《近世代数》模拟试卷
近世代数复习
![近世代数复习](https://img.taocdn.com/s3/m/33082924ae45b307e87101f69e3143323968f534.png)
世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)1、设人=B=R (实数集),如果A 到B 的映射:x-x+2,xCR,则是从A 到B 的() A 、满射而非单射B 、单射而非满射C 、一一映射D 、既非单射也非满射2、设集合A 中含有5个元素,集合B 中含有2个元素,那么,A 与B 的积集合AXB 中含有()个元素。
A 、2B 、5C 、7D 、103、在群G 中方程ax=b,ya=b,a,bCG 都有解,这个解是()乘法来说 A 、不是唯一B 、唯一的C 、不一定唯一的D 、相同的(两方程解一样)4、当G 为有限群,子群H 所含元的个数与任一左陪集aH 所含元的个数() A 、不相等B 、0C 、相等D 、不一定相等。
5、n 阶有限群G 的子群H 的阶必须是门的() A 、倍数B 、次数C 、约数D 、指数二、填空题(本大题共10小题,每空3分,共30分) 1、设集合A1,0,1;B1,2,则有BA 。
2、若有元素eCR 使每aCA,都有ae=ea=a,则e 称为环R 的。
3、环的乘法一般不交换。
如果环R 的乘法交换,则称R 是一个。
4、偶数环是的子环。
5、一个集合A 的若干个--变换的乘法作成的群叫做A 的一个。
6、每一个有限群都有与一个置换群。
7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是,元a 的逆元是。
8、设I 和S 是环R 的理想且ISR,如果I 是R 的最大理想,那么 9、一个除环的中心是一个。
三、解答题(本大题共3小题,每小题10分,共30分)并把和写成对换的乘积。
2、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。
3、设集合M m {0,1,2,,m1,m}(m1),定义M m 中运算“m ”为a m b=(a+b)(modm),则(M m,m)是不是群,为什么?四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分)1、设G 是群。
《近世代数》模拟试题及答案
![《近世代数》模拟试题及答案](https://img.taocdn.com/s3/m/5d708122dd3383c4bb4cd29a.png)
近世代数模拟试题一. 单项选择题(每题5分,共25分)1、在整数加群(Z,+)中,下列那个是单位元().A. 0B. 1C. -1D. 1/n,n是整数2、下列说法不正确的是().A . G只包含一个元g,乘法是gg=g。
G对这个乘法来说作成一个群;B . G是全体整数的集合,G对普通加法来说作成一个群;C . G是全体有理数的集合,G对普通加法来说作成一个群;D. G是全体自然数的集合,G对普通加法来说作成一个群.3. 如果集合M的一个关系是等价关系,则不一定具备的是( ).A . 反身性 B. 对称性 C. 传递性 D. 封闭性4. 对整数加群Z来说,下列不正确的是().A. Z没有生成元.B. 1是其生成元.C. -1是其生成元.D. Z是无限循环群.5. 下列叙述正确的是()。
A. 群G是指一个集合.B. 环R是指一个集合.C. 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在.D. 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在.二. 计算题(每题10分,共30分)1. 设G 是由有理数域上全体2阶满秩方阵对方阵普通乘法作成的群,试求中G 中下列各个元素1213,,0101c d cd ⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭,的阶.2. 试求出三次对称群{}3(1),(12),(13),(23),(123),(132)S = 的所有子群.3. 若e是环R的惟一左单位元,那么e是R的单位元吗?若是,请给予证明.三. 证明题(第1小题10分,第2小题15分,第3小题20分,共45分).1. 证明: 在群中只有单位元满足方程2.x x=2.设G是正有理数乘群,G是整数加群. 证明::2n bn aϕg a是群G到G的一个满同态,其中,a b是整数,而(,2)1ab=.3.设S是环R的一个子环.证明: 如果R与S都有单位元,但不相等,则S的单位元必为R的一个零因子.近世代数模拟试题答案2008年11月一、单项选择题(每题5分,共25分)1. A2. D3. D 4 . A 5 . C二. 计算题(每题10分,共30分) 1. 解:易知 c 的阶无限, (3分)d 的阶为2. (3分)但是 11,01cd ⎛⎫=⎪-⎝⎭(2分)的阶有限,是2. (2分) 2. 解:3S 的以下六个子集{}{}{}123(1),(1),(12),(1),(13),H H H ==={}{}4563(1),(23),(1),(123),(132),H H H S === (7分)对置换乘法都是封闭的,因此都是3S 的子集. (3分) 3. 解: e 是R 的单位元。
《近世代数》模拟试题1及答案.pdf
![《近世代数》模拟试题1及答案.pdf](https://img.taocdn.com/s3/m/658ac965bd64783e09122b71.png)
近世代数模拟试题一. 单项选择题(每题5分,共25分)1、在整数加群(Z,+)中,下列那个是单位元().A. 0B. 1C. -1D. 1/n,n是整数2、下列说法不正确的是().A . G只包含一个元g,乘法是gg=g。
