列代数式练习题精选

合集下载

代数式(压轴必刷30题5种题型专项训练)(解析版)

代数式(压轴必刷30题5种题型专项训练)(解析版)

代数式(压轴必刷30题5种题型专项训练)一.列代数式(共7小题)1.(2022秋•拱墅区月考)现有一张边长为a的大正方形卡片和三张边长为b的小正方形卡片(a<b<a),如图1;取出两张小正方形卡片放入大正方形卡片内拼成的图案如图2;再重新用三张小正方形卡片放入大正方形卡片内拼成的图案如图3.则图3中阴影部分的面积为(用含有a,b的代数式表示);已知图3中的阴影部分的面积比图2中的阴影部分的面积大2ab﹣15,则小正方形卡片的面积是.【分析】图2中阴影正方形的边长为(2b﹣a),面积就是(2b﹣a)2;图3中两个阴影部分的面积可以上下拼在一起,也是个正方形,其边长是(a﹣b),面积就是(a﹣b)2.再根据等量关系列方程就可以得出含有a、b的关系式了.【解答】解:图2中阴影部分是正方形,它的边长是(2b﹣a),所以它的面积就是(2b﹣a)2.图3a﹣b),所以它的面积就可以表示为:(a﹣b)2.又因为图3中的阴影部分的面积比图2中的阴影部分的面积大2ab﹣15,所以可得:(2b﹣a)2+2ab﹣15=(a﹣b)2,4b2﹣4ab+a2+2ab﹣15=a2+b2﹣2ab,3b2=15,b2=5,故小正方形的面积是5.【点评】本题考查列代数式的能力,用字母表示阴影部分的面积.再根据等量关系进行推导.2.(2022秋•余姚市校级期中)A市、B市和C市分别有某种机器10台、10台、8台,现在决定把这些机器支援给D市18台,E市10台.已知调运机器的费用如表所示.设从A市、B市各调x台到D市.(1)C市调运到D市的机器为台(用含x的代数式表示);(2)B市调运到E市的机器的费用为元(用含x的代数式表示,并化简);(3)求调运完毕后的总运费(用含x的代数式表示,并化简);(4)当x=5和x=8时,哪种调运方式总运费少?少多少?【分析】(1)用D市需要的总数减去从A市、B市各调的台数即可;(2)求得B市剩下的台数,再乘运费即可;(3)用运送的台数乘运费分别求得各自得运费,再进一步求和即可;(4)把x=5和x=8分别代入求得答案即可.【解答】解:(1)C市调运到D市的机器为18﹣2x台;故答案为:(18﹣2x);(2)B市调运到E市的机器的费用为700(10﹣x)=(7000﹣700x)元(用含x的代数式表示,并化简);故答案为:(7000﹣700x).(3)调运完毕后的总运费为200x+800(10﹣x)+300x+700(10﹣x)+400(18﹣2x)+500[8﹣(18﹣2x)]=17200﹣800x;(4)当x=5时,总运费为17200﹣800×5=13200元;当x=8时,总运费为17200﹣800×8=10800元;10800元<13200元,13200﹣10800=2400,所以当x=8时,总运费最少,最少为10800元,少2400元.【点评】此题考查列代数式,题目关系是比较多,理清顺序,正确利用基本数量关系解决问题.3.(2021秋•陕州区期末)某单位在五月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队管理员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有a(a>10)人,则甲旅行社的费用为元,乙旅行社的费用为元;(用含a的代数式表示,并化简.)(2)假如这个单位现组织包括管理员工在内的共20名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请说明理由.(3)如果计划在五月份外出旅游七天,设最中间一天的日期为a,则这七天的日期之和为.(用含a的代数式表示,并化简.)(4)假如这七天的日期之和为63的倍数,则他们可能于五月几号出发?(写出所有符合条件的可能性,并写出简单的计算过程.)【分析】(1)由题意得,甲旅行社的费用=2000×0.75a;乙旅行社的费用=2000×0.8(a﹣1),再对两个式子进行化简即可;(2)将a=20代入(1)中的代数式,比较费用较少的比较优惠;(3)设最中间一天的日期为a,分别用含有a的式子表示其他六天,然后求和即可;根据前面求得七天的日期之和的求得最中间的那个日期,然后分别求得当为63的1倍,2倍,3倍时,日期分别是什么即可.【解答】解:(1)由题意得,甲旅行社的费用=2000×0.75a=1500a;乙旅行社的费用=2000×0.8(a﹣1)=1600a﹣1600;故答案为1500a.(1600a﹣1600).(2)将a=20代入得,甲旅行社的费用=1500×20=30000(元);乙旅行社的费用=1600×20﹣=30400(元)∵30000<30400元∴甲旅行社更优惠;(3)设最中间一天的日期为a,则这七天分别为:a﹣3,a﹣2,a﹣1,a,a+1,a+2,a+3∴这七天的日期之和=(a﹣3)+(a﹣2)+(a﹣1)+a+(a+1)+(a+2)+(a+3)=7a(4)①设这七天的日期和是63,则7a=63,a=9,所以a﹣3=6,即6号出发;②设这七天的日期和是63的2倍,即126,则7a=126,a=18,所以a﹣3=15,即15号出发;③设这七天的日期和是63的3倍,即189,则7a=189,a=27,所以a﹣3=24,即24号出发;所以他们可能于五月6号或15号或24号出发.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.4.(2020秋•衢州期中)甲.乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价20元,乒乓球每盒定价5元.现两家商店搞促销活动,甲店的优惠办法是:每买一副乒乓球拍赠一盒乒乓球;乙店的优惠办法是:按定价的9折出售.某班需购买乒乓球拍4副,乒乓球若干盒(不少于4盒).(1)用代数式表示(所填式子需化简):当购买乒乓球的盒数为x盒时,在甲店购买需付款元;在乙店购买需付款元.(2)当购买乒乓球盒数为10盒时,到哪家商店购买比较合算?说出你的理由.(3)当购买乒乓球盒数为10盒时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并求出此时需付款几元?【分析】(1)甲店需付费:4副乒乓球拍子费用+(x﹣4)盒乒乓球费用;乙店需付费:(4副乒乓球拍子费用+x盒乒乓球费用)×0.9,把相关数值代入求解即可;(2)把x=10代入(1)得到的式子计算,比较结果即可;(3)可在甲店购买乒乓球拍子,在乙店购买乒乓球.【解答】解:(1)甲店需付费:4×20+(x﹣4)×5=80+5x﹣20=(5x+60)元;乙店需付费:(4×20+x ×5)×0.9=(4.5x+72)元;故答案为(5x+60);(4.5x+72);(2)当x=10时,甲店需付费5×10+60=110元;乙店需付费4.5×10+72=117元,∴到甲商店比较合算;(3)可在甲店购买4副乒乓球拍子,在乙店购买(10﹣4)盒乒乓球,所需费用为:4×20+(10﹣4)×5×0.9=80+27=107元.【点评】5.(2021秋•下城区校级期中)从2012年7月1日起某市执行新版居民阶梯电价,小明同学家收到了新政后的第一张电费单,小明爸爸说:“小明,请你计算一下,这个月的电费支出与新政前相比是多了还是少了?”于是小明上网了解了有关电费的收费情况,得到如下两表:2004年1月至2012年6月执行的收费标准:2012年7月起执行的收费标准:(1)若小明家2012年7月份的用电量为200度,则小明家7月份的电费支出是多少元?比新政前少了多少元?(2)若新政后小明家的月用电量为a度,请你用含a的代数式表示当月的电费支出.【分析】(1)根据表格中的数据可以计算出小明家2012年7月份的用电量为200度时当月的电费支出和新政前用电量为200度时当月的电费支出,从而可以解答本题;(2)根据表格中的数据可以分别用代数式表示出各个阶段的电费支出.【解答】解:(1)由题意可得,小明家2012年7月份的用电量为200度,小明家7月份的电费支出是:200×0.53=106(元),新政前,用电200度电费支出为:50×0.53+(200﹣50)×0.56=110.5(元),∵110.5﹣106=4.5(元),∴新政后比新政前少华4.5元,即若小明家2012年7月份的用电量为200度,则小明家7月份的电费支出是106元,比新政前少了4.5元;(2)由题意可得,当0≤a≤230时,小明家当月的电费支出为:0.53a,当230<a≤400时,小明家当月的电费支出为:0.53×230+(a﹣230)×0.58=0.58a﹣11.5,当a>400时,小明家当月的电费支出为:0.53×230+0.58×(400﹣230)+0.83×(a﹣400)=0.83a﹣111.5,由上可得,新政后小明家的月用电量为a度,当月支出的费用为:.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.6.(2023秋•海曙区校级期中)小明去文具用品商店给同学买某品牌水性笔,已知甲、乙两商店都有该品牌的水性笔且标价都是1.50元/支,但甲、乙两商店的优惠条件却不同.甲商店:若购买不超过10支,则按标价付款;若一次购10支以上,则超过10支的部分按标价的60%付款.乙商店:按标价的80%付款.在水性笔的质量等因素相同的条件下.(1)设小明要购买的该品牌笔数是x(x>10)支,请用含x的式子分别表示在甲、乙两个商店购买该品牌笔的费用;(2)若小明要购买该品牌笔30支,你认为在甲、乙两商店中,到哪个商店购买比较省钱?说明理由.【分析】(1)先求出甲商店10支水性笔的价钱,然后再求出超过10支的部分的价钱,然后列出代数式;乙商店每支水性笔的价钱是1.5×0.8元,那么x支的价钱是1.5×0.8×x元;(2)把x=30代入即可得到答案.【解答】解:(1)在甲商店需要:10×1.5+0.6×1.5×(x﹣10)=0.9x+6(元),在乙商店需要:1.5×0.8×x=1.2x(元),(2)当x=30时,0.9x+6=33,1.2x=36,因为33<36,所以小明要买30支笔应到甲商店买比较省钱.【点评】本题考查了列代数式,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.7.(2021秋•临海市月考)大客车上原有(3a﹣b)人,中途下车一半人,又上车若干人,使车上共有乘客(8a﹣5b)人.问中途上车乘客是多少人?当a=10,b=8时,上车乘客是多少人?【分析】原有(3a﹣b)人,中途下车(3a﹣b)人,又上车若干人后车上共有乘客(8a﹣5b)人.中途上车乘客数=车上共有乘客数﹣中途下车人数,所以中途上车乘客为,把a=10,b=8代入上式可得上车乘客人数.【解答】解:中途上车乘客是(8a﹣5b)﹣(3a﹣b)=(人),当a=10,b=8时,上车乘客是29人.【点评】要分析透题中的数量关系:中途上车乘客数=车上共有乘客数﹣中途下车人数,用代数式表示各个量后代入即可.二.代数式求值(共7小题)8.(2023秋•西湖区期中)已知|m|=3,|n|=2,且m<n,求m2+mn+n2的值.【分析】先利用绝对值的性质求得m、n的值,然后根据m<n分类计算即可.【解答】解:由题意可得,m=±2,n=±2,又∵m<n,∴m=﹣3,n=2 或m=﹣3,n=﹣2,当m=﹣3,n=2时,原式=(﹣3)2+(﹣3)×2+22=9﹣6+4=7;当m=﹣3,n=﹣2时,原式=(﹣3)2+(﹣3)×(﹣2)+(﹣2)2=9+6+4=19.【点评】本题主要考查的是求代数式的值,求得m、n的值是解题的关键.9.(2022秋•阳新县期中)某电器商销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元,“十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的90%付款.现某客户要到该卖场购买微波炉10台,电磁炉x台(x>10).(1)若该客户按方案一、方案二购买,分别需付款多少元?(用含x的式子表示)(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.并计算需付款多少元?【分析】(1)根据题目提供的两种不同的付款方式列出代数式即可;(2)将x=30代入求得的代数式中即可得到费用,然后比较即可得到选择哪种方案更合算;(3)根据题意考可以得到先按方案一购买10台微波炉送10台电磁炉,再按方案二购买20台电磁炉更合算.【解答】解:(1)800×10+200x﹣10)=200x+6000(元),(800×10+200x)×90%=180x+7200(元);(2)当x=30时,方案一:200×30+6000=12000(元),方案二:180×30+7200=12600(元),所以,按方案一购买较合算.(3)先按方案一购买10台微波炉送10台电磁炉,再按方案二购买20台电磁炉,共10×800+200×20×90%=11600(元).【点评】本题考查了列代数式和求代数式的值的相关的题目,解题的关键是认真分析题目并正确的列出代数式.10.(2022秋•吴兴区期中)电动车厂计划每天平均生产n辆电动车(每周工作五天),而实际产量与计划产量相比有出入,下表记录了某周五个工作日每天实际产量情况(超过计划产量记为正、少于计划产量记为负):(1)用含n的整式表示本周五天生产电动车的总数;(2)该厂实行每日计件工资制,每生产一辆车可得200元,若超额完成任务,则超过部分每辆另奖55元;少生产一辆扣60元,当n=50时,那么该厂工人这一周的工资总额是多少元?(3)若将上面第(2)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,当n =50时,在此方式下这一周工人的工资总额与按日计件的工资哪一个更多?请说明理由.【分析】(1)根据正负数的意义分别表示出5天的生产电动车的数量,再求和即可;(2)5天的生产电动车的总数×200元+超出部分的奖励﹣罚款可得工人这一周的工资总额;(3)计算出一周的工资,然后与(2)中数据进行比较即可.【解答】解:(1)n+5+n﹣1+n﹣6+n+13+n﹣2=5n+9;(2)当n=50时,5n+9=5×50+9=259,200×259+55(5+13)+60(﹣1﹣6﹣2)=52250,所以该厂工人这一周的工资总额是52250元.(3)5+(﹣1)+(﹣6)+13+(﹣2)=9,259×200+9×55=52295,∵52250<52295,∴每周计件工资制一周工人的工资总额更多.【点评】此题主要考查了由实际问题列代数式,关键是正确理解题意,掌握每日计件工资制的计算方法.11.(2021秋•镇海区校级期中)周末小明陪爸爸去陶瓷商城购买一些茶壶和一些茶杯,了解情况后发现甲、乙两家商店都在出售两种同样品牌的茶壶和茶杯,定价相同,茶壶每把定价40元,茶杯每只定价5元,且两家都有优惠,甲商店买一送一大酬宾(买一把茶壶送一只茶杯),乙商店全场九折优惠,小明的爸爸需茶壶5把,茶杯a只(不少于25只)(1)分别用含有a的代数式表示在甲、乙两家商店购买所需的费用;(2)当a=40时,在甲、乙哪个商店购买付款较少?请说明理由.(3)若小明的爸爸准备了1800元钱,在甲、乙哪个商店购买的茶杯多?请说明理由.【分析】(1)根据实际付款数得到甲店购买需付款为5(a﹣5)+40×5=(5a+175)(元),乙店购买需付款为(5a+40×5)×0.9=(4.5a+180)(元);(2)将a=40分别代入(1)中所求的两式子,得出的值在哪家少就在那家买;(3)令甲乙的付款数都为1800,然后解方程5a+175=1800和4.5a+135=1800,根据a的大小进行判断.