高中数学必修2《立体几何初步》教材解读之一
高中数学 必修二-第一章 立体几何初步 知识点整理
底面为三角形、四边形、五边形„„的棱锥分别叫做三棱锥、四棱锥、五棱锥„„,
其中三棱锥又叫四面体。
4
必修二
正棱锥:如果一个棱锥的底面是正多边形,并且顶点在底面上的射影是底面的中心, 这样的棱锥叫做正棱锥。
正棱锥的性质: ①各侧棱相等,各侧面都是全等的等腰三角形; ②棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形,棱锥的高、侧棱和侧 棱在底面上的射影也组成一个直角三角形。 (4)棱台的结构特征 用一个平行于棱锥底面的平面去截棱 锥,底面与截面之间的部分叫做棱台。 原棱锥的底面和截面分别叫做棱台的 下底面和上底面;其它各面叫做棱台的侧 面;相邻侧面的公共边叫做棱台的侧棱; 底面与侧面的公共顶点叫做棱台的顶点; 当棱台的底面水平放置时,铅垂线与两底 面交点间的线段叫做棱台的高。 由正棱锥截得的棱台叫做正棱台。正棱台的性质: ①各侧棱相等,侧面是全等的等腰梯形;②两底面以及平行于底面的截面是相似多边 形;③两底面中心连线、相应的边心距和斜高组成一个直角梯形;④两底面中心连线、侧 棱和两底面外接圆相应半径组成一个直角梯形;⑤正棱台的上下底面中心的连线是棱台的 一条高;⑥正四棱台的对角面是等腰梯形。
8
必修二
②在已知图形中平行于 x 轴或 y 轴的线段,在直观图中分别画成平行于 x′轴或 y′ 轴的线段。
③在已知图形中平行于 x 轴的线段,在直观图中保持原长度不变,平行于 y 轴的线段, 长度变为原来的一半。
用斜二测法画直观图,关键是掌握水平放置的平面图形的直观图的画法,而画水平放 置的平面图形的关键是确定多边形的顶点。因为多边形顶点的位置一旦确定,依次连接这 些顶点就可画出多边形。
在一束平行光线照射下形成的投影,叫做平行投影。平行投影的投影线是平行的。在 平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影。
北师大版必修2高中数学第一章《立体几何初步》ppt章末归纳提升课件
【证明】 ∵E,F分别是B1B和D1D的中点,∴D1F綊BE, ∴BED1F是平行四边形, ∴D1E∥BF, 又∵D1 E 平面BGF,BF 平面BGF, ∴D1E∥平面BGF. ∵FG是△DAD1的中位线, ∴FG∥AD1, 又AD1 平面BGF,FG 平面BGF, ∴AD1∥平面BGF. 又∵AD1∩D1E=D1, ∴平面AD1E∥平面BGF.
如图1-5所示,在正三棱柱ABC-A1B1C1中, AB=3,AA1=4,M为AA1中点,P是BC上一点,且由P沿棱 柱侧面过棱CC1到M的最短距离为 29 ,设这条最短路线与 CC1的交点为N.求:
图1-5 (1)该三棱柱的侧面展开图的对角线长; (2)PC与NC的长.
【思路点拨】 借助于侧面展开图计算最短路线问题. 【规范解答】 (1)三棱柱ABC-A1B1C1侧面展开图是一 个长为9,宽为4的矩形,其对角线长为 92+42= 97. (2)如图,将侧面BB1C1C绕CC1旋转120°使其与侧面 AA1C1C在同一平面上,点P运动到点P1的位置,连接MP1, 则MP1就是由点P沿棱柱侧面经过棱CC1到点M的最短路线.
一个圆锥底面半径为R,高为 3 R,求此圆锥 的内接正四棱柱表面积的最大值.
【思路点拨】 画出其轴截面,转化为平面问题.
【规范解答】
设正四棱柱高为h,底面正方形边长为a,则DE=
2 2 a.
∵△SDE∽△SAO,∴DAOE=SSOE .
∵AO=R,SO=
2
3 R,∴
2a = R
3R-h, 3R
∴h=
几何体的结构、表面积与体积
准确理解几何体的定义,熟练掌握直观图与三视图的画 法,能更好地把握几何体的特征.三视图是几何体的平面表 示形式,常与几何体的结构、表面积与体积结合命题,是高 考命题的热点,解决此类问题的关键是利用三视图获取表面 积、体积公式中所涉及的基本量的有关信息,进而解决问题.
北师大版数学必修2 第一章 立体几何初步归纳总结课件(64张)
4.三视图与直观图的画法 三视图和直观图是空间几何体的不同的表现形式,空间几 何体的三视图可以使我们很好地把握空间几何体的性质.由空 间几何体可以画出它的三视图,同样由三视图可以想象出空间 几何体的形状,两者之间可以相互转化. 5.直线和平面平行的判定方法 (1)定义:a∩α=∅⇒a∥α; (2)判定定理:a∥b,a α,b α⇒a∥α; (3)线面平行的性质:b∥a,b∥α,a α⇒a∥α; (4)面面平行的性质:α∥β,a α⇒a∥β.
8.证明线线垂直的方法 (1)定义:两条直线所成的角为 90° ; (2)平面几何中证明线线垂直的方法; (3)线面垂直的性质:a⊥α,b α⇒a⊥b; (4)线面垂直的性质:a⊥α,b∥α⇒a⊥b.
9.判定两个平面平行的方法 (1)依定义采用反证法; (2)利用判定定理: a∥β,b∥β,a α,b α,a∩b=A⇒α∥β; (3)垂直于同一条直线的两个平面平行: a⊥α,a⊥β⇒α∥β; (4)平行于同一平面的两个平面平行: α∥γ,β∥γ⇒α∥β.
12.垂直关系的转化
在证明两平面垂直时一般先从现有直线中寻找平面的垂 线,若这样的直线图中不存在,则可通过作辅助线来解决.如 有平面垂直时,一般要用性质定理,在一个平面内作交线的垂 线,使之转化为线面垂直,然后进一步转化为线线垂直.故熟 练掌握“线线垂直”“面面垂直”间的转化条件是解决这类问 题的关键.
明朗化的立体几何问题.
[例 2] 如下图所示,在矩形 ABCD 中,AB=3 3,BC= 3.沿对角线 BD 将△BCD 折起,使点 C 移到点 C′,且 C′O ⊥平面 ABD 于点 O,点 O 恰在 AB 上.
7.证明线面垂直的方法 (1)线面垂直的定义:a 与 α 内任何直线垂直⇒a⊥α; m、n α,m∩n=A ⇒l⊥α; (2)判定定理 1: l⊥m,l⊥n (3)判定定理 2:a∥b,a⊥α⇒b⊥α; (4)面面平行的性质:α∥β,a⊥α⇒a⊥β; (5)面面垂直的性质;α⊥β,α∩β=l,a α,a⊥l⇒a⊥β.
高中数学必修2《立体几何初步》第一章空间几何体教学体会
32
金太阳教育网
品质来自专业 信赖源于诚信
让学生用所学的投影知识,解答下面的问题: ⑴ 画水平放置的正六边形的直观图; ⑵ 画一个五棱柱,其中底面五边形为正五边形,俯视图也是正五 边形; ⑶ 已知某个简单几何体的三视图,用斜二侧画 法画出它的直观图。
33
金太阳教育网
26
金太阳教育网
如建议学生用纸板或游戏棒或细铁丝
品质来自专业 信赖源于诚信
(作骨架)做出下列几何体的模型:
⑴正方体;⑵长方体;⑶三棱锥;
⑷四棱锥;⑸三棱台。 学生通过动手做,亲身体验柱、锥、台
的结构特征,必会帮助学生逐步形成空
间想像能力。
27
金太阳教育网
金太阳教育网
在三视图的教学中要通过学生的亲身体验来完
品质来自专业 信赖源于诚信
成,教师应该充分利用“探究”栏目中提出的问 题,让学生在探究中学会三视图的画法,体 会三视图的作用,同时要让学生感到三视图缺乏
空间图形的立体感,为我们进一步学习直观图的 画法埋下伏笔。为突破本节的难点“识别三视图 所表示的空间几何体”,先举例分析根据三视图 找对应物体,再由简单图形入手分析识别方法, 所选的例题不必太难,注意例题的梯度性。
金太阳教育网
品质来自专业 信赖源于诚信
《立体几何初步》第一章
空间几何体
教学体会
1
金太阳教育网
品质来自专业 信赖源于诚信
整体把握:
一、了解“变化”
二、领会“变化” 三、应对“变化” 四、反思“变化”
2
金太阳教育网
品质来自专业 信赖源于诚信
第三层次 严格的推理证明
重点内容:线面平行、垂直的性质定理的证明。 选修2-2《推理与证明》
新教材 人教A版高中数学必修第二册 第八章 立体几何初步 知识点汇总及解题规律方法提炼
第八章立体几何初步8.1基本立体图形第1课时棱柱、棱锥、棱台的结构特征1.空间几何体的定义及分类(1)定义:如果只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.(2)分类:常见的空间几何体有多面体与旋转体两类.2.空间几何体记作棱柱ABCDEFA′B′C′D′E′F′记作棱锥SABCD按底面多边形的边数分为三棱锥、记作棱台ABCDA′B′C′D′得的棱台分别为三棱台、四棱台、(1)棱柱、棱锥、棱台的关系在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用下图表示出来(以三棱柱、三棱锥、三棱台为例).(2)各种棱柱之间的关系①棱柱的分类棱柱⎩⎨⎧直棱柱⎩⎨⎧正棱柱(底面为正多边形)一般的直棱柱斜棱柱②常见的几种四棱柱之间的转化关系典型应用1棱柱的结构特征下列关于棱柱的说法:①所有的面都是平行四边形;②每一个面都不会是三角形;③两底面平行,并且各侧棱也平行;④被平面截成的两部分可以都是棱柱.其中正确说法的序号是__________.【解析】①错误,棱柱的底面不一定是平行四边形;②错误,棱柱的底面可以是三角形;③正确,由棱柱的定义易知;④正确,棱柱可以被平行于底面的平面截成两个棱柱,所以正确说法的序号是③④.【答案】③④棱柱结构特征的辨析技巧(1)扣定义:判定一个几何体是否是棱柱的关键是棱柱的定义.①看“面”,即观察这个多面体是否有两个互相平行的面,其余各面都是四边形;②看“线”,即观察每相邻两个四边形的公共边是否平行.(2)举反例:通过举反例,如与常见几何体或实物模型、图片等不吻合,给予排除.典型应用2棱锥、棱台的结构特征下列关于棱锥、棱台的说法:①用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;②棱台的侧面一定不会是平行四边形;③棱锥的侧面只能是三角形;④由四个面围成的封闭图形只能是三棱锥;⑤棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.【解析】①错误,若平面不与棱锥底面平行,用这个平面去截棱锥,棱锥底面和截面之间的部分不是棱台.②正确,棱台的侧面一定是梯形,而不是平行四边形.③正确,由棱锥的定义知棱锥的侧面只能是三角形.④正确,由四个面围成的封闭图形只能是三棱锥.⑤错误,如图所示四棱锥被平面截成的两部分都是棱锥.所以正确说法的序号为②③④.【答案】②③④判断棱锥、棱台形状的两种方法(1)举反例法结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点空间几何体的平面展开图(1)水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的平面展开图(图中数字写在正方体的外表面上),若图中的“2”在正方体的上面,则这个正方体的下面是()A.1 B.9C.快D.乐(2)如图是三个几何体的侧面展开图,请问各是什么几何体?【解】(1)选B.由题意,将正方体的展开图还原成正方体,“1”与“乐”相对,“2”与“9”相对,“0”与“快”相对,所以下面是“9”.(2)题图①中,有5个平行四边形,而且还有两个全等的五边形,符合棱柱的特点;题图②中,有5个三角形,且具有共同的顶点,还有一个五边形,符合棱锥的特点;题图③中,有3个梯形,且其腰的延长线交于一点,还有两个相似的三角形,符合棱台的特点,把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.多面体展开图问题的解题策略(1)绘制展开图:绘制多面体的平面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其平面展开图.(2)由展开图复原几何体:若是给出多面体的平面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推,同一个几何体的平面展开图可能是不一样的,也就是说,一个多面体可有多个平面展开图.圆柱、圆锥、圆台、球、简单组合体的结构特征1.圆柱、圆锥、圆台和球的结构特征(1)圆柱的结构特征(1)圆柱有无数条母线,它们平行且相等.