2、概率的几种定义(古典概型)

合集下载

古典概型的定义

古典概型的定义

古典概型的定义
古典概型,也叫统计学的古典概率,是一种基本的概率计算方法。

所谓“古典”,指的是它适用于那些有限个基本事件、每个事件的发
生概率相等的样本空间。

具体来说,对于一个由有限个基本事件组成的样本空间,假设每
个基本事件出现的可能性相等,那么该事件发生的概率就可以通过排
列组合求出。

以一枚硬币抛掷为例,它的古典概型是:正面朝上概率
为1/2,反面朝上概率为1/2。

古典概型的定义包含了以下三个要素:样本空间、基本事件和等
可能性原理。

1.样本空间:指所有可能发生的事件的集合,用S表示。

比如,
扔一枚骰子的样本空间为{1,2,3,4,5,6}。

2.基本事件:是样本空间S中每个元素本身,每个基本事件是互
斥的。

比如,扔一枚硬币时,正面朝上和反面朝上就是两个基本事件。

3.等可能性原理:是指每个基本事件发生的概率相等。

在扔一枚
硬币的例子中,正面朝上和反面朝上的概率都是1/2。

按古典概型定义,基本事件的概率是指每个基本事件出现的可能
性大小,因此它是介于0和1之间的一个实数。

所有的基本事件发生
概率之和为1。

应用古典概型,可以计算出概率问题的答案。

比如,如果一副扑
克牌中,从中随机取出一张牌,求取到一张红桃牌的概率是多少?根
据扑克牌的样本空间和等可能性原理,可以得到红桃牌的数量是13张,总牌数为52张,因此概率为13/52 = 1/4。

总之,古典概型是概率论中最基本的概率计算方法,适用于等可
能性的事件。

通过这种方法,可以方便地计算概率问题,为概率统计
学提供了重要的基础。

§1.2 概率的定义与古典概型

§1.2 概率的定义与古典概型

设有k 个不同的球, 每个球等可能地落入N 个盒子中(), 设每个盒子容球数无限, 求下列事件的概率:N k ≤(1)某指定的k 个盒子中各有一球;(4)恰有k 个盒子中各有一球;(3)某指定的一个盒子没有球;k m ≤(2)某指定的一个盒子恰有m 个球( )(5)至少有两个球在同一盒子中;(6)每个盒子至多有一个球.例2(分房模型)例7两船欲停靠同一个码头, 设两船到达码头的时间各不相干,而且到达码头的时间在一昼夜内是等可能的. 如果两船到达码头后需在码头停留的时间分别是1 小时与2 小时,试求在一昼夜内,任一船到达时,需要等待空出码头的概率.解设船1 到达码头的时刻为x,0 ≤x < 24船2 到达码头的时刻为y,0 ≤y < 24设事件A表示任一船到达码头时需要等待空出码头设Ω是随机试验E 的样本空间,若能找到一个法则,使得对于E 的每一事件A 赋于一个实数,记为P ( A ), 称之为事件A 的概率,这种赋值满足下面的三个条件:非负性:0)(,≥⊂∀A P A Ω 规范性:1)(=ΩP ∑∞=∞==⎟⎠⎞⎜⎝⎛11)(i i i i A P A P U 可列可加性:L ,,21A A 其中为两两互斥事件,概率的公理化理论由前苏联数学家柯尔莫哥洛夫(A.H.Колмогоров)1933年建立.三、概率的公理化定义6、加法公式:对任意两个事件A, B, 有)()()()(ABPBPAPBAP−+=∪)()()(BPAPBAP+≤∪推广:) ()()() ()( )()()(ABC PBCP ACPAB PCP BPAPCBAP+−−−+ +=∪∪)()1()()()()(2111111n n nnk j i k j i nj i j i ni i ni i A A A P A A A P A A P A P A P L L U −≤<<≤≤<≤==−++++−=∑∑∑一般:右端共有项.12−n例9 中小王他能答出第一类问题的概率为0.7, 答出第二类问题的概率为0.2, 两类问题都能答出的概率为0.1. 为什么不是?2.07.0×若是的话, 则应有)()()(2121A P A P A A P =而现在题中并未给出这一条件.在§1.4中将告诉我们上述等式成立的条件是:事件相互独立.21,A A例10设A , B 满足P ( A ) = 0.6, P ( B ) = 0.7,在何条件下,P (AB ) 取得最大(小)值?最大(小)值是多少?解)()()()(AB P B P A P B A P −+=∪)()()()(B A P B P A P AB P ∪−+=3.01)()(=−+≥B P A P 1)(=∪B A P 最小值在时取得6.0)()(=≤A P AB P ——最小值——最大值)()(B P B A P =∪最大值在时取得。

古典概型2

古典概型2

古典概型(2)一、知识点剖析1、古典概型的定义与特点 掌握要点:古典概型的两个特征:(1)一次试验中,可能出现的结果只有有限个,即有限性;(2)试验中每个基本事件发生的可能性是均等的,即等可能性.在古典概型中,P (A )=试验的基本事件数包含的基本事件数事件A易混易错:要套用古典概型的概率计算公式,首先要确定好基本事件总数。

强调在用古典概型计算概率时,必须要验证所构造的基本事件是否满足古典概型的第二个条件(每个结果出现是等可能的),否则计算出的概率将是错误的.另外如果计算中有重复现象,应注意除掉重复部分.在求事件A 包含的基本事件个数时如果情况不同应注意分类讨论. 2、用排列和组合解决古典概型问题 掌握要点:从n 个不同的元素中取出m(m ≤n)个元素的所有排列的个数,叫做从n 个不同的元素中取出m 个元素的排列。