G对这个乘法来说作成一个群;B . G是全体整数的集合,G对普通加法来说作成一个群;C . G是全体有理数的集合,G对普通加法来说作成一个群;D. G是全体自然数的集合,G对普通加法来说作成一个群.3. 如果集合M的一个关系是等价关系,则不一定具备的是( ).A . 反身性 B. 对称性 C. 传递性 D. 封闭性4. 对整数加群Z来说,下列不正确的是().A. Z没有生成元.B. 1是其生成元.C. -1是其生成元.D. Z是无限循环群.5. 下列叙述正确的是()。
A. 群G是指一个集合.B. 环R是指一个集合.C. 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在.D. 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在.二. 计算题(每题10分,共30分)1. 设G 是由有理数域上全体2阶满秩方阵对方阵普通乘法作成的群,试求中G 中下列各个元素1213,,0101c d cd ⎛⎫⎛⎫== ⎪ ⎪−⎝⎭⎝⎭,的阶.2. 试求出三次对称群{}3(1),(12),(13),(23),(123),(132)S = 的所有子群.3. 若e是环R的惟一左单位元,那么e是R的单位元吗?若是,请给予证明.三. 证明题(第1小题10分,第2小题15分,第3小题20分,共45分).1. 证明: 在群中只有单位元满足方程2.x x=2.设G是正有理数乘群,G是整数加群. 证明::2n bn aϕ是群G到G的一个满同态,其中,a b是整数,而(,2)1ab=.3.设S是环R的一个子环.证明: 如果R与S都有单位元,但不相等,则S的单位元必为R的一个零因子.近世代数模拟试题答案2008年11月一、单项选择题(每题5分,共25分)1. A2. D3. D 4 . A 5 . C二. 计算题(每题10分,共30分) 1. 解:易知 c 的阶无限, (3分)d 的阶为2. (3分)但是 11,01cd ⎛⎫=⎪−⎝⎭(2分)的阶有限,是2. (2分) 2. 解:3S 的以下六个子集{}{}{}123(1),(1),(12),(1),(13),H H H ==={}{}4563(1),(23),(1),(123),(132),H H H S === (7分)对置换乘法都是封闭的,因此都是3S 的子集. (3分) 3. 解:e 是R 的单位元。
近世代数模拟试题及答案
![近世代数模拟试题及答案](https://img.taocdn.com/s3/m/2e83973b773231126edb6f1aff00bed5b9f373d1.png)
近世代数模拟试题一、单项选择题每题5分,共25分1、在整数加群Z,+中,下列那个是单位元;A 0B 1C -1D 1/n,n是整数2、下列说法不正确的是;A G只包含一个元g,乘法是gg=g;G对这个乘法来说作成一个群B G是全体整数的集合,G对普通加法来说作成一个群C G是全体有理数的集合,G对普通加法来说作成一个群D G是全体自然数的集合,G对普通加法来说作成一个群3、下列叙述正确的是;A 群G是指一个集合B 环R是指一个集合C 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在D 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在4、如果集合M的一个关系是等价关系,则不一定具备的是;A 反身性B 对称性C 传递性D 封闭性S的共轭类;5、下列哪个不是3A 1B 123,132,23C 123,132D 12,13,23二、计算题每题10分,共30分S的正规化子和中心化子;1.求S={12,13}在三次对称群32.设G ={1,-1,i,-i},关于数的普通乘法作成一个群,求各个元素的阶;3.设R 是由一切形如⎪⎪⎭⎫ ⎝⎛0,0,y x x,y 是有理数方阵作成的环,求出其右零因子;三、证明题每小题15分,共45分1、设R 是由一切形如⎪⎪⎭⎫ ⎝⎛0,0,y x x,y 是有理数方阵作成的环,证明⎪⎪⎭⎫ ⎝⎛0,00,0是其零因子;2、设Z 是整数集,规定a ·b =a +b -3;证明:Z 对此代数运算作成一个群,并指出其单位元;3、证明由整数集Z和普通加法构成的Z,+是无限阶循环群;近世代数模拟试题答案一、单项选择题每题5分,共25分1. A2. D3. C4. D5. B二、计算题每题10分,共30分1. 解:正规化子NS ={1,23};;;;;;;;;;;;6分中心化子CS ={1};;;;;;;;;;;;;;;;;;4分2. 解:群G 中的单位元是1;;;;;;;;;;;;;;;;;;;;;;;;2分1的阶是1,-1的阶是2,i 和-i 的阶是4;;;;4×2分3. 解:设其右零因子为⎪⎪⎭⎫ ⎝⎛0,0,b a ;;;;;;;;;;;;;;;;;;;;;;;2分 所以⎪⎪⎭⎫ ⎝⎛0,0,y x ⎪⎪⎭⎫ ⎝⎛0,0,b a =⎪⎪⎭⎫ ⎝⎛0,0,xb xa =0;;;;;;;;;;;;;;;3分因为x 任意,所以a =b =0;;;;;;;;;;;;;;;;;;;;3分因此右零因子为⎪⎪⎭⎫⎝⎛0,00,0;;;;;;;;;;;;;;;;;;;;;;;;2分三、证明题每小题15分共45分 1.证明:设其右零因子为⎪⎪⎭⎫ ⎝⎛0,0,b a ;;;;;;;;;;;;;;;;;;;;;;;2分 所以⎪⎪⎭⎫ ⎝⎛0,0,y x ⎪⎪⎭⎫ ⎝⎛0,0,b a =⎪⎪⎭⎫ ⎝⎛0,0,yb xa =0;;;;;;;;;;;;;;;;5分 因为x,y 任意,所以a =b =0;;;;;;;;;;;;;;;;;8分同理设其右零因子为⎪⎪⎭⎫ ⎝⎛0,0,b a ;;;;;;;;;;;;;;;;;;;;10分 所以⎪⎪⎭⎫ ⎝⎛0,0,b a ⎪⎪⎭⎫ ⎝⎛0,0,y x =⎪⎪⎭⎫ ⎝⎛0,0,yb xa =0;;;;;;;;;;;;;;;;12分 因为x,y 任意,所以a =b =0;;;;;;;;;;;;;;;;;14分因此零因子为⎪⎪⎭⎫ ⎝⎛0,00,0;;;;;;;;;;;;;;;;;;;;;;;;15分2.