(2)平行于底面的截面是与底面大小相同的圆,如图1所示.(3)过轴的截面(轴截面)都是全等的矩形,如图2所示.(4)过任意两条母线的截面是矩形,如图3所示.(2)圆锥的结构特征(1)圆锥有无数条母线,它们有公共点即圆锥的顶点,且长度相等.(2)平行于底面的截面都是圆,如图1所示.(3)过轴的截面是全等的等腰三角形,如图2所示.(4)过任意两条母线的截面是等腰三角形,如图3所示.(3)圆台的结构特征(1)圆台有无数条母线,且长度相等,延长后相交于一点.(2)平行于底面的截面是圆,如图1所示.(3)过轴的截面是全等的等腰梯形,如图2所示.(4)过任意两条母线的截面是等腰梯形,如图3所示.(4)球的结构特征(1)球心和截面圆心的连线垂直于截面.(2)球心到截面的距离d与球的半径R及截面圆的半径r有如下关系:r=R2-d2.2.简单组合体(1)概念由简单几何体组合而成的几何体叫做简单组合体.(2)两种构成形式①由简单几何体拼接而成;②由简单几何体截去或挖去一部分而成.典型应用1圆柱、圆锥、圆台、球的概念(1)给出下列说法:①圆柱的底面是圆面;②经过圆柱任意两条母线的截面是一个矩形面;③圆台的任意两条母线的延长线可能相交,也可能不相交;④夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.(2)给出以下说法:①球的半径是球面上任意一点与球心所连线段的长;②球的直径是球面上任意两点间所连线段的长;③用一个平面截一个球,得到的截面可以是一个正方形;④过圆柱轴的平面截圆柱所得截面形状是矩形.其中正确说法的序号是________.【解析】(1)①正确,圆柱的底面是圆面;②正确,如图所示,经过圆柱任意两条母线的截面是一个矩形面;③不正确,圆台的母线延长相交于一点;④不正确,圆柱夹在两个平行于底面的截面间的几何体才是旋转体.(2)根据球的定义知,①正确;②不正确,因为球的直径必过球心;③不正确,因为球的任何截面都是圆面;④正确.【答案】(1)①②(2)①④(1)判断简单旋转体结构特征的方法①明确由哪个平面图形旋转而成;②明确旋转轴是哪条直线.(2)简单旋转体的轴截面及其应用①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量;②在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.典型应用2简单组合体的结构特征如图所示的几何体是由下面哪一个平面图形旋转而形成的()【解析】该几何体自上而下由圆锥、圆台、圆台、圆柱组合而成,故应选A.【答案】A[变条件、变问法]若将本例选项B中的平面图形旋转一周,试说出它形成的几何体的结构特征.解:①是直角三角形,旋转后形成圆锥;②是直角梯形,旋转后形成圆台;③是矩形,旋转后形成圆柱,所以旋转后形成的几何体如图所示.通过观察可知,该几何体是由一个圆锥、一个圆台和一个圆柱自上而下拼接而成的.不规则平面图形旋转形成几何体的结构特征的分析策略(1)分割:首先要对原平面图形适当分割,一般分割成矩形、梯形、三角形或圆(半圆或四分之一圆)等基本图形.(2)定形:然后结合圆柱、圆锥、圆台、球的形成过程进行分析.典型应用3旋转体中的计算问题如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm,求圆台O′O的母线长.【解】设圆台的母线长为l cm,由截得的圆台上、下底面面积之比为1∶16,可设截得的圆台的上、下底面的半径分别为r cm,4r cm.过轴SO作截面,如图所示,则△SO′A′∽△SOA,SA′=3 cm.所以SA′SA=O′A′OA,所以33+l=r4r=14.解得l=9,即圆台O′O的母线长为9 cm.解决旋转体中计算问题的方法用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,列出相关几何变量的方程(组)而解得.[注意]在研究与截面有关的问题时,要注意截面与物体的相对位置的变化.由于相对位置的改变,截面的形状也会随之发生变化.8.2立体图形的直观图1.用斜二测画法画水平放置的平面图形的直观图的步骤(1)建系:在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴与y′轴,两轴交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.(2)平行不变:已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.(3)长度规则:已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为原来的一半.2.空间几何体直观图的画法(1)与平面图形的直观图画法相比多了一个z轴,直观图中与之对应的是z′轴.(2)直观图中平面x′O′y′表示水平平面,平面y′O′z′和x′O′z′表示竖直平面.(3)已知图形中平行于z轴(或在z轴上)的线段,在其直观图中平行性和长度都不变.(4)成图后,去掉辅助线,将被遮挡的部分改为虚线.■名师点拨(1)画水平放置的平面图形的直观图,关键是确定多边形顶点的位置,借助于平面直角坐标系确定顶点后,只需把这些顶点顺次连接即可.(2)用斜二测画法画直观图要掌握水平长不变,垂线长减半,直角画45°(或135°).典型应用1画水平放置的平面图形的直观图画水平放置的直角梯形的直观图,如图所示.【解】(1)在已知的直角梯形OBCD中,以底边OB所在直线为x轴,垂直于OB的腰OD所在直线为y轴建立平面直角坐标系.如图①所示.(2)画相应的x′轴和y′轴,使∠x′O′y′=45°,在x′轴上截取O′B′=OB,在y′轴上截取O′D′=12OD,过点D′作x′轴的平行线l,在l上沿x′轴正方向取点C′使得D′C′=DC.连接B′C′,如图②.(3)所得四边形O′B′C′D′就是直角梯形OBCD的直观图.如图③.画水平放置的平面图形的直观图的关键及注意事项(1)在画水平放置的平面图形的直观图时,选取适当的直角坐标系是关键,一般要使平面多边形尽可能多的顶点在坐标轴上或边与坐标轴平行,以便于画图.(2)画图时要注意原图和直观图中线段的长度的关系是否发生变化.典型应用2画简单几何体的直观图已知一个正四棱台的上底面边长为2,下底面边长为6,高为4,用斜二测画法画出此正四棱台的直观图.【解】(1)画轴.如图①,画x轴、y轴、z轴,三轴相交于点O,使∠xOy =45°,∠xOz=90°.(2)画下底面.以O为中点,在x轴上取线段EF,使得EF=6,在y轴上取线段GH,使得GH=3,再过G,H分别作AB綊EF,CD綊EF,且使得AB的中点为G,CD的中点为H,连接AD,BC,这样就得到了正四棱台的下底面ABCD 的直观图.(3)画上底面.在z轴上截取线段OO1=4,过O1作O1x′∥Ox,O1y′∥Oy,使∠x′O1y′=45°,建立坐标系x′O1y′,在x′O1y′中仿照(2)的步骤画出上底面A1B1C1D1的直观图.(4)连接AA1、BB1、CC1、DD1,擦去辅助线,得到的图形就是所求的正四棱台的直观图(如图②).画空间图形的直观图的原则(1)用斜二测画法画空间图形的直观图时,图形中平行于x 轴、y 轴、z 轴的线段在直观图中应分别画成平行于x ′轴、y ′轴、z ′轴的线段.(2)平行于x 轴、z 轴的线段在直观图中长度保持不变,平行于y 轴的线段长度变为原来的12.典型应用3直观图的还原与计算如图所示,梯形A 1B 1C 1D 1是一平面图形ABCD 的直观图.若A 1D 1∥O ′y ′,A 1B 1∥C 1D 1,A 1B 1=23C 1D 1=2,A 1D 1=O ′D 1=1.试画出原四边形,并求原图形的面积.【解】 如图,建立直角坐标系xOy ,在x 轴上截取OD =O ′D 1=1,OC =O ′C 1=2.在过点D 与y 轴平行的直线上截取DA =2D 1A 1=2.在过点A 与x 轴平行的直线上截取AB =A 1B 1=2.连接BC ,便得到了原图形(如图).由作法可知,原四边形ABCD 是直角梯形,上、下底长度分别为AB =2,CD =3,直角腰长度为AD =2.所以面积为S =2+32×2=5.(1)直观图的还原技巧由直观图还原为平面图的关键是找与x ′轴、y ′轴平行的直线或线段,且平行于x ′轴的线段还原时长度不变,平行于y ′轴的线段还原时放大为直观图中相应线段长的2倍,由此确定图形的各个顶点,顺次连接即可.(2)直观图与原图面积之间的关系若一个平面多边形的面积为S ,其直观图的面积为S ′,则有S ′=24S 或S =22S ′.利用这一公式可由原图形面积求其直观图面积或由直观图面积求原图形面积.柱、锥、台的表面积和体积1.棱柱、棱锥、棱台的表面积多面体的表面积就是围成多面体各个面的面积的和.棱柱、棱锥、棱台的表面积就是围成它们的各个面的面积的和.2.棱柱、棱锥、棱台的体积(1)V棱柱=Sh;(2)V棱锥=13Sh;V棱台3S′,S分别是棱台的上、下底面面积,h为棱台的高.3.圆柱、圆锥、圆台的表面积和体积1.柱体、锥体、台体的体积(1)柱体:柱体的底面面积为S ,高为h ,则V =Sh . (2)锥体:锥体的底面面积为S ,高为h ,则V =13Sh .(3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13()S ′+SS ′+S h .2.圆柱、圆锥、圆台的侧面积公式之间的关系 S 圆柱侧=2πrl ――→r ′=r S 圆台侧=π(r ′+r )l ――→r ′=0S 圆锥侧=πrl . 3.柱体、锥体、台体的体积公式之间的关系V 柱体=Sh ――→S ′=S V 台体=13(S ′+S ′S +S )h ――→S ′=0V 锥体=13Sh . 典型应用1柱、锥、台的表面积(1)若圆锥的正视图是正三角形,则它的侧面积是底面积的( ) A.2倍 B .3 倍 C .2 倍D .5 倍(2)已知正方体的 8 个顶点中,有 4 个为侧面是等边三角形的三棱锥的顶点,则这个三棱锥与正方体的表面积之比为( )A .1∶ 2B .1∶3C .2∶ 2D .3∶6(3)已知某圆台的一个底面周长是另一个底面周长的 3 倍,母线长为 3 ,圆台的侧面积为 84π,则该圆台较小底面的半径为( )A .7B .6C .5D .3【解析】 (1)设圆锥的底面半径为 r ,母线长为 l ,则由题意可知,l =2r ,于是 S 侧=πr ·2r =2πr 2,S 底=πr 2,可知选 C.(2)棱锥 B ′ACD ′为适合条件的棱锥,四个面为全等的等边三角形,设正方体的棱长为 1,则 B ′C =2,S △B ′AC =32.三棱锥的表面积 S 锥=4×32=23,又正方体的表面积S正=6.因此S锥∶S正=23∶6=1∶ 3.(3)设圆台较小底面的半径为r,则另一底面的半径为3r.由S侧=3π(r+3r)=84π,解得r=7.【答案】(1)C (2)B (3)A空间几何体表面积的求法技巧(1)多面体的表面积是各个面的面积之和.(2)组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展开为平面图形计算,而表面积是侧面积与底面圆的面积之和.典型应用2柱、锥、台的体积如图所示,正方体ABCDA1B1C1D1的棱长为a,过顶点B,D,A1截下一个三棱锥.(1)求剩余部分的体积;(2)求三棱锥AA1BD的体积及高.【解】(1)V三棱锥A1ABD=13S△ABD·A1A=13×12·AB·AD·A1A=16a3.故剩余部分的体积V=V正方体-V三棱锥A1ABD=a3-16a3=56a3.(2)V三棱锥AA1BD=V三棱锥A1ABD=1 6a 3.设三棱锥AA1BD的高为h,则V三棱锥AA1BD=13·S△A1BD·h=13×12×32(2a)2h=36a2h,故36a2h=16a3,解得h=3 3a.求几何体体积的常用方法(1)公式法:直接代入公式求解.(2)等积法:例如四面体的任何一个面都可以作为底面,只需选用底面积和高都易求的形式即可.(3)补体法:将几何体补成易求解的几何体,如棱锥补成棱柱,棱台补成棱锥等.