AF=1;φa+φb=±2nπ。
由基本放大电路、选频网络、反馈网络构成。
而方波的才产生是由555构成的斯密特触发器整形后实现。
本文主要陈述了正弦波-方波函数发生器的原理,正弦波的设计,方波的设计。
绘制原理图到,设计PCB图,到做电路板和调制的全过程。
设计的电路基本完成了设计的要求,但其中也有缺点和需要完善的地方。
在正弦波部分缺点主要是波形有些微弱的失真,波形的上升部分下降部分微弱的不对称,可能是由于选择的元器件精确度不够,导致在调制的时候没有办法做到更加的准确。
方波部分可能是因为输入的正弦波并没有到达要求,所以输出的方波有些微弱的杂波。
出现毛尖现在。
因为电源提供给芯片的电压中也存在微小的杂波,如果能够把电源里的杂波滤除,系统收到的干扰也将会减少。
通过课程设计掌握了一个电路板从设计到调制完成的全过程。
5
参考文献
【1】康华光,陈大钦,张林.电子技术基础模拟部分(第五版)【M】北京:高等教育出版社,2010:339~342,434~441
【2】阎石.数字电子技术基础(第五版)【M】.北京:高等教育出版社,2010,488~497
【3】周巍,黄建华.数字逻辑电路•实验•设计.•仿真【M】.成都:电子科技大学出版社,2010,98~99
[1] 陈尚松,雷加,郭庆.电子测量与仪器[M].北京:电子工业出版社,2005:108~126
6
附录
仿真原理图:
图a
正弦波仿真:
图b
7
方波仿真:
图c
DXP原理图:
图d
DXP-PCB图:
8。