【解答】解:(1)设购买茶杯a只(不少于25只),甲商店买一送一大酬宾(买一把茶壶送一只茶杯),且茶壶每把定价40元,茶杯每只定价5元,故在甲店购买需付:5(a﹣5)+40×5=(5a+175)(元);乙商店全场九折优惠,故在乙店购买需付:(5a+40×5)×0.9=(4.5a+180)(元);(2)在乙商店购买付钱较少.理由如下:当a=40时,在甲店购买需付:5×40+175=375元,在乙店购买需付:4.5×40+180=360元,∵375>360,∴在乙商店购买付款较少;(3由5a+175=1800,得a=325;由4.5a+180=1800,得a=360.所以在乙商店购买的茶杯多.【点评】本题考查了一元一次方程在经济问题中的运用以及买东西的优惠问题,注意细心求解即可.12.(2023秋•下城区校级月考)如图,是一个有理数运算程序的流程图,请根据这个程序回答问题:当输入的x为4时,求最后输出的结果y是.【分析】根据题中的程序流程图,将x=4代入计算,得到结果为﹣2小于1,将x=﹣2代入计算得到结果为1,将x=1代入计算得到结果大于1,即可得到最后输出的结果.【解答】解:输入x=4,代入(x2﹣8)×(﹣)得:(16﹣8)×(﹣)=﹣2<1,将x=﹣2代入(x2﹣8)×(﹣)得:(4﹣8)×(﹣)=1=1,将x=1代入(x2﹣8)×(﹣)得:(1﹣8)×(﹣)=>1,则输出的结果为.故答案为:.【点评】此题考查了代数式求值,弄清题中的程序流程是解本题的关键.13.(2021秋•诸暨市期中)若在运动会颁奖台上面及两侧铺上地毯(如图阴影部分),长为m,宽为n,高为h,(单位为:cm)(1)用m,n,h表示需要地毯的面积;(2)若m=160,n=60,h=80,求地毯的面积.【分析】(1)根据平移计算出地毯总长,然后再根据长×宽可得面积;(2)把已知数据代入(1)中求出答案.【解答】解:(1)地毯的面积为:mn+2nh;(2)地毯总长:80×2+160=320(cm),320×60=19200(cm2),答:地毯的面积为19200cm2.【点评】此题主要考查了生活中的平移现象、代数式求值,关键是掌握平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.14.(2021秋•椒江区校级期中)历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)(f可用其它字母,但不同的字母表示不同的多项式)形式来表示,例如f(x)=x2+3x﹣5,把x=某数时多项式的值用f(某数)来表示.例如x=﹣1时多项式x2+3x﹣5的值记为f(﹣1)=(﹣1)2+3×(﹣1)﹣5=﹣7.已知g(x)=﹣2x2﹣3x+1,h(x)=ax3+2x2﹣x﹣12.(1)求g(﹣2)值;(2)若h()=﹣11,求g(a)的值.【分析】(1)根据举的例子把x=﹣2代入求出即可;(2)把x=代入h(x)=ax3+2x2﹣x﹣12得出一个关于a的方程,求出a的值,把a的值代入g(x)=﹣2x2﹣3x+1即可.【解答】解:(1)g(﹣2)=﹣2×(﹣2)2﹣3×(﹣2)+1=﹣2×4﹣3×(﹣2)+1=﹣8+6+1=﹣1;(2)∵h()=﹣11,∴a×()3+2×()2﹣﹣12=﹣11,解得:a=1,即a=8∴g(a)=﹣2×82﹣3×8+1=﹣2×64﹣24+1=﹣128﹣24+1=﹣151.【点评】本题考查了有理数的混合运算和新定义,关键是培养学生的阅读能力和理解能力,也培养学生的计算能力,题目比较典型,是一道比较好的题目.三.多项式(共1小题)15.(2021秋•越城区期中)关于x的多项式﹣5x2﹣(2m﹣1)x2+(2﹣3n)x﹣1中不含二次项和一次项时,求m、n的值.【分析】利用多项式的定义得出二次项与一次项系数为0,进而求出即可.【解答】解:∵关于x的多项式﹣5x2﹣(2m﹣1)x2+(2﹣3n)x﹣1中不含二次项和一次项,∴﹣5﹣(2m﹣1)=0,2﹣3n=0,解得:m=﹣2,n=.【点评】此题主要考查了多项式的定义,得出各项系数之间关系是解题关键.四.整式的加减(共9小题)16.(2020秋•西湖区校级期末)定义:若a+b=2,则称a与b是关于1的平衡数.(1)3与是关于1的平衡数,5﹣x与是关于1的平衡数.(用含x的代数式表示)(2)若a=2x2﹣3(x2+x)+4,b=2x﹣[3x﹣(4x+x2)﹣2],判断a与b是否是关于1的平衡数,并说明理由.【分析】(1)由平衡数的定义可求得答案;(2)计算a+b是否等于2即可.【解答】解:(1)设3的关于1的平衡数为a,则3+a=2,解得a=﹣1,∴3与﹣1是关于1的平衡数,设5﹣x的关于1的平衡数为b,则5﹣x+b=2,解得b=2﹣(5﹣x)=x﹣3,∴5﹣x与x﹣3是关于1故答案为:﹣1;x﹣3;(2)a与b不是关于1的平衡数,理由如下:∵a=2x2﹣3(x2+x)+4,b=2x﹣[3x﹣(4x+x2)﹣2],∴a+b=2x2﹣3(x2+x)+4+2x﹣[3x﹣(4x+x2)﹣2]=2x2﹣3x2﹣3x+4+2x﹣3x+4x+x2+2=6≠2,∴a与b不是关于1的平衡数.【点评】本题主要考查整式的加减,理解题目中所给平衡数的定义是解题的关键.17.(2021秋•婺城区校级期中)已知整式M=x2+5ax﹣x﹣1,整式M与整式N之差是3x2+4ax﹣x (1)求出整式N;(2)若a是常数,且2M+N的值与x无关,求a的值.【分析】(1)根据题意,可得N=(x2+5ax﹣x﹣1)﹣(3x2+4ax﹣x),去括号合并即可;(2)把M与N代入2M+N,去括号合并得到最简结果,由结果与x值无关,求出a的值即可.【解答】解:(1)N=(x2+5ax﹣x﹣1)﹣(3x2+4ax﹣x)=x2+5ax﹣x﹣1﹣3x2﹣4ax+x=﹣2x2+ax﹣1;(2)∵M=x2+5ax﹣x﹣1,N=﹣2x2+ax﹣1,∴2M+N=2(x2+5ax﹣x﹣1)+(﹣2x2+ax﹣1)=2x2+10ax﹣2x﹣2﹣2x2+ax﹣1=(11a﹣2)x﹣3,由结果与x值无关,得到11a﹣2=0,解得:a=.【点评】此题考查了整式的加减,熟练掌握去括号与合并同类项法则是解本题的关键.18.(2021秋•临海市校级期中)已知:A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1.(1)求3A+6B;(2)若3A+6B的值与a的取值无关,求b的值;(3)如果A+2B+C=0,则C的表达式是多少?【分析】(1)先把A、B的表达式代入,再去括号,合并同类项即可;(2)根据(1)中3A+6B的表达式,再令a的系数等于0,求出b的值即可;(3)先把A、B C的表达式即可.【解答】解:(1)∵A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1,∴3A+6B=3(2a2+3ab﹣2a﹣1)+6(﹣a2+ab﹣1)=6a2+9ab﹣6a﹣3﹣6a2+6ab﹣6=15ab﹣6a﹣9;(2)3A+6B=15ab﹣6a﹣9=a(15b﹣6)﹣9,∵3A+6B的值与a无关,∴15b﹣6=0,∴b=;(3)∵A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1,A+2B+C=0,∴C=﹣A﹣2B=﹣(2a2+3ab﹣2a﹣1)﹣2(﹣a2+ab﹣1)=﹣2a2﹣3ab+2a+1+2a2﹣2ab+2=﹣5ab+2a+3.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.19.(2020秋•奉化区校级期末)已知多项式A=2x2﹣xy+my﹣8,B=﹣nx2+xy+y+7,A﹣2B中不含有x2项和y项,求n m+mn的值.【分析】把A与B代入A﹣2B中,去括号合并得到最简结果,由结果不含有x2项和y项求出m与n的值,代入原式计算即可得到结果.【解答】解:∵A=2x2﹣xy+my﹣8,B=﹣nx2+xy+y+7,∴A﹣2B=2x2﹣xy+my﹣8+2nx2﹣2xy﹣2y﹣14=(2+2n)x2﹣3xy+(m﹣2)y﹣22,由结果不含有x2项和y项,得到2+2n=0,m﹣2=0,解得:m=2,n=﹣1,则原式=1﹣2=﹣1.【点评】此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.20.(2021秋•嵊州市期中)一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1.如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求这个三位数.【分析】x,则这个数是100(2x+1)+10x+(3x﹣1),把这个三位数的百位上的数字和个位上的数字对调后的数为100(3x﹣1)+10x+(2x+1),根据新数减去原数等于99建立方程求解.【解答】解:由题意设十位上的数为x,则这个数是100(2x+1)+10x+(3x﹣1),把这个三位数的百位上的数字和个位上的数字对调后的数为100(3x﹣1)+10x+(2x+1),则100(3x﹣1)+10x+(2x+1)﹣[100(2x+1)+10x+(3x﹣1)]=99,解得x=3.所以这个数是738.【点评】本题利用了整式来表示每位上的数,整式的减法,建立方程求解.21.(2021秋•嵊州市期中)符号“”称为二阶行列式,规定它的运算法规为:=ad﹣bc.(1)计算:=;(直接写出答案)(2)化简二阶行列式:.【分析】(1)原式利用题中的新定义计算即可得到结果;(2)原式利用题中的新定义化简,去括号合并即可得到结果.【解答】解:(1)根据题中的新定义得:原式=10﹣12=﹣2;故答案为:﹣2;(2)根据题中的新定义得:原式=(a+2b)(a﹣2b)﹣4b(0.5a﹣b)=a2﹣4b2﹣2ab+4b2=a2﹣2ab.【点评】此题考查了整式的加减,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.22.(2023秋•象山县校级期中)已知:A=ax2+x﹣1,B=3x2﹣2x+4(a为常数).(1)若A与B的和中不含x2项,求出a的值;(2)在(1)的基础上化简:B﹣2A.【分析】(1)A与B的和中不含x2项,即x2项的系数为0,依此求得a的值;(2)先将表示A与B的式子代入B﹣2A,再去括号合并同类项.【解答】解:(1)A+B=ax2+x﹣1+3x2﹣2x+4=(a+3)x2﹣x+3,∵A与B的和中不含x2项,∴a+3=0,则a=﹣3;(2)B﹣2A=3x2﹣2x+4﹣2×(﹣3x2+x﹣1)=3x2﹣2x+4+6x2﹣2x+2=9x2﹣4x+6.【点评】本题考查了整式的加减,解答本题的关键是掌握多项式加减的运算法则,合并同类项的法则.23.(2020秋•婺城区期末)已知A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)用含a,b的代数式表示A.(2)若|a+1|+(b﹣2)2=0,求A的值.【分析】(1)表示出A,然后去掉括号,再根据整式的加减运算方法进行计算即可得解;(2)根据非负数的性质列式求出a、b的值,然后代入进行计算即可得解.【解答】解:(1)∵A﹣2B=7a2﹣7ab,∴A=7a2﹣7ab+2B,=7a2﹣7ab+2(﹣4a2+6ab+7)=7a2﹣7ab﹣8a2+12ab+14=﹣a2+5ab+14;(2)根据题意得,a+1=0,b﹣2=0,解得a=﹣1,b=2,∴A=﹣a2+5ab+14=﹣(﹣1)2+5×(﹣1)×2+14=﹣1﹣10+14=3.【点评】本题考查了整式的加减,代数式求值,非负数的性质,实质就是去括号,合并同类项的过程,熟记去括号法则和合并同类项法则是解题的关键.24.(2022秋•鄞州区校级期中)已知A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2.(1)化简:2B﹣A;(2)已知﹣a|x﹣2|b2与ab y是同类项,求2B﹣A的值.【分析】(1)把A与B代入2B﹣A中,去括号合并即可得到结果;(2)利用同类项的定义求出x与y的值,代入原式计算即可得到结果.【解答】解:(1)∵A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2,∴2B﹣A=2(2xy﹣3y2+4x2)﹣(3x2+3y2﹣5xy)=4xy﹣6y2+8x2﹣3x2﹣3y2+5xy=5x2+9xy﹣9y2;(2)∵﹣a|x﹣2|b2与ab y的同类项,∴|x﹣2|=1,y=2,解得:x=3或x=1,y=2,当x=3,y=2时,原式=45+54﹣36=63;当x=1,y=2时,原式=5+18﹣36=﹣13.【点评】此题考查了整式的加减,以及同类项,熟练掌握运算法则是解本题的关键.五.整式的加减—化简求值(共6小题)25.(2020秋•永嘉县校级期末)先化简再求值:2(x2+3y)﹣(2x2+3y﹣x),其中x=1,y=﹣2.【分析】先去括号,再合并同类项即可化简原式,继而将x、y的值代入计算可得.【解答】解:原式=2x2+6y﹣2x2﹣3y+x=3y+x,当x=1、y=﹣2时,原式=3×(﹣2)+1=﹣6+1=﹣5.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算整式加减运算顺序和法则是解本题的关键.26.(2020秋•诸暨市期中)化简求值:5(3a2b﹣2ab2)﹣4(﹣2ab2+3a2b),其中a=﹣2,b=1.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=(15a2b﹣10ab2)﹣(﹣8ab2+12a2b)=15a2b﹣10ab2+8ab2﹣12a2b=3a2b﹣2ab2,当a=﹣2,b=1时,原式=16.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.27.(2020秋•富阳区期中)化简并求值:[2b2﹣3+2(a2﹣1)]﹣(4a2﹣3b2),其中a=﹣2,b=1.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=2b2﹣3+2a2﹣2﹣4a2+3b2=5b2﹣2a2﹣5,当a=﹣2,b=1时,原式=5﹣8﹣5=﹣8.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.28.(2020秋•温州月考)求多项式的值,其中x=5,y=﹣8.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=﹣xy+x2﹣3x2+xy=﹣2x2,当x=5时,原式=﹣50.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.29.(2020秋•长兴县期末)先化简,再求值:2(a2﹣ab)﹣3(a2﹣ab﹣1),其中a=﹣2,b=3.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=2a2﹣2ab﹣2a2+3ab+3=ab+3,当a=﹣2,b=3时,原式=﹣6+3=﹣3.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.30.(2021秋•椒江区校级期中)已知|x+2|+(y﹣)2=0,求代数式(x3+2x2y)+x3﹣(﹣3x2y+5xy2)﹣(7﹣5xy2)的值.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:∵|x+2|+(y﹣)2=0,∴x=﹣2,y=,则原式=x3+2x2y+x3+3x2y﹣5xy2﹣7+5xy2=x3+5x2y﹣7=﹣8+10﹣7=﹣5.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.。