(4)分割法:将几何体分割成易求解的几部分,分别求体积.[提醒]求几何体的体积时,要注意利用好几何体的轴截面(尤其为圆柱、圆锥时),准确求出几何体的高和底面积.典型应用3组合体的表面积和体积如图在底面半径为2,母线长为 4 的圆锥中内接一个高为3的圆柱,求圆柱的表面积.【解】设圆锥的底面半径为R,圆柱的底面半径为r,表面积为S.则R=OC=2,AC=4,AO=42-22=2 3.如图所示,易知△AEB∽△AOC,所以AEAO=EBOC,即323=r2,所以r=1,S 底=2πr 2=2π,S 侧=2πr ·h =23π. 所以 S =S 底+S 侧=2π+23π =(2+23)π.1.[变问法]本例中的条件不变,求圆柱的体积与圆锥的体积之比. 解:由例题解析可知:圆柱的底面半径为 r =1,高 h =3,所以圆柱的体积 V 1=πr 2h =π×12×3=3π.圆锥的体积 V 2=13π×22×23=833π. 所以圆柱与圆锥的体积比为 3∶8.2.[变问法]本例中的条件不变,求图中圆台的表面积与体积.解:由例题解析可知:圆台的上底面半径 r =1,下底面半径 R =2,高 h =3,母线 l =2,所以圆台的表面积 S =π(r 2+R 2+r ·l +Rl )=π(12+22+1×2+2×2)=11π.圆台的体积 V =13π(r 2+rR +R 2)h =13π(12+2+22)×3=733π.3.[变条件、变问法]本例中的“高为3”改为“高为 h ”,试求圆柱侧面积的最大值.解:设圆锥的底面半径为 R ,圆柱的底面半径为 r , 则 R =OC =2,AC =4, AO =42-22=2 3.如图所示易知△AEB ∽△AOC , 所以AE AO =EB OC , 即23-h 23=r2, 所以 h =23-3r ,S 圆柱侧=2πrh =2πr (23-3r ) =-23πr 2+43πr ,所以当 r =1,h =3时,圆柱的侧面积最大,其最大值为 23π.求组合体的表面积与体积的步骤(1)分析结构特征:弄清组合体的组成形式,找准有关简单几何体的关键量.(2)设计计算方法:根据组成形式,设计计算方法,特别要注意“拼接面”面积的处理,利用“切割”“补形”的方法求体积.(3)计算求值:根据设计的计算方法求值.球的体积和表面积1.球的表面积设球的半径为R,则球的表面积S=4πR2.2.球的体积设球的半径为R,则球的体积V=43πR3.■名师点拨对球的体积和表面积的几点认识(1)从公式看,球的表面积和体积的大小,只与球的半径相关,给定R都有唯一确定的S和V与之对应,故表面积和体积是关于R的函数.(2)由于球的表面不能展开成平面,所以,球的表面积公式的推导与前面所学的多面体与旋转体的表面积公式的推导方法是不一样的.(3)球的表面积恰好是球的大圆(过球心的平面截球面所得的圆)面积的4倍.典型应用1球的表面积与体积(1)已知球的体积是32π3,则此球的表面积是()A.12πB.16πC.16π3 D.64π3(2)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,若该几何体的体积是28π3,则它的表面积是()A.17πB.18πC.20πD.28π【解析】(1)设球的半径为R,则由已知得V=43πR3=32π3,解得R=2.所以球的表面积S=4πR2=16π.(2)由三视图可得此几何体为一个球切割掉18后剩下的几何体,设球的半径为r,故78×43πr3=283π,所以r=2,表面积S=78×4πr2+34πr2=17π,选A.【答案】(1)B(2)A球的体积与表面积的求法及注意事项(1)要求球的体积或表面积,必须知道半径R或者通过条件能求出半径R,然后代入体积或表面积公式求解.(2)半径和球心是球的最关键要素,把握住了这两点,计算球的表面积或体积的相关题目也就易如反掌了.典型应用2球的截面问题如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器厚度,则球的体积为()A.500π3cm3 B.866π3cm3C.1 372π3cm 3D.2 048π3cm 3【解析】 如图,作出球的一个截面,则MC =8-6=2(cm), BM =12AB =12×8=4(cm). 设球的半径为R cm ,则 R 2=OM 2+MB 2 =(R -2)2+42, 所以R =5,所以V 球=43π×53=5003π (cm 3). 【答案】 A球的截面问题的解题技巧(1)有关球的截面问题,常画出过球心的截面圆,将问题转化为平面中圆的问题.(2)解题时要注意借助球半径R ,截面圆半径r ,球心到截面的距离d 构成的直角三角形,即R 2=d 2+r 2.典型应用3与球有关的切、接问题 角度一 球的外切正方体问题将棱长为 2 的正方体木块削成一个体积最大的球,则该球的体积为( )A.4π3B.2π3C.3π2D.π6【解析】 由题意知,此球是正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为 2,故半径为 1,其体积是43×π×13=4π3.【答案】 A角度二球的内接长方体问题一个长方体的各个顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为________.【解析】长方体外接球直径长等于长方体体对角线长,即2R=12+22+32=14,所以球的表面积S=4πR2=14π.【答案】14π角度三球的内接正四面体问题若棱长为a的正四面体的各个顶点都在半径为R的球面上,求球的表面积.【解】把正四面体放在正方体中,设正方体棱长为x,则a=2x,由题意2R=3x=3×2a2=62a,所以S球=4πR2=32πa2.角度四球的内接圆锥问题球的一个内接圆锥满足:球心到该圆锥底面的距离是球半径的一半,则该圆锥的体积和此球体积的比值为________.【解析】①当圆锥顶点与底面在球心两侧时,如图所示,设球半径为r,则球心到该圆锥底面的距离是r2,于是圆锥的底面半径为r2-⎝⎛⎭⎪⎫r22=3r2,高为3r 2.该圆锥的体积为13×π×⎝⎛⎭⎪⎫3r22×3r2=38πr3,球体积为43πr3,所以该圆锥的体积和此球体积的比值为38πr343πr3=932.②同理,当圆锥顶点与底面在球心同侧时,该圆锥的体积和此球体积的比值为332.【答案】 932或332角度五 球的内接直棱柱问题设三棱柱的侧棱垂直于底面,所有棱的长都为 a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2 B.73πa 2 C.113πa 2D .5πa 2【解析】 由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为 a .如图,P 为三棱柱上底面的中心,O 为球心,易知 AP =23×32a =33a ,OP =12a ,所以球的半径 R = OA 满足R 2=⎝ ⎛⎭⎪⎫33a 2+⎝ ⎛⎭⎪⎫12a 2=712a 2,故 S 球=4πR 2=73πa 2.【答案】 B(1)正方体的内切球球与正方体的六个面都相切,称球为正方体的内切球,此时球的半径为 r 1=a2,过在一个平面上的四个切点作截面如图(1).(2)长方体的外接球长方体的八个顶点都在球面上,称球为长方体的外接球,根据球的定义可知,长方体的体对角线是球的直径,若长方体过同一顶点的三条棱长为 a ,b ,c ,过球心作长方体的对角线,则球的半径为 r 2=12a 2+b 2+c 2,如图(2).(3)正四面体的外接球正四面体的棱长a与外接球半径R的关系为:2R=6 2a.8.4.1平面1.平面(1)平面的概念几何里所说的“平面”,是从课桌面、黑板面、海面这样的一些物体中抽象出来的.平面是向四周无限延展的.(2)平面的画法我们常用矩形的直观图,即平行四边形表示平面.当水平放置时,常把平行四边形的一边画成横向;当平面竖直放置时,常把平行四边形的一边画成竖向.(3)平面的表示方法我们常用希腊字母α,β,γ等表示平面,如平面α、平面β、平面γ等,并将它写在代表平面的平行四边形的一个角内;也可以用代表平面的平行四边形的四个顶点,或者相对的两个顶点的大写英文字母作为这个平面的名称.如图中的平面α,也可以表示为平面ABCD、平面AC或者平面BD.■名师点拨(1)平面和点、直线一样,是只描述而不加定义的原始概念,不能进行度量.(2)平面无厚薄、无大小,是无限延展的.2.点、线、面之间的关系及符号表示A是点,l,m是直线,α,β是平面.从集合的角度理解点、线、面之间的关系(1)直线可以看成无数个点组成的集合,故点与直线的关系是元素与集合的关系,用“∈”或“∉”表示.(2)平面也可以看成点集,故点与平面的关系也是元素与集合的关系,用“∈”或“∉”表示.(3)直线与平面都是点集,它们之间的关系可看成集合与集合的关系,故用“⊂”或“⊄”表示.3.平面的性质在画两个相交平面时,如果其中一个平面的一部分被另一个平面挡住,通常把被挡住的部分画成虚线或不画,这样可使画出的图形立体感更强一些.如下图①,图②所示:4.平面性质的三个推论推论1经过一条直线和这条直线外一点,有且只有一个平面.如图(1).推论2经过两条相交直线,有且只有一个平面.如图(2).推论3经过两条平行直线,有且只有一个平面.如图(3).典型应用1图形、文字、符号语言的相互转化(1)用符号语言表示下面的语句,并画出图形.平面ABD与平面BDC交于BD,平面ABC与平面ADC交于AC.(2)将下面用符号语言表示的关系用文字语言予以叙述,并用图形语言予以表示.α∩β=l,A∈l,AB⊂α,AC⊂β.【解】(1)符号语言表示:平面ABD∩平面BDC=BD,平面ABC∩平面ADC=AC.用图形表示如图①所示.(2)文字语言叙述为:点A在平面α与平面β的交线l上,直线AB,AC分别在平面α,β内,图形语言表示如图②所示.。
高中数学第1章立体几何初步1.2.2空间两条直线的位置关系讲义苏教版必修2
1.2.2 空间两条直线的位置关系1.空间两直线的位置关系2.公理4及等角定理(1)公理4:平行于同一条直线的两条直线互相平行. 符号表示:⎭⎪⎬⎪⎫a ∥b b ∥c ⇒a ∥c .(2)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.3.异面直线的判定及其所成的角 (1)异面直线的判定定理提示:(1)异面直线的定义表明异面直线不具备确定平面的条件.异面直线既不相交,也不平行.(2)不能把异面直线误认为分别在不同平面内的两条直线,如图中,虽然有a α,b β,即a 、b 分别在两个不同的平面内,但是因为a ∩b =O ,所以a 与b 不是异面直线.(2)异面直线所成的角①定义:a 与b 是异面直线,经过空间任意一点O ,作直线a ′∥a ,b ′∥b ,我们把直线a ′和b ′所成的锐角(或直角)叫做异面直线a ,b 所成的角.②异面直线所成的角θ的取值范围:0°<θ≤90°.③当θ=π2时,a 与b 互相垂直,记作a ⊥b .1.思考辨析(1)如果a ⊥b ,b ⊥c ,则a ∥c .( )(2)如果a ,b 是异面直线,b ,c 是异面直线,则a ,c 也是异面直线.( ) (3)如果a ,b 相交,b ,c 相交,则a ,c 也相交. ( ) (4)如果a ,b 共面,b ,c 共面,则a ,c 也共面. ( )[答案] (1)× (2)× (3)× (4)×2.已知棱长为a 的正方体ABCD A ′B ′C ′D ′中,M ,N 分别为CD ,AD 的中点,则MN 与A ′C ′的位置关系是________.平行 [如图所示,MN 12AC ,又∵ACA ′C ′, ∴MN 12A ′C ′.]3.已知AB ∥PQ ,BC ∥QR ,∠ABC =30°,则∠PQR 等于__________.30°或150° [∠ABC 的两边与∠PQR 的两边分别平行,但方向不能确定是否相同,所以∠PQR =30°或150°.]4.已知a ,b 是异面直线,直线c ∥直线a ,则c 与b 的位置关系是________. 