明:首先该代数运算封闭;;;;;;;;;;;;;;;;;;;;3分其次我们有:a ·b ·c =a +b -3·c =a +b -3+c -3=a +b +c -3-3=a ·b ·c,结合律成立;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;6分令e =3,验证a ·e =a +e -3=a,有单位元;;;;7分对任意元素a,6-a 是其逆元,因为a ·6-a =3;;;8分因此,Z 对该运算作成一个群;显然,单位元是e =3;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;10分3.证明:首先证明Z,+是群,+满足结合律,对任意的Z x ∈,x x x =+=+00,0是运算+的单位元又由于: ()()0=+-=-+x x x x所以 ,1x x -=-从而Z,+为群;;;;;;;;;2分由于+满足交换律,所以Z,+是交换群;;;;4分Z,+的单位元为0,对于1Z ∈,由于 1+-1=0,所以111-=-,;;;5分于是对任意Z k ∈,若0=k ,则:010=;若0>k ,则k k =+++=1111 ;;;;;;;;;;;8分若0<k ,则()()()k k k k ------===111111)1()1()1(---++-+-=个k))(1(k --= k = ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;10分综上,有k k =1,对任意的Z k ∈. 因而,{}Z k Z k ∈=1,从而Z,+是无限阶循环群;;;;;;;;;;;;;;;;;;15分。
近世代数模拟试题一
![近世代数模拟试题一](https://img.taocdn.com/s3/m/d462af01dd36a32d737581f8.png)
近世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、设A =B =R(实数集),如果A 到B 的映射ϕ:x →x +2,∀x ∈R ,则ϕ是从A 到B 的( )A 、满射而非单射B 、单射而非满射C 、一一映射D 、既非单射也非满射2、设集合A 中含有5个元素,集合B 中含有2个元素,那么,A 与B 的积集合A ×B 中含有( )个元素。
A 、2B 、5C 、7D 、10 3、在群G 中方程ax=b ,ya=b , a,b ∈G 都有解,这个解是( )乘法来说A 、不是唯一B 、唯一的C 、不一定唯一的D 、相同的(两方程解一样) 4、当G 为有限群,子群H 所含元的个数与任一左陪集aH 所含元的个数( )A 、不相等B 、0C 、相等D 、不一定相等。
5、n 阶有限群G 的子群H 的阶必须是n 的( )A 、倍数B 、次数C 、约数D 、指数二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、设集合{}1,0,1-=A ;{}2,1=B ,则有=⨯A B ---------。
2、若有元素e ∈R 使每a ∈A ,都有ae=ea=a ,则e 称为环R 的--------。
3、环的乘法一般不交换。
如果环R 的乘法交换,则称R 是一个------。
4、偶数环是---------的子环。
5、一个集合A 的若干个--变换的乘法作成的群叫做A 的一个--------。
6、每一个有限群都有与一个置换群--------。
7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是---,元a 的逆元是-------。
8、设I 和S 是环R 的理想且R S I ⊆⊆,如果I 是R 的最大理想,那么---------。
《近世代数》模拟试卷
![《近世代数》模拟试卷](https://img.taocdn.com/s3/m/993e7829844769eae109ed16.png)
一、(16分)叙述概念或命题1.正规子群;2.唯一分解环;3.代数数;4.鲁非尼-阿贝尔定理二、(12分)填空题1.设有限域F 的阶为81,则的特征=p 。
2.已知群G 中的元素a 的阶等于50,则4a 的阶等于 。
3.一个有单位元的无零因子 称为整环。
4.如果710002601a 是一个国际标准书号,那么=a 。
三、(10分)设G 是群。
证明:如果对任意的G x ∈,有e x =2,则G 是交换群。
四、(10分)证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。
五、(15分)设}R ,,,|{H ∈+++=d c b a dk cj bi a 是四元数体,对H 中任意元dk cj bi a x +++=,定义其共轭dk cj bi a x ---=。
1.证明:x x x x =是一个非负实数;2.对k j i x 221-+-=,k j i y -+-=22,求xy ,yx 和1-x 。
六、(15分)设)6(1=I ,)15(2=I 是整数环的理想,试求下列各理想,并简述理由。
1.21I I +;2.21I I ⋂;3.21I I ⋅七、(10分)设有置换)1245)(1345(=σ,6)456)(234(S ∈=τ。
1.求στ和στ-1;2.确定置换στ和στ-1的奇偶性。
八、(12分)求剩余类加群Z 12中每个元素的阶。
一、1.若H 是群G 的子群,且对每个G a ∈,有Ha aH =,那么H 称为是G 的正规子群。