一般地,从n 个不同元素中取出m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。

易混易错:共同点: 都要“从n 个不同元素中任取m 个元素” 不同点: 排列与元素的顺序有关, 而组合则与元素的顺序无关.构造排列分成两步完成,先取后排;而构造组合就是其中一个步骤. 3、有些抽样问题存在放回和不放回的区别 掌握要点: 分类计数原理完成一件事,有n 类办法. 在第1类办法中有m 1种不同的方法,在第2类方法中有m 2种不同的方法,……,在第n 类方法中有m n 种不同的方法,则完成这件事共有n m m m N ++=21分步计数原理完成一件事,需要分成n 个步骤。

做第1步有m 1种不同的方法,做第2步有m 2种不同的方法, ……,做第n 步有m n 种不同的方法,则完成这件事共有n m m m N ∙∙∙= 21 易混易错:有放回抽样与无放回抽样都属等可能事件. 对于具体问题,不知用分步还是分类二、典型题型剖析1、古典概型的定义与特点 方法归纳:在古典概型中,P (A )=试验的基本事件总数包含的基本事件数事件A例题:例1、将骰子先后抛掷2次,计算: (1)一共有多少种不同的结果?(2)其中向上的数之和是5的结果有多少种? (3)向上的数之和是5的概率是多少?主要过程:有些等可能事件的概率问题中,有时在求m 时,不采取分析的方法,而是结合图形采取枚举的方法,即数出事件A 发生的结果数,当n 较小时,这种求事件概率的方法是常用的.将抛掷2次的所有结果数一一列举出来,如下表所示由上表可知,将骰子先后抛掷2次,一共有36种不同的结果,其中向上的数之和是5的结果有(1,4),(2,3),(3,2),(4,1)共4种,由于骰子是均匀的,将它抛掷2次的所有36种结果是等可能出现的,故向上的数之和是5的概率是.例2、甲、乙两个均匀的正方体玩具,各个面上分别刻有1,2,3,4,5,6六个数字,将这两个玩具同时掷一次.(1)若甲上的数字为十位数,乙上的数字为个位数,问可以组成多少个不同的数,其中个位数字与十位数字均相同的数字的概率是多少? (2)两个玩具的数字之和共有多少种不同结果?其中数字之和为12的有多少种情况?数字之和为6的共有多少种情况?分别计算这两种情况的概率. 主要过程:(1)甲有6种不同的结果,乙也有6种不同的结果,故基本事件总数为6×6=36其中十位数字共有6种不同的结果,若十位数字与个位数字相同,十位数字确定后,个位数字也即确定.故共有6×1=6种不同的结果,即概率为61366 .10,11,12共11种不同结果.从中可以看出,出现2的只有一种情况,而出现12的也只有一种情况,它们的概率均为361,因为只有甲、乙均为1或均为6时才有此结果. 出现数字之和为6的共有(1,5),(2,4),(3,3),(4,2),(5,1)五种情况,所以其概率为365. 强调内容:(1)判断一个试验是否是古典概型,要把握两个特征:(1)一次试验中,可能出现的结果只有有限个,即有限性;(2)试验中每个基本事件发生的可能性是均等的,即等可能性.“等可能性”指的是结果,而不是事件. (2)“等可能性”指的是结果,而不是事件.(3)使用计算公式时,关键是准确写出试验的基本事件数. 2、利用排列组合解决古典概型问题 方法归纳:判断排列还是组合:有序用排列,无序用组合 例 题:例2、今有强弱不同的十支球队,若把它们分两组进行比赛,分别计算: (1)两个最强的队被分在不同组内的概率. (2)两个最强的队恰在同一组的概率. 解:将十支球队平均分成两组,因每支球队分到哪一组的可能性完全相同,所以是等可能性事件.所有基本事件个数为5510522C C A . (1)两个最强的队被分在不同组记为事件A ,则A 中含有基本事件数为44284222C C A A ,故两支最强的队被分在不同组内的概率为:.C;故两个最强的队(2)两个最强的队恰在同一组记为事件B,则B中含有基本事件数为38恰在同一组内的概率为:强调内容:(1)什么时候用排列什么时候用组合:事件结果有顺序时用排列,无顺序时用组合(2)公式的运用3、放回与不放回求概率问题方法归纳:求概率时放回的用分步计数原理,不放回的采用排列组合来解决。

1-第二节古典概率与几何概率

1-第二节古典概率与几何概率

N C C C 30!/ 10! 10! 10!
10 30 10 20 10 10
9 9 P(A) 3! C 27 C18 C99 /N 50/ 203
1 7 10 10 P(B) C 3 C 27 C 20 C10 /N
3 C / C
7 27
10 30
a( a b 1 )! a P ( Ak ) ( a b )! ab
解法2 1.把a只黑球和b只白球都看着没有区别.
2. 把a+b只球摸出来依次排在一直线的a+b个位置 上.若把a只黑球的位置固定下来,则其它位置必然 a C 为白球,则黑球在a+b个位置中的放法共有 a b , 3.有利于A的场合是在第k个位置上固定一个黑球, 其余a - 1个黑球被放到其余a+b-1个位置上,共有 a 1 Ca 种放法. 因此 b 1
k n k CM CN M P , n CN
0 k minn , M n M
超几何分布
例11 30名毕业生中有3名运动员,将他们平均分配 到甲、乙、丙三个城市去工作,求: (1)每市都有一名运动员的概率; (2)3名运动员集中在一个市里的概率。 解 设A={每市有一名运动员}; B={3名运动员集中在一个市里}
P (e1 ) P (e 2 ) P (e n ) nP (