列代数式练习题

列代数式练习题

列代数式练习题1、设甲数为x,用代数式表示乙数;1已数比甲数大5; 2乙数比甲数的2倍小3; 3乙数比甲数大16%; 4乙数比甲数的倒数小7. 5乙数比甲数的一半小1; 6甲数比乙数多3; 7乙数比甲数的倒数小17%. 8甲、乙两数的平方差; 9甲数与乙数的倒数的和; 10甲数除乙数与1的和的商.2、用代数式表示1比a 小3的数; 2比b 的一半大5的数;3a 的3倍与b 的2倍的和 ;4x 的 与 的差 ;5a 与b 的和的60%; 6x 与4的平方差即平方的差 ; 7a 、b 两数平方和 , 8a 、b 两数和的平方 ;3、设甲数为a,乙数为b,用代数式表示1甲乙两数的和的2倍; 2甲数的 与乙数的 的差; 3甲、乙两数的平方和 ;4甲乙两数的和与甲两数的差的积; 5甲与乙的2倍的和 ;6甲数的 与乙数差的 ;7甲、乙两数和的平方 ;8甲乙两数的和与甲乙两数的积的差 ;4、当61,31==b a 时,求代数式2)(b a -的值5、当m=2,n= –5时,求n m -22的值6、已知当1,21==y x 时,2x-5y+12的值7、一个塑料三角板,形状和尺寸如图所示,1求出阴影部分的面积;2当a=5cm,b=4cm,r=1cm 时,计算出阴影部分的面积是多少;一、填空题:1、一支圆珠笔 a 元,5 支圆珠笔共_____元;2、“a 的 3 倍与 b 的的和”用代数式表示为__________; 3、比 a 的 2 倍小 3 的数是_____;4、某商品原价为 a 元,打 7 折后的价格为______元;5、一个圆的半径为 r,则这个圆的面积为_______;6、当 x =-2 时,代数式 x 2+1 的值是_______;7、代数式 x 2-y 的意义是_______________;8、一个两位数,个位上的数字是为 a,十位上的数字为 b,则这个两位数是_______;9、若 n 为整数,则奇数可表示为_____;10、设某数为 a,则比某数大 30% 的数是_____;11、被 3 除商为 n 余 1 的数是_____;12、校园里刚栽下一棵 1.8m 的高的小树苗,以后每年长 0.3m;则n 年后的树高是__ m二、求代数式的值:1、已知:a=12,b=3,求的值;2、当x=-,y=-,求4x2-y 的值;3、已知:a+b=4,ab=1,求2a+3ab+2b 的值;。

列代数式典型例题

列代数式典型例题

列代数式典型例题
1. 哎呀,来看这道题哈!一个苹果 5 毛钱,那 10 个苹果得多少钱呀?这就是简单的用代数式表示总价呀,5×10 呗!
2. 嘿,想想看,小明一分钟能跑 100 米,那 5 分钟他能跑多远呢?这就是100×5 呀,是不是很有意思?
3. 哇塞,教室里有 30 个桌子,每排摆 5 个,那一共摆了几排呀?这不就是30÷5 嘛,简单吧!
4. 你说,小红每天读 20 页书,那读 100 页书需要几天呀?哈哈,当然是100÷20 啦!
5. 天哪,一个足球 80 块钱,买 3 个足球要花多少钱呢?那就是80×3 呀!
6. 嘿哟,小王一小时能写 5 篇作文,那 4 小时他能写多少篇呢?这就是5×4 啦!
7. 哎呀呀,一棵树上有 10 个果子,3 棵树上有几个果子呢?毫无疑问是10×3 嘛!
8. 哇哦,一支笔 2 块钱,15 块钱能买几支笔呀?这不就是15÷2 嘛,是不是很容易理解?
9. 呀,小张每分钟走 60 米,走 300 米需要几分钟呢?哈哈,就是300÷60 呀!
10. 哼,一本书有 200 页,已经看了 50 页,还剩下多少页没看呀?那就是 200-50 呀!
我的观点结论就是:列代数式其实并不难呀,只要理解了其中的道理,就能轻松应对各种例题啦!。

代数式练习题(打印版)

代数式练习题(打印版)

代数式练习题(打印版)### 代数式练习题(打印版)#### 一、基础代数式运算1. 代入法求解代数式给定代数式:\( ax + b \),若 \( a = 2 \),\( b = 3 \),求代数式的值。

2. 合并同类项合并下列代数式中的同类项:\( 5x^2 + 3x - 2x^2 + x \)。

3. 代数式的简化简化代数式:\( 4y^2 - 3y + 2 - y^2 + 5y \)。

4. 多项式乘法计算多项式 \( (x + 2)(x - 3) \) 的乘积。

5. 多项式除法将多项式 \( 3x^3 - 6x^2 + 5x - 2 \) 除以 \( x - 1 \)。

#### 二、代数式的应用6. 平均数问题某班级有 25 名学生,平均分是 82 分,求总分。

7. 增长率问题如果某产品的初始价格是 100 元,每年增长 5%,求两年后的售价。

8. 速度与时间问题如果某人以 5 公里/小时的速度行走,求他 3 小时后走了多远。

9. 面积与周长问题一个矩形的长是 10 米,宽是 5 米,求其面积和周长。

10. 利润与成本问题某商品的成本是 50 元,售价是 80 元,求利润率。

#### 三、代数式的扩展11. 因式分解将代数式 \( x^2 - 9 \) 进行因式分解。

12. 配方法使用配方法将代数式 \( x^2 + 6x + 5 \) 转化为完全平方形式。

13. 代数式的不等式解不等式 \( 3x + 2 > 11 \)。

14. 代数式的方程解方程 \( 2x^2 - 5x + 1 = 0 \)。

15. 代数式的函数图像描述函数 \( y = x^2 \) 在 \( x = 0 \) 时的图像特征。

#### 四、综合应用题16. 代数式在几何中的应用一个直角三角形的两条直角边分别为 \( a \) 和 \( b \),求斜边的长度。

17. 代数式在物理中的应用如果一个物体从静止开始以匀加速运动,加速度是 \( 2 \) 米/秒²,求 3 秒后的速度。

列代数式训练题(含答案)

列代数式训练题(含答案)

列代数式训练题(含答案)3.1列代数式(3)列代数式◆随堂检测1、“a的3倍与b的的和”用代数式表示为2、被3除商为n余1的数是3、某电影院第一排有x个座位,后面每一排都比前一排多2个座位,则第n排有个座位。

4、某市的出租车的起步价为5元(行驶不超过7千米),以后每增加1千米,加价1.5元,现在某人乘出租车行驶P千米的路程(P>7)所需费用是()A、5+1.5PB、5+1.5C、5-1.5PD、5+1.5(P-7)5、用代数式表示(1)比a的倒数与b的倒数的和大1的数(2)与的和的20%(3)比x与y的积的倒数的4倍小3的数(4)a,b两数的平方和除以a,b两数的和的平方◆典例分析例:用代数式表示:(1)如果两数之和为20,其中一个数用字母表示,那么这两个数的积为。

(2)设为整数,则三个连续的偶数:。

(3)比的平方大的数。

(4)某产品的生产成品由元下降后是元(5)梯形的上底是,下底是上底的倍,高比上底小,则这个梯形的面积为。

解:(1);(2),,;(3);(4);(5)。

评析:(1)根据两数之和为20,先表示出另一个数为,然后将两个数相乘,但要注意不能忘记在上加上括号;(2)首先是一个偶数的表示方法:,其次是相邻的两个偶数相差为2;(3)一是注意先读先写,二是“大”的意思用符号表示为“+”;(4)本例应注意避免将“由元下降”错误表示为“”。

正确理解是在元的基础上下降了5%x元,即;(5)先由题意分别表示下底=,高=,然后利用梯形面积公式列出式子:。

◆课下作业●拓展提高1、百货大楼进了一批花布,出售时要在进价的基础上加上一定的利润,其数量x与售价y之间的关系如下表:数量x(米)1234…售价y(元)8+0.316+0.624+0.932+1.2…下列用数量x表示与售价y的公式中,正确的是()A、B、C、D、2、一台电视机成本a元,销售价比成本价增加,因库存积压,所以就按销售价的出售,那么每台实际售价为()A、B、C、D、3、比和的差的一半大的数应表示为。

《列代数式》习题精选及参考答案

《列代数式》习题精选及参考答案

《列代数式》习题精选一、选择题1.三个连续的偶数中若中间的一个是,是代数式表示其它两个偶数是().(A)(B)(C)(D)2.某钢铁厂每天生产钢铁吨,现在每天比原来增加,现在每天钢铁的产量是()吨.(A)(B)(C)(D)3.下列各式:(1);(2);(3);(4);(5);(6)其中代数式的个数为().A.2 B.3 C.4 D.54.代数式,用语言叙述正确的是().A.与的平方差 B.的平方减 5乘以的平方C.的平方与的平方的5倍的差D.与的差的平方5.下列各式:(1);(2);(3)(4);(5);(6)其中不符合代数式书写要求的有().A.5个B.4个C.3个D.2个6.关于代数式的意义,下列说法中不正确的是().A.比的平方少1的数B.的平方与1的差C.与1两数的平方差D.与1的差的平方7.下面各判断后面的代数式中错误的是().A.的3倍与的2倍的和为B.除以的商与2的差的平方为C.、两数和乘以、两数差为D.与的和的为二、填空题1.用字母表示三个连续奇数的和_________.2.的2倍与3的差_________.3.的平方的5倍与的和_________.4.比、的积的小7的数_________.5.李明有本教科书,课外书比教科书多本,那么他共有_________本书.6.一件上衣售价为元,降价10%后的售价为_________.7.某商品利润是元,利润率是20%,此商品的进价是_________元.8.一项工程,甲队单独完成要天,乙队单独完成要天,两队合作需要_________天完成.9.“除以的商的平方与减去的差的和”用代数式表示是_________.三、解答题1.如图,圆中挖掉一个正方形,试用r表示阴影部分面积.2.如图,用a来表示阴影部分的面积.3.如图所示一个边长为1的正方形的分割方法,当分割n次时其中最小的四边形的面积是多少.4.一种蔬菜x千克,不加工直接出售每千克可卖y元,如果经过加工重量减少了20%,价格增加了40%,问x千克这种蔬菜加工后可卖多少钱;如果这种蔬菜1000千克,不加工直接出售每千克可卖1.50元,问加工后原1000千克这种蔬菜可卖多少钱?比加工前多卖多少钱?5.举出三个实际问题,其中的数量关系可以用a、b来表示.参考答案:一、1. C 2.D 3.B 4.C 5.B 6.D 7.D二、1.设为自然数,则三个连续的奇数和为=2.3.4.5.6.元7.8. 9.三、1.(提示:如答图,把正方形分成两个三角形,其中三角形的面积是.2.(提示:如答图,其中阴影面积的一半,等于以a为半径的四分之一的圆的面积减去以a为两直角边的直角三角形的面积)3.(提示:当分割一、二、三…次所得的最小四边形的面积依次是,分割n次得最小四边形的面积是)4.1.12xy元,1680元,180元5.(1)a、b分别表示长方形的长和宽,则长方形的面积是(2)如果a表示某种物品的单价、b表示某种物品的数量,则这种物品的总价可表示为,(3)a表示汽车行驶的速度,b表示汽车行驶的时间,则可表示汽车行驶的路程.探究活动家教旧事周末,妈妈早晨上班时,嘱咐读初一的孩子小明整理一下家庭环境.小明按妈妈的要求作完事后,坐在窗前想着他想买的玩具,可是又没有钱.忽然,他计上心来,乘妈妈下班前,在桌上留了一个纸条,然后躲在房里看妈妈的动静.妈妈看见小明的纸条是这样写的:“拖地:3元;叠被:1元;抹窗户:5元;丢垃圾袋:1元,共计10元.”妈妈看后,一言不发,提笔在纸条上加上了几行字:“吃饭:x元;穿衣:y 元;带去看病:z元;……;关心:a元,….共计b元.”写完后就到厨房做饭去了.小明溜出来一看,心头惭愧,赶忙收起了纸条.妈妈为什么要分别写x元,y元,……,b元?小明为什么惭愧?拼桌一张餐桌可以坐6个人,坐的方式如图所示,将2张餐桌(等长的边拼在一起)拼成一张桌,有多少种方法,画图示意,拼成后这张大餐桌各可以坐多少人;依此类推,将n张餐桌(等长的边拼在一起)拼成一张大餐桌,拼成后这张大餐桌各可以作多少人?如果没有条件,结果会如何?。

代数式练习题及答案

代数式练习题及答案

代数式练习题及答案代数式练习题及答案代数是数学中的一个重要分支,它研究数和运算的关系。

代数式是代数中的基本概念之一,它由数、字母和运算符号组成。

通过解答代数式练习题,我们可以提高我们的代数运算能力,培养我们的逻辑思维和解决问题的能力。

下面我将给大家提供一些代数式练习题及答案,希望能对大家的学习有所帮助。

一、简单代数式练习题1. 计算下列代数式的值:(1) 2x + 3y,当x = 4,y = 5时;(2) 3a - 2b,当a = 7,b = 2时;(3) 5m^2 + 2mn,当m = 3,n = 2时。

答案:(1) 2x + 3y = 2 * 4 + 3 * 5 = 8 + 15 = 23;(2) 3a - 2b = 3 * 7 - 2 * 2 = 21 - 4 = 17;(3) 5m^2 + 2mn = 5 * 3^2 + 2 * 3 * 2 = 5 * 9 + 12 = 45 + 12 = 57。

2. 化简下列代数式:(1) 2x + 3x;(2) 4y - 2y;(3) 5a^2 - 3a^2。

答案:(1) 2x + 3x = 5x;(2) 4y - 2y = 2y;(3) 5a^2 - 3a^2 = 2a^2。

二、复杂代数式练习题1. 计算下列代数式的值:(1) 3(x + 2) - 2(3x - 4),当x = 2时;(2) 2(3a + 4b) - 5(2a - 3b),当a = 1,b = 2时;(3) 4(2m^2 + 3mn) - 3(4m^2 - 5mn),当m = 2,n = 1时。

答案:(1) 3(x + 2) - 2(3x - 4) = 3(2 + 2) - 2(3 * 2 - 4) = 3 * 4 - 2(6 - 4) = 12 - 2(2) = 12 - 4 = 8;(2) 2(3a + 4b) - 5(2a - 3b) = 2(3 * 1 + 4 * 2) - 5(2 * 1 - 3 * 2) = 2(3 + 8) - 5(2 - 6) = 2 * 11 - 5(-4) = 22 + 20 = 42;(3) 4(2m^2 + 3mn) - 3(4m^2 - 5mn) = 4(2 * 2^2 + 3 * 2 * 1) - 3(4 * 2^2 - 5 * 2 * 1) = 4(2 * 4 + 6) - 3(4 * 4 - 10) = 4(8 + 6) - 3(16 - 10) = 4 * 14 - 3 * 6 = 56 - 18 = 38。