2.设R 是个整环,若对于R 中每个非零非单位的元都有唯一分解,则称R 为唯一分解环。
3.有理数域上的代数元称为代数数。
4.如果5≥n (特征为0),那么n 次的一般方程没有根式解。
二、1.32.253.交换环4.6三、对于G 中任意元x ,y ,由于e xy =2)(,所以yx x y xy xy ===---111)((对每个x ,从e x =2可得1-=x x )。
近世代数模拟试题--附详细答案
![近世代数模拟试题--附详细答案](https://img.taocdn.com/s3/m/4c6cb31381c758f5f71f67b6.png)
近世代数模拟试题一一、单项选择题<本大题共5小题,每小题3分,共15分>在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、设A =B =R<实数集>,如果A 到B 的映射ϕ:x →x +2,∀x ∈R,则ϕ是从A 到B 的〔 〕A 、满射而非单射B 、单射而非满射C 、一一映射D 、既非单射也非满射2、设集合A 中含有5个元素,集合B 中含有2个元素,则,A 与B 的积集合A ×B 中含有〔 〕个元素。
A 、2B 、5C 、7D 、103、在群G 中方程ax=b,ya=b, a,b ∈G 都有解,这个解是〔 〕乘法来说A 、不是唯一B 、唯一的C 、不一定唯一的D 、相同的<两方程解一样> 4、当G 为有限群,子群H 所含元的个数与任一左陪集aH 所含元的个数〔 〕A 、不相等B 、0C 、相等D 、不一定相等。
5、n 阶有限群G 的子群H 的阶必须是n 的〔 〕A 、倍数B 、次数C 、约数D 、指数二、填空题<本大题共10小题,每空3分,共30分>请在每小题的空格中填上正确答案。
错填、不填均无分。
1、设集合{}1,0,1-=A ;{}2,1=B ,则有=⨯A B ---------。
2、若有元素e ∈R 使每a ∈A,都有ae=ea=a,则e 称为环R 的--------。
3、环的乘法一般不交换。
如果环R 的乘法交换,则称R 是一个------。
4、偶数环是---------的子环。
5、一个集合A 的若干个--变换的乘法作成的群叫做A 的一个--------。
6、每一个有限群都有与一个置换群--------。
7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是---,元a 的逆元是-------。
8、设I 和S 是环R 的理想且R S I ⊆⊆,如果I 是R 的最##想,则---------。
近世代数期末考试题库完整
![近世代数期末考试题库完整](https://img.taocdn.com/s3/m/86ab40cb0408763231126edb6f1aff00bed57070.png)
世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、设A=B=R(实数集),如果A至UB的映射中:x-x+2,Vx€R,则中是从A至UB的(c)A、满射而非单射B、单射而非满射C、一一映射D、既非单射也非满射2、设集合A中含有5个元素,集合B中含有2个元素,那么,A与B的积集合AXB中含有(d)个元素。
A、2B、5C、7D、103、在群G中方程ax=b,ya=b,a,b6G都有解,这个解是(b)乘法来说A、不是唯一B、唯一的C、不一定唯一的D、相同的(两方程解一样)4、当G为有限群,子群H所含元的个数与任一左陪集aH所含元的个数(c)A、不相等B、0C、相等D、不一定相等。
5、n阶有限群G的子群H的阶必须是n的(d)A、倍数B、次数C、约数D、指数二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、设集合A“T0」>;B=42},则有BMA=。
2、若有元素e6R使每a6A,都有ae=ea=a,则e称为环R的单位元。
3、环的乘法一般不交换。
如果环R的乘法交换,则称R是一个交换环。
4、偶数环是整数环的子环。
5、一个集合A的若干个-变换的乘法作成的群叫做A的一个变换全。
6、每一个有限群都有与一个置换群同构。
7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是1,元a的逆元是a-1。
8、设I和S是环R的理想且1=S=R,如果I是R的最大理想,那么。
9、一个除环的中心是一个-域-----。
三、解答题(本大题共3小题,每小题10分,共30分)[写成对换的乘积。
2、证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。
奇1、解:把仃和工写成不相杂轮换的乘积:二三(1653)(247)(8).=(123)(48)(57)(6)可知仃为奇置换,七为偶置换。
近世代数基础模拟试题01
![近世代数基础模拟试题01](https://img.taocdn.com/s3/m/41b559f6910ef12d2af9e745.png)
《近世代数基础》模拟试题一1.设M 是西昌学院全体学生的集合,以下关系中哪个是M 上的等价关系?( )A .同姓关系B .朋友关系C .师生关系D .不同乡关系 2.以下映射哪个是代数结构),(⋅R 的自同态?( )A . x x 2→B . x x -→C . ||x x →D . 32x x →3.在有理数集Q 上定义代数运算2b)(a b a += ,则这个代数运算( )。
A .既适合结合律又适合交换律B .适合结合律但不适合交换律C .不适合结合律但适合交换律D .既不适合结合律又不适合交换律4.12U 对输的乘法构成一个群,它的子群共有( )个。
A .6B .8C .10D .125.设⎭⎬⎫⎩⎨⎧∈⎪⎪⎭⎫⎝⎛=Z b a b a R ,00,那么R 关于矩阵的加法和乘法构成环,则这个矩阵环是 ( )。
