五年级奥数分数百分数应用题(一)(A级)学生版

合集下载

奥数专题百分数应用题(一)(可编辑修改word版)

奥数专题百分数应用题(一)(可编辑修改word版)

知识引领百分数应用题(一)20 ×1=0.2(千克),100剩下的饼干为 1—0.2=0.8(千克)在日常生活中,我们常常听到出勤率、收视率、成活率等词语,这些都叫百分率,也叫百分数和百分比。

有关百分率的问题,经常会出现在我们的周围,例如,两杯糖水,比较哪一杯甜一些,农药的稀释等等,这些都是有关百分数的问题。

本章,我们就一起来探讨百分数的应用问题。

克)经典题型例1、某商品降价1200 元后,售价为4800 元,该商品小猴分得的饼干为:0.8×0.25=0.2(千克)小鹿分得的饼干为:0.6×0.30=0.18(千克) 小鹿所剩的饼干为:0.6—0.18=0.42(千克)小熊分得的饼干为:0.42×0.35=0.147(千克) 剩下的饼干为:0.42—0.147=0.273(千狐狸分得的饼干为:0.2+0.273=0.473(千克)打了几折出售?思路导航求打了几折,就是先要求降低的价格是原价的百分之几,我们把原价看做单位“1”,降低的价格和原价比,关系为:降价÷原价,知道了降低了百分之几,就可以求出现价是原价的百分之几,最后再折算成折扣就可以了。

1200÷(1200+4800)=1200÷6000=20% 1—20%=80%=8 折答:该商品打了8 折。

模仿提升11、一件商品第一次降价10%,第二次又降价10%,现价是原价的百分之几?2、姐妹两人上ft采蘑菇,姐姐采的比妹妹多20%,妹妹采的比姐姐少百分之几?3、商场进行“买四赠一”的促销活动,某商品原价为每瓶100 元,如果购买该商品10 瓶比原来可节省多少钱?例2 狐狸、小熊、小鹿、小猴得到了1 千克饼干,怎样分配好呢?大家请狐狸出主意,狐狸说:“饼干不多,我就少分一点吧,我先留下20%,小猴从我留下来的饼干中分25%,小鹿从小猴分剩后的饼干中分30%,小熊再从小鹿剩下的饼干中分35%,最后剩下的一点给我,怎么样?”大家都觉得狐狸分得最少,便同意了。

五年级奥数.应用题.比例应用题(一)(A级)

五年级奥数.应用题.比例应用题(一)(A级)

1. 比例的基本性质2. 熟练掌握比例式的恒等变形及连比问题3. 能够进行各种条件下比例的转化,有目的的转化;4. 方程解比例应用题比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有:一、 比和比例的性质性质1:若a : b =c :d ,则(a + c ):(b + d )= a :b =c :d ; 性质2:若a : b =c :d ,则(a - c ):(b - d )= a :b =c :d ;性质3:若a : b =c :d ,则(a +x c ):(b +x d )=a :b =c :d ;(x 为常数) 性质4:若a : b =c :d ,则a ×d = b ×c ;(即外项积等于内项积) 正比例:如果a ÷b =k (k 为常数),则称a 、b 成正比; 反比例:如果a ×b =k (k 为常数),则称a 、b 成反比.二、 主要比例转化实例① x a y b = ⇒ y b x a =; x y a b=; a b x y =; ②x a y b = ⇒ mx a my b =; x ma y mb=(其中0m ≠); ③x a y b = ⇒ x a x y a b =++; x y a b x a --=; x y a b x y a b ++=-- ;④x a y b =,y c z d = ⇒ x ac z bd=;::::x y z ac bc bd =; ⑤ x 的c a 等于y 的d b ,则x 是y 的ad bc ,y 是x 的bcad.知识框架考试要求比例应用题三、 按比例分配与和差关系(1) 按比例分配例如:将x 个物体按照:a b 的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x 的比分别为():a a b +和():b a b +,所以甲分配到ax a b +个,乙分配到bxa b+个. (2) 已知两组物体的数量比和数量差,求各个类别数量的问题例如:两个类别A 、B ,元素的数量比为:a b (这里a b >),数量差为x ,那么A 的元素数量为axa b-,B 的元素数量为bxa b-,所以解题的关键是求出()a b -与a 或b 的比值.【例 1】 公园里柳树和杨树的棵数比是5∶3,柳树和杨树共40棵,柳树和杨树各有多少棵?【巩固】 一种药水是把药粉和水按照1∶100配制而成,要配制这种药水5050千克,需要药粉多少千克?【例 2】 把300个苹果按4∶5∶6分给幼儿园的小、中、大三个班。

分数、百分数应用题(奥赛培训1)

分数、百分数应用题(奥赛培训1)

分数、百分数应用题(一)例1:一篓苹果分给甲、乙、丙三人,甲分得全部苹果的51加5个苹果,乙分得全部苹果的41加7个苹果,丙分得其余苹果的21,最后剩下的苹果正好等于一篓苹果的81。

这篓苹果有多少个? 分析:丙分得苹果的21也是总数的81,其余为81×2=41, (5+7)÷⎪⎭⎫ ⎝⎛---4151411=40(个) 例2:甲数是乙数、丙数、丁数之和的21,乙数是甲数、丙数、丁数之和的31,丙数是甲数、乙数、丁数之和的41。

已知丁数是260,求甲数、乙数、丙数、丁数之和。

分析:甲数为:(甲+乙+丙+丁)的31121=+,乙数为:(甲+乙+丙+丁)的41131=+ 丙数为:(甲+乙+丙+丁)的51;甲+乙+丙+丁=“1”,丁数为:60135141311=⎪⎭⎫ ⎝⎛---总数:260÷6013=1200(个)。