列代数式试题集锦

列代数式试题集锦

列代数式试题集锦一、数量关系用“和、差、倍、分”关键词直接表达,使用加、减、乘、除符号列式。

1.“a 的相反数与a 的2倍的差”,用代数式表示为( )A 、a -2aB 、-a -2aC 、a+2aD 、-a+2a2.如果甲数为x ,甲数是乙数的2倍,则乙数是()A 、x 21B 、2xC 、x+2D 、21 x 3.a 平方的2倍与3的差,用代数式表示为________;当a=-1时,此代数式的值为_________.4.用代数式表示“x的平方的3倍与1的差”为5.已知甲数是乙数的相反数的2倍,设乙数为x, 用关于x 的代数式表示甲数.二、利用归纳规律列代数式,首先要发现已知的一组数字或图形与序号的关系规律,进而用序号的字母表示这种数量关系。

1.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,...,按此规律排列,则第⑦个图形中小圆圈的个数为( )A .21B .24C .27D .302.观察下列关于自然数的等式:32-4×12=5 ①52-4×22=9 ②72-4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92-4× 2= ;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.3.(3分)(2015•牡丹江)一列单项式:﹣x 2,3x 3,﹣5x 4,7x 5,…,按此规律排列,则第7个单项式为 .4.(3分)观察下列砌钢管的横截面图:则第n 个图的钢管数是 (用含n 的式子表示)5.一种商品每件成本a 元,按成本增加30%定价,现因出现库存积压减价,按定价的80%出售,每件还能盈利 元(结果用含a 的式子表示).6.如图是由火柴棒搭成的几何图案,则第n个图案中有根火柴棒.(用含n的代数式表示)7.(4分)观察下列图形的构成规律,依照此规律,第10个图形中共有______个“•”.三、利用图形周长、面积、体积公式,利用路程公式等各类公式表示数量关系。

列代数式练习题

列代数式练习题

列代数式练习题1.一件商品的进价为a元,将进价提高100%后标价,再按标价打七折销售,则这件商品销售后的利润为元.2.学校购买了一批图书,共a箱,每箱有b册,将这批图书的一半捐给社区,则捐给社区的图书为册(用含a、b的代数式表示).3. 汛期来临前,滨海区决定实施“海堤加固”工程.某工程队承包了该项目,计划每天加固60米.在施工前,得到气象部门的预报,近期有“台风”袭击滨海区,于是工程队改变计划,每天加固的海堤长度是原计划的1.5倍,这样赶在“台风”来临前完成加固任务.设滨海区要加固的海堤长为a米,则完成整个任务的实际时间比原计划时间少用了天(用含a的代数式表示).4. “x的2倍与10的差”,用代数式可以表示为 .5. 通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a元后,再次下调了20%,现在收费标准是每分钟b元,则原收费标准每分钟是元.6. 一筐苹果总重x千克,筐本身重2千克,若将苹果平均分成5份,则每份重千克.7.为了帮助玉树地区重建家园,某班全体师生积极捐款,捐款金额共3200元,其中5名教师人均捐款a元,则该班学生共捐款元.(用含有a的代数式表示).8. 设一个三位数个位数字为a,十位数字为b,百位数字为c,请你写出这个三位数.9..“抗震救灾,众志成城”,某企业原计划捐给灾区活动板房m套,因实际需要在增加原计划捐献的20%后,又多捐了n套,那么该企业共捐献活动板房套.(用含m、n的代数式表示)10. 随着计算机技术的迅猛发展,电脑价格不断降低,某种品牌电脑原售价为n元,现按原售价降低m元后,又降低10%,那么该电脑的现售价为元.11.一根钢筋长a米,第一次用去了全长的10%,第二次用去了余下的50%,则剩余部分的长度为米.(结果要化简)12. 在“手拉手活动”中,小明为捐助某贫困山区的一名同学,现已存款300元,他计划今后每月存款10元,n月后存款总数是元.13. 某商场4月份营业额为x万元,5月份营业额比4月份多10万元.如果该市场第二季度的营业额为4x万元,那么6月份的营业额为万元.14.为鼓励节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度电价按a元收费;如果超过100度,那么超过部分每度电价按b元收费.某户居民在一个月内用电160度,他这个月应缴纳电费是元(用含a,b的代数式表示).15某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问孤寡老人,如果给每位老人分5盒牛奶,则剩下38盒牛奶.如设敬老院有x(x>0)名老人,则这批牛奶共有盒.(用含x的代数式表示)16.某商品按标价八折出售仍能盈利b元,若此商品的进价为a元,则该商品的标价为元.(用含a,b的代数式表示).17.某校组织学生到距离学校8km的科技馆参观,学生周涛因事没能赶上学校的包车,于是准(1)设出租车行驶的里程数为x(x≥3)km,付给出租车的费用为.(请用含x的代数式表示)(2)周涛同学身上仅有10元钱,乘出租车到科技馆的车费够吗?请说明理由.18.公安人员在破案时常根据案发现场作案人员留下的脚印推断犯人的身高,如果用a表示脚印长度,b表示身高.关系类似满足于:b=7a-9.(1)某人脚印长度26cm,则他的身高约为多少cm?(2)在某次案件中,有两可疑人员,甲的身高为1.80m,乙的身高1.87m,现场测量的脚印长度为28cm,请你帮助侦察一下,哪个可疑人员的可能性更大?。

代数式典型例题专项练习30题(有答案)

代数式典型例题专项练习30题(有答案)

代数式专项练习30题(有答案)一.选择题(共5小题)1.在1,a,a+b,,x2y+xy2,3>2,3+2=5中,代数式有()A .3个B.4个C.5个D.6个2.下列各式:﹣x+1,π+3,9>2,,,其中代数式的个数是()A .5 B.4 C.3 D.23.下列各式:①1x;②2•3;③20%x;④a﹣b÷c;⑤;⑥x﹣5;其中,不符合代数式书写要求的有()A .5个B.4个C.3个D.2个4.在下列的代数式的写法中,表示正确的一个是()A.“负x的平方”记作﹣x2B.“a除以2b的商”记作C.“x的3倍”记作x3 D.“y与的积”记作5.下列说法正确的是()A.x是代数式,0不是代数式B.表示a与b的积的代数式为a+bC.a、b两数和的平方与a、b两数积的2倍的和为(a+b)2+2abD.意义是:a与b的积除y的商二.填空题(共13小题)6.代数式“5x”,可解释为:“小明以5千米/时的速度走了x小时,他一共走了5x千米”.请你对“5x”再给出一个身边生活中的解释:_________ .7.叙述下列代数式的意义.(1)(x+2)2可以解释为_________ .(2)某商品的价格为n元.则80%n可以解释为_________ .8.一个三位数的百位数字是2,十位数字与个位数字组成的两位数为x,用代数式表示这个三位数为_________ .9.x表示一个两位数,y表示一个三位数,把x放在y的右边组成一个五位数,则这个五位数可以表示为_________ .11.一本书共n页,小华第一天读了全书的,第二天读了剩下的,则未读完的页数是_________ .(用含n的式子表示)12.(1)已知a﹣b=3,则3a﹣3b= _________ ,5﹣4a+4b= _________ .(2)已知x+5y﹣2=0,则2x+3+10y= _________ .(3)已知3x2﹣6x+8=0,则x2﹣2x+8= _________ .13.若a,b互为倒数,c,d互为相反数,则3c+3d﹣9ab= _________ .14.已知代数式ax3+bx,当x=﹣1时,代数式的值为5;则当x=1时,ax3+bx的值是_________ .15.任意写出x3y的3个同类项:_________ ,_________ ,_________ .16.已知7x m y3和﹣是同类项,则(﹣n)m= _________ .17.若单项式3x4y n与﹣2x2m+3y3的和仍是单项式,则(4m﹣n)n= _________ .18.已知x5y n与﹣3x2m+1y3n﹣2是同类项,则m+n= _________ .三.解答题(共12小题)19.如图,池塘边有一块长为18米,宽为10米的长方形土地,现在将其余三面留出宽都是x米的小路,中间余下的长方形部分做菜地,用代数式表示:(1)菜地的长a= _________ 米,宽b= _________ 米;(2)菜地的面积S= _________ 平方米;(3)求当x=1米时,菜地的面积.20.已知﹣3x4+m y与x4y3n是同类项,求代数式m100+(﹣3n)99﹣mn的值.21.已知关于多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,求n m的值.22.若关于x、y的方程6x+5y﹣2﹣3Rx﹣2Ry+4R=0合并同类项后不含y项,求R的值.23.k为何值时,多项式x2﹣2kxy﹣3y2+6xy﹣x﹣y中,不含x,y的乘积项.24.去括号,合并同类项(1)﹣3(2s﹣5)+6s;(2)3x﹣[5x﹣(x﹣4)];(3)6a2﹣4ab﹣4(2a2+ab);(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)25.先去括号,后合并同类项:(1)x+[﹣x﹣2(x﹣2y)];(2);(3)2a﹣(5a﹣3b)+3(2a﹣b);(4)﹣3{﹣3[﹣3(2x+x2)﹣3(x﹣x2)﹣3]}.26.观察下列各等式,并回答问题:;;;;…(1)填空:= _________ (n是正整数);(2)计算:….27.观察下面一列数,探求其规律:(1)请问第7个,第8个,第9个数分别是什么数?(2)第2004个数是什么如果这列数无限排列下去,与哪个数越来越接近?28.如图,每个正方形点阵均被一直线分成两个三角形点阵,根据图中提供的信息,用含n的等式表示第n个正方形点阵中的规律_________ .29.下列是幼儿园小朋友用火柴棒拼出的一列图形.仔细观察,找出规律,解答下列各题:(1)第4个图中共有_________ 根火柴,第6个图中有_________ 根火柴;(2)第n个图形中共有_________ 根火柴(用含n的式子表示);(3)请计算第2008个图形中共有多少根火柴.30.如图,用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察下列图形,探究并解答下列问题.(1)在第1个图中,共有白色瓷砖_________ 块.(2)在第2个图中,共有白色瓷砖_________ 块.(3)在第3个图中,共有白色瓷砖_________ 块.代数式典型例题30题参考答案:1.解:在1,a,a+b,,x2y+xy2,3>2,3+2=5中,代数式有1,a,a+b,,x2y+xy2,共5个.故选C2.解:题中的代数式有:﹣x+1,π+3,共3个.故选C.3.解:①1x分数不能为假分数;②2•3数与数相乘不能用“•”;③20%x,书写正确;④a﹣b÷c不能出现除号;⑤,书写正确;⑥x﹣5,书写正确,不符合代数式书写要求的有①②④共3个.故选:C4.解:“负x的平方”记作(﹣x)2;“x的3倍”记作3x;“y与的积”记作y.故选B5.解:A、x是代数式,0也是代数式,故选项错误;B、表示a与b的积的代数式为ab,故选项错误;C、正确;D、意义是:a与b的和除y的商,故选项错误.故选C6.解:答案不唯一,如买一支钢笔5元,买x支钢笔共5x元7.解:(1)(x+2)2可以解释为正方形的边长为x+2,则它的面积为(x+2)2;(2)某商品的价格为n元.则80%n可以解释为这件商品打八折后的价格.故答案为:(1)正方形的边长为x+2,则它的面积为(x+2)2;(2)这件商品打八折后的价格8.解:根据题意得此三位数=2×100+x=200+x9.解:两位数x放在一个三位数y的右边相当于y扩大了100倍,那么这个五位数为(100y+x)10.解:这m+n个数的平均数=.故答案为:.11.解:小华第一天读了全书的,还剩下(1﹣)n=n;第二天读了剩下的,即(1﹣)n×=n.则∴3a﹣3b=3,5﹣4a+4b=5﹣4(a﹣b)=5﹣4=1;(2)∵x+5y﹣2=0,∴x+5y=2,∴2x+3+10y=2(x+5y)+3=2×2+3=7;(3)∵3x2﹣6x+8=0,∴x2﹣2x=﹣,∴x2﹣2x+8=﹣+8=.故答案为:(1)3,1;(2)7;(3)13.解:因为a,b互为倒数,c,d互为相反数,所以ab=1,c+d=0,所以3c+3d﹣9ab=3(c+d)﹣9ab=0﹣9=﹣9,故答案为:﹣914.解:由题意知:﹣a﹣b=5所以a+b=﹣5;则当x=1时,ax3+bx=a+b=﹣515.解:开放题,答案无数个,只要所写同类项,所含字母相同且相同字母的指数也相同即可,同类项与字母的顺序无关.如5x3y,12x3y,20x3y.故答案为:5x3y,12x3y,20x3y16.解:由同类项的定义可知m=2,n=3,代入(﹣n)m,结果为9.答:(﹣n)m值是917.解:两个单项式的和是单项式,则它们是同类项,则2m+3=4,m=;n=3.则(4m﹣n)n=(4×﹣3)3=﹣1.答:(4m﹣n)n=﹣118.解:x5y n与﹣3x2m+1y3n﹣2是同类项,2m+1=5,n=3n﹣2,m=2,n=1,m+n=2+1=3,故答案为:3(2)由(1)知:菜地的长为18﹣2x米,宽为10﹣x米,所以菜地的面积为S=(18﹣2x)•(10﹣x);(3)由(2)得菜地的面积为:S=(18﹣2x)•(10﹣x),当x=1时,S=(18﹣2)(10﹣1)=144m2.故答案分别为:(1)18﹣2x,10﹣x;(2)(18﹣2x)(10﹣x);(3)144m220.解:∵﹣3x4+m y与x4y3n是同类项,∴4+m=4,3n=1,∴m=0,n=,∴m100+(﹣3n)99﹣mn=0+(﹣1)﹣0=﹣121.解:∵多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,即二次项系数为0,即m﹣2=0,∴m=2;∴2n+4=0,∴n=﹣2,把m、n的值代入n m中,得原式=422.解:∵6x+5y﹣2﹣3Rx﹣2Ry+4R=0合并同类项后不含y项,∴5﹣2R=0,解得R=2.523.解:原式=x2+(﹣2k+6)xy﹣3y2﹣y,∵不含x,y的乘积项,∴x,y的乘积项的系数为0,∴﹣2k+6=0,∴2k=6,∴k=3.∴当k=3时,已知多项式不含x,y的乘积项24.(1)﹣3(2s﹣5)+6s=﹣6s+15+6s=15;(2)3x﹣[5x﹣(x﹣4)]=3x﹣[5x﹣x+4]=3x﹣5x+x﹣4=﹣x+4;=6a2﹣4ab﹣8a2﹣2ab=﹣2a2﹣6ab;(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)=﹣6x2+3xy+4x2+4xy﹣24=﹣2x2+7xy﹣2425.(1)x+[﹣x﹣2(x﹣2y)]=x﹣x﹣2x+4y=﹣2x+4y;(2)原式=a﹣a﹣﹣+b2=;(3)2a﹣(5a﹣3b)+3(2a﹣b)=2a﹣5a+3b+6a﹣3b=3a;(4)﹣3{﹣3[﹣3(2x+x2)﹣3(x﹣x2)﹣3]},=﹣3{9(2x+x2)+9(x﹣x2)+9},=﹣27(2x+x2)﹣27(x﹣x2)﹣27,=﹣54x﹣27x2﹣27x+27x2﹣27,=﹣81x﹣2726.解:(1)﹣;(2)原式=1﹣+﹣++…+﹣=1﹣= 27.解:(1)∵第n个数是(﹣1)n,∴第7个,第8个,第9个数分别是﹣,,﹣.(2),最后与0越来越接近28.解:通过图案观察可知,当n=1时,点的个数是12=1;当n=2时,点的个数是22=4;当n=3时,点的个数是32=9;当n=4时,点的个数是42=16,…∴第n个正方形点阵中有n2个点,2(1)第4个图案火柴有3×4+1=13;第6个图案中火柴有3×6+1=19;(2)当n=1时,火柴的根数是3×1+1=4;当n=2时,火柴的根数是3×2+1=7;当n=3时,火柴的根数是3×3+1=10;所以第n个图形中火柴有3n+1.(3)当n=2008时,3n+1=3×2008+1=602530.解:(1)在第1个图中,共有白色瓷砖1×(1+1)=2块,(2)在第2个图中,共有白色瓷砖2×(2+1)=6块,(3)在第3个图中,共有白色瓷砖3×(3+1)=12块,(4)在第10个图中,共有白色瓷砖10×(10+1)=110块,(5)在第n个图中,共有白色瓷砖n(n+1)块。