A .有单位元的可换环B .无单位元的可换环C .无单位元的非可换环D .有单位元的非可换环6.在3次对称群3S 中可以与(132)乘积可交换的所有元素为( )。
A .(1),(132)B .(12),(13),(23)C .(1),(123),(132)D .3S 中的所有元素一、单项选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填 写在题后的括号内。
错选、多选或未选均无分。
7. =]:)3Q 2,[Q( ( )A .2B .3C .4D .68.在3次对称群3S 中可以与(132)乘积可交换的所有元素为( )。
A .B .C .D .9.在3次对称群3S 中可以与(132)乘积可交换的所有元素为( )A .B .C .(1),(123),(132)D .10.在3次对称群3S 中可以与(132)乘积可交换的所有元素为( )A .B .C .D .11.设},,{c b a A =,则A 的一一变换共有______个。
12.由实数集合R 上的等价关系: 1~≥+⇔∈∀22b a b a R,b a,所决定的集合R 上的元素的分类共有 个。
近世代数10套试题
![近世代数10套试题](https://img.taocdn.com/s3/m/a98ffc2c4b73f242336c5ff2.png)
《近世代数》试卷1(时间120分钟)二、判断题(对打“√”,错打“×”,每小题2分,共20分)1. ()循环群的子群是循环子群。
2. ()满足左、右消去律的有单位元的半群是群。
3. ()存在一个4阶的非交换群。
4. ()素数阶的有限群G的任一子群都是G的不变子群。
5. ()无零因子环的特征不可能是2001。
6. ()无零因子环的同态象无零因子。
7. ()模97的剩余类环Z97是域。
8. ()在一个环中,若左消去律成立,则消去律成立。
9. ()域是唯一分解整环。
10. ()整除关系是整环R的元素间的一个等价关系。
一、填空题(共20分,第1、4、6小题各4分,其余每空2分)1. 设A、B是集合,| A |=3,| B |=2,则共可定义个从A到B的映射,其中有个单射,有个满射,有个双射。
2. 设群G是24阶群,G中元素a的阶是6,则元素a2的阶为,子群H=< a3>的在G中的指数是。
3. 设G=< a>是10阶循环群,则G的非平凡子群的个数是。
4. 在模12的剩余环R={[0], [1], ……, [11]}中,[5]+[10]=,[5]·[10]=,方程x2=[1]的所有根为。
5. 环Z6的全部零因子是。
6. 整环Z[√-3 ]不是唯一分解整环,因为它的元素α=在Z[√-3 ]中有两种本。
(共30分)1.设S3是3次对称群,a=(123)∈S3.(1)写出H=< a>的所有元素.(2)计算H的所有左陪集和所有右陪集.(3)判断H是否是S3的不变子群,并说明理由.2. 求模18的剩余类加群(Z18,+,[0])的所有子群及这些子群的生成元。
3. 在整数环Z中,求由2004,125生成的理想A=(2004,125)。
四、证明题(共30分)1.设G是一个阶为偶数的有限群,证明(1)G中阶大于2的元素的个数一定为偶数;(2)G中阶等于2的元素的个数一定为奇数。
近世代数模拟试题及答案
![近世代数模拟试题及答案](https://img.taocdn.com/s3/m/f0f2924511a6f524ccbff121dd36a32d7375c727.png)
近世代数模拟试题及答案一、选择题1. 下列哪个集合不是群?A. 自然数集NB. 整数集ZC. 有理数集QD. 实数集R答案:A2. 在群G中,若a, b属于G,且a*b=b*a对所有a, b成立,则称G 为交换群。
以下哪个不是交换群?A. 整数加法群B. 奇数乘法群C. 偶数乘法群D. 所有实数的加法群答案:C二、填空题1. 一个环R,如果满足乘法交换律,则称R为_________。
答案:交换环2. 有限群的阶是指群中元素的个数,设群G的阶为n,则群G的拉格朗日定理表明,G的任何子群的阶都是n的_________。
答案:因数三、简答题1. 解释什么是子群,并给出一个例子。
答案:子群是指一个群G的一个非空子集H,使得H中的元素在G的运算下封闭,并且包含G的单位元。
例如,整数集Z在加法运算下构成自然数集N的一个子群。
2. 描述什么是环的零因子,并给出一个例子。
答案:在环R中,如果存在非零元素a和b,使得a*b=0,则称a和b为零因子。
例如,在模6的剩余类环Z6中,元素3和3是零因子,因为3*3=9≡0 (mod 6)。
四、计算题1. 给定群G={1, a, a^2, a^3},其中a^4=1,求证G是一个群,并找出它的所有子群。
答案:首先验证群的四个基本性质:- 封闭性:对于任意g, h属于G,g*h也属于G。
- 结合律:对于任意g, h, k属于G,(g*h)*k = g*(h*k)。
- 单位元:1是G的单位元,因为对于任意g属于G,1*g = g*1 = g。
- 逆元:对于任意g属于G,存在g的逆元g^(-1),使得g*g^(-1) = g^(-1)*g = 1。
例如,a的逆元是a^3。
G的子群有:- {1}:平凡子群。
- {1, a^2}:由a^2的幂构成的子群。
- G本身:{1, a, a^2, a^3}。
2. 证明在任何交换环中,如果a和b是可逆元素,则它们的乘积ab也是可逆的。
答案:设a和b是交换环R中的可逆元素,存在a^(-1)和b^(-1)使得a*a^(-1)=1且b*b^(-1)=1。
《近世代数》模拟试题2与 答案
![《近世代数》模拟试题2与 答案](https://img.taocdn.com/s3/m/07c132f2b9d528ea80c77904.png)