例3:有甲、乙两个粮库,原来甲粮库存粮的吨数是乙粮库的75。

如果从乙粮库调6吨粮食到甲仓库,甲仓库存粮的吨数就是乙仓库的54。

原来甲、乙粮库各存粮多少吨?解:设乙仓库存粮为x 吨,甲仓库存粮为75x 吨。

456756=+-x x 解之得 x=126 例4:学校有皮球和足球共100个,皮球的个数的31比足球个数的101多16个。

学校有皮球和足球各多少个?解:设皮球个数为x 个,足球的个数为100-x ,31610100x x =+- x=60,足球:100-x=100-60=40(个)。

例5:有红黄两种颜色的小球共140个,拿出红球的41,再拿出7个黄球,剩下的红球和黄球正好一样多。

原来红球和黄球各有多少个?解:设红球为x 个,黄球为140-x 个。

(1-41)x =140-x -7 x=76 黄球=64(个) 例6:金放在水里称,重量减轻191;银放在水里称,重量减轻101。

一块合金重770克,放在水里称,共减轻了50克。

这块合金含金含银各有多少克? 解:方法(一):设金重为x 克,银重为(770-x )克,501077019=-+x x 解之得:x=570 银重=770-570=200(克) 方法(二):设金减轻x ,银减轻50-x ,x ÷191+(50-x )÷101=770 解之得: x=30 银减轻=50-30=20(克) 金=30÷191=570(克) 银=20÷101=200(克) 练习:1、桃树棵数的53和梨树棵数94相等。

小学五年级应用题奥数应用题100道(含答案)

小学五年级应用题奥数应用题100道(含答案)

小学五年级应用题奥数应用题100道(含答案)1. 商店有苹果300 千克,梨200 千克,梨的重量是苹果的几分之几?答案:200÷300 = 2/32. 一条公路长500 米,已经修了200 米,剩下的占全长的几分之几?答案:(500 - 200)÷500 = 3/53. 五年级一班有学生40 人,其中男生25 人,女生占全班人数的几分之几?答案:(40 - 25)÷40 = 3/84. 一本故事书240 页,小明第一天看了全书的1/6,第二天看了全书的3/8,两天一共看了多少页?答案:240×(1/6 + 3/8)= 130(页)5. 学校运来一堆沙子,砌墙用去2/5 吨,修运动场用去3/8 吨,还剩1/10 吨。

这堆沙子原有多少吨?答案:2/5 + 3/8 + 1/10 = 7/8(吨)6. 服装厂计划一个月生产衣服3600 件,上半月完成了4/9,下半月完成的与上半月同样多,这个月实际生产多少件?答案:3600×4/9×2 = 3200(件)7. 一辆汽车从甲地开往乙地,已经行了全程的3/8,离中点还有25 千米,甲乙两地相距多少千米?答案:25÷(1/2 - 3/8)= 200(千米)8. 水果店运来一批水果,其中苹果120 千克,梨比苹果多1/4,梨有多少千克?答案:120×(1 + 1/4)= 150(千克)9. 五年级同学收集树种56 千克,六年级收集的比五年级多4/7,六年级收集树种多少千克?答案:56×(1 + 4/7)= 88(千克)10. 某工厂十月份用水480 吨,比原计划节约了1/9,十月份原计划用水多少吨?答案:480÷(1 - 1/9)= 540(吨)11. 一根绳子长40 米,第一次用去15 米,第二次用去一些后,还剩下这根绳子的1/5,第二次用去多少米?答案:40 - 15 - 40×1/5 = 17(米)12. 一本书有300 页,第一天看了全书的1/5,第二天看了全书的1/6,第三天应从第几页看起?答案:300×(1/5 + 1/6)+ 1 = 111(页)13. 修一条路,第一天修了全长的1/4,第二天修了全长的1/5,第一天比第二天多修20 米,这条路全长多少米?答案:20÷(1/4 - 1/5)= 400(米)14. 食堂运来一批大米,已经吃了600 千克,正好吃了3/4,这批大米一共有多少千克?答案:600÷3/4 = 800(千克)15. 一辆汽车4 小时行了全程的2/5,照这样的速度,行完全程需要几小时?答案:4÷2/5 = 10(小时)16. 有一块长方形的地,长80 米,宽60 米,在这块地的四周每隔5 米种一棵树,一共可以种多少棵树?答案:(80 + 60)×2÷5 = 56(棵)17. 一个圆形花坛的周长是37.68 米,在它的周围铺一条2 米宽的小路,小路的面积是多少平方米?答案:花坛半径:37.68÷3.14÷2 = 6(米),外圆半径:6 + 2 = 8(米),小路面积:3.14×(8²- 6²)= 87.92(平方米)18. 一个正方体的棱长总和是96 厘米,它的表面积是多少平方厘米?答案:棱长:96÷12 = 8(厘米),表面积:8×8×6 = 384(平方厘米)19. 做一个无盖的长方体铁皮水箱,长5 分米,宽4 分米,高3 分米,至少要用多少平方分米的铁皮?答案:5×4 + 5×3×2 + 4×3×2 = 74(平方分米)20. 把一个棱长8 厘米的正方体铁块,锻造成一个长16 厘米,宽4 厘米的长方体铁块,这个长方体铁块的高是多少厘米?答案:8×8×8÷(16×4)= 8(厘米)21. 一个房间的长6 米,宽3.5 米,高3 米,门窗面积是8 平方米。