(完整版)列代数式专项练习

(完整版)列代数式专项练习

列代数式专项练习一、填空题1. 小丁期中考试考了a分,之后他继续努力,期末考试比期中考试提高了b%,小丁期末考试考了______ 分.2. 一只小狗的奔跑速度为a千米/时,从A地到B地的路程为(b+15)千米,则这只小狗从A地到 B 地所用的时间为______ ;当a=21,b=12 时,它所用的时间为_________ .3. 香蕉比桔子贵25%,若香蕉的价格是每千克m 元,则桔子的价格为每千克 ____________ .4. 某车间一月份生产P 件产品,二月份增产9%,两月共生产件产品.5. 三个连续的整数,最大的为x,则其余两个由小到大,依次为______________ .6. 某次考试全班参考人数n,考试及格人数为m ( men),则这次考试的及格率为p= _____7. 某种蔬菜今天的价格比昨天上涨了20%,如果昨天的价格为每千克a元,那么这种蔬菜今天的价格为每千克____ 元,当a=1.2时,今天蔬菜的价格为 ______ 元.8. 小明将“压岁钱”存入银行参加教育储蓄,如果存入350 元,年利率为10%,则一年后本金和利息共__________ 元.9. (1)小强从甲地到乙地,先步行,他步行的速度是每小时v千米,走了小时,又改乘小时汽车,汽车的速度是步行速度的 4 倍.则他步行了_________ 千米,乘车走了_______ 千米,共行了______ 千米.(2)如果他步行走了s千米,速度仍是每小时v千米,他走了 _________ 小时.若乘车走了m千米,速度为每小时n千米,则他乘了__________ 小时的车.步行与乘车共用________ 小时.10. “抗击非典”活动中,甲、乙、丙三家企业捐款,已知甲捐了 a 万元,乙比甲的2 倍少5万元,丙比甲多6万元,则捐款总额为____________ 万元,当a=30时,捐款总额为___________ 万元.三、选择题1. 下列代数式中,符合代数式书写要求的有( ) .( 1 ) ;( 2) ;( 3) ;( 4) ;( 5) ;( 6)A.1 个B.2 个C.3 个D.4 个2.代数式的正确解释是( ) .A.与的倒数的差的平方B.的平方与的倒数的差C.的平方与的差的倒数D.与的差的平方的倒数3. 下列不是代数式的是( )A. (x+y)(x-y)B.c=0C.m+nD.999n+99m4. 代数式a2+b2的意义是( )A. a与b的和的平方B.a+b的平方C.a与b的平方和D.以上都不对5. 如果a是整数,则下面永远有意义的是( )A. B. C. a D.6. 一个两位数,个位是a,十位比个位大1,这个两位数是( )A.a(a+1)B.(a+1)aC.10(a+1)aD.10(a+1)+a7. 蚯蚓每小时爬a千米,b小时爬了c千米,则b等于()A. B. C. D.8. 如果x=3y,y=6z,那么x+2y+3z的值为( )A.10zB.30zC.15zD.33z9. 的意义是()A. a与b差的2倍除以a与b的和B. a的2倍与b的差除以a与b和的商C. a的2倍与b的差除a与b的和D. a与b的2倍的差除以a与b和的商10. 一个二位数,个位上的数字是a,十位上的数字为b,则这个两位数是()A.baB.abC.10a+bD.10b+a1 1 .用代数式表示a 的5 倍的平方与b 的差正确的是()A.(5a)2-bB.5a2-bC.5(a2-b)D.25(a2-b)去括号专项练习一、填空题1. a+b-c+d=a+b-(_ ___).2. x2+(___ ____ )=x2-2x+1.3. -2a2+a-3=-( __ __).4. (x-2y+z)(x+2y-z)=(x-__ __)(x+___ __).5•不改变式子a-(b —3c)的值,把其中的括号前的符号变成相反的符号,结果是__________ 6. 去括号:a-(b+c)= ___ .c—(b—a)= _____ .7. m+n—p 的相反数为_________ .二、判断下列等式是否一定成立.1. a+(b—c)=a+b—c ()2. —m+n=—(n+m)()3.3—2x=—(2x+3)()4. —(u—v)=—u+v ()5.5(x—1)=5x—1 ()三、化简下列各式1.5a—(a+3b).2.3(a+b)—(a+b)—5(a+b).3. —2(pq+mn)+(2pq —mn).合并同类项专项练习一、选择题1. 下列计算正确的是()A.2a+b=2abB.3x2—x2=2C.7mn—7nm=0D.a+a=a22. 当a=-5 时,多项式a2+2a-2a2-a+a2-1 的值为()A.29 B.-6 C.14 D.243. 下列单项式中,与-3a2b 为同类项的是()A.-3ab3B.-ba2C.2ab2D.3a2b24. 下面各组式子中,是同类项的是()A.2a 和a2B.4b 和4aC.100 和D.6x2y 和6y2x5. 下列各组式子中是同类项的是()A.—a 与a2B.0.5ab2 与—3a2bC.-2ab2 与b2aD.a2 与2a6. 下列计算正确的是()A.3a+2b=5abB.—2a2b+3ab2=a2b2C. a2b—3a2b=—a2bD.3x2—4x5=—x37. 当a=5, b=3 时,a— [ b—2a —(a —b)]等于()A.10B.14C.—10D.48•如果(3x2 —2)—(3x2 —y)=—2,那么代数式(x+y)+3(x—y)—4(x —y—2)的值是()A.4B.20C.8D.—69. — [—(—a2)+b2] — [ a2 —(+b2)]等于()A.2a2B.2b2C.—2a2D.2(b2—a2)10. 化简的最后结果是().A. 2a+2bB. 2bC. 2aD. 011. 下列去括号正确的是().A.B.C.D.12.的括号中填入的代数式分别是().A. B.C. D.二、填空题1 .合并同类项:—mn+mn= _____—m—m—m= ___ .2. 在代数式5m2n3—m2n3 中,都含有字母________ ,并且 ______ 都是二次, ______ 都是三次.因此5m2n3 与—m2n3 是 ________ .3. 在合并同类项时,我们把同类项的 ______ 相加.4. 合并同类项:( 1 )2a—5a —7a= ____ .(2)2ab+3ab—6ab= ______ .(3)2a2b—4ab2+3b2a—5a2b= _____ .(4)5x3y—6x+7x3y+8x= ______ .5. 化简:(1)2x—(2—5x)= ____ .(2)3x2y+(2x—5x2y)= ___ .6. 计算:a—(2a—3b)+(3a—4b)= _ .7. ______________________ 若x2y=xmyn,贝U m= , n= .8•化简x+ {3y —[ 2y- (2x—3y)]} = _________ .9.当k= _____ 时,多项式x2 —3kxy —3y2 —xy—8中不含xy项.三、解答题1. 先化简再求值:5a+2b+3a+5b—2a—3b 其中a=5,b=4.2. 合并同类项:①②3. 化简求值:①其中② ,其中2.如果2mxay与—5nx2a—3y是同类项.求(4a—13)2003的值.3.若2mxay+5nx2a—3y=0,且xy 丰求(2m+5n)2003 的值.4. 已知a=1,b=2,c= ,计算2a—3b—[ 3abc—(2b—a)]+2abc 的值.5. 已知2xmy2 与—3xyn 是同类项,计算m —(m2n+3m —4n)+(2nm2 —3n)的值.6•把(a+b)当作一个整体化简,5(a+b)2-(a+b)+2(a+b)2+2(a+b). 单元测试一、填空题1•每包书有12册,m包书有____________ 册.2•矩形的一边长为a—2b,另一边比第一边大2a+b,则矩形的周长为_______________ .3•若 | x—2y | +(y—1)2=0,贝U 3x+4y= .4. _____________________ a2+(3a—b) =a2—( ).5•化简:a2 —3ab+4b2 —(2b2 —3ab —3a2)= ______ .6•若n为整数,则= _______ .7•当=2 时,()2 —3 •=____ .8. __________________________________________________ 若3a4bm+1 = —a3n —2b2 是同类项,贝U m —n= __________________________________ .9•当a=—1, b=1 时,(3a2 —2ab+2b2) —(2a2 —b2 —2ab)= ____ •10・某种酒精溶液里纯酒精与水的比为1 : 2,现配制酒精溶液m千克,需加水 ________ 千克•11・一列火车保持一定的速度行驶,每小时行90千米,如果用t表示火车行驶的小时数,那么火车在这段时间行驶的千米数是_______ •12. _____________________________ 产量由m千克增长10%就达到千克•13・a千克大米售价8元,1千克大米售价_______ 元•14・圆的周长为P,则半径R= __________ •15.某校男生人数为x,女生人数为y,教师与学生的比例为 1 : 12,则共有教师_____ 人•16・某电影院座位的行数为m,已知座位的行数是每行座位数的,教室里共有座位17.当x=7,y=4,z=0 时,代数式x(2x —y+3z)的值为________ •18・某人骑自行车走了0.5小时,然后乘汽车走了 1.5小时,最后步行a千米,已知骑自行车与汽车的速度分别为v1千米/秒和v2千米/秒,则这个人所走的全部路程为_____________ .19. 教学楼大厅面积S m2,如果矩形地毯的长为a米,宽b米,则大厅需铺这样的地毯__________ 块.二、选择题20. 长方体的周长为10,它的长是a,那么它的宽是( )A.10—2aB.10 —aC.5—aD.5—2a21. 下列说法正确的是( )A. n x的系数为B. xy2的系数为xC. 3(—x2)的系数为3D. 3 n —x2)的系数为一3 n22. 若a为负数,下列结论中不成立的是( )A.a2> 0B.a3v 0C. | a | a2 —a3> 0D.a4v a523. 若M= —3( —a)2b3c4, N=a2( —b)3( —c)4, P= a3b4c3, Q=—a3b2( —c)4,则互为同类项的是( )A.M 与NB.P与QC.M 与PD.N 与Q24. 下面合并同类项正确的是( )A.3x+2x2=5x3B.2a2b—a2b=1C.—ab—ab=0D.—x2y+x2y=025. 将m —{ 3n —4m+ [m—5(m —n)+m]}化简结果正确的是( )A.8m+2nB.4m+nC.2m+8nD.8(m—n)26. a、b、c、m都是有理数,且a+2b+3c=m , a+b+2c=m,那么b与c的关系是()A.互为相反数B.互为倒数C相等 D.无法确定27. 水结成冰体积增大,现有体积为a的水结成冰后体积为()A. aB. aC. aD. a28 .你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸再捏合,再拉伸••…反复几次,就把这根很粗的面条拉成了许多细的面条,这样捏合到第5次时可拉出细面条()A.10 根B.20 根C.5根D.32 根三、解答题29. 某校举办跳绳比赛,第一组有男生m人,女生n人,男生平均每分钟跳105次,女生平均每分钟跳110次,一分钟第一组学生共跳绳多少次?当m=5, n=5时,结果是多少?30. 今年初共青团中央发出了“保护母亲河的捐款活动”,某校初一两个班的115 名学生积极参加,已知甲班的学生每人捐款10元,乙班的学生每人捐款10元,两班其余学生每人捐5元,设甲班有学生x人,试用代数式表示两班捐款的总额,并化简31. 研究下列等式,你会发现什么规律?1 X 3+ 仁4=222 X 4+仁9=323X 5+1=16=424X 6+1=25=52设n为正整数,请用n表示出规律性的公式来32. 已知a=3,b=2,计算( 1 )a2+2ab+b2;(2)(a+b)2,当a=2,b=1或a=4,b=—3时,分别计算两式的值,从中发现怎样的规律33. 化简(1)(2a2-1+2a)-3(a-1+a2)(2)2(x2-xy)-3(2x2-3xy)-2[x2-(2x2-xy+y2)]34. 某同学计算一多项式加上xy -3yz-2xz 时误认为减去此式计算出错误结果为2xy-3yz+4xz试求出正确答案.35. 已知:甲的年龄为m 岁,乙的年龄比甲的年龄的3 倍少7 岁,丙的年龄比乙的年龄的还多3 岁,求甲、乙、丙年龄之和.36. A、B两家公司都准备向社会招聘人才,两家公司条件基本相同,只有工资待遇有如下差异:A公司年薪两万元,每年加工龄工资400元,B公司半年薪一万元,每半年加工龄工资100 元,求A、B 两家公司,第n 年的年薪分别是多少,从经济角度考虑,选择哪家公司有利?单元测试答案:一、 1.12m 2.8a-6b 3.10 4.b -3a5.4a2+2b26.07.-28.-19.4 10. m 11.90t 12.m (1+10%)13. 14. 15. 16. m217.70 18.0.5v1+1.5v2+a 19.二、20.C 21.D 22.D 23.A 24.D 25.D 26.A 27.B 28.D三、29.105m+110n 107530. x+ (115 —x) 10+ : x+ (115 —x)] X 5二+80531. n( n+2) +1=(m+1) 232. ( a+b) 2=a2+2ab+b233. ( 1 )—a2—a+2( 2)—2x2+5xy+2y234.4xy—9yz 35. —36.A 公司收入:20000+ ( n —1) 400B 公司收入]10000+200 (n—1) + : 10000+200 •( n —1) +100] =20100+400 (n —1)显然选B 公司。