近世代数模拟试题一、单项选择题(每题5分,共25分)1、在整数加群(Z,+)中,下列那个是单位元()。
A 0B 1C -1D 1/n,n是整数2、下列说法不正确的是()。
A G只包含一个元g,乘法是gg=g。
G对这个乘法来说作成一个群B G是全体整数的集合,G对普通加法来说作成一个群C G是全体有理数的集合,G对普通加法来说作成一个群D G是全体自然数的集合,G对普通加法来说作成一个群3、下列叙述正确的是()。
A 群G是指一个集合B 环R是指一个集合C 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在D 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,逆元存在4、如果集合M的一个关系是等价关系,则不一定具备的是( )。
A 反身性B 对称性C 传递性D 封闭性S的共轭类( )。
5、下列哪个不是3A (1)B (123),(132),(23)C (123),(132)D (12),(13),(23)二、计算题(每题10分,共30分)1.求S={(12),(13)}在三次对称群S的正规化子和中心化子。
32.设G ={1,-1,i ,-i},关于数的普通乘法作成一个群,求各个元素的阶。
3.设R 是由一切形如,0,y x (x ,y 是有理数)方阵作成的环,求出其右零因子。
三、证明题(每小题15分,共45分) 1、设R 是由一切形如,0,y x (x ,y 是有理数)方阵作成的环,证明,00,0是其零因子。
2、设Z 是整数集,规定a ·b =a +b -3。
证明:Z 对此代数运算作成一个群,并指出其单位元。
3、证明由整数集Z和普通加法构成的(Z,+)是无限阶循环群。
近世代数模拟试题答案一、单项选择题(每题5分,共25分)1.A 2.D 3.C 4.D 5.B二、计算题(每题10分,共30分)1.解:正规化子N (S )={(1),(23)}。
(6分)中心化子C (S )={(1)}。
近世代数期末考试题库
![近世代数期末考试题库](https://img.taocdn.com/s3/m/9fa85855e53a580217fcfe8f.png)
近世代数模拟试题一一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1、设A =B =R(实数集),如果A 到B 的映射ϕ:x →x +2,∀x ∈R ,则ϕ是从A 到B 的( ) A 、满射而非单射B 、单射而非满射 C 、一一映射D 、既非单射也非满射2、设集合A 中含有5个元素,集合B 中含有2个元素,那么,A 与B 的积集合A ×B 中含有( )个元素。
A 、2B 、5C 、7D 、103、在群G 中方程ax=b ,ya=b , a,b ∈G 都有解,这个解是( )乘法来说 A 、不是唯一 B 、唯一的 C 、不一定唯一的 D 、相同的(两方程解一样)4、当G 为有限群,子群H 所含元的个数与任一左陪集aH 所含元的个数( ) A 、不相等 B 、0 C 、相等 D 、不一定相等。
5、n 阶有限群G 的子群H 的阶必须是n 的( ) A 、倍数 B 、次数 C 、约数 D 、指数二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、设集合{}1,0,1-=A ;{}2,1=B ,则有=⨯A B ---------。
2、若有元素e ∈R 使每a ∈A ,都有ae=ea=a ,则e 称为环R 的--------。
3、环的乘法一般不交换。
如果环R 的乘法交换,则称R 是一个------。
4、偶数环是---------的子环。
5、一个集合A 的若干个--变换的乘法作成的群叫做A 的一个--------。
6、每一个有限群都有与一个置换群--------。
7、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是---,元a 的逆元是-------。
8、设I 和S 是环R 的理想且R S I ⊆⊆,如果I 是R 的最大理想,那么---------。
近世代数模拟试题
![近世代数模拟试题](https://img.taocdn.com/s3/m/f030ba0fa55177232f60ddccda38376baf1fe0d3.png)
近世代数模拟试题一、选择题(每题4分,共40分)1. 以下哪个选项是群的一个例子?A. 整数集合B. 偶数集合C. 正实数集合D. 所有实数的集合2. 群的运算满足以下哪个性质?A. 封闭性B. 结合律C. 存在单位元D. 所有选项都满足3. 在群中,单位元具有什么性质?A. 唯一性B. 可逆性C. 交换性D. 以上都不是4. 以下哪个选项是环的一个例子?A. 整数集合B. 有理数集合C. 复数集合D. 所有选项都是5. 环中的加法运算满足以下哪个性质?A. 交换律B. 结合律C. 存在单位元D. 所有选项都满足6. 以下哪个选项是域的一个例子?A. 整数集合B. 有理数集合C. 实数集合D. 所有选项都是7. 域中的乘法运算满足以下哪个性质?A. 交换律B. 结合律C. 存在单位元D. 所有选项都满足8. 向量空间中的向量加法满足以下哪个性质?A. 交换律B. 结合律C. 存在单位元D. 所有选项都满足9. 线性变换的定义域和值域必须是?A. 向量空间B. 群C. 环D. 域10. 以下哪个选项是线性无关的例子?A. 一组线性方程的解B. 一组线性方程的系数C. 一组线性方程的增广矩阵D. 一组线性方程的系数矩阵二、填空题(每题4分,共20分)11. 如果一个群的元素个数是有限的,则称该群为________群。
12. 群的运算满足封闭性,即对于任意两个元素a和b,它们的运算结果________。
13. 环中的元素a和b,如果满足ab=ba,则称这两个元素________。