五年级经典分数百分数练习100题

五年级经典分数百分数练习100题

五年级分数、百分数应用题练习1、光明小学有学生1200人,其中男生有576人,男生占全校人数几分之几?2、一种半导体收音机,现在售价165元,比去年降低了85元,降低了百分之几?3、某工厂共有工人1280人,其中女工有620人,女工人数是男工人数的百分之几?4、光华小学有学生500人,今天病假4人,求今天的出勤率?5、一种种子的发芽率是90%,播种3000颗种子,大约能发芽多少?6、学校运来34吨煤,已经烧了18吨,烧掉的比剩下的多百分之几?7、用400粒种子做发芽试验,结果有32粒没有发芽,求这批种子的发芽率是多少?8、红旗纺织厂共有女工640人,其中女工占总人数的5/8,女工有多少人?9、一本书共有240页,第一天看了全书的1/4,第二天看了全书的3/8,两天共看了多少页?10、建筑工地需要水泥120吨,第一天运来总量德1/4,第二天运来总量的2/5,第二天比第一天多云多少吨?11、青草晒干后要失去原重量的80%,现有青草6.2吨,能晒干草多少吨?12、从A地到B地,甲走完全程需8小时,乙走全程比甲多用1/4时间,求乙走完全程的时间?13、一根铁丝全长 4.8米,第一次用去全长的1/3,第二次用去余下的60%,最后还剩多少米?14、某工厂有女工128人,女工人数是男工人数的40%,全厂有多少工人?15、从甲地到乙地走了全长的5/8,走了350米,甲地到乙地的全长多少米?16、有两根钢材,第一根长4米,比第二根短2/9,第二根长多少米?17、一件衣服120元,七五折出售,现价多少元?18、一件衣服七五折出售要120元,原价多少元?19、一根电线截成三段,第一段占全长的1/3,第二段占全长的2/5,第三段长6.4米,这根电线长多少米?20、新华书店运来一批儿童读物,第一天卖出1800本,第二天比第一天多卖1/9,余下的是总数的3/7,第三天卖完。

求这批儿童读物共多少本?21、小名看一本故事书,每天看15页,看了4天,后来又看了全书的1/5,这时还剩下全书的1/5没看,这本故事书共有多少页?22、有一天磨面机,2小时加工一批小麦的2/5,按同样的效率加工这批小麦剩余部分,还需几时?23、某校买来一批图书,放在两个书柜中,其中第一柜的本数占这批图书的58%,如果从第一柜取出32本,放到第二柜中,这时两个书柜的书各占这批图书的1/2。

五年级奥数.应用题.分数、百分数应用题(一)(A级)学生版

五年级奥数.应用题.分数、百分数应用题(一)(A级)学生版

【例 1】 解下列方程:(1)52342.3=⨯-x (2) 2283x x x +-=+(3)12(3)7x x +-=+ (4)132(23)5(2)x x --=--【例2】一桶油第一次用去51,第二次比第一次多用去20千克,还剩下22千克。

原来这桶油有多少千克?【例3】一堆煤,第一次用去这堆煤的20%,第二次用去290千克,这时剩下的煤比原来这堆煤的一半还多10千克,求原来这堆煤共有多少千克?分数、百分数应用题(一)发现不同【例4】 缝纫机厂女职工占全厂职工人数的207,比男职工少144人,缝纫机厂共有职工多少人?【例5】菜农张大伯卖一批大白菜,第一天卖出这批大白菜的31,第二天卖出余下的52,这时还剩下240千克大白菜未卖,这批大白菜共有多少千克?【例6】兄弟两人各有人民币若干元,其中弟的钱数是兄的54,若弟给兄4元,则弟的钱数是兄的32,求兄弟两人原来各有多少元? 【例7】某工厂计划一月份生产一批零件,由于改进生产工艺,结果上半月生产了计划的53,下半月比上半月多生产了51,这样全月实际生产了1980个零件,一月份计划生产多少个?【例8】 五(2)班有学生54人,男生人数的75%和女生人数的80%都参加了课外兴趣小组,而未参加课外兴趣小组的男、女生人数刚好相等,这个班男、女生各有多少人?【例9】两种糖放在一起,其中软糖占209,再放入16块硬糖以后,软糖占两种糖总数的41,求软糖有多少块?【例10】小明看一本课外读物,读了几天后,已读的页数是剩下页数的81,后来他又读了20页,这时已读的页数是剩下页数的61,这本课外读物共有多少页?【例11】 人合买一台彩电,老大出的钱是其他两人出钱总数的21,老二出的钱是其他两人出钱总数的31,老三比老二多出400元。

问这台彩电多少钱?【例12】 条公路修了1000米后,剩下部分比全长的53少200米,这条公路全长多少米?【例13】 两班共有96人,选出甲班人数的41和乙班人数的51,组成22人的数学兴趣小组,问甲、乙两班原来各有多少人?【例14】 某书店出售一种挂历,每售出1本可得18元利润。

分数百分数应用题(含答案)

分数百分数应用题(含答案)

问题:35、甲乙二人各有人民币若干元,其中甲占60%,若乙给甲12元后,乙剩下的钱相当于甲的1/3,甲乙二人共有人民币多少元?36、甲乙二人各有人民币若干元,乙是甲的2/3,若乙给甲12元,则乙相当于甲的1/3,甲乙二人共有人民币多少元?37、四位同学共种树60棵,第一位同学种的是其它同学种的一半,第二位同学种的是其它同学种的1/3,第三位同学种的是其它同学种的1/4,第四位同学种了多少棵?38、甲乙二人同时从东镇到西镇,甲走了全程的2/5时,乙只走了9.6千米,当甲到达西镇时,乙离西镇还有全程的3/11,求东西两镇的距离。

39、一年级甲班学生人数等于乙班学生人数的1.125倍,甲班学生全部是少先队员,乙班学生中有10人尚没入队,已知甲班队员人数是乙班队员的1.5倍,甲乙两班各有多少人?40、五年级甲乙丙三班共有学生138人,上期甲班比乙班多4人,本期开学初,调整人数,重新编班,把丙班人数的2/5编入甲班,3/5编入乙班,这样乙班比甲班多4人,求编班前各班的人数。