相交或异面 [a ,b 是异面直线,直线c ∥直线a ,因而c 不平行于b ,若c ∥b ,则a ∥b ,与已知矛盾,因而c 不平行于b .]①两条直线无公共点,则这两条直线平行;②两条不重合的直线若不是异面直线,则必相交或平行;③过平面外一点与平面内一点的直线与平面内的任意一条直线均构成异面直线; ④和两条异面直线都相交的两直线必是异面直线. (2)a ,b ,c 是空间中三条直线,下列给出几个说法: ①若a ∥b ,b ∥c ,则a ∥c ;②a ∥b 是指直线a ,b 在同一平面内且没有公共点;③若a ,b 分别在两个相交平面内,则这两条直线不可能平行.其中正确的有__________.(填序号)思路探究:根据空间两直线位置关系的有关概念及公理4进行判断.(1)② (2)①② [(1)对于①,空间两直线无公共点,则可能平行,也可能异面,因此①不正确;对于②,因为空间两条不重合的直线的位置关系只有三种:平行、相交或异面,所以②正确;对于③,过平面外一点与平面内一点的直线和过平面内这点的直线是相交直线,因此③不正确;对于④,和两条异面直线都相交的两直线可能是相交直线,也可能是异面直线,因此④不正确.(2)由公理4知①正确;由平行线的定义知②正确;若α∩β=l ,a α,b β,a ∥l ,b ∥l ,则a ∥b ,③错误.]空间两直线的位置关系为相交、平行、异面,若两直线有交点则为相交,若两直线共面且无交点则为平行,若以上情况均不满足则为异面.1.如图所示,正方体ABCD A 1B 1C 1D 1中,判断下列直线的位置关系: ①直线A 1B 与直线D 1C 的位置关系是________; ②直线A 1B 与直线B 1C 的位置关系是________; ③直线D 1D 与直线D 1C 的位置关系是________; ④直线AB 与直线B 1C 的位置关系是________.①平行 ②异面 ③相交 ④异面 [直线A 1B 与直线D 1C 在平面A 1BCD 1中,且没有交点,则两直线平行,所以①应该填“平行”;点A 1,B ,B 1在一个平面A 1BB 1内,而C 不在平面A 1BB 1内,则直线A 1B 与直线B 1C 异面.同理,直线AB 与直线B 1C 异面,所以②④都应该填“异面”;直线D 1D 与直线D 1C 显然相交于D 1点,所以③应该填“相交”.]1.如图所示,在四棱锥P ABCD 中,底面ABCD 是平行四边形,若E ,F ,G ,H 分别为PA ,PB ,PC ,PD 的中点.那么四边形EFGH 是什么四边形?为什么?[提示] 平行四边形.因为在△PAB 中, ∵E ,F 分别是PA ,PB 的中点, ∴EF 12AB ,同理GH 12DC .∵四边形ABCD 是平行四边形,∴ABCD ,∴EFGH ,∴四边形EFGH 是平行四边形.2.如果两条相交直线和另两条相交直线分别平行,那么由等角定理能推出什么结论? [提示] 这两条直线所成的锐角(或直角)相等.【例2】 如图所示,在正方体ABCD A 1B 1C 1D 1中,E ,F ,E 1,F 1分别为棱AD ,AB ,B 1C 1,C 1D 1的中点.求证:∠EA 1F =∠E 1CF 1.思路探究:解答本题时,可先证明角的两边分别平行,即A 1E ∥CE 1,A 1F ∥CF 1,然后根据等角定理,得出结论.[证明] 如图所示,在正方体ABCD A 1B 1C 1D 1中,取A 1B 1的中点M ,连结BM ,MF 1, 则BF =A 1M =12AB .又BF ∥A 1M ,∴四边形A 1FBM 为平行四边形, ∴A 1F ∥BM .而F 1,M 分别为C 1D 1,A 1B 1的中点,则F 1MC 1B 1. 而C 1B 1BC ,∴F 1M ∥BC ,且F 1M =BC . ∴四边形F 1MBC 为平行四边形, ∴BM ∥F 1C .又BM ∥A 1F , ∴A 1F ∥CF 1.同理取A 1D 1的中点N ,连结DN ,E 1N ,则A 1NDE , ∴四边形A 1NDE 为平行四边形, ∴A 1E ∥DN .又E 1N ∥CD ,且E 1N =CD , ∴四边形E 1NDC 为平行四边形, ∴DN ∥CE 1,∴A 1E ∥CE 1.∴∠EA 1F 与∠E 1CF 1的两边分别对应平行. 即A 1E ∥CE 1,A 1F ∥CF 1, ∴∠EA 1F =∠E 1CF 1.运用公理4的关键是寻找“中间量”即第三条直线.证明角相等的常用方法是等角定理,另外也可以通过证明三角形相似或全等来实现.2.如图,已知棱长为a 的正方体ABCD A 1B 1C 1D 1中,M ,N 分别是棱CD ,AD 的中点.(1)求证:四边形MNA 1C 1是梯形; (2)求证:∠DNM =∠D 1A 1C 1. [证明] (1)在△ADC 中, ∵M ,N 分别是CD ,AD 的中点, ∴MN 是△ADC 的中位线.∴MN 12AC .由正方体性质知,ACA 1C 1, ∴MN 12A 1C 1,即MN ≠A 1C 1.∴四边形MNA 1C 1是梯形. (2)由(1)可知MN ∥A 1C 1, 又因为ND ∥A 1D 1,而∠DNM 与∠D 1A 1C 1均是直角三角形的锐角, ∴∠DNM =∠D 1A 1C 1.11111111DB 1与EF 所成角的大小.思路探究:先根据异面直线所成角的定义找出角,再在三角形中求解.[解] 法一:如图(1),连结A 1C 1,B 1D 1,并设它们相交于点O ,取DD 1的中点G ,连结OG ,A 1G ,C 1G ,则OG ∥B 1D ,EF ∥A 1C 1,(1)∴∠GOA 1为异面直线DB 1与EF 所成的角或其补角. ∵GA 1=GC 1,O 为A 1C 1的中点. ∴GO ⊥A 1C 1.∴异面直线DB 1与EF 所成的角为90°.法二:如图(2),连结A 1D ,取A 1D 的中点H ,连结HE ,HF ,则HE ∥DB 1,且HE =12DB 1.(2)于是∠HEF 为异面直线DB 1与EF 所成的角或补角.设AA 1=1.则EF =22,HE =32, 取A 1D 1的中点I ,连结IF ,IH ,则HI ⊥IF , ∴HF 2=HI 2+IF 2=54,∴HF 2=EF 2+HE 2.∴∠HEF =90°,∴异面直线DB 1与EF 所成的角为90°.法三:如图(3),在原正方体的右侧补上一个全等的正方体,连结DQ ,B 1Q ,则B 1Q ∥EF .(3)于是∠DB 1Q 为异面直线DB 1与EF 所成的角或其补角.设AA 1=1,则DQ =22+1=5,B 1D =12+12+12=3,B 1Q =12+12=2,所以B 1D 2+B 1Q 2=DQ 2,从而异面直线DB 1与EF 所成的角为90°.求两条异面直线所成角的步骤(1)恰当选点,用平移法构造出一个相交角. (2)证明这个角就是异面直线所成的角(或补角).(3)把相交角放在平面图形中,一般是放在三角形中,通过解三角形求出所构造的角的度数.(4)给出结论:若求出的平面角是锐角或直角,则它就是两条异面直线所成的角;若求出的角是钝角,则它的补角才是两条异面直线所成的角.3.如图所示,在空间四边形ABCD 中,AB =CD ,AB ⊥CD ,E ,F 分别为BC ,AD 的中点,求EF 和AB 所成的角.[解] 如图所示,取BD 的中点G ,连结EG ,FG . ∵E ,F ,G 分别为BC ,AD ,BD 的中点,AB =CD , ∴EG 12CD ,GF 12AB .∴∠GFE 就是EF 与AB 所成的角或其补角. ∵AB ⊥CD ,∴EG ⊥GF , ∴∠EGF =90°. ∵AB =CD ,∴EG =GF , ∴△EFG 为等腰直角三角形,∴∠GFE =45°,即EF 和AB 所成的角为45°.1.本节课的重点是会判断空间两直线的位置关系,理解异面直线的定义,会求两异面直线所成的角,能用公理4和等角定理解决一些简单的相关问题.难点是求异面直线所成的角.2.本节课要重点掌握的规律方法(1)判断两条直线位置关系的方法.(2)证明两条直线平行的方法.(3)求异面直线所成角的解题步骤.3.本节课的易错点是将异面直线所成的角求错.1.分别在两个相交平面内的两条直线间的位置关系是( )A.平行B.相交C.异面D.以上皆有可能[答案] D2.若空间两条直线a和b没有公共点,则a与b的位置关系是________.平行或异面[若直线a和b共面,则由题意可知a∥b;若a和b不共面,则由题意可知a与b是异面直线.]3.空间中有一个∠A的两边和另一个∠B的两边分别平行,∠A=70°,则∠B=________.70°或110°[∵∠A的两边和∠B的两边分别平行,∴∠A=∠B或∠A+∠B=180°,又∠A=70°,∴∠B=70°或110°.]4.如图,已知长方体ABCDA′B′C′D′中,AB=23,AD=23,AA′=2.(1)BC和A′C′所成的角是多少度?(2)AA′和BC′所成的角是多少度?[解](1)因为BC∥B′C′,所以∠B′C′A′是异面直线A′C′与BC所成的角.在Rt△A′B′C′中,A′B′=23,B′C′=23,所以∠B′C′A′=45°.(2)因为AA′∥BB′,所以∠B′BC′是异面直线AA′和BC′所成的角.在Rt△BB′C′中,B′C′=AD=23,BB′=AA′=2,所以BC′=4,∠B′BC′=60°.因此,异面直线AA′与BC′所成的角为60°.。
高中数学人教A版2019必修第二册 第八章《立体几何初步》本章教材分析
《立体几何初步》教材分析一、本章知能对标二、本章教学规划本章的内容主要包括两部分,第一部分是基本立体图形,主要是对空间几何体的认识.教材从对空间几何体的整体观察入手,通过认识柱、锥、台、球等基本立体图形的组成元素及其相互关系,帮助学生认识这些图形的几何结构特征,学习它们在平面上的直观图表示以及它们的表面积和体积的计算;第二部分是基本图形位置关系,主要是对组成立体图形的几何元素之间的位置关系的认识,教材从组成立体图形的基本元素——点、直线、平面出发,研究平面基本性质,认识空间点、直线、平面的位置关系,重点研究直线、平面的平行和垂直这两种特殊的位置关系.三、本章教学目标1.利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.会用斜二测法画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简单组合体)的直观图.3.知道棱柱、棱锥、棱台、球的表面积和体积公式的计算,能用公式解决简单的实际问题.4.以长方体为载体,在直观感知的基础上,认识空间中点、直线、平面之间的位置关系.5.通过对大量图形的观察、实验、操作和说理,进一步了解平行、垂直的判定方法及基本性质.6.学会准确地使用数学语言表述几何对象的位置关系,体验公理化思想,培养逻辑思维能力,并用来解决一些简单的推理论证及应用问题.四、本章教学重点难点重点:1.多面体与旋转体及基本几何体的结构特征,用斜二测法画出空间几何体的直观图.2.4个基本事实、等角定理、直线与直线、直线与平面、平面与平面平行和垂直的判定与性质..难点:1.简单组合体的表面积和体积计算.2.理解异面直线,掌握线线、线面、面面平行与垂直的关系和应用.五、课时安排建议本章教学约需14课时,具体安排如下:六、本章教学建议1.充分利用实物原型和长方体模型,帮助学生理解基本立体图形及位置关系,发展学生的数学抽象核心素养.本章教学中,长方体是一个基本的数学模型,在各种多面体中它是最基本的几何体,研究基本图形位置关系中,无论对于空间点、直线、平面位置关系的整体认识,还是对于研究空间直线、平面的平行、垂直关系,长方体都是一个基本模型.基本图形位置关系中的各种定理(判定定理、性质定理等)都可以在长方体中找到对应的图形.因此,在教学中,一定要充分理解长方体的作用.另外,在生活中,长方体形状的物体也是随处可见的,其中与学生最接近的就是学生所在的教室,在教学中也要利用好教室这个实物模型,以便将基本图形的位置关系在生活中找到对应的实例,加强直观性,以更好地培养学生的直观想象核心素养.2.重视研究方法的引导,让学生体会立体几何研究的基本思路和方法.在本章,基本立体图形和基本图形位置关系是主要的研究对象.对于基本立体图形和基本图形位置关系的教学,要注意加强“一般观念”的引导.首先要让学生明确研究对象,也就是要研究什么问题;其次要让学生知道怎么研究.使学生体会立体几何研究的基本思路和方法,逐步学会抽象数学对象,提出数学问题的方法,提升发现和提出问题的能力.3.把握好教学要求,循序渐进地培养推理能力.本章内容由于比较抽象,需要比较强的空间想象力,历来也是高中教学的难点.在教学中,要注意把握教学要求,教学要求应该适当,不要急于提高、增加难度,否则教学要求超出学生的理解和接受能力,就会挫伤学生的学习积极性,对后续教学带来不良影响.这就要求在教学中,注意了解每一部分内容在全章的地位、安排和要求,对于教学有整体的思考和把握,循序渐进.4.重视作图技能训练,培养学生空间想象力.我们知道,与平面图形可以在纸上或黑板上用直尺、圆规真实地画出来不同,立体图形是三维的,我们没有三维的纸或黑板,因此立体图形的直观图是在二维平面上表示三维图形.画直观图需要我们了解立体图形的结构特征;反过来,作出的直观图也可以引导我们想象它所代表的真实图形的样子.在二维平面上画三维图形,对于培养学生的空间想象力是有重要意义的.在教学中,在获得几何对象、描述概念、发现性质等各个环节中都要加强作图的训练,在解题教学中,也要把“观察图形”“根据题意作出图形”作为出发点.5.充分利用信息技术工具,为理解和掌握图形提供直观帮助,在本章的学习中,信息技术工具可以给我们提供一个仿真的三维空间的学习环境,帮助我们认识立体图形的结构特征,发现其中的基本位置关系,为把握和理解立体图形提供几何直观.在教学中,有条件的学校,应尽可能多地使用计算机或图形计算器等信息技术工具,为学生理解和掌握立体图形提供直观帮助.。
