中考专题复习——“新定义”问题(学案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题复习——“新定义”问题(学案)
班级 姓名
一、专题诠释
所谓"新定义"型试题,是指试题在某种运算、某个基本概念或几何图形基础上或增加条件,或改编条件,或削弱条件,构造一些创意新奇、情境熟悉但又从未接触过的新概念的试题。其特点是源于初中数学内容,但又是学生没有遇到的新信息,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型。“新定义”型试题常常以运算模式、函数模式、几何模式等形式出现。 二、解题策略
解决此类问题的常见思路:给什么,用什么。即:正确理解新定义,并将此定义作为解题的重要依据,分析并掌握其本质,用类比的方法迅速地同化到自身的认知结构中,然后解决新的问题。 三、典例精析 (一)运算模式
例
1 (2013•河北)定义新运算:对于任意实数a ,b ,都有a ⊕b=a (a-b )+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1==-5。 (1)求(-2)⊕3的值;
(2)若3⊕x 的值小于13,求x 的取值范围,并在图所示的数轴上表示出来.
练习1 (2012·莱芜)对于非零的两个实数a 、b ,规定a
b b a 1
1-=⊕,若()1122=-⊕x ,则x 的值为( ) A .
65 B . 45 C . 23 D .6
1- (二)函数模式
例2 (2015•衢州)小明在课外学习时遇到这样一个问题:
定义:如果二次函数y=a 1x 2+b 1x+c 1(a 1≠0,a 1,b 1,c 1是常数)与y=a 2x 2
+b 2x+c 2(a 2≠0,a 2,b 2,c 2是常数)满足a 1+a 2=0,b 1=b 2,c 1+c 2=0,则称这两个函数互为“旋转函数”.
求函数y=﹣x 2
+3x ﹣2的“旋转函数”.
小明是这样思考的:由函数y=﹣x 2
+3x ﹣2可知,a 1=﹣1,b 1=3,c 1=﹣2,根据a 1+a 2=0,b 1=b 2,c 1+c 2=0,求出a 2,b 2,c 2,就能确定这个函数的“旋转函数”. 请参考小明的方法解决下面问题:
(1)写出函数y=﹣x 2
+3x ﹣2的“旋转函数”;
(2)若函数y=﹣x 2
+mx ﹣2与y=x 2
﹣2nx+n 互为“旋转函数”,求(m+n )
2015
的值;
(3)已知函数y=﹣(x+1)(x ﹣4)的图象与x 轴交于点A 、B 两点,与y 轴交于点C ,点A 、B 、C 关于原点的对称点分别是A 1,B 1,C 1,试证明经过点A 1,B 1,C 1的二次函数与函数y=﹣(x+1)(x ﹣4)互为“旋转函数.”
练习2(2015•绍兴)如果抛物线c bx ax y ++=2
过定点M (1,1),则称次抛物线为定点抛物线。 (1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式。小敏写出了一个答案:4322
-+=x x y ,请你写出一个不同于小敏的答案;
(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线122
+++-=c bx x y ,求该抛
物线顶点纵坐标的值最小时的解析式,请你解答。
(三)几何模式
例3 (2014•嘉兴)类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.
(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.
(2)在探究“等对角四边形”性质时:
①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD
成立.请你证明此结论;
②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.
(3)已知:在“等对角四边形“ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC
的长.
练习3 (2015•杭州)如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”,如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′、B′分别是点A,B关于⊙O的反演点,求A′B′的长.
图2
图1