41、一年级甲班少先队员占全班人数的3/5,比乙班全班人数少13人,已知甲班比乙班多9人,求甲乙两班各几人?42、某校有学生若干人,男生比全校学生总数的1/3多144人,女生比全校学生总数的3/5少40人,求全校学生总数.43、地里收了一批西红柿,上午将全部的1/3都装完,正好装了3筐,下午把剩下的装了5筐后,还剩25千克没装,这批西红柿一共有多少千克?44、光华机械厂,两天生产了一批零件,用同样的箱子包装,第一天完成总数的3/7装满3箱还剩120个,第二天生产的零件正好装了6箱,这批零件共有多少个?45、五个连续自然数,其中第三个比一、一两个数的和的5/9少2,第三个数是多少?46、五个连续自然数中,最小的一个自然数等于这五个数的和的1/6,这五个数的和是多少?47、某校六年级有学生152人,选出男生的1/11和5名女生参加数学竞赛,剩下的男女人数相等,六年级男女生各有多少人?48、某工厂选出男职工的1/11和12名女工,去参加拔河比赛,剩下的男职工人数是女职工的2倍,已知这个厂共有职工476人,问男女职工各有多少人?49、一辆车从甲地到乙地,平均每小时行80千米,返回时所用的时间比去时少20%,返回时每小时行多少千米?50、王芳和李华在为“希望工程献爱心”的活动中共捐款252元,如果李华的捐款数再增加1/3,那么王芳和李华的捐款数之比为3:2,王芳和李华各捐了多少元?51、师徒二人加工同样的机器零件,徒弟12天加工的个数比师傅10天加工的个数还少40个,师傅与徒弟每天工作量的比是13:10,师傅每天加工多少个?52、师徒二人共同生产一种零件,师傅比徒弟每小时多生产10个,师傅生产了7小时徒弟生产了4小时,正好完成任务,完成任务时徒弟生产的零件的个数是师傅的20/21,师徒共生产零件多少个?53、一辆汽车以每小时80千米的速度从甲城开往乙城,返回时用原速走了全程的3/4还多10千米,余下的路程每小时行60千米,因此返回甲城的时间去去时多用了10分钟,甲乙两城相距多少千米?54、甲乙两人同时由A地到B地,甲乘汽车每小时行80千米,乙骑摩托车每小时行72千米,结果甲比预定时间早到了15分钟,而乙则迟到了10分钟,A、B两地的距离是多少千米?55、甲乙两人共存钱195元,甲取出自己存款的1/5,乙取出15元,二人剩下的存款相等,甲乙二人原来各存款多少元?答案:35、甲乙二人各有人民币若干元,其中甲占60%,若乙给甲12元后,乙剩下的钱相当于甲的1/3,甲乙二人共有人民币多少元?根据:若乙给甲12元后,乙剩下的钱相当于甲的1/3,可以得出:乙的钱数占两人总钱数的1/4,甲的钱数占两人总钱数的3/4.12÷(3/4-60%)=80元36、甲乙二人各有人民币若干元,乙是甲的2/3,若乙给甲12元,则乙相当于甲的1/3,甲乙二人共有人民币多少元?根据:乙是甲的2/3得出:乙占两人总钱数的2/5根据:乙相当于甲的1/3得出:乙的钱数占两人总钱数的1/412÷(2/5-1/4)=80元37、四位同学共种树60棵,第一位同学种的是其它同学种的一半,第二位同学种的是其它同学种的1/3,第三位同学种的是其它同学种的1/4,第四位同学种了多少棵?根据:第一位同学种的是其它同学种的一半得出:第一位同学种的是四人总数的1/3根据:第二位同学种的是其它同学种的1/3得出:第二位同学种的是四人总数的1/4根据:第三位同学种的是其它同学种的1/4得出:第三位同学种的是四人总数的1/560*(1-1/3-1/4-1/5)=13棵38、甲乙二人同时从东镇到西镇,甲走了全程的2/5时,乙只走了9.6千米,当甲到达西镇时,乙离西镇还有全程的3/11,求东西两镇的距离。

五年级百分数应用题问题奥数拓展

五年级百分数应用题问题奥数拓展

百分数问题知识点求解步骤:(1)一看:看清百分率(2)二找:找准单位“1”的量(3)三定:确定单位“1”是已知还是未知(4)四列式:A、单位“1”的量×百分率=百分率对应量B、百分率对应量÷百分率=单位“1”的量C、单位“1”的量×百分率差=百分率对应量差D、百分率对应量差÷百分率差=单位“1”的量典型例题【例1】在一次测验中,小明做对的题数是12道,错了4道,小明在这次测验中正确率是百分之几?【练习题1.1】大米加工厂用2000千克的稻谷加工成大米时,共碾出大米1600千克,求大米的出米率。

【练习题1.2】林场春季植树,成活了24570棵,死了630棵,求成活率。

【练习题1.3】家具厂有职工1250人,有一天缺勤15人,求出勤率。

【例2】某厂的一种产品,原来每件成本96元,技术革新后,每件成本降低到了84元,每件成本降低了百分之几?【练习题2.1】甲乙两人生产水杯,甲每小时生产9个,乙每小时生产12个,求甲的效率比乙低百分之几?(答案用百分数表示)【练习题2.2】录音机厂第三季度计划生产录音机3600台,实际生产4500台,实际产量超过计划百分之几?(答案用百分数表示)【练习题2.3】某钢铁厂八月份生产钢铁2460吨,比计划增产60吨,增产百分之几?(答案用百分数表示)【例3】(1)甲有20个苹果,乙的苹果数量比甲的的苹果数量多10%,求乙的苹果数量。