14. 域中的元素a和b,如果满足ab=1,则称b为a的________。
15. 向量空间中的一组向量,如果它们之间不存在非平凡的线性组合等于零向量,则称这组向量________。
三、解答题(每题20分,共40分)16. 给定一个群G,证明群G中的单位元是唯一的。
17. 证明如果一个环R的乘法运算满足交换律,则称R为交换环。
近世代数期末考试试卷及答案
![近世代数期末考试试卷及答案](https://img.taocdn.com/s3/m/463af866a517866fb84ae45c3b3567ec102ddc7a.png)
近世代数期末考试试卷及答案近世代数模拟试题三⼀、单项选择题(本⼤题共5⼩题,每⼩题3分,共15分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其代码填写在题后的括号内。
错选、多选或未选均⽆分。
1、6阶有限群的任何⼦群⼀定不是()。
A、2阶B、3 阶C、4 阶D、 6 阶2、设G是群,G有()个元素,则不能肯定G是交换群。
A、4个B、5个C、6个D、7个3、有限布尔代数的元素的个数⼀定等于()。
A、偶数B、奇数C、4的倍数D、2的正整数次幂4、下列哪个偏序集构成有界格()A、(N,≤)B、(Z,≥)C、({2,3,4,6,12},|(整除关系))D、 (P(A),?)5、设S3={(1),(12),(13),(23),(123),(132)},那么,在S3中可以与(123)交换的所有元素有()A、(1),(123),(132)B、12),(13),(23)C、(1),(123)D、S3中的所有元素⼆、填空题(本⼤题共10⼩题,每空3分,共30分)请在每⼩题的空格中填上正确答案。
错填、不填均⽆分。
1、群的单位元是--------的,每个元素的逆元素是--------的。
2、如果f是A与A间的⼀⼀映射,a是A的⼀个元,则()[]=-aff1----------。
3、区间[1,2]上的运算},{min baba=的单位元是-------。
4、可换群G中|a|=6,|x|=8,则|ax|=——————————。
5、环Z8的零因⼦有 -----------------------。
6、⼀个⼦群H的右、左陪集的个数----------。
7、从同构的观点,每个群只能同构于他/它⾃⼰的---------。
8、⽆零因⼦环R中所有⾮零元的共同的加法阶数称为R的-----------。
9、设群G中元素a的阶为m,如果ea n=,那么m与n存在整除关系为--------。
三、解答题(本⼤题共3⼩题,每⼩题10分,共30分)1、⽤2种颜⾊的珠⼦做成有5颗珠⼦项链,问可做出多少种不同的项链?2、S 1,S 2是A 的⼦环,则S 1∩S 2也是⼦环。
近世代数模拟试题7
![近世代数模拟试题7](https://img.taocdn.com/s3/m/01d75f1f5ef7ba0d4b733b31.png)
2、设H是群G的子群,对a,bG,定义a~bab1H,证明:~是G上的一个等价
关系。
3、设R1, R2都是环,是环R1到R2的满同态映射,01和02分别是环R1和R2的零元,
Nker{ x | xR1,( x)02},证明:是同构映射当且仅当N{ 01}。
近世代数试卷第4页(共4页)
6、(
)无零因子环的同态象无零因子。
6、(
)欧氏环一定是唯一分解整环。
8、(
)整除关系是整环
R的元素间的一个等价关系。
9、(
)循环群有且仅有一个生成元。
10、(
)循环群的子群是不变子群。
近世代数试卷第1页(共4页)
得分评卷人复查人
三、解答题(第1题15分,第2,3题各10分,共35分)
1、设H{( 1), (12)}是3次对称群S3的子群,求H的所有左陪集和右陪集,试问H是否是
题
号
一
二
三
四
五
六
是否缺考
题
分
15
20
15
10
20
20
得
分
《近世代数》试卷
得分
评卷人
复查人
一、填空题(每空2分,共20分)
1、设有集合A和B,|A|=3,|B|=2,
则共可定义____个从A到B的映射,其中有_____个单射,
_____个满射,______个双射。
2、设G=(a)是10阶循环群,则G的非平凡子群的个数为_________.
得分
评卷人
复查人
二、判断题(对打“√”,错打“×”,不说明理由,每小题2
分共
20分)
1、(
近世代数模拟试题四
![近世代数模拟试题四](https://img.taocdn.com/s3/m/43898b48b307e87101f696b0.png)
近世代数模拟试题三一、填空题1、如果f 是A 与A 间的一一映射,a 是A 的一个元,则()[]=-a f f 1 。
2、如果G 是一个交换群,那么G 的任一个子群H 都是-------------子群。
3、设 为 的子群. 则 在 中左陪集的个数与右陪集的个数--------。
.4、设集合M=﹛1,2,3﹜,G 是M 上的置换群,H=﹛I ,(1,3)﹜是G 的子群,则H 的右陪集为 。
5、变换群一般 ------------- 交换群。
6、全体不等于0的有理数对于普通乘法来说作成一个群,则这个群的单位元是---------,元a 的逆元是-----------。
7、任一个群G 的子群G 和e 总是-------------子群。
8、设 , 为 的两个子群, 则 为 的子群的充分必要条件是-----------------。
.9、集合A 到A 的所有变换的集合,关于变换的乘法是一个-----------群。
二、选择题1、下面的代数系统(G ,*)中,( )不是群。
A. G 为整数集合,*为加法B. G 为偶数集合,*为加法C.G 为有理数集合,*为加法D. G 为有理数集合,*为乘法2、剩余类加群Z18的子群有( )。