高中数学必修2《立体几何初步》教材分析和教学建议
高中数学必修2《立体几何初步》教材分析和教学建议2016/10/23一、立体几何在近几年高考中分布近几年客观题重点在于三视图面积或体积计算及简单判断,一般有2小题,难度中等稍多(如2016等出在第6题),但有时也比较靠后(如2014出在第12题),解答题位居第2,3题的位置,包含推理证明及计算,证明主要是平行和垂直关系,利用平行证明共面(2008四川)、证异面直线(2009辽宁)比较少,全国1卷近几年还没出过,理科计算以求角居多,文科计算比较多考体积或点面距离。
注意,现在文科也考求角了,今年第11题2016:6三视图,体积面积,11,异面直线所成角,(理)18证面面垂直,计算二面角,五面体,(文)18证中点,体积,三棱锥2015:6体积,11三视图,面积,(理)18证面面垂直,计算异面直线所成角,线面(文)18证面面垂直,计算体积,四棱锥2014:12三视图,棱长,(理)19证相等,计算二面角,三棱柱(文)19证线线垂直,计算棱柱高,三棱柱2013:6体积,相接,8三视图,体积,(理)18证线线垂直,计算线面角,三棱柱(文)19证线线垂直,计算体积,三棱柱2012:7三视图,体积,11与球相接,体积,(理)19证线线垂直,计算二面角,三棱柱(文)19证面面垂直,计算体积,三棱柱2011:6三视图,判断,15与球相接,体积,(理)18证线线垂直,计算二面角,四棱锥(文)18证线线垂直,计算棱锥高,四棱锥2010:10与球相接,面积,14三视图,判断,(理)18证线线垂直,计算线面角,四棱锥(文)18证面面垂直,计算体积,四棱锥二、对教材重点内容的处理建议1.对三视图的教学建议三视图是年年都考的内容,由三视图还原直观图是解题的第一步,也是很关键的一步,有些年份容易有些年份难,这部分内容初中也学过一下,不要以为学生都会,掉以轻心。
三视图还原直观图,可以考虑以一些简单的几何体为原形,从三个方向切割的方法确定,三个图形从简到繁构图。
高中数学北师大版必修二课件:第一章 立体几何初步
向量的加法运算:向量加法遵循平行四边形 法则如(x1, y1, z1) + (x2, y2, z2) = (x1+x2, y1+y2, z1+z2)
添加 标题
向量的减法运算:向量减法遵循平行四边形 法则如(x1, y1, z1) - (x2, y2, z2) = (x1x2, y1-y2, z1-z2)
向量积的坐标表示:两个向量的向 量积的坐标表示为两个向量坐标的 乘积
添加标题
添加标题
添加标题
添加标题
混合积:三个向量的混合积是一个 向量其坐标表示为三个向量坐标的 乘积
混合积的坐标表示:三个向量的混 合积的坐标表示为三个向量坐标的 乘积
总结与展望
本章内容的总结与回顾
本章主要介绍了立体几何的基本概念和性质包括点、线、面、体等。 学习了立体几何的度量方法如长度、角度、体积等。 掌握了立体几何的证明方法如平行、垂直、相似等。 学习了立体几何的应用如空间图形的绘制、空间物体的测量等。 展望未来我们将继续深入学习立体几何掌握更多的知识和技能为未来的学习和工作打下坚实的基础。
棱锥的表面积和体积
棱锥的定义: 由一个多边 形底面和若 干个侧面组 成的几何体
棱锥的表面 积:底面积+ 侧面积
棱锥的体积: 底面积×高 ÷3
棱锥的表面 积和体积的 计算公式: S=πr²+n(l ×h)V=πr²h /3
棱锥的表面 积和体积的 应用:建筑、 工程等领域
球的表面积和体积
球的表面积:4πr^2 球的体积:4/3πr^3 球的表面积和体积公式推导 球的表面积和体积在实际生活中的应用
几何性质:立体几何具有空间位置、 形状、大小等性质平面几何具有位 置、形状等性质
高中数学必修2解析几何初步教材分析及教学建议之一
高中数学必修2《解析几何初步》教材分析及教学建议之一三明九中李宇宙一、解析几何内容的设计:1. 几何的内容按三个层次设计(1)必修课程中的几何,主要包括:立体几何初步、解析几何初步、平面向量、解三角形等。
(2)选修系列1、系列2中的几何,主要包括:圆锥曲线与方程、空间向量与立体几何。
(3)选修系列3、系列4(专题)中的几何.主要包括:球面上的几何、坐标系与参数方程、几何证明选讲等。
2.解析几何内容的变化突出了用代数方法解决几何问题的过程,同时也强调代数关系的几何意义。
解析几何的内容也是分层次设计的:在必修课程中,主要是直线与方程、圆与方程;圆锥曲线与方程的内容则放在选修系列1、系列2中。
3.必修2削弱的内容两条直线的位置关系(删除了两条直线的夹角)等。
4.必修2增删的内容(1) 解析几何增加的内容:直线与圆、圆与圆的位置关系;空间直角坐标系(2) 解析几何删除的内容:曲线与方程;圆的参数方程;圆锥曲线;线性规划移至必修5(第三章)不等式部分二、数学必修2《解析几何初步》的教学建议认真把握教学要求教学中,注意控制教学的难度,避免进行综合性强、难度较大的数学题的训练,避免在解题技巧上做文章。
关注重要数学思想方法的教学重要的数学思想方法不怕重复。
《标准》要求“坐标法”应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。
在教学中应自始至终强化这一思想方法,这是解析几何的特点。
教学中注意“数”与“形”的结合,在通过代数方法研究几何对象的位置关系以后,还可以画出其图形,验证代数结果;同时,通过观察几何图形得到的数学结论,对结论进行代数证明,即用解析方法解决某些代数问题,不应割断它们之间的联系,应避免只强调“形”到“数”的方面,而忽视“数”到“形”的方面。
关注学生的动手操作和主动参与学习方式的转变是课程改革的重要目标之一。
教学中,注意适当给学生数学活动和交流的机会,引导他们在自主探索的过程中获得知识、增强技能、掌握基本的数学思想方法。
苏教版高中数学必修2-1.3《立体几何初步》单元教学分析
必修2 第一章《立体几何初步》单元教学分析一.教材分析1.本章节的课时分配情况如下:2.本章节在整个教材体系中的地位和作用本章教材是高中数学学习的重点之一,通过研究空间几何体的结构特征、三视图和直观图、表面积和体积等,运用直观感知、操作确认、度量计算等方法,认识和探索空间图形及其性质,使学生建立空间概念,掌握思考空间几何体的分类方法,在认识空间点、直线、平面位置的过程中,进一步提高学生的空间想像能力,发展推理能力,通过对实际模型的认识,学会将文字语言转化为图形语言和符号语言;以具体的长方体中的点、线、面之间的关系作为载体,使学生在直观感知的基础上,认识空间中点、线、面之间的位置关系;通过对图形的观察和实验,使学生进一步了解平行、垂直关系的基本性质以及判定方法,学会准确地使用数学语言表述几何对象的位置关系,并能解决一些简单的推理论证及应用.本章内容在每年的高考中都必考,在选择题、填空题和解答题中均能出现,分值约20分左右,主要考查线、面之间的平行、垂直关系.3.本章节的教学目标、数学思想、数学方法通过对空间几何体的整体观察,使学生直观认识空间几何体的结构特征,理解空间点、线、面的位置关系,并会用数学语言表述空间有关平行、垂直的判定与性质,能运用这些结论对有关空间图形位置关系的简单命题进行论证,了解一些简单几何体的表面积与体积的计算方法.培养和发展学生的空间想象能力、推理论证能力、合情推理能力、运用图形语言进行交流的能力.4.本章节的教学重点、教学难点、教学特点:本章的重点是空间中的直线与直线、直线与平面、平面与平面的平行和垂直的判定和性质.本章的难点是建立空间概念,培养学生的空间想象,空间识图能力.5.本章节的知识结构和框架体系二.学情分析:1.师生双边教学活动设计:本章内容是义务教育阶段“空间与图形”课程的延续与发展,重点是帮助学生逐步形成空间想像能力,为了符合学生的认知规律,培养学生对几何学习的兴趣,增进学生对几何本质的理解,本章在内容的编选及内容的呈现方式上,与以往的处理相比有较大的变化.首先,通过观察和操作,使学生了解空间简单几何体(柱、锥、台、球)的结构特征,以此作为发展空间想像能力的基本模型;然后,通过归纳和分析,使学生进一步认识和理解空间的点、线、面之间的位置关系,作为思辩论证的基础,由于几何图形的面积和体积的计算和体积的计算需要应用垂直的概念,因而这一部分内容放入本章最后一节.本章内容的设计遵循从整体到局部、从具体到抽象的原则,强调借助实物模型,通过整体观察、直观感知、操作确认、思辨论证、度量计算,引导学生多角度、多层次地揭示空间图形的本质;重视合情推理与逻辑听结合,注意适度形式化;倡导学生积极主动、勇于探索的学习方式,帮助学生完善思维结构,发展空间想像能力.2.本章的教学建议:(1)、由于是从运动变化的观点来认识柱、锥、台、球的几何特点,因此教学时要通过大量的柱、锥、台、球实物模型进行演示,有条件的可以使用计算机演示柱、锥、台、球的生成过程,以帮助学生认识空间简单几何体的结构特征,并逐步形成空间观念.(2)、本章内容设计遵循从整体到局部的原则,因而有些概念在教学时只需通过大量实例让学生感受、认识即可,不必给出它们的严格定义,如关于棱台的部分中涉及的“两个平面平行”与关于正投影的部分中涉及的“天对着(直线与平面垂直)”等.(3)、在研究直线与直线、直线与平面、平面与平面的位置关系时,首先应强调位置关系的分类标准,然后引导学生给出正确分类.由于是通过直观感知、操作确认,探索关于“垂直”、“平行”的判定定理,所以教学中要给出大量的空间图形,有条件的可用计算机演示,让学生通过观察、实验,确认“垂直”、“平行”的判定方法.关于“垂直”、“平行”的判定与性质定理的应用,教学时应先让学生理解定理成立的条件,着重引导学生创设定理成立的条件.并逐渐让学生感悟到:空间中直线与直线、直线与平面、平面与平面的垂直或平行问题常常相互转化,将空间问题化归为平面问题是处理立体几何问题的重要思想,对空间中“角”与“距离”的度量问题,教学中不必拓展延伸,随意地提高教学要求.(4)、关于“柱、锥、台、球的表面积和体积”一节的教学,对一些简单组合体的表面积和体积计算,重在通过分析得到它是由哪些简单几何体组合而成.在介绍求柱、锥、台、球的表面积和体积的方法时,应着重让学生体会祖恒原理和积分思想在表面积与体积计算中的应用.(5)、本章教学中要注意联系平面图形的知识,利用类比、引申、联想等方法,理解平面图形和立体图形的异同,以及两者的内在联系,逐步培养学生的空间想像能力.三.教学手段、数学思想和数学方法:立体几何适宜采用多媒体教学手段,本章涉及的思想方法有:1、反证法与同一法;2、分类的思想;3、转化与化归思想;4、构造法,主要包括辅助线、面、体的添作,包括割补的思想方法;5、函数、方程和参数的思想方法.转化与化归思想是立体几何中最常见、最重要的数学思想方法,证明题实际上是定理间的相互转化和化归;证明或计算时,经常需要把空间图形化归为平面图形,把陌生问题纳入到原有的认知结构中,用熟悉的平面几何或三角的方法进行处理.立体几何中角与距离的计算建立在弄清概念、准确作图、严格论证的基础上,三种空间角,最终都化为两条相交直线的夹角,通常通过“线线角抓平移,线面角抓射影,二面角抓平面角”达到转化的目的;有关距离的问题通常化归为两点间的距离或点到直线的距离或点到平面的距离来解决,而点到平面的距离有时可以借助三棱锥的体积而求得.。