(2)甲有18个苹果,甲的苹果数量比乙的的苹果数量少10%,求乙的苹果数量。

【练习题3.1】杉树的成活率是95%,今年植树节植树成活了285棵,求一共植了多少棵树?【练习题3.2】青年农场第一天割麦8.5公顷,第二天比第一天多割20%,第二天割多少公顷?【例4】一本书360页,第一天看了全书的40%,第二天看了全书的25%,这时还剩多少页没有看?【练习题4.1】一条绳子,剪去全长的60%,还剩下12米,原来绳子长多少米?【练习题4.2】小军读一本故事书,第一天读了42页,第二读了43页,还余下全书的83%没有读,这本故事书一共多少页?【练习题4.3】一条公路有60千米已经完成改修,还未改修的正好是全长的70%,求这条公路剩下多少千米没有修?【例5】服装厂一车间人数占全厂25%,二车间人数比一车间人少20%,三车间人数比二车间多30%,三车间156人,求全厂共有多少人?【练习题5.1】希望小学低年级人数占全校人数的30%,中年级人数比低年级人数多25%,其中高年级有130名学生,求全校有多少人?【例题5.2】有三筐水果,分别为苹果、梨子和香蕉。

分数百分数应用题奥数部1

分数百分数应用题奥数部1

分数百分数应用题1、 有一桶汽油,第一次取出12千克,第二次取出剩下的51,第三次取出全桶油的21,正好取完,第二次取出多少千克?2、 某工厂有三个车间,第一车间的人数占三个车间总人数的25%,第二车间人数是第三车间的43。

已知第一车间比第二车间少40人,三个车间一共有多少人?3、 化三小四、五、六年级去植树,四年级植树的棵数占三个年级总棵数的51,五年级植树的棵数是六年级的60%,五年级比六年级少植40棵,这三个年级各植树多少棵? 4、图书角有故事书、科技书、文艺书这三种书,故事书的本数占总数的52,秆技书的本数是文艺书的43,文艺书比放事书少20本,图书角共有书多少本?5、食堂买来萝卜、青菜和土豆三种蔬菜。

萝卜的重量占三种蔬菜总重量的52,青菜的重量比士豆少43,萝卜比土豆少360千克。

食堂买来萝卜多少千克?6、 化三小五(3)班的男生人数比女生人数多25%,女生人数比男生人数少百分之几?7、 甲仓存粮的吨数此乙仓少52,乙仓存粮的吨数此甲仓存粮的吨数多百分之几? 8、 水结成冰后体积增加101,冰化成水后体积减少几分之几? 9、学校植树,第一天完成了计划的83,第二天完成了余下计划的32,第三天植树55棵,结果超过计划的25%,原计划植树多少棵?10、甲数是乙数的32,乙数是丙数的43,甲、乙、丙三个数的和是432,甲、乙、丙三个数各是多少?11、甲数是乙数的65,乙数是丙数的75%,甲、乙、丙三个数的和是152,甲、乙、丙三个数各是多少?12、桔子的千克数是苹果的32,香蕉的千克数是桔子的50%,香蕉和苹果共有220千克,桔子有多少千克?13、东山幼儿院有大、中、小三个班级,小班的学生数是中班学生的90%,中班的学生是大班学生的45,东山幼儿院的大班学生占全部学生的儿分之几?14、六(1)班有学生51人,男生人数的43等于女生人数的32。

这个班男、女生各有多少人?15、图书馆买来科技书和文艺书共340本,文艺书本数的31等于科技书本数的80%。

奥数分数百分数应用题

奥数分数百分数应用题

分数百分数应用题知识要点:在解答有关分数百分数应用题时关键是要理清数量之间的关系,找到相应的比例关系,然后列出相关等式或者列方程解决问题.常规题型:(1)求一个数是另一个数的几分之几或百分之几;(2)已知一个数的几分之几或百分之几是多少,求这个数;(3)利润问题。

利润=定价-成本,利润率=利润百分数=利润÷成本=(定价-成本)÷成本,定价=成本×(1+利润率),成本=定价÷(1+利润率)例如中百超市出售商品,超市买进商品的价格是200元(即商品进价),超市卖出商品的价格是300元,那么获得的利润就是300-200=100元。

该商品的利润率(利润百分数)为100÷200=50%。

商场有时会减价出售商品,减价是在原价的基础上进行,通常称为打折,几折就是定价的百分之几十,例如打八五折就是以原来定价的85%出售商品。

例1 某工程队修一条公路,已修的路长相当于未修的18,又接着修了150米后,这时已修的路长相当于未修的15,问还有多少米没有修?【能力提升】甲乙丙三人进行跑步比赛,已知甲的速度是乙的23,乙的速度是丙的2倍,一分钟后丙比甲少跑14米,那么每分钟乙比甲多跑多少米?例2 男生人数比女生少13,又调来35名男生,这时女生人数是男生人数的45,现在女生比男生少多少人?【能力提升】某工厂加工一批产品,第一个月加工了总体的35多50件,第二个月又加工了余下的23少60件,还余下4600件产品没有加工,问这批产品共有多少件?例3 养殖场有鸡鸭鹅三种家禽共3200只,如果卖掉鸡的13,鸭的14,鹅的15,则剩下家禽2400只;如果卖掉鸡的15,鸭的14,鹅的13,则剩下家禽2320只。

养殖场原有鸭多少只?【能力提升】甲乙两班人数总共88人,两个班共有13人参加数学竞赛。

甲班参加人数相当于未参加人数的15,乙班参加人数相当于未参加人数的17。

问甲乙两班各有多少人?例4 一所大学的学生为希望小学捐了一批图书。

小学数学五年级下册课件《分数、百分数应用题》

小学数学五年级下册课件《分数、百分数应用题》

弹数,就是求( )的( )是多少,用(
)计算。
算式是(
54枚

54
5
乘法
9
54 × 5 9
练一练:
1、看线段图列出算式,并算出得数。
“1”
“1”
2 3
?米
2 师傅每小时做零件40个,张师傅每 小时做的零件相当于李师傅的90%,张师傅 每小时做多少个?
桃树面积 占 2 5
桃树面积 占 2 5
? 平方米
6000平方米
有一块6000平方米的果园,桃树种植面 积占总面积的 2 。桃树种植面积是多少平
5
方米?
请仔细读题,并填空。
10月7日,美国向阿富汗发射了54枚巡航导弹,击中目标的
导弹占总数的 。击中目标的导弹5有多少枚?
想:题中(
)是单位“9 1”的量,要求击中目标的导
? 平方米
? 平方米
6000平方米
有一块6000平方米的果园,桃树种植面 积占总面积的 40% 。桃树种植面积是多少平 方米?