列代数式专项练习60题(有答案)ok

列代数式专项练习60题(有答案)ok

列代数式专项练习60题(有答案)1.正方体棱长为a,体积为V,则V与a之间的关系式为_________ ,当a=4cm时,V= _________ cm3.2.一个数比a的3倍的平方小3,则这个数是_________ .3.体校里男学生人数是m,女学生人数是n,教练人数和学生人数的比是1:20,则教练人数是_________ .4.某商品的进价是x元,售价是132元,则此商品的利润是_________ .5.“x的2倍与y的3倍的差”列式为_________ .6.在负整数a后添上3,使其位数增加一位,则这个数可表示为_________ .7.若一个数比x的2倍小3,则这个数可表示为_________ .8.“比a的3倍小2的数”用整式表示是_________ .9.“x与y的和”用代数式可以表示为_________ .10.用代数式表示“a的3倍与4的和”为_________ .11.某校共有学生x人,其中女生占总数的m%,则男生人数为_________ 人.12.某商品进价是m元,提价30%后标价,又打九折出售,则该商品的利润是_________ .13.一个笼子里的鸡a只,兔b只,则笼子里的鸡和兔的脚共有_________ 只.14.某工厂的产值由a万元增加了20%,达到_________ 万元.15.一台a元的电视机,降价20%后的价格为_________ 元.16.某工厂今年的产值是a万元,比去年增加了20%,则去年的产值是_________ .17.苹果每千克p元,若苹果超过10千克以上,则全部9折优惠,买15千克应付_________ 元.18.张红在一次考试中,得数学a分,语文b分,则张红这二科的平均成绩是_________ 分.19.科学家在南极考察时,拾到一块不规则的矿石,科学家用一把刻度尺,一只圆柱体的玻璃杯和足量的水,就测出了这块矿石的体积.如果玻璃杯的内直径为r,把矿石完全浸没在水中,测出杯中水面上升的高度为h,则这块矿石的体积是_________ .20.一件商品原价为a元,先涨价5元后,再按8.5折出售,那么现售价用代数式表示为_________ .21.如图,正方形的边长为2,分别以正方形的两个相对顶点为圆心,以正方形的一边为半径画弧,则阴影部分的面积是_________ .22.如图是数值转换器的示意图,如果输入的数字用x表示,那么输出的数字可以用代数式_________ 表示.23.小亮从一列火车的第m节车厢起,一直数到第2m节车厢,他数过的车厢节数是_________ .24.小明在考试前到文具店里买了2支2B的铅笔和一副三角板,2B的铅笔每支x元,三角板每副3元,小明总共应付_________ 元(用含x的代数式表示).25.三毛早上从报社以每份0.4元的价格购进了a份报纸.以每份0.5元的价格出售,一天共售b份报纸,剩余的报纸以每份0.2元的价格退回报社,回家后三毛发现这一天的辛苦还是赚到了钱,那么三毛这天赚了_________ 元.26.n(n≥2)个球队进行单循环赛(参加比赛的每个队都与其他所有的队各赛一场),总的比赛场数是_________ .27.绥阳某商店的一种商品每件进价为a元,按进价提高30%标价,再按标价的8折出售,那么打折后,每件商品的售价是_________ 元.28.“圆形方孔钱”是中国古钱币的突出代表.如图,一枚圆形方孔钱的外圆直径为a,中间方孔边长为b,则图示阴影部分面积为_________ .29.右下图是一个数值转换机的示意图.若输入的x是5,y是﹣2,则输出的结果是_________ .30.如图,两个长方形的一部分重叠在一起,重叠部分是边长为3的正方形,则阴影部分的面积是_________ .31.三角形三边的长分别是(2x+1)厘米,(3x﹣2)厘米,(8﹣2x)厘米,求这个三角形的周长,如果x=3,三角形的周长是多少?32.晓霞的爸爸开了一个超市,一天,她爸爸分别以P元进了A、B两种商品,后来A商品提价20%,B商品降价10%,这样在某一天中,A商品卖了10件,B商品卖了20件,问这一天里超市作这两种买卖是赚了还是赔了?并说明理由.33.列代数式:(1)比a与b的积的2倍小5的数;(2)a与b的平方差;(3)被5除商是a,余数是2的数.34.我国出租车收费标准因地而异,A市为:起步价10元,3km后每千米加价1.2元;B市为:起步价8元,3km 后每千米加价1.4元;(1)试分别写出在A,B两城市坐出租车x(x>3)km所付的车费;(2)求在A,B两城市坐出租车x(x>3)km的差价是多少元?35.如图,大正方形的边长为a,小正方形的边长为2,求阴影部分的面积.36.窗户的形状如图,其上部是半圆形,下部是长方形.已知窗户的下部宽为xm,窗户长方形部分高度为1.5xm.计算:(1)窗户的面积S;(2)窗框的总长L.37.“十一”黄金周期间,小刚拿着妈妈给的800元钱到重百商场购买运动服和运动鞋,他来到自己喜欢的“阿迪、达斯”专柜前看到该品牌打出的优惠条件:标价200元以内(含200元)不打折;标价200元以上的按如下方式打折:(1)200~500元(含500元)的部分打9折;(2)500~800元(含800元)的部分打8折;(3)800元以上的部分打7折(商品金额可累计),他又看到运动服标价a元/件(400≤a≤500),运动鞋标价b元/双(300≤b≤400);(1)算他单独买一件运动服需多少钱;(用含a的代数式表示)(2)计算他一次性买一件运动服和一双运动鞋共需多少钱.(用含a、b的代数式表示)38.为了节约用水,某市决定调整居民用水收费方法,规定:如果每户每月用水不超过20吨,每吨水收费3元,如果每户每月用水超过20吨,则超过部分每吨水收费3.8元;小红看到这种收费方法后,想算算她家每月的水费,但是她不清楚家里每月的用水是否超过20吨.(1)如果小红家每月用水15吨,水费是多少.如果每月用水35吨,水费是多少;(2)如果字母x表示小红家每月用水的吨数,那么小红家每月的水费该如何用x的代数式表示呢.39.某轮船顺水航行4小时,逆水航行2.5小时,已知轮船在静水中的速度为m千米/小时,水流速度为y千米/小时.轮船共航行了多少千米?40.一轮船航行于甲、乙两港口之间,在静水中的航速为m千米/小时,水流速度为12千米/小时,(1)则轮船顺水航行5小时的行程是多少?(2)轮船逆水航行4小时的行程是多少?(3)轮船顺水航行5小时和逆水航行4小时的行程相差多少?41.某公园的成人票价是20元,儿童票价是8元,甲旅行团有x名成人和y名儿童;乙旅行团的成人数是甲旅行团的2倍,儿童人数是甲旅行团的.(1)求两个旅行团的门票总费用是多少?(2)当x=10人,y=6人时,求两个旅行团的门票总费用是多少元?42.小明想把一长是60cm,宽为40cm的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形的四个角各剪去一个相同小正方形(如图).(1)若设这些小正方形的边长为xcm,求图中阴影部分小长方形的面积.(2)当x=5时,求这个盒子的体积.43.某礼堂第1排a个座位,后面每排比第一排多1个座位,用含a的代数式表示:(1)第2排有多少个座位?第5排有多少个座位?第10排有多少个座位?(2)前10排共有多少个座位?(3)第11排比第5排多多少个座位?44.如图,正方形ABCD的边长为a,长方形AEFD的长AE为b,(1)用代数式表示图中阴影部分的面积;(2)求当a=5cm,b=7cm时,阴影部分的面积.45.一个三位数,个位上的数是十位上的数的平方,百位上的数比十位上的数的4倍多1.将十位上的数设为x.(1)列式表示这个三位数;(2)这个三位数是多少?46.学校组织初一年级全体同学参加植树造林劳动.全体同学分三队,第一队植树x棵,第二队植的树比第一队植树的两倍少80棵,第三队植的树比第二队植树多了10%.(1)求全体同学一共植树多少棵?(用含x的式子表示)(2)若x=100棵,求全体同学共植树多少棵?47.攀枝花市出租车收费标准为:起步价5元(其中包含2千米),2千米后每千米价1.8元.则某人乘坐出租车x 千米的付费为多少元.(用代数式表示)48.龙港某企业有甲、乙两种经营收入,2010年甲种年收入是乙种年收入的1.5倍,预计2011年甲种年收入将减少20%,而乙种年收入将增加40%,记2010年乙种年收入为a万元.(1)2010年该企业甲种年收入为_________万元;(2)2011年该企业甲种年收入为_________万元;乙种年收入为_________万元.(3)当a=100万元时,请问该企业2011年总收入比2010年总收入是增加,还是减少?增加或减少了多少?请说明理由.49.用代数式表示下列图形中阴影部分的面积.(1)S阴影=_________;(2)S阴影=_________.50.学校需要到印刷厂印刷n份材料,甲印刷厂的收费标准是每份材料收0.2元的印刷费,另收500元的制版费;乙印刷厂的收费标准是每份材料收0.4元印刷费,不收制版费.(1)两个印刷厂的收费各是多少元?(用含n的代数式来表示)(2)学校要印2600份材料,若不考虑其他因素,选择哪家印刷厂比较合算?试说明理由.51.一辆汽车以每小时80千米的速度行驶,从A城市到B城市需要t小时,按题意解决下列问题(1)如果汽车行驶的速度每小时增加v千米,那么从从A城市到B城市还需要多少小时.(2)如果某次因紧急情况,从B城市返回到A城市的平均速度比原来每小时增加12千米,那么预计返回比原来可提前多少时间.52.一种笔记本售价为2.3元/本,如果买100本以上(不含100本),售价为2.2元/本.(1)列式表示买n本笔记本所需的钱数;(2)按照售价规定,会不会出现多买比少买反而付钱少的情况?(3)如果需要100本笔记本,怎样购买更省钱?并说明理由.53.甲、乙两家商场以同样的价格出售同样的电器,但各自推出的优惠方案不同.甲商场规定:凡超过1000元的电器,超出的金额按90%收取;乙商场规定:凡超过500元的电器,超出的金额按95%收取.某顾客购买的电器价格是x元.(1)当x=850时,该顾客应选择在_________商场购买比较合算;(2)当x>1000时,分别用代数式表示在两家商场购买电器所需付的费用;(3)当x=1700时,该顾客应选择哪一家商场购买比较合算?说明理由.54.列代数式:(1)a的3倍与b的和;(2)a与b的差的平方;(3)被5除商是x,余数是2的数.55.如图,将一张长方形大铁皮切割(切痕为虚线)成九块,其中有两块是边长都为a厘米的大正方形,两块是边长都为b厘米的小正方形,且a>b.(1)这张长方形大铁皮长为_________厘米,宽为_________厘米(用含a、b的代数式表示);(2)①求这张长方形大铁皮的面积(用含a、b的代数式表示);②若最中间的小长方形的周长为22厘米,大正方形与小正方形的面积之差为33厘米2,试求a和b的值,并求这张长方形大铁皮的面积;(3)现要从切块中选择5块,恰好焊接成一个无盖的长方体盒子,共有哪几种方案可供选择(画出示意图)?按哪种方案焊接的长方体盒子的体积最大?试说明理由.(接痕的大小和铁皮的厚度忽略不计)56.在正常情况下,某出租车司机每天驾车行驶t小时,且平均速度为v千米/小时.已知他在A日比正常情况少行驶2小时,平均速度比正常情况慢5千米/小时,他在B日比正常情况多行驶2小时,平均速度比正常情况快5千米/小时,(1)求A日出租车司机比正常情况少行驶多少千米?(用含v,t的代数式表示)(2)已知A日出租车司机比正常情况少行驶120千米,求B日出租车司机比正常情况多行驶多少千米?57.已知:我市出租车收费标准如下:乘车路程不超过3km的一律收费7元;超过3km的部分按每千米加1.8元收费.(1)如果有人乘计程车行驶了m千米(m>3),那么他应付多少车费?(列代数式)(2)游客甲乘出租车行驶了4km,他应付车费多少元?(3)某游客乘出租车从西区大润发到文昌楼,付了车费10.6元,试估算从西区大润发到文昌楼大约有多少公里?58.如图为一梯级的纵截面,一只老鼠沿长方形的两边A→B→D路线逃跑,一只猫同时沿梯级(折线)A→C→D的路线去捉,结果在距离C点0.6米的D处,捉住了老鼠.请将下表中的语句“译成”数学语言(写出代数式).设梯级(折线)A→C的长度x米AB+BC的长为A→C→D的长为A→B→D的长为设猫捉住老鼠所用时间为t秒猫的速度老鼠的速度59.某地公交公司推出刷卡月票制,即持有这种月票的乘客通过刷卡扣除每次的车票.某人买了50元的这种月票卡,如果此人乘车的次数用m表示,每次乘车的余额用n表示,它们之间的关系如下表:乘车次数m 月票余额n/元1 50﹣0.82 50﹣1.63 50﹣2.44 50﹣3.2……回答下列问题:(1)如果此人乘车的次数m,那么月票余额是_________元.(2)此人最多能乘车几次?简单说明理由.60.一本小说共m页,一位同学第一天看了全书的少6页,第二天看了剩下的多6页,第三天把剩下的全部看完,该同学第三天看了多少页?若m=900,则第三天看了多少页?参考答案:1.∵正方体边长为a,∴它的体积是V=a3.当a=4cm时,V=4 3=64cm3.故答案为:a3,64.2.由题意得:(3a)2﹣3=9a2﹣3,故答案为:9a2﹣3.3.设没分为x人,则教练有x人,学生有20x人,由题意,得∴20x=m+n,∴x=,∴教练有人.故答案为:人4.∵某商品的进价是x元,售价是132元,∴此商品的利润=售价﹣进价=132﹣x(元).故答案为(132﹣x)元.5.x的2倍是2x,y的3倍是3y,则x的2倍与y的3倍的差为:2x﹣3y.故答案是:2x﹣3y.6.在负整数a后添上3,使其位数增加一位,则这个数可表示为10a﹣3.故答案为10a﹣3.7.一个数比x的2倍小3,则这个数可表示为2x﹣3.故填:2x﹣38.由题意得:3a﹣2,故答案为:3a﹣2.9.“x与y的和”用代数式可以表示为:x+y.故答案为x+y10.先求a的3倍是3a,再求与4的和为3a+4.故答案为:3a+4.11.由题意得:x﹣m%x,故答案为:(x﹣m%x).12.∵某商品进价是m元,提价30%后标价,又打九折出售,∴此商品的售价为0.9×1.3m=1.17m(元),∴该商品的利润是1.17m﹣m=0.17m(元).故答案为0.17m13.∵鸡有两只脚,兔有四只脚,又∵鸡有a只,兔有b只,∴鸡和兔的脚共有:2a+4b.故答案为:2a+4b14.根据题意得产值由a万元增加了20%,达到的产值15.∵电视机的原价为a元,∴降价20%后的价格为(1﹣20%)a=0.8a(元).故答案为0.8a16.∵今年比去年增加了20%,∴今年的产值占去年的1+20%=120%,∴去年的产值=a÷120%=a万元.故答案为:a万元.17.15×0.9p=13.5p.故答案是:13.5p.18.二科的平均成绩是:(a+b).故答案是:(a+b).19.根据圆柱的体积公式可得这块矿石的体积为:.故填:20.根据一件商品原价为a元,先涨价5元,则价格变为:a+5,再按8.5折出售,依题意得:(a+5)×0.85.故答案为:0.85(a+5)21.S阴影=2S扇形﹣S正方形=2×﹣22=π×22﹣22=2(π﹣2).故填2(π﹣2)22.根据示意图可得:2x﹣3.故答案为2x﹣3.23.根据题意列得:他数过的车厢有(2m﹣m+1)即(m+1)节.故答案为:m+1.故选D24.因为2支2B铅笔2x元,一副三角板3元,所以小明总共应付(2x+3)元.故答案为:2x+325.∵每份0.4元的价格购进了a份报纸,∴这些报纸的成本是0.4a元,∵每份0.5元的价格出售,一天共售b份报纸,∴共买了0.5b元,∵剩余的报纸以每份0.2元的价格退回报社,∴退回了0.2(a﹣b)元,他一天工赚到的钱数为:0.5b+0.2(a﹣b)﹣0.4a=0.3b26.n支球队举行单循环比赛,比赛的总场数为:n(n ﹣1).故答案为:n(n﹣1)27.根据题意得:a•(1+30%)×80%=1.04a;故答案为:1.04a.28.圆的面积为π×()2=,中间正方形的面积为b2,∴图中阴影部分面积为:﹣b2.故答案为:﹣b2.29.∵由题意可得计算过程如下:( x×2+y2)÷2,∴当x=5,y=﹣2时,( x×2+y2)÷2=(5×2+4)÷2=7.故答案为:730.阴影部分的面积是:ab+cd﹣2×32=ab+cd﹣18;故答案为:ab+cd﹣18.31.三角形的周长是2x+1+3x﹣2+8﹣2x=3x+7,当x=3时,原式=3x+7=3×3+7=16.32.在一天的两种商品的买卖中,超市不赚不赔.∵10件A商品一共卖了10×(1+20%)P=12P(元),20件B商品一共卖了20×(1﹣10%)P=18P(元),∴这30件商品一共卖了12P+18P=30P(元),∵30P﹣30P=0,∴超市不赚不赔33.(1)2ab﹣5.(2)a2﹣b2.(3)5a+234.(1)A:10+1.2(x﹣3)=1.2x+6.4;B:8+1.4(x﹣3)=1.4x+3.8;(2)A与B的差价=(1.2x+6.4)﹣(1.4x+3.8)=2.6﹣0.2x.35.阴影部分的面积=GF•DG+GF•CG=GF•CD=×2•a.=a.36.①S==(m2)(4分);②L===(m)37.(1)由题意得,单独买一件运动服需要的钱数为:200+(200﹣a)×0.9即20+0.9a.(2)∵700≤a+b≤900,而打折却有7折和8折两种方式,∴当700≤a+b≤800时,应付费:200+300×0.9+(a+b﹣500)×0.8即为70+0.8a+0.8b(元);当800<a+b≤900时,应付费:200+300×0.9+300×0.8+(a+b﹣800)×0.7即为150+0.7a+0.7b(元)38.(1)每月用水15吨时,水费为:15×3=45元(1分)每月用水35吨时,水费为:3.8(35﹣20)+60=117元…(2分)(2)①如果每月用水x≤20吨,水费为:3x元(4分)②如果每月用水x>20吨,水费为:3.8(x﹣20)+60或3.8x﹣16元39.根据题意得:4(m+y)+2.5(m﹣y)=6.5m+1.5y.轮船共航行了(6.5m+1.5y)千米.40.(1)根据题意得:(m+12)×5=5m+60(千米);答:轮船顺水航行5小时的行程是(5m+60)千米.(2)根据题意得:(m﹣12)×4=4m﹣48(千米)答:轮船逆水航行4小时的行程是(4m﹣48)千米.(3)根据题意得:5m+60﹣(4m﹣48)=m+108(千米)答:轮船顺水航行5小时和逆水航行4小时的行程相差(m+108)千米.41.(1)由题意得:甲旅行团门票总费用:20x+8y;乙旅行团门票总费用:20×2x+8×y=40x+4y;(2)甲旅行团门票总费用:20x+8y=20×10+8×6=248(元);乙旅行团门票总费用:40x+4y=40×10+4×6=424(元),248+424=672(元).答:两个旅行团的门票总费用是672元42.(1)剩余部分的面积为:(60×40﹣4x2)cm2;(2)盒子的体积为:x(60﹣2x)(40﹣2x)cm3;当x=5时,原式=5(60﹣10)(40﹣10)=7500cm3;答:盒子的体积为7500立方厘米43.(1)∵第1排a个座位,后面每排比第一排多1个座位,(2)根据题意得:a+(a+1)+(a+2)+…+(a+9)=10a+(1+9)×9÷2=10a+45答:前10排共有10a+45个座位;(3)∵第11排有(a+10)个座位,第5排有(a+4)个座位,∴第11排比第5排多的座位数是:(a+10)﹣(a+4)=6(个);则第11排比第5排多6个座位44.(1)阴影部分的面积为:a(b﹣a)(3分);(2)当a=5cm,b=7cm时,原式=5×(7﹣5)=10cm2 45.(1)100(4x+1)+10x+x2(1分)=400x+100+10x+x2=x2+410x+100(2分);(2)当x=0时,x2+410x+100=100,当x=1时,x2+410x+100=511,当x=2时,x2+410x+100=924,当x取3,4,…,9时,4x+1>9,不合题意.由上可知,这个三位数是100或511或924.(4分)46.(1)∵第一队植树x棵,第二队植的树比第一队的2倍少80棵,∴第二队的植树棵数为:2x﹣80,∵第三队植的树比第二队植树多了10%.∴第三队的植树棵数为:(2x﹣80)(1+10%),所以三个队共植树:x+2x﹣80+(2x﹣80)(1+10%)=x﹣168,(2)当x=100棵时,全体同学共植树:x﹣168=×100﹣168=352(棵)47.根据题意可知:当x≤2,支出费用为:5元,若某人乘坐出租车x(x>2)千米的付费=5+1.8×(x﹣2),整理得:应付费用为:1.4+1.8x48.(1)1.5a(1分)(2)1.5a(1﹣20%);a(1+40%)各(1分)(3)2010年总收入250万元,(1分)2011年总收入260万元,(1分)260﹣250=10万元.(1分)答:该企业2011年总收入比2010年总收入增加了10万元49.(1)阴影部分的面积:;(2)阴影部分的面积:,故答案为ab ,.(2)学校要印2600份材料,在甲厂印费用=0.2×2600+500=1020(元);在乙厂印费用=0.4×2600=1040元,∵1020<1040,∴在甲厂印刷比较合算51.1)A城市与B城市之间的距离:80t,从A城市到B 城市的时间:小时,答:需要小时.(3分)(2)由题意:t ﹣=t ﹣=t ﹣=(7分)答:可以提前小时到达52.(1)当n≤100时,买n本笔记本所需的钱数是:2.3n,当n>100时,买n本笔记本所需的钱数是:2.2n;(2)因为2.3n>2.2n,所以会出现多买比少买付钱少的情况;(3)如果需要100本笔记本,购买101本笔记本,比较省钱53.(1)根据题意可得:当x=850时,在甲商场没有优惠,在乙商场有优惠,费用是:500+(850﹣500)×95%=8332.5(元),故在乙商场买合算;(2)当x>1000时:在甲商场的费用是:1000+(x﹣1000)×90%=0.9x+100;在乙商场的费用是:500+(x﹣500)×95%=0.95x+25;(3)把x=1700代入(2)中的两个代数式:0.9x+100=0.9×1700+100=1630,0.95x+25=0.95×1700+25=1635,∵1635>>1630,∴选择甲商场合算54.(1)3a+b,(2)(a﹣b)2,(3)5x+2.55.(1)(2a+b)、(a+2b)…(2分)(2)①依题意可得:(2a+b)(a+2b)=2a2+4ab+ab+2b2=(2a2+5ab+2b2)cm2…(4分)②依题意得a2﹣b2=33即(a+b)(a﹣b)=33又2(a+b)=22即a+b=11①∴a﹣b=3②…(6分)由①②式可求得解得:a=7,b=4当a=7,b=4时,2a2+5ab+2b2=2×72+5×7×4+2×42=270答:这张长方形大铁皮的面积是270cm2.…(8分)(3)共有下列四种方案可供选择:V2=a2bV3=a2bV4=ab2…(12分)∴V1=V4,V2=V3∴V1﹣V2=ab2﹣a2b=ab(b﹣a)∵a>b∴V1=V4<V2=V3∴方案②与③的体积最大.56.(1)由已知得:A日出租车司机比正常情况少行驶:vt﹣(t﹣2)(v﹣5)=2v+5t﹣10(米);(2)由已知得:B日出租车司机比正常情况多行驶(t+2)(v+5)﹣vt=2v+5t+10(米)①,又由(1)和已知的得:2v+5t﹣10=120,将2v+5t=130代入①得140(米).答:B日出租车司机比平时多行驶140千米57.(1)由题意得:应付的车费为:7+(m﹣3)×1.8=1.8m+1.6(元)即他应付1.8m+1.6元车费;(2)由(1)知,如果有人乘计程车行驶了m千米(m >3),那么他应付1.8m+1.6元车费,此时甲乘出租车行驶了4km,所以1.8×4+1.6=8.8(元),即他应付车费8.8元;(3)由(1)知,如果有人乘计程车行驶了m千米(m >3),那么他应付1.8m+1.6元车费,此时游客付了10.6元,则可列出方程为:1.8m+1.6=10.6解得:m=5,即从西区大润发到文昌楼大约有5公里58.AB+BC的长=A→C的长,为x,∵CD=0.6米,∴A→C→D的长=x+0.6,A→B→D的长=x﹣0.6,猫的速度=,老鼠的速度=.故答案为:x;x+0.6;x﹣0.6;;.59.(1)此人乘车的次数m,则月票余额是:50﹣0.8m;(2)50﹣0.8m≥0,解得m≤62.5,∴此人最多能乘车62次.故答案为:(1)(50﹣0.8m).60.∵一本小说共m 页,一位同学第一天看了全书的少6页,∴第一天看了m﹣6,剩下m ﹣(m﹣6)=m+6,∵第二天看了剩下的多6页,∴第二天看了,剩下:,当m=900时,(页).列代数式----11。