高中数学必修2解析几何初步教材分析及教学建议之一
高中数学必修2《解析几何初步》教材分析及教学建议之一三明九中李宇宙一、解析几何内容的设计:1. 几何的内容按三个层次设计(1)必修课程中的几何,主要包括:立体几何初步、解析几何初步、平面向量、解三角形等。
(2)选修系列1、系列2中的几何,主要包括:圆锥曲线与方程、空间向量与立体几何。
(3)选修系列3、系列4(专题)中的几何.主要包括:球面上的几何、坐标系与参数方程、几何证明选讲等。
2.解析几何内容的变化突出了用代数方法解决几何问题的过程,同时也强调代数关系的几何意义。
解析几何的内容也是分层次设计的:在必修课程中,主要是直线与方程、圆与方程;圆锥曲线与方程的内容则放在选修系列1、系列2中。
3.必修2削弱的内容两条直线的位置关系(删除了两条直线的夹角)等。
4.必修2增删的内容(1) 解析几何增加的内容:直线与圆、圆与圆的位置关系;空间直角坐标系(2) 解析几何删除的内容:曲线与方程;圆的参数方程;圆锥曲线;线性规划移至必修5(第三章)不等式部分二、数学必修2《解析几何初步》的教学建议认真把握教学要求教学中,注意控制教学的难度,避免进行综合性强、难度较大的数学题的训练,避免在解题技巧上做文章。
关注重要数学思想方法的教学重要的数学思想方法不怕重复。
《标准》要求“坐标法”应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。
在教学中应自始至终强化这一思想方法,这是解析几何的特点。
教学中注意“数”与“形”的结合,在通过代数方法研究几何对象的位置关系以后,还可以画出其图形,验证代数结果;同时,通过观察几何图形得到的数学结论,对结论进行代数证明,即用解析方法解决某些代数问题,不应割断它们之间的联系,应避免只强调“形”到“数”的方面,而忽视“数”到“形”的方面。
关注学生的动手操作和主动参与学习方式的转变是课程改革的重要目标之一。
教学中,注意适当给学生数学活动和交流的机会,引导他们在自主探索的过程中获得知识、增强技能、掌握基本的数学思想方法。
2021_2022学年新教材高中数学第6章立体几何初步章末综合提升学案含解析北师大版必修第二册 (1
第6章立体几何初步类型1 平面的根本性质与应用1.证明点共线问题的常用方法根本事实法先找出两个平面,然后证明这些点都是这两个平面的公共点,再根据根本事实3证明这些点都在交线上同一法选择其中两点确定一条直线,然后证明其余点也在该直线上证明假如干线共点的根本思路是先找出两条直线的交点,再证明其他直线都经过该点.而证明直线过该点的方法是证明点是以该直线为交线的两个平面的公共点.3.证明点、直线共面问题的常用方法纳入平面法先确定一个平面,再证明有关点、线在此平面内辅助平面法先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合【例1】如图,在正方体ABCDA1B1C1D1中,E,F分别为D1C1,B1C1的中点,AC ∩BD=P,A1C1∩EF=Q,直线A1C与平面BDEF的交点为R.(1)证明:B,D,E,F四点共面.(2)证明:P,Q,R三点共线.(3)证明:DE,BF,CC1三线共点.[证明](1)连接B1D1,因为EF是△D1B1C1的中位线,所以EF∥B1D1.在正方体ABCDA1B1C1D1中,B1D1綊BD,所以EF∥BD.所以EF,BD确定一个平面,即B,D,E,F四点共面.(2)在正方体ABCDA1B1C1D1中,设A1ACC1确定的平面为α,又设平面BDEF为β,因为Q∈A1C1,所以Q∈α.又因为Q∈EF,所以Q∈β.如此Q是α与β的公共点,同理,P点也是α和β的公共点,所以α∩β=PQ.又因为A1C∩β=R,所以R∈A1C.所以R∈α且R∈β.如此R∈PQ.故P,Q,R三点共线.(3)因为EF∥BD,且EF≠BD,所以DE与BF一定相交,设交点为M,因为BF⊂平面BCC1B1,DE⊂平面DCC1D1,且平面BCC1B1∩平面DCC1D1=CC1,所以M∈CC1,所以DE,BF,CC1三线共点.[跟进训练]1.如图,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,如此如下结论正确的答案是( )A.A,M,O三点共线B.A,M,O,A1不共面C.A,M,C,O不共面D.B,B1,O,M共面A[连接A1C1,AC,如此A1C1∥AC,所以A1,C1,C,A四点共面,所以A1C⊂平面ACC1A1,因为M∈A1C,所以M∈平面ACC1A1,又M∈平面AB1D1,所以M在平面ACC1A1与平面AB1D1的交线上,因为平面ACC1A1∩平面AB1D1=AO,所以M∈AO,所以A,M,O三点共线.]类型2 平行问题(1)证明线线平行的依据①平面几何法(常用的有三角形中位线、平行四边形对边平行);②根本事实4;③线面平行的性质定理;④面面平行的性质定理;⑤线面垂直的性质定理.(2)证明线面平行的依据①定义;②线面平行的判定定理;③面面平行的性质.(3)证明面面平行的依据①定义;②面面平行的判定定理;③垂直于同一直线的两平面平行;④面面平行的传递性.【例2】 如下列图,四边形ABCD 是平行四边形,PB ⊥平面ABCD ,MA ∥PB ,PB =2MA .在线段PB 上是否存在一点F ,使平面AFC ∥平面PMD ?假如存在,请确定点F 的位置,并给出证明;假如不存在,请说明理由.[解]当点F 是PB 的中点时,平面AFC ∥平面PMD ,证明如下:如图,连接AC 和BD 交于点O ,连接FO ,如此PF =12PB .∵四边形ABCD 是平行四边形,∴O 是BD 的中点.∴OF ∥PD . 又OF ⊄平面PMD ,PD ⊂平面PMD , ∴OF ∥平面PMD .又MA ∥PB ,MA =12PB ,∴PF ∥MA ,PF =MA .∴四边形AFPM 是平行四边形. ∴AF ∥PM .又AF ⊄平面PMD ,PM ⊂平面PMD . ∴AF ∥平面PMD .又AF ∩OF =F ,AF ⊂平面AFC ,OF ⊂平面AFC . ∴平面AFC ∥平面PMD . [跟进训练]2.m ,n 是两条不同的直线,α,β,γ是三个不同的平面,如此如下命题正确的有________.(写出所有正确命题的序号)①假如α⊥γ,β⊥γ,如此α∥β; ②假如m ∥n ,m ∥α,如此n ∥α;③假如α∩β=n ,m ∥α,m ∥β,如此m ∥n ; ④假如m ⊥α,m ⊥n ,如此n ∥α.③[对于①,假如α⊥γ,β⊥γ,如此α与β的位置关系是垂直或平行,故①错误;对于②,假如m ∥n ,m ∥α,如此n 可能在α内或平行于α,故②错误;对于③,假如α∩β=n ,m ∥α,m∥β,根据线面平行的性质定理和判定定理,可以判断m∥n,故③正确;对于④,假如m ⊥α,m⊥n,如此n可能在α内或平行于α,故④错误.]类型3 垂直问题(1)证明直线和平面垂直的常用方法:①判定定理;②垂直于平面的传递性(a∥b,a⊥α⇒b⊥α);③面面平行的性质(a⊥α,α∥β⇒a⊥β);④面面垂直的性质.(2)证明线面垂直的关键是证线线垂直,而证明线线垂直如此需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的根本思想.【例3】如下列图,在四棱锥PABCD中,平面PAB⊥平面ABCD,AD∥BC,AD=2BC,∠DAB=∠ABP=90°.(1)求证:AD⊥平面PAB;(2)求证:AB⊥PC.[证明](1)因为∠DAB=90°,所以AD⊥AB.因为平面PAB⊥平面ABCD,且平面PAB∩平面ABCD=AB,所以AD⊥平面PAB.(2)由(1)知AD⊥AB,因为AD∥BC,所以BC⊥AB.又因为∠ABP=90°,所以PB⊥AB.因为PB∩BC=B,所以AB⊥平面PBC,因为PC⊂平面PBC,所以AB⊥PC.在本例(1)中,假如点E 在棱PD 上,且CE ∥平面PAB ,求PEPD的值.[解]过E 作EF ∥AD 交PA 于F ,连接BF . 因为AD ∥BC ,所以EF ∥BC . 所以E ,F ,B ,C 四点共面. 又因为CE ∥平面PAB ,且CE ⊂平面BCEF ,平面BCEF ∩平面PAB =BF , 所以CE ∥BF ,所以四边形BCEF 为平行四边形,所以EF =BC =12AD .在△PAD 中,因为EF ∥AD , 所以PE PD =EFAD =12,即PEPD =12. 类型4 几何体的外表积和体积(1)与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点〞、“接点〞作出截面图,把空间问题化归为平面问题.(2)假如球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.【例4】 三棱锥S ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.假如平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,如此球O 的外表积为________.36π[如图,连接AO ,OB , ∵SC 为球O 的直径, ∴点O 为SC 的中点,∵SA =AC ,SB =BC ,∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,∴AO ⊥平面SCB , 设球O 的半径为R ,如此OA =OB =R ,SC =2R .∴V S ABC =V A SBC =13×S △SBC ×AO =13×⎝ ⎛⎭⎪⎫12×SC ×OB ×AO ,即9=13×⎝ ⎛⎭⎪⎫12×2R ×R ×R ,解得R =3,∴球O 的外表积为S =4πR 2=4π×32=36π.][跟进训练]3.《算数书》竹简于上世纪八十年代在某某省江陵县X 家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖〞的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈275L 2h 相当于将圆锥体积公式中的π近似取为( )A .227B .258C .15750D .355113B [圆锥的体积V =13πr 2h =13π⎝ ⎛⎭⎪⎫L 2π2h =L 2h 12π,由题意得12π≈752,π近似取为258,应当选B.]类型5 简单的空间角问题根据定义作平行线,作出异面直线所成的角;证明作出的角是异面直线所成的角;解三角形,求出作出的角.如果求出的角是锐角或直角,如此它就是要求的角;如果求出的角是钝角,如此它的补角才是要求的角.【例5】 四棱锥P -ABCD 的侧棱长与底面边长都相等,点E 是PB 的中点,如此异面直线AE 与PD 所成角的余弦值为( )A .13B .23C .33D .23C [设四棱锥P ABCD 的棱长为1,AC ∩BD =O ,如此O 是AC 与BD 的中点,连接OE (图略),又E 是PB 的中点,所以由三角形中位线定理,得OE ∥PD ,OE =12PD =12,如此∠AEO或其补角是异面直线AE 与PD 所成的角.又△PAB 是等边三角形,所以AE =32AB =32.易得OA =OB =OC =OD =22,在△OAE 中,由余弦定理,得cos ∠AEO =AE 2+OE 2-OA 22AE ·OE =33,即异面直线AE 与PD 所成角的余弦值为33.][跟进训练]4.