A.3个B.6个C.9个D.12个3、设S 是群G 的非空子集,G 的含 S 的所有的子群的交仍是G 的子群,这个子群称为G 的由( )子群。
A 、G 生成的B 、G 不作成的C 、S 生成的D 、元0生成的。
4、设21:R R f →是环同态满射,b a f =)(,那么下列错误的结论为( )A.若a 是零元,则b 是零元;B.若a 是单位元,则b 是单位元;C.若a 不是零因子,则b 不是零因子;D 若2R 是不交换的,则1R 不交换。
5、子群包含的三层意思是( )A 、H G ;H 成群;H 与G 有相同的运算B 、H ≠G ;H 是G 的子半群;H 有两种运算。
C 、H G ;H 有单位元;H 的运算相同。
近世代数模拟试题
![近世代数模拟试题](https://img.taocdn.com/s3/m/6635c479c381e53a580216fc700abb68a982ad98.png)
近世代数模拟试题一、选择题(每题2分,共20分)1. 群的定义中,下列哪一项不是必要的?A. 封闭性B. 单位元存在性C. 逆元存在性D. 交换律2. 对于一个环,以下哪项是正确的?A. 必须有加法单位元B. 必须有乘法单位元C. 必须满足交换律D. 必须满足分配律3. 以下哪个选项正确描述了域的特征?A. 域中的每个元素都有逆元素B. 域中的每个元素都有加法逆元素C. 域中的乘法是交换的D. 域中的乘法是结合的4. 如果一个群G的所有元素的阶都是有限的,那么G被称为:A. 阿贝尔群B. 循环群C. 有限群D. 正规子群5. 以下哪个选项是群的同态映射?A. 恒等映射B. 逆映射C. 任意映射D. 单位元映射二、填空题(每空1分,共10分)1. 一个群G的拉格朗日定理指出,如果H是G的一个子群,那么|H|整除______。
2. 环R中的元素a被称为______,如果对于R中的每个元素b,都有ab=ba。
3. 一个环R被称为______,如果它的乘法满足交换律。
4. 一个环R的雅可比恒等式是a^2(b+c)=ab^2+ac^2,这表明R是一个______。
5. 一个群G的正规子群N,如果它满足G/N是一个阿贝尔群,那么N 被称为G的______。
三、简答题(每题10分,共20分)1. 解释什么是群的同构,并给出一个例子。
2. 描述环的整环和域的区别。
四、证明题(每题15分,共30分)1. 证明:如果一个群G的阶是素数p,那么G是循环群。
2. 证明:如果一个环R有单位元且每个非零元素都是可逆的,那么R是一个域。
五、应用题(每题15分,共30分)1. 已知群G={1, a, b, c},其中a^2=b^2=c^2=1,且ab=c,ba=c。
确定G是否为阿贝尔群,并找出所有可能的群结构。
2. 考虑环Z_6,其中Z_6是由模6的整数组成的环。
证明Z_6不是域,并找出它的所有单位元素。
注意:请根据所学知识,认真审题,仔细作答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、(16分)叙述概念或命题
1.正规子群;
2.唯一分解环;
3.代数数;
4.鲁非尼-阿贝尔定理
二、(12分)填空题
1.设有限域F 的阶为81,则的特征=p 。
2.已知群G 中的元素a 的阶等于50,则4a 的阶等于 。
3.一个有单位元的无零因子 称为整环。
4.如果710002601a 是一个国际标准书号,那么=a 。
三、(10分)设G 是群。
证明:如果对任意的G x ∈,有e x =2,则G 是交换群。
四、(10分)证明:任何方阵都可唯一地表示成一个对称矩阵与一个反对称矩阵之和。
五、(15分)设}R ,,,|{H ∈+++=d c b a dk cj bi a 是四元数体,对H 中任意元
dk cj bi a x +++=,
定义其共轭
dk cj bi a x ---=。
1.证明:x x x x =是一个非负实数;
2.对k j i x 221-+-=,k j i y -+-=22,求xy ,yx 和1-x 。
六、(15分)设)6(1=I ,)15(2=I 是整数环的理想,试求下列各理想,并简述理由。
1.21I I +;
2.21I I ⋂;
3.21I I ⋅
七、(10分)设有置换)1245)(1345
(=σ,6)456)(234(S ∈=τ。
1.求στ和στ-1;
2.确定置换στ和στ-1的奇偶性。
八、(12分)求剩余类加群Z 12中每个元素的阶。
一、1.若H 是群G 的子群,且对每个G a ∈,有Ha aH =,那么H 称为是G 的正规子群。
2.设R 是个整环,若对于R 中每个非零非单位的元都有唯一分解,则称R 为唯一分解环。
3.有理数域上的代数元称为代数数。
4.如果5≥n (特征为0),那么n 次的一般方程没有根式解。
二、1.3
2.25
3.交换环
4.6
三、对于G 中任意元x ,y ,由于e xy =2)(,所以yx x y xy xy ===---111)((对每个x ,从e x =2可得1-=x x )。
四、设A 是任意方阵,令)(21A A B '+=,)(2
1A A C '-=,则B 是对称矩阵,而C 是反对称矩阵,且C B A +=。
若令有11C B A +=,这里1B 和1C 分别为对称矩阵和反对称矩阵,则C C B B -=-11,而等式左边是对称矩阵,右边是反对称矩阵,于是两边必须都等于0,即:1B B =,1C C =,所以,表示法唯一。
五、1.02222≥+++==d c b a x x x x
2.k j i xy 8424-+--=,k j i yx 2484-+--=,)221(10
11k i i x +-+=
- 六、1.)3(21=+I I ;
2.)30(21=⋂I I ;
3.)90(21=⋅I I
七、1.)56)(1243(=στ,)16524(1=στ-; 2.两个都是偶置换。
八、。