七年级列代数式专题训练

七年级列代数式专题训练

七年级列代数式专题训练一、列代数式专题训练题。

1. 某商品原价为a元,现按原价的8折出售,那么售价是多少元?- 解析:打8折就是原价乘以0.8,所以售价为0.8a元。

2. 一个长方形的长为a厘米,宽为b厘米,求这个长方形的周长。

- 解析:长方形周长C = 2×(长 + 宽),所以周长为2(a + b)厘米。

3. 小明有m颗糖,小红的糖比小明的2倍还多3颗,小红有多少颗糖?- 解析:小明糖的2倍是2m颗,再多3颗就是(2m+3)颗,所以小红有(2m + 3)颗糖。

4. 一辆汽车的速度是v千米/小时,行驶t小时后,行驶的路程是多少千米?- 解析:根据路程=速度×时间,行驶的路程为vt千米。

5. 某班有a名男生,女生人数比男生人数的(3)/(4)少5人,女生有多少人?- 解析:男生人数的(3)/(4)是(3)/(4)a人,少5人就是((3)/(4)a - 5)人,所以女生有((3)/(4)a-5)人。

6. 一个正方体的棱长为x,求它的表面积。

- 解析:正方体表面积S = 6×棱长^2,所以表面积为6x^2。

7. 某数为x,比它的3倍小2的数是多少?- 解析:x的3倍是3x,比3x小2的数就是(3x - 2)。

8. 一支钢笔a元,一支铅笔b元,买3支钢笔和2支铅笔共需多少钱?- 解析:3支钢笔需要3a元,2支铅笔需要2b元,总共需要(3a + 2b)元。

9. 若x表示一个两位数,y表示一个一位数,把y放在x的左边组成一个三位数,这个三位数如何表示?- 解析:y放在x的左边,y就扩大了100倍,x的数位不变,所以这个三位数表示为100y+x。

10. 某工厂去年的产量是a件,今年比去年增产10%,今年的产量是多少件?- 解析:今年比去年增产10%,就是在去年产量的基础上增加10%a件,所以今年产量为a+10%a = 1.1a件。