如图,在圆锥PO 中,PO ⊥底面⊙O ,PO =2,⊙O 的直径AB =2,C 是AB ︵的中点,D 为AC 的中点.(1)证明:平面POD ⊥平面PAC ; (2)求二面角B -PA -C 的余弦值.[解](1)证明:连接OC .∵PO ⊥底面⊙O ,AC ⊂底面⊙O ,∴AC ⊥PO .∵OA =OC ,D 是AC 的中点,∴AC ⊥OD . 又∵OD ∩PO =O ,∴AC ⊥平面POD . 又∵AC ⊂平面PAC , ∴平面POD ⊥平面PAC .(2)在平面POD 内,过点O 作OH ⊥PD 于点H .由(1)知,平面POD ⊥平面PAC ,又平面POD ∩平面PAC =PD ,∴OH ⊥平面PAC . 又∵PA ⊂平面PAC , ∴PA ⊥OH .在平面PAO 中,过点O 作OG ⊥PA 于点G ,连接HG , 如此有PA ⊥平面OGH , ∴PA ⊥HG .故∠OGH 为二面角B -PA -C 的平面角. ∵C 是AB ︵的中点,AB 是直径, ∴OC ⊥AB .在Rt △ODA 中,OD =OA ·sin 45°=22.在Rt △POD 中,OH =PO ·OD PD=PO ·ODPO 2+OD 2=2×222+12=105.在Rt △POA 中,OG =PO ·OA PA=PO ·OAPO 2+OA 2=2×12+1=63. 在Rt △OHG 中,sin ∠OGH =OH OG=10563=155.∴cos ∠OGH =1-sin 2∠OGH =1-1525=105.故二面角B PA C 的余弦值为105.1.(2020·某某卷)假如棱长为23的正方体的顶点都在同一球面上,如此该球的外表积为( )A .12πB .24πC .36πD .144π C [设外接球的半径为R ,易知2R =3×23=6,所以R =3,于是外表积S =4πR 2=36π,应当选C.]2.(2020·全国Ⅰ卷)埃与胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,如此其侧面三角形底边上的高与底面正方形的边长的比值为( )A .5-14B .5-12C .5+14D .5+12C [由题意知,可将金字塔看成如下列图的正四棱锥S ABCD ,其中M 为AD 的中点,O 为底面正方形ABCD 的中心,连接SM ,SO ,OM ,如此SO ⊥底面ABCD ,SM ⊥AD ,OM ⊥AD ,即正四棱锥S ABCD的高为SO ,侧面△SAD 的高为SM .设底面正方形ABCD 的边长为a ,SM =h ,如此OM =a2,正四棱锥S ABCD 的一个侧面三角形的面积为12ah ,在Rt △SOM 中,SO 2=SM 2-OM 2=h 2-⎝ ⎛⎭⎪⎫a 22=h 2-a 24,以该正四棱锥的高为边长的正方形的面积为SO 2=h 2-a 24,故12ah =h 2-a 24,化简、整理得4h 2-2ah -a 2=0,得4⎝ ⎛⎭⎪⎫h a 2-2⎝ ⎛⎭⎪⎫h a -1=0,令h a =t ,如此4t 2-2t -1=0,因为t >0,所以t =1+54,即h a =1+54,所以其侧面三角形底边上的高与底面正方形的边长的比值为5+14,应当选C.] 3.(2020·全国Ⅰ卷)A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.假如⊙O 1的面积为4π,AB =BC =AC =OO 1,如此球O 的外表积为( )A .64πB .48πC .36πD .32πA [如下列图,设球O 的半径为R ,⊙O 1的半径为r ,因为⊙O 1的面积为4π,所以4π=πr 2,解得r =2,又AB =BC =AC =OO 1,所以AB sin 60°=2r ,解得AB =23,故OO 1=23,所以R 2=OO 21+r 2=(23)2+22=16,所以球O 的外表积S =4πR 2=64π.应当选A.]4.(2020·某某卷)圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图为半圆,如此这个圆锥的底面半径(单位:cm)是________.1[法一:设该圆锥的母线长为l ,因为圆锥的侧面展开图是一个半圆,其面积为2π,所以12πl 2=2π,解得l =2,所以该半圆的弧长为2π.设该圆锥的底面半径为R ,如此2πR =2π,解得R =1.法二:设该圆锥的底面半径为R ,如此该圆锥侧面展开图中的圆弧的弧长为2πR ,因为侧面展开图是一个半圆,设该半圆的半径为r ,如此πr =2πR ,即r =2R ,所以侧面展开图的面积为12·2R ·2πR =2πR 2=2π,解得R =1.] 5.(2020·某某卷)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半径为0.5 cm ,如此此六角螺帽毛坯的体积是__________cm 3. 123-π2[正六棱柱体积为6×34×22×2=123,圆柱体积为π⎝ ⎛⎭⎪⎫122·2=π2 所求几何体体积为(123-π2)cm 3,故答案为:123-π2.] 6.(2020·全国Ⅲ卷)圆锥的底面半径为1,母线长为3,如此该圆锥内半径最大的球的体积为________.23π[易知半径最大的球即为该圆锥的内切球.圆锥PE 与其内切球O 如下列图,设内切球的半径为R ,如此sin ∠BPE =ROP =BE PB =13,所以OP =3R ,所以PE =4R =PB 2-BE 2=32-12=22,所以R =22,所以内切球的体积V =43πR 3=23π,即该圆锥内半径最大的球的体积为23π.]。
高中数学《立体几何》教材分析及教学建议
3、教学中要充分的利用好长方体和正方体这两种重要 的几何模型来研究空间线面位置关系。
长方体模型中几乎包含了线面平行和垂直的所有关系,而且长 方体模型也时学生最熟悉的几何模型。 有些比较难的几何问题,如果能借助于一个长方体,就会更加 容易解决问题。
模型化(后续还有坐标化)
模型化
cos BAF cos BCD cos 45
注意关键量词:存在、任意。(量词的学习提前很有必要)
例如:直线与平面垂直的判定定理:
文字语言:一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直。(表达记忆)
a
图形语言:(理解建模)
符号语言:(规法书写)
m
P
n
若m , n , m n P, a m, a n, 则a .
(2)更加注重平行于垂直的相互转化,例如垂直于同一平面的两 直线平行,作为定理结论,可直接使用。
(3)在位置关系的研究中,先给出概念,再观察长方体,而之前 是先观察长方体,再给出概念。
二、小单元补充说明
二、小单元补充说明
单元一:认识空间图形 单元二:点线面之间的位置关系
单元三:平行与垂直
单元一:认识空间图形
高考为什么连续两年证明四点共面? 学生证明平行垂直关系比较容易,为什么证明四点共面反而觉 得更不容易? 学生比较清楚每个判定定理性质定理的作用,但可能不清楚每个基 本事实的作用。
单元三:平行与垂直
教材删去了三垂线定理,但不代表三垂线定理不重要,教材上要 求学生会利用向量来证明三垂线定理,但是它的几何证明同样重要, 三垂线定理的证明就是证明空间垂直关系的核心,所以我们复习中要 重视,只是不能直接利用三垂线定理的结论来解决问题。
三、教学建议及思考
北师大版高中数学必修2第一章《立体几何初步》球的表面积与体积
3 6 R= , S = 54π ,V = 27 6π 2
13
作业: 作业: 练习: P28练习:1,2,3.
教学反思: 教学反思:
14
北师大版高中数学必修2第 北师大版高中数学必修 第 一章立体几何初步
1 法门高中姚连省制作
一、教学目标 知识与技能: 通过对球的体积和面积公式的推导, 1、知识与技能:⑴通过对球的体积和面积公式的推导,了解推导过程中所用的基 本数学思想方法: 分割——求和 求和——化为准确和”,有利于同学们进一步学习 化为准确和” 本数学思想方法:“分割 求和 化为准确和 微积分和近代数学知识。⑵能运用球的面积和体积公式灵活解决实际问题。⑶培 微积分和近代数学知识。 能运用球的面积和体积公式灵活解决实际问题。 养学生的空间思维能力和空间想象能力。 过程与方法: 养学生的空间思维能力和空间想象能力。2、过程与方法:通过球的体积和面积公 4 式的推导,从而得到一种推导球体积公式V= 式的推导,从而得到一种推导球体积公式V= 和面积公式S= S=4 πR3和面积公式S=4πR2的 3 方法, 方法,即“分割求近似值,再由近似和转化为球的体积和面积”的方法, 分割求近似值,再由近似和转化为球的体积和面积”的方法, 体现了极限思想。 情感与价值观:通过学习, 体现了极限思想。3、情感与价值观:通过学习,使我们对球的体积和面积公式 的推导方法有了一定的了解,提高了空间思维能力和空间想象能力, 的推导方法有了一定的了解,提高了空间思维能力和空间想象能力,增强了我 们探索问题和解决问题的信心。 们探索问题和解决问题的信心。 教学重点、 二、教学重点、难点 重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法。 重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法。 难点:推导体积和面积公式中空间想象能力的形成。 难点:推导体积和面积公式中空间想象能力的形成。 三、学法和教学用具 学法:学生通过阅读教材,发挥空间想象能力,了解并初步掌握“ 1、学法:学生通过阅读教材,发挥空间想象能力,了解并初步掌握“分割 求近似值的、再由近似值的和转化为球的体积和面积”的解题方法和步骤。 、求近似值的、再由近似值的和转化为球的体积和面积”的解题方法和步骤。 教法: 2、教法:探究交流法 四、教学过程
高中数学必修2《立体几何初步》教材解读之
高中数学必修2《立体几何初步》教材解读之一永安一中吴强一.义务教育阶段(7-9年级)已经学习过的与立体几何有关的内容在“空间与图形”部分要求:(1)要求会画几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图),会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型。
(2)了解直棱柱、圆锥的侧面展开图,能根据展开图判断和制作立体图形。
(3)了解基本几何体与其三视图、展开图(球除外)之间的关系;通过典型实例,知道这种关系在现实生活中的应用(如物体的包装)。
(4)观察与现实生活中的有关图片(如照片、简单的模型图、平面图、地图等),了解并欣赏一些有趣的图形(如雪花曲线、莫比乌斯带)。
(5)通过背景丰富的实例,知道物体的阴影是怎么形成的,并能根据光线的方向辨认实物的阴影(如在阳光下,观察手的阴影或人的身影)。
(6)了解视点、视角及盲区的涵义,并能在简单的平面图和立体图中表示。
因为,有许多高中教师并不担任初中数学的教学任务,了解初中阶段学生已有的知识结构对于组织高中数学教学是十分重要和必要的。
二.认真研读课标,站在一个整体、全局的高度把握好教学的深浅度.从整套教材来看,几何教学、学习的要求不是一步到位,而是分阶段,分层次,多角度的.一共分为三个阶段:第一阶段必修课程: 数学2:立体几何初步、解析几何初步.第二阶段选修系列1:圆锥曲线与方程系列2 :空间向量与立体几何.第三阶段选修系列3:球面上的几何、对称与群、欧拉公式与封闭曲线、三等分角与数域扩充选修系列4:几何证明选讲、矩阵与变换、坐标系与参数方程。