五年级奥数题及答案百分数问题(精选5篇)

五年级奥数题及答案百分数问题(精选5篇)

五年级奥数题及答案百分数问题(精选5篇)第一篇:五年级奥数题及答案百分数问题五年级奥数题及答案:百分数问题将某商品涨价25%,如果涨价后的销售金额与涨价前的销售金额相同,则销售量减少了________%。

答案与解析:因为销售总额相等,故商品单价与销售量成反比,单价之比为1:1.25,即4:5,那么销售量之比为5:4,减少了(5-4)5*100%=20%。

第二篇:小学五年级奥数题及答案小学五年级奥数真题及答案一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还需要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?解:4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。

当师傅完成了1/2时,徒弟完成了120个。

当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。

单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。

甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。

完整版)百分数及其应用(奥数题)

完整版)百分数及其应用(奥数题)

完整版)百分数及其应用(奥数题)基本知识:1、常见的百分率包括达标率、及格率、成活率、发芽率、出勤率等。

求百分率就是求一个数是另一个数的百分之几。

2、求一个数比另一个数多(或少)百分之几。

在实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加或减少的幅度。

求甲比乙多百分之几的公式为(甲-乙)÷乙,求乙比甲少百分之几的公式为(甲-乙)÷甲。

3、求一个数的百分之几是多少,可以用一个数(单位“1”)×百分率来计算。

4、已知一个数的百分之几是多少,可以用部分量÷百分率=一个数(单位“1”)来计算。

5、折扣几折就是十分之几,也就是百分之几十。

6、纳税缴纳的税款叫做应纳税额,应纳税额与各种收入的比率叫做税率,应纳税额=总收入×税率。

7、利率存入银行的钱叫做本金,取款时银行多支付的钱叫做利息,利息与本金的比值叫做利率。

税后利息=利息-利息的应纳税额=利息-利息×5%。

例题1:去年春天,我们学校的同学在小河边先种240棵小树,18棵没有成活,后来补种了160棵,又有7棵没有成活。

这年春天植数的成活率是多少?练1:1、王爷爷在自家的小屋后面种下了150棵小树,过了一段时间发现枯死了10棵,于是又补种了10棵,结果全部成活。

王爷爷去年植树的成活率是多少?2、XXX做了180道口算题,要想使正确率达到98%以上,他至少要做对多少道题?例题2:XXX是一个狂热的“驴友”,每周六都要进行户外活动。

今天又是一个周六,原计划每小时步行6千米。

8小时可以达到目的地。

实际行进中由于天气原因,速度减少了10%,实际用了多长时间到达目的地?练2:1、XXX加工一批零件,计划每小时加工10个,12小时全部完成。

实际每小时多加工20%,实际用了多长时间?2、修一条水渠,每天修500米,5天修了全程的50%,剩下的工作效率提高了20%,剩下这段工程可以提前多少天完工?例题3:一种电脑,每台如果减少定价的10%出售,可盈利225元;如果减少定价的20%出售,就亏本120元。

五年级百分数应用题问题奥数拓展

五年级百分数应用题问题奥数拓展

百分数问题知识点求解步骤:(1)一看:看清百分率(2)二找:找准单位“1”的量(3)三定:确定单位“1”是已知还是未知(4)四列式:A、单位“1”的量×百分率=百分率对应量B、百分率对应量÷百分率=单位“1”的量C、单位“1”的量×百分率差=百分率对应量差D、百分率对应量差÷百分率差=单位“1”的量典型例题【例1】在一次测验中,小明做对的题数是12道,错了4道,小明在这次测验中正确率是百分之几?【练习题1.1】大米加工厂用2000千克的稻谷加工成大米时,共碾出大米1600千克,求大米的出米率。

【练习题1.2】林场春季植树,成活了24570棵,死了630棵,求成活率。

【练习题1.3】家具厂有职工1250人,有一天缺勤15人,求出勤率。

【例2】某厂的一种产品,原来每件成本96元,技术革新后,每件成本降低到了84元,每件成本降低了百分之几?【练习题2.1】甲乙两人生产水杯,甲每小时生产9个,乙每小时生产12个,求甲的效率比乙低百分之几?(答案用百分数表示)【练习题2.2】录音机厂第三季度计划生产录音机3600台,实际生产4500台,实际产量超过计划百分之几?(答案用百分数表示)【练习题2.3】某钢铁厂八月份生产钢铁2460吨,比计划增产60吨,增产百分之几?(答案用百分数表示)【例3】(1)甲有20个苹果,乙的苹果数量比甲的的苹果数量多10%,求乙的苹果数量。

(2)甲有18个苹果,甲的苹果数量比乙的的苹果数量少10%,求乙的苹果数量。

【练习题3.1】杉树的成活率是95%,今年植树节植树成活了285棵,求一共植了多少棵树?【练习题3.2】青年农场第一天割麦8.5公顷,第二天比第一天多割20%,第二天割多少公顷?【例4】一本书360页,第一天看了全书的40%,第二天看了全书的25%,这时还剩多少页没有看?【练习题4.1】一条绳子,剪去全长的60%,还剩下12米,原来绳子长多少米?【练习题4.2】小军读一本故事书,第一天读了42页,第二读了43页,还余下全书的83%没有读,这本故事书一共多少页?【练习题4.3】一条公路有60千米已经完成改修,还未改修的正好是全长的70%,求这条公路剩下多少千米没有修?【例5】服装厂一车间人数占全厂25%,二车间人数比一车间人少20%,三车间人数比二车间多30%,三车间156人,求全厂共有多少人?【练习题5.1】希望小学低年级人数占全校人数的30%,中年级人数比低年级人数多25%,其中高年级有130名学生,求全校有多少人?【例题5.2】有三筐水果,分别为苹果、梨子和香蕉。