11. 一个梯形的上底为a,下底为b,高为h,求梯形的面积。

七年级《列代数式》专项练习50题(有答案)ok

七年级《列代数式》专项练习50题(有答案)ok

七年级列代数式专项训练50题(有答案)1. 从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( ) A.222()ab a b -=-B.222()2a b a ab b +=++C.222()2a b a ab b -=-+D. 22()()ab a b a b -=+-2. 某商场2006年的销售利润为a ,预计以后每年比上一年增长b %,那么2008年该商场的销售利润将是( ) A .()21ab + B . ()21%ab + C .()2%a ab + D .2a ab +3. 如图,阴影部分的面积是( ) A.112xy B.132xyC.6xy D.3xy4. 某商品原价为a 元,因需求量大,经营者连续两次提价,每次提价10%,后因市场物价调整,又一次降价20%,降价后这种商品的价格是( )A .1.08a 元B .0.88a 元C .0.968a 元D .a 元5. 目前,财政部将证券交易印花税税率由原来的1‰(千分之一)提高到3‰.如果税率提高后的某一天的交易额为a 亿元,则该天的证券交易印花税(交易印花税=印花税率×交易额)比按原税率计算增加了多少亿元A .a ‰B . 2a ‰C . 3a ‰D .4a ‰6. 为了吸收国民的银行存款,今年中国人民银行对一年期银行存款利率进行了两次调整,由原来的2.52%提高到 3.06%.现李爷爷存入银行a 万元钱,一年后,将多得利息( )万元. A .0.44a % B .0.54a %C .0.54aD .0.54%7. 用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是 144,小正方形的面积是4,若用x ,y 表示矩形的长和宽(x >y ),则下列关系式中不 正确的是( )A .x +y =12B .x -y =2C .xy =35D .x 2+y 2=1448. 用代数式表示“a 的3倍与b 的差的平方”,正确的是( ) A .2(3)a b - B .23()a b -C .23a b - D .2(3)a b -9. 在中央电视台2套“开心辞典”节目中,有一期的某道题目是:如图所示,天平中放有苹果、香蕉、砝码,且两个天平都平衡,则一个苹果的重量是一个香蕉的重量的( )甲乙yxA .43倍B .32倍C .2倍D .3倍10. 已知一个多项式与239xx +的和等于2341x x +-,则这个多项式是( )A .51x --B .51x +C .131x --D .131x +11. 如果ab <0,那么下列判断正确的是( ).A .a <0,b <0B . a >0,b >0C . a ≥0,b ≤0D . a <0,b >0或a >0,b <012. 一盒铅笔12支,n 盒铅笔共有 支.13. 针对药品市场价格不规范的现象,药监部门对部分药品的价格进行了调整.已知某药品原价为a 元,经过调整后,药价降低了60%,则该药品调整后的价格为__________________元. 14. 在边长为a 的正方形纸片中剪去一个边长为b 的小正方形()a b >(如图(1)),把余下的部分沿虚线剪开,拼成一个矩形(如图(2)),分别计算这两个图形阴影部分的面积,可以验证的 乘法公式是 (用字母表示).15. 一根钢筋长a 米,第一次用去了全长的13,第二次用去了余下的12,则剩余部分的长度为米.(结果要化简)16. 一台电视机的原价为a 元,降价4%后的价格为_________________元.17. 利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:222()2a b a ab b +=++.你根据图乙能得到的数学公式是 .18. 对单项式“5x ”,我们可以这样解释:香蕉每千克5元,某人买了x 千克,共付款5x 元. 请你对“5x ”再给出另一个实际生活方面的合理解释: . 19. 为了增加游人观赏花园风景的路程, 将平行四边形花园中形如图1的恒宽为a 米的直路改为形如图2恒宽为a 米的曲路, 道路改造前后各余下的面积(即图中阴影部分面积)分别记为S 1和S 2,则S 1________S 2(填“>”“=”或“<”).20. “a 的2倍与1的和”用代数式表示是 .图(1)图(2)aba bba a bba甲乙图1 图221. 张老师带领x 名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总 费用为y 元,则y = .22. 用代数式表示“a 与b 的和”,式子为 .23. 如图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.24. 某商品的原价为100元,如果经过两次降价,且每次降价的百分率都是m ,那么该商品现在的价格是 元(结果用含m 的代数式表示).25. 一筐苹果总重x 千克,筐本身重2千克,若将苹果平均分成5份,则每份重__________千克.26. 为了帮助玉树地区重建家园,某班全体师生积极捐款,捐款金额共3200元,其中5名教师人均捐款a 元,则该班学生共捐款元(用含有a 的代数式表示).27. 某工厂计划a 天生产60件产品,则平均每天生产该产品______ ____件. 28. 用代数式表示“a 、b 两数的平方和”,结果为 .29. 如果用s 表示路程(单位:千米),t 表示时间(单位:小时),v 表示速度(单位:千米/时), 那么t = 小时 (用s 和v 表示).30. 惠民新村分给小慧家一套价格为12万元的住房.按要求,需首期(第一年)付房款3万元,从第二年起,每年应付房款0.5万元与上一年剩余房款的利息的和.假设剩余房款年利率为0.4%,小慧列表推算如下:若第n 年小慧家仍需还款,则第n 年应还款 万元(n >1).31.三个连续的偶数中若中间的一个是,是代数式表示其它两个偶数是().(A )(B )(C )(D )32.某钢铁厂每天生产钢铁吨,现在每天比原来增加,现在每天钢铁的产量是()吨.(A ) (B ) (C ) (D )33.下列各式:(1);(2);(3);(4);(5);(6)其中代数式的个数为(). A .2 B .3 C .4 D .5(1) (2) (3) ……第一年第二年 第三年 … 应还款(万元) 3 %4.095.0⨯+0.58.50.4%+⨯… 剩余房款(万元) 98.58…34.代数式,用语言叙述正确的是().A.与的平方差 B.的平方减 5乘以的平方C.的平方与的平方的5倍的差D.与的差的平方35.下列各式:(1);(2);(3)(4);(5);(6)其中不符合代数式书写要求的有().A.5个B.4个C.3个D.2个36.关于代数式的意义,下列说法中不正确的是().A.比的平方少1的数B.的平方与1的差C.与1两数的平方差D.与1的差的平方37.下面各判断后面的代数式中错误的是().A.的3倍与的2倍的和为B.除以的商与2的差的平方为C.、两数和乘以、两数差为D.与的和的为38.用字母表示三个连续奇数的和_________.39.的2倍与3的差_________.40.的平方的5倍与的和_________.41.比、的积的小7的数_________.42.李明有本教科书,课外书比教科书多本,那么他共有_________本书.43.一件上衣售价为元,降价10%后的售价为_________.44.某商品利润是元,利润率是20%,此商品的进价是_________元.45.一项工程,甲队单独完成要天,乙队单独完成要天,两队合作需要_________天完成.46.“除以的商的平方与减去的差的和”用代数式表示是_________.47.如图,圆中挖掉一个正方形,试用r表示阴影部分面积.48.如图,用a来表示阴影部分的面积.49.如图所示一个边长为1的正方形的分割方法,当分割n次时其中最小的四边形的面积是多少.50.一种蔬菜x千克,不加工直接出售每千克可卖y元,如果经过加工重量减少了20%,价格增加了40%,问x千克这种蔬菜加工后可卖多少钱;如果这种蔬菜1000千克,不加工直接出售每千克可卖1.50元,问加工后原1000千克这种蔬菜可卖多少钱?比加工前多卖多少钱?51.举出三个实际问题,其中的数量关系可以用a、b来表示.答案:第1题:D 第2题:B 第3题:A第4题:C 第5题:B 第6题:B 第7题:D 第8题:A 第9题:B第10题:A 第11题:D 第12题:12n第13题:0.4a第14题:22()()a b a b a b-=+-(或22()()a b a b a b+-=-)第15题:13a第16题:(1–4%)a元或0.96a元第17题:222()2a b a ab b-=-+第18题:某人以5千米/时的速度走了x小时,他走的路程是5x千米(答案不唯一)第19题:= 第20题:21a+第21题:5x+10 第22题:a+b 第23题:3n+1第24题:2)1(100m-第25题:25x-第26题:32005a-第27题:60a第28题:22b a + 第29题:s v第30题:0.540.002n -(填[]0.59(2)0.50.4%n +--⨯⨯或其它正确而未化简的式子也给满分)31. C 32.D 33.B 34.C 35.B 36.D 37.D38. 设为自然数,则三个连续的奇数和为=39. . 40. 41.42. 43.元 44.45.46.47.(提示:如答图,把正方形分成两个三角形,其中三角形的面积是.48.(提示:如答图,其中阴影面积的一半,等于以a 为半径的四分之一的圆的面积减去以a 为两直角边的直角三角形的面积)49.(提示:当分割一、二、三…次所得的最小四边形的面积依次是,分割n 次得最小四边形的面积是)50.1.12xy 元,1680元,180元51.(1)a 、b 分别表示长方形的长和宽,则长方形的面积是 (2)如果a 表示某种物品的单价、b表示某种物品的数量,则这种物品的总价可表示为,(3)a 表示汽车行驶的速度,b 表示汽车行驶的时间,则可表示汽车行驶的路程.。

列代数式练习题精选

列代数式练习题精选

题组1:整数问题1.设n为整数,则所有的偶数可表示为,所有的奇数可表示为。

能被5整除的数可表示为,被3除余2的数可表示为。

2.能被3和4整除的整数可表示为3.有三个连续的整数,最小数是m,则其他两个数分别是和.4.连续三个偶数,中间一个是2n,则第一个和第三个偶数分别是、_______ O是三位数,b是一位数,如果把b放在a的左边,那么所成的四位数应表示为()A ba B- 100b + a C. 10b + a D- 1000b + a6.一个3位数的百位数字是5,十位数字为a,个位数字为b,①这个3 位数为,②把它的3位数字颠倒过来,所得的3位数是 O题组2:百分数问题1.全班总人数为y,其中男生占56%,那么女生人数是.2.设甲数为a,乙数比甲数少15%,则乙数为;3. 一件上衣的原价是a元,由于反季节降价20%销售,其零售价是一4.某工厂第一个月的生产量是a,以后平均每月增长10%,问第三个月的产量是多少?5.据1994年的统计资料:在过去的25年,大象数量下降了90%O设1994年大象的头数为a,则25年前的大象头数为多少?题组3:面积问题1.一枚古币的正面是一个直径为acm的圆形.中间有一个边长为bcm的正方形孔,则这枚古币正面的面积为cm2.2.用代数式表示长、宽、高分别为a、b、c的长方体的表面积3.一个长方形的周长是30cm,若长方形的一边长为acm,则该长方形的面积是多少?4.如图,在长为a,宽为b的草坪中间修建宽度为c的两条道路,那么剩下的草坪面积是.a5.如图所示,求阴影部分的面积.6.如图,正方形ABCG和正方形CDEF的边长分别为。

,b用含a,b的代数式表示阴影部分的面积;当a:4,b=3时,阴影部分的面积为多少?题组4:行程问题1.如果王红用t小时走完的路程为s千米,那么她的速度为百度文库-让每个人平等地提升自我2.“龟兔赛跑”,龟兔每小时的行程分别为a千米,b千米,经过t小时后,龟兔相距千米.3.一辆汽车由甲地以每小时65千米的速度驶向乙地,行驶3小时即可到达乙地,则在行驶t (0 < t < 3)小时后离甲地千米,距乙地千米.4.一辆汽车从甲地出发,先以a千米/时速度走了m小时,又以b千米/ 时的速度走了 n小时到达乙地,则汽车由甲地到乙地的平均速度为千米/时5.船在静水中的速度为30km/h,水流速度1 a卜向儿则船在顺水中的速度2为,逆水中速度为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题组1:整数问题
1.设n为整数,则所有的偶数可表示为,所有的奇数可表示为。

能被5整除的数可表示为,被3除余2的数可表示为。

2.能被3和4整除的整数可表示为
3.有三个连续的整数,最小数是m,则其他两个数分别是_____和_____. 4.连续三个偶数,中间一个是2n,则第一个和第三个偶数分别是___、___。

是三位数,b是一位数,如果把b放在a的左边,那么所成的四位数应表示为()
A. ba
B. a
10 D. a
b+
1000
b+
b+
100 C. a
6.一个3位数的百位数字是5,十位数字为a,个位数字为b,①这个3位数为,②把它的3位数字颠倒过来,所得的3位数
是。

题组2:百分数问题
1.全班总人数为y,其中男生占56%,那么女生人数是_____.
2.设甲数为a,乙数比甲数少15%,则乙数为________;
3.一件上衣的原价是a元,由于反季节降价20%销售,其零售价是______ .
4.某工厂第一个月的生产量是a,以后平均每月增长10%,问第三个月的产量是多少?
5.据1994年的统计资料:在过去的25年,大象数量下降了90%。

设1994
年大象的头数为a,则25年前的大象头数为多少?
题组3:面积问题
1.一枚古币的正面是一个直径为acm的圆形.中间有一个边长为bcm的正方形孔,则这枚古币正面的面积为_______cm2.
2.用代数式表示长、宽、高分别为a、b、c的长方体的表面积
3.一个长方形的周长是30cm,若长方形的一边长为acm,则该长方形的面积是多少?
4.如图,在长为a,宽为b的草坪中间修建宽度为c的两条道路,那么剩下的草坪面积是.
5.如图所示,求阴影部分的面积.
6.如图,正方形ABCG和正方形CDEF的边长分别为b a,,用含b a,的代数式表示阴影部分的面积;当3
a时,阴影部分的面积为多少?
,4=
=b
题组4:行程问题
1.如果王红用t小时走完的路程为s千米,那么她的速度为_____
_.
2.“龟兔赛跑”,龟兔每小时的行程分别为a 千米,b 千米,经过t 小时后,龟兔相距_____千米.
3.一辆汽车由甲地以每小时65千米的速度驶向乙地,行驶3小时即可到达乙地,则在行驶)30(≤<t t 小时后离甲地________千米,距乙地______千米.
4.一辆汽车从甲地出发,先以a 千米/时速度走了m 小时,又以b 千米/
时的速度走了n 小时到达乙地,则汽车由甲地到乙地的平均速度为 千米/时
5.船在静水中的速度为30km/h ,水流速度12
a km/h ,则船在顺水中的速度为 ,逆水中速度为 。

题组5:工程问题
1.某工厂有煤m 吨,计划每天用煤n 吨,实际每天节约用煤b 吨,节约后可以多用( )
A 、⎪⎭⎫
⎝⎛-+n m b n m 天 B 、⎪⎭⎫ ⎝⎛--b n m n m 天 C,⎪⎭⎫ ⎝⎛+-b n m n m 天 D ⎪⎭
⎫ ⎝⎛--n m b n m 天 2.一项工程甲独做需x 天完成,乙独做需y 天完成,甲先做2天,乙再加入做a 天,这时完成的工程为
3.一项工作,甲独做x 天完成,乙独做y 天完成,甲、乙合作a 天后还剩( )
A 、y x a +-1
B 、y x a 11+
C 、⎪⎪⎭⎫ ⎝⎛+-y x a 111
D 、xy
a -1 题组6:价格问题
1.某水果市场,苹果的零售价为每斤2元,一人要买x 斤苹果需付款__________,另一人付资y 元,需给苹果__________斤.
2.甲、乙两品牌上衣的单价分别为x 元、y 元。

在换季时,甲品牌上衣按4折(即原价的40%)销售,乙品牌上衣按6折销售。

这时购买两种品牌的上衣各一件,共需多少元?
3.广州市出租车收费标准为:起步价7元,3千米后每千米价元,则某人乘坐出租车x (x>3)千米的付费为______元。

4.若家庭电话月租金21元,每次市内通话费平均元,每次长途通话费平均元。

若半年内打市内电话m 次,打长途电话n 次,则半年内应付话费为( )元。

A .+
B .21mn
C .21++
D .21×6++
5.某老师暑假将带领该校部分学生去某地旅游,甲旅行社说: “如果教
师买全票一张,则其余学生可享受半价优惠”.乙旅行社说:“包括教师在内全部按全票票价的6折优惠”.若两旅行社的全票票价均为240元,设学生数为x 人,•甲旅行社的收费为y 甲元,乙旅行社收费为y 乙元,分别计算两家旅行社的收费.
题组7:求代数式的值
1.当a=3,b=32
-时,求下列代数式的值:
(1)2ab ; (2)2a +2ab+2b
2.若b
a =2,则b
a
a b +的值是多少?
3.若代数式2y+3y+7的值为8,则代数式4y 2+6y-9的值是(
) A 、13 B 、-2 C 、17 D 、-7
4.已知:a +b =4,ab =1,求 2a +3ab +2b 的值。

5.已知a+19=b+9=c+8求代数式(a-b)2+(b-c)2+(c-a)2的值。

6.若a 、b 互为相反数,p 、q 互为倒数,m 的绝对值为5,则代数式||5
m pq b a -++的值是( )
A 、-6
B 、-5
C 、-4
D 、0
7.按下列图示的程序计算,若开始输入的值为x =3,则最后输出的结果是
( )
A .6
B .21
C .156
D .231 输入x 计算x (x +1)/2的值 大于100 输入结果

否。

相关文档
最新文档