三.高中数学2新课程中“立体几何”部分的教学内容结合《标准》的学习和教科书的编写,概括一下,高中数学新课程中“立体几何”部分的教学内容:“空间几何体”教科书内容及课时分配1.1 空间几何体的结构约2课时1.2 空间几何体的三视图和直观图约2课时1.3 空间几何体的表面积与体积约2课时实习作业约1课时小结约1课时2.点、直线、平面之间的位置关系知识结构2.教科书内容及课时分配2.1 空间点、直线、平面之间的位置关系约3课时2.2 直线、平面平行的判定及其性质约3课时2.3 直线、平面垂直的判定及其性质约3课时小结约1课时四.知识编排方面与传统的对比在内容安排上,通过研读课标和作新旧教材的如上对比,我们发现新课程《数学2》中立体几何初步的内容体现了从整体到局部,从具体到抽象的原则.而旧教材这部分的内容遵循的是从局部到整体的原则.同时在内容的难度要求上,《数学2》与旧教材比较,难度进行了降低,并且引入了合情推理.立体几何削弱的内容:逻辑推理能力的要求(如判定定理的证明);三垂线定理与逆定理及其应用;简单几何体的面积与体积公式的推导等.立体几何增加的内容:三视图;简单几何体的面积和体积(球除外)及其应用.立体几何删除的内容:多面体欧拉定理的发现.五.与大纲的比较,有哪些变化(1)安排体系发生变化,更符合人们的认识规律传统的教材是先学习空间点、线、面,再研究由它们组成的几何体,而《课程标准》是先展示大量的几何体的结构,再剖析组成几何体的点、线、面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修2《立体几何初步》教材解读之一永安一中吴强一.义务教育阶段(7-9年级)已经学习过的与立体几何有关的内容在“空间与图形”部分要求:(1)要求会画几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图),会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型。
(2)了解直棱柱、圆锥的侧面展开图,能根据展开图判断和制作立体图形。
(3)了解基本几何体与其三视图、展开图(球除外)之间的关系;通过典型实例,知道这种关系在现实生活中的应用(如物体的包装)。
(4)观察与现实生活中的有关图片(如照片、简单的模型图、平面图、地图等),了解并欣赏一些有趣的图形(如雪花曲线、莫比乌斯带)。
(5)通过背景丰富的实例,知道物体的阴影是怎么形成的,并能根据光线的方向辨认实物的阴影(如在阳光下,观察手的阴影或人的身影)。
(6)了解视点、视角及盲区的涵义,并能在简单的平面图和立体图中表示。
因为,有许多高中教师并不担任初中数学的教学任务,了解初中阶段学生已有的知识结构对于组织高中数学教学是十分重要和必要的。
二.认真研读课标,站在一个整体、全局的高度把握好教学的深浅度.从整套教材来看,几何教学、学习的要求不是一步到位,而是分阶段,分层次,多角度的.一共分为三个阶段:第一阶段必修课程: 数学2:立体几何初步、解析几何初步.第二阶段选修系列1:圆锥曲线与方程系列2 :空间向量与立体几何.第三阶段选修系列3:球面上的几何、对称与群、欧拉公式与封闭曲线、三等分角与数域扩充选修系列4:几何证明选讲、矩阵与变换、坐标系与参数方程。
三.高中数学2新课程中“立体几何”部分的教学内容结合《标准》的学习和教科书的编写,概括一下,高中数学新课程中“立体几何”部分的教学内容:“空间几何体”教科书内容及课时分配1.1 空间几何体的结构约2课时1.2 空间几何体的三视图和直观图约2课时1.3 空间几何体的表面积与体积约2课时实习作业约1课时小结约1课时2.点、直线、平面之间的位置关系知识结构2.教科书内容及课时分配2.1 空间点、直线、平面之间的位置关系约3课时2.2 直线、平面平行的判定及其性质约3课时2.3 直线、平面垂直的判定及其性质约3课时小结约1课时四.知识编排方面与传统的对比在内容安排上,通过研读课标和作新旧教材的如上对比,我们发现新课程《数学2》中立体几何初步的内容体现了从整体到局部,从具体到抽象的原则.而旧教材这部分的内容遵循的是从局部到整体的原则.同时在内容的难度要求上,《数学2》与旧教材比较,难度进行了降低,并且引入了合情推理.立体几何削弱的内容:逻辑推理能力的要求(如判定定理的证明);三垂线定理与逆定理及其应用;简单几何体的面积与体积公式的推导等.立体几何增加的内容:三视图;简单几何体的面积和体积(球除外)及其应用.立体几何删除的内容:多面体欧拉定理的发现.五.与大纲的比较,有哪些变化(1)安排体系发生变化,更符合人们的认识规律传统的教材是先学习空间点、线、面,再研究由它们组成的几何体,而《课程标准》是先展示大量的几何体的结构,再剖析组成几何体的点、线、面。
这种安排的特点是由整体到部分,由具体到抽象,更加符合人们的认知规律。
我们生活在三维世界中,对于一个物体,首先感受的是它的轮廓,之后才会对它的侧面、边角感兴趣。
(2)重视联系,强调应用传统的立体几何强调综合方法,强调逻辑推理,这种单一的处理方法使学生孤立地学习立体几何,从而学习难度较大,许多中学生惧怕立体几何,解答立体几何问题总是不理想(立体几何一直是高考中的难点,位于承上启下的位置),在《课程标准》中,比较初步的,不是太难的用综合方法处理,以培养空间想象能力和逻辑推理能力,而较难处理的问题则采用代数的方法。
从而有利于改变学生对立体几何的态度,建立起学生学好立体几何的信心。
更重要的是加强了几何与代数的联系,培养数形结合的思想,完善数学的认知结构。
加强立体几何与现实生活的联系,强调应用是立体几何课程改革的又一特色。
立体几何课程从空间几何体开始,利用实物模型、计算机软件观察大量的空间图形,使学生归纳出“柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构”。
这也就是从生活中来,到生活中去,善于从生活中获取知识,也善于将学到的知识应用于生活,培养学生用数学视角观察世界和用数学思维思考世界的习惯。
(3)加强直观,侧重空间想象能力的培养高中立体几何历来以培养逻辑思维能力为主要目标。
而新课程更加强调空间想象能力的培养,空间观念的建立,逻辑思维能力的培养退至次要地位。
立体几何的基础是平面几何《全日制义务教育数学课程标准》(实验稿)将合情推理引入课程,强调几何直观,在给出大量的平面图形的基础上,引导学生归纳、概括出若干定理,整个教学过程只要求证明8个定理,目的是让学生感受公理化思想和了解证明的含义。
立体几何课程改革同样引入大量的实物模型,计算机模拟与演示,加强学生的直观感受。
在数学2的立体几何初步中只给出4个公理、9个定理,其中只有4个定理需要证明,其余4个判定定理在选修2-1中用向量方法给出证明(比如三垂线定理也用向量方法证明),而选修课程并不是要求所有学生都掌握的。
由此可见,立体几何的教学目的由重点培养逻辑思维能力转向培养几何直观能力和空间想象能力。
然而大量削减逻辑证明会不会影响学生的数学能力,尤其是思维能力和推理能力的提高,有待于实践的检验和进一步研究。
(4)加强动手操作方面的要求2002年数学教学大纲要求学生能够“用斜二测的画法画水平放置的平面图形的直观图;能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系”,“会画直棱柱的直观图。
”,“会画正棱锥的直观图”。
《课程标准》要求“能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图”,“用两种方法(平行投影与中心投影)画出的视图与直观图”,“画出某些建筑的视图与直观图”。
同学们在动手实践的过程中体会、感受、经历,从而增加对几何体的认识和对客观世界的认识,学生动手还体现在让学生参与知识形成过程。
以往的大纲只给出终极目标,到达目标的途径没有做明确的要求,而《课程标准》不但明确知识的终极目标,而且明确了到达终极目标的途径。
如“通过直观感知、操作确认,归纳出以下判定定理”,“通过直观感知、操作确认,归纳出以下性质定理”,“通过对图形的观察、实验和说理,使学生进一步了解平行、垂直关系的基本性质以及判定方法”,等等。
综合以上,可见《课程标准》立体几何部分从内容到要求,从形式到结构都较以往的大纲有较大的改动。
六、必修二教学说明与建议(一)棱柱、棱锥、棱台这些空间几何体要求到什么程度?按照《标准》的要求,教材首先通过实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征。
结构特征是这些空间几何体的本质特征,我们需要抽象概括出这些空间几何体的概念。
以棱柱为例,抽象出它的本质特征后,要不要讲斜棱柱、直棱柱、正棱柱以及棱柱的一些性质?由于《标准》在选修2-1“空间向量与立体几何”中有“参考案例”例1,例1中明确提出“直三棱柱……”,所以必须讲。
棱锥也有类似的问题,正棱锥怎么讲?在何处讲?(二)关于三视图与几何直观能力、空间想象能力视图和投影是《全日制义务教育数学课程标准(实验稿)》新增的内容,作为与初中数学课程内容的衔接,“空间几何体”包括视图和投影的内容。
要求到什么程度?1.三视图是不是要求到“长对正、高平齐、宽相等”?与初中阶段的相关内容如何衔接?2.对于平行投影和中心投影下的视图与直观图,如果只是“通过观察用两种方法(平行投影与中心投影)画出的视图和直观图,了解空间图形的不同表示形式。
”,是不是要求太低了?3.如果不明确给出直棱柱、正棱柱、斜棱柱等的概念,棱柱的三视图能否讲清楚?因为棱柱的三视图涉及棱柱的高等概念。
增加三视图的有关内容,对于进一步培养学生的空间想象能力和几何直观能力具有重要的促进作用。
过去的“立体几何”内容相对来说,这方面比较薄弱。
三视图的有关内容在一定程度上改善了这种状况。
对图形既需要直观地感觉,也需要思辨地论证。
我们要求学生能够画出空间几何体的三视图和直观图,能够从空间几何体的直观图画出它的三视图,从三视图画出它的直观图等等。
使得学生能通过“实物模型—三视图—直观图”这样一个相互转化的过程认识空间几何体。
这些数学活动是培养学生空间想象能力的有效途径。
只有这样,立体几何的教学目标才更加全面。
基于以上原因,我们认为,教师和学生应该知道正视图、侧视图、俯视图的“摆放”位置,以及“长对正、高平齐、宽相等”的要求,但尺寸、线条、具体怎么画不作严格要求。
这部分内容是初中“投影与视图”的基础上的发展。
一个现实情况是,“空间几何体”8个课时的容量,留给“空间几何体的三视图和直观图”仅有2个课时的时间,很多内容无法展开。
要想说的很清楚,势必冲破2个课时的限制,这显然违背《标准》的要求。
因此,很多内容“点到为止”,要求不高,像上面提到点在平面的射影、空间几何体的高,平行投影和中心投影下的视图和直观图等几个问题,必须明确提到,但要求较低。
(三)高中数学新课程中“立体几何”部分的教学内容是不是过去“直线、平面、简单几何体”内容的真子集?单从课时上看,容易产生这种印象:高中数学新课程中“立体几何”部分的教学内容是过去“直线、平面、简单几何体”内容的真子集。
实际是这种情况吗?答案是否定的。
从《标准》和《普通高中课程标准实验教科书·数学2》A版(以下简称《数学2》)看,高中数学新课程中“立体几何”部分新增加了一些内容:平行投影、中心投影,三视图。
这些内容与义务教育阶段“空间与图形”中的“视图与投影”紧密衔接,而“直线、平面、简单几何体”没有这部分内容。
增加这部分内容的主要目的是进一步认识空间图形,通过三视图以及空间几何体与其三视图的互相转化,对空间图形有比较完整的认识,培养和发展学生的空间想象能力、几何直观能力,更全面地把握空间几何体。
投影是视图的基础,投影分为平行投影和中心投影。
立体几何中研究的图形都是平行投影下的图形。
中心投影在日常生活中非常普遍,但不是高中“立体几何”研究的主要内容。
有了投影,才有视图。
除了“平行投影、中心投影,三视图”的内容外,其他内容是“直线、平面、简单几何体”的真子集。
(四)教学过程注意事项①备每堂课前要在通读教材内容基础上,做完课后练习,以便更好地把握重、难点,例题的选择、课堂练习的安排;②教学时必须留足时间让学生操作确认,并用自然语言表述出来;③时时注意以长方体中的点、线、面为载体,引导学生学会自然语言转化为图形语言和符号语言;④始终把握数学教学的特点:问题中心、设计自然(即数学知识发生发展的原过程),引导学生自己概括出数学本质,保持高水平的数学思维活动;⑤注重数学思想方法蕴含其中的道理,课堂必须经常留时间总结好数学思想,体会数学思维规律;⑥严格按照模块本身内容要求教学,不得随意补充知识,理解好螺旋上升设计;⑦教材中有大量的旁白,有的是画龙点睛,有的是一般性概括,也有的是方法指要,教学时不可忽视这部分内容的点拨。