奥数专题二-分数百分数应用题

奥数专题二-分数百分数应用题

小学奥数专项训练二 分数百分数应用题例题精讲【例 1】 (小数报数学竞赛初赛)甲、乙两人星期天一起上街买东西,两人身上所带的钱共计是86元.在人民市场,甲买一双运动鞋花去了所带钱的49,乙买一件衬衫花去了人民币16元.这样两人身上所剩的钱正好一样多.问甲、乙两人原先各带了多少钱?【解析】 方法一:把甲所带的钱视为单位“1”,由题意,乙花去16元后所剩的钱与甲所带钱的59一样多,那么8616-元钱正好是甲所带钱的519+,那么甲原来带了5(8616)(1)459-÷+=(元),乙原来带了864541-=(元).方法二:甲86元设甲所带的钱数为9份,则甲和乙都还剩5份,所以每份是(8616)(95)5-÷+=(元),则甲原来带了5945⨯=(元),乙原来带了551641⨯+=(元).【巩固】 一实验五年级共有学生152人,选出男同学的111和5名女同学参加科技小组,剩下的男、女人数正好相等。

五年级男、女同学各有多少人?【解析】 根据题意画出线段图,找出量率对应:题中所给的已知数量虽然没有直接的对应关系,但从中可以看出,如果女工去掉5人就和男工人数的(1-111)相对应,因此总人数也应去掉5人,相应的与男工人数的(1-111+1)相对应。

因此男工有:(152-5)÷(1-111+1)=77(名)女工有:152-77=75(名) 答:男共有77名,女工有75名。

【巩固】 五年级有学生238人,选出男生的14和14名女生参加团体操,这时剩下的男生和女生人数一样多,问:五年级女生有多少人?【解析】 男生人数为3(23814)(1)1284-÷+=(人),女生有:3128141104⨯+=(人).【例 2】 甲、乙两个书架共有1100本书,从甲书架借出13,从乙书架借出75%以后,甲书架是乙书架的2倍还多150本,问乙书架原有多少本书?【解析】这个题目的难点就在于甲乙的数目同时发生了变化,变化之后的关系是两倍还多150本,也就是说:甲的23比乙的14的两倍还多150本,如果能够正确地理解和转化这个条件,这道题也就迎刃而解了,从上图中不难看出,“甲的23比乙的14的两倍还多150本”其实也就是“甲的23比乙的12多150本”,如果同时扩大两倍,他们之间的关系就变成了“甲的43比乙多300本”,结合“甲乙的和为1100本”这个条件,这个问题就变成了一个简单的和倍问题了。

五年级奥数比例应用题(一)学生版

五年级奥数比例应用题(一)学生版

五年级奥数比例应用题(一)学生版2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有:一、比和比例的性质性质1:若a : b =c :d ,则(a + c ):(b + d )= a :b =c :d ; 性质2:若a : b =c :d ,则(a - c ):(b - d )= a :b =c :d ;性质3:若a : b =c :d ,则(a +x c ):(b +x d )=a :b =c :d ;(x 为常数) 性质4:若a : b =c :d ,则a ×d = b ×c ;(即外项积等于内项积) 正比例:如果a ÷b =k (k 为常数),则称a 、b 成正比; 反比例:如果a ×b =k (k 为常数),则称a 、b 成反比.二、主要比例转化实例①x a y b =⇒ y b x a =; x ya b =; a b x y =; ②x a y b = ⇒ mx a my b =; x ma y mb =(其中0m ≠); ③x a y b = ⇒ x a x y a b =++; x y a b x a --=; x y a b x y a b ++=-- ;④x a yb =,yc zd = ⇒ x ac z bd =;::::x y z ac bc bd =; ⑤ x 的c a 等于y 的d b ,则x 是y 的ad bc ,y 是x 的bcad.三、按比例分配与和差关系⑴按比例分配例如:将x 个物体按照:a b 的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自知识点拨教学目标比例应用题(一)分配到的物体数量与x 的比分别为():a a b +和():b a b +,所以甲分配到axa b+个,乙分配到bxa b+个. ⑵已知两组物体的数量比和数量差,求各个类别数量的问题例如:两个类别A 、B ,元素的数量比为:a b (这里a b >),数量差为x ,那么A 的元素数量为ax a b -,B 的元素数量为bxa b-,所以解题的关键是求出()a b -与a 或b 的比值.四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l ”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、知识点概述:
分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.
关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。

在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系
例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.
(2)甲比乙多18
,乙比甲少几分之几? 方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889
÷=. 方法二:可设乙为8份,则甲为9份,因此乙比甲少1199
÷=. 二、怎样找准分数应用题中单位“1”
(一)、部分数和总数
在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如:
我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。

解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。

(二)、两种数量比较
分数应用题中,两种数量相比的关键句非常多。

有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。

在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”), 知识框架
分数、百分数应用题(一)
发现不同
当于”谁的,“是”谁的几分之几。

这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。

(三)、原数量与现数量
有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。

这类分数应用题的单位“1”比较难找。

需要将题目文字完善成我们熟悉的类似带“比”的文字,然后在分析。

例如:水结成冰后体积增加了,冰融化成水后,体积减少了。

完善后:水结成冰后体积增加了→ “水结成冰后体积比原来增加了” →原来的水是单位“1” 冰融化成水后,体积减少了→ “冰融化成水后,体积比原来减少了” →原来的冰是单
位“1”
解题关键:要结合语文知识将题目简化的文字丰富后在分析
(1) 寻找单位“1”。

(2) 理解量率对应。

(3) 抓住不变量。

【例 1】 一桶油第一次用去
51,第二次比第一次多用去20千克,还剩下22千克。

原来这桶油有多少千克?
【巩固】 一堆煤,第一次用去这堆煤的20%,第二次用去290千克,这时剩下的煤比原来这堆煤的一半还多
10千克,求原来这堆煤共有多少千克?
【例 2】 缝纫机厂女职工占全厂职工人数的
20
7,比男职工少144人,缝纫机厂共有职工多少人?
例题精讲
重难点
【巩固】 菜农张大伯卖一批大白菜,第一天卖出这批大白菜的
31,第二天卖出余下的52,这时还剩下240千克大白菜未卖,这批大白菜共有多少千克?
【例 3】 男生人数是女生人数的
54,男生人数是学生总人数的几分之几?
【巩固】 兄弟两人各有人民币若干元,其中弟的钱数是兄的
54,若弟给兄4元,则弟的钱数是兄的32,求兄弟两人原来各有多少元?
【例 4】 甲是乙的
32,乙是丙的5
4,甲是丙的的几分之几?
【巩固】 某工厂计划一月份生产一批零件,由于改进生产工艺,结果上半月生产了计划的5
3,下半月比上半月多生产了
5
1,这样全月实际生产了1980个零件,一月份计划生产多少个?
【例 5】 甲的
54等于乙的7
3,甲是乙的几分之几?
【巩固】 五(2)班有学生54人,男生人数的75%和女生人数的80%都参加了课外兴趣小组,而未参加课外
兴趣小组的男、女生人数刚好相等,这个班男、女生各有多少人?
【例 6】 两种糖放在一起,其中软糖占
209,再放入16块硬糖以后,软糖占两种糖总数的41,求软糖有多少块?
【巩固】 小明看一本课外读物,读了几天后,已读的页数是剩下页数的8
1,后来他又读了20页,这时已读的页数是剩下页数的
6
1,这本课外读物共有多少页?
【例 7】 人合买一台彩电,老大出的钱是其他两人出钱总数的
21,老二出的钱是其他两人出钱总数的31,老三比老二多出400元。

问这台彩电多少钱?
【巩固】 条公路修了1000米后,剩下部分比全长的
53少200米,这条公路全长多少米?
【例 8】 两班共有96人,选出甲班人数的
4
1和乙班人数的51,组成22人的数学兴趣小组,问甲、乙两班原来各有多少人?
【巩固】 某书店出售一种挂历,每售出1本可得18元利润。

售出一部分后每本减价10元出售,全部售完。

已知减价出售的挂历本数是减价前出售挂历本数的
3
2。

书店售完这种挂历共获利润2870元。

书店共售出这种挂历多少本?
【例 9】 某工厂第一车间人数比第二车间的5
4多16人,如果从第二车间调40人到第一车间,这时两个车间的人数正好相等,原来两个车间各有多少人?
【巩固】 老师买来一些本子和铅笔作奖品,已知本子本数与铅笔支数的比是4∶3,每位竞赛获奖的同学奖
8本本子和5支铅笔,奖了7位同学后,剩下的本子本数与铅笔支数的比是3∶4,老师买来本子、铅笔各多少?
【例 10】 某区举行小学生春季运动会,其中某校参加的人数占运动员总人数的115
,若这个学校再去10名运动员,则该校人数占运动员总人数的
223
,这次运动会共有运动员多少人?这个学校原来有多少人参加运动会?
【巩固】 甲、乙、丙三人合作生产一批机器零件,甲生产的零件数量的一半与乙生产的零件的35
相等,又等于丙生产零件数量的四分之三,已知乙比丙多生产50个零件,求这批零件共有多少个。

【随练1】 京新小学六年级有两个班共有学生90人,期末两个班共选出三好学生14人,其中从甲班选出16
,从乙班选出
17
,两班各有学生多少人?
【随练2】 1只猴子摘了一堆桃子,第一天吃了这堆桃子的17,第二天吃了余下的桃子的16,第三天吃了余下桃子的15,第四天吃了余下的14,第五天吃了余下的13,第六天吃了余下的12
,这时还剩下12个桃子,那么第一天和第二天所吃桃子的总数是多少?
【随练3】 一个木杆,第一次截去了全长的12,第二次截去所剩木杆的13,第三次截去所剩木杆的14
,第四次截去所剩木杆的
15
,这时量得所剩木杆长为6厘米。

木杆原来的长是多少厘米?
【作业1】 一本书,已看了30页,剩下的准备8天看完,如果每天看的页数相等,3天看的页数恰好为全书
的5/22,这本书共有多少页?
家庭作业
课堂检测
【作业2】一瓶饮料,一次喝掉一半饮料后,连瓶共重700克;如果喝掉饮料的1/3后,连瓶共重800克,求瓶子的重量。

【作业3】食堂有一桶油,第一天吃掉一半多1千克,第二天吃掉剩下的油的一半多2千克,第三天又吃掉剩下的油的一半多3千克,最后桶里还剩下2千克油,问桶里原有油多少千克?
【作业4】菜地里黄瓜获得丰收,收下全部的3/8时,装满了4筐还多36千克,收完其余的部分时,又刚好装满8筐,求共收黄瓜多少千克?
【作业5】甲乙丙三人到银行存款,甲存入的款数比乙多1/5,乙存入的款数比丙多1/5,问甲存入的款数比丙多几分之几?
【作业6】古希腊杰出的数学家丢番图的墓碑上有一段话:“他生命的六分之一是幸福的童年。

再活十二分之一,颊上长出了细细的胡须,又过了生命的七分之一他才结婚,再过了五年,他幸福的得了个
儿子。

可这孩子光辉灿烂的生命只有他父亲的一半。

儿子死后,老人在悲痛中活了四年,结束了
尘世的生涯。

”你能根据这段话推算出丢番图活到了多少岁吗?多少岁结婚?。

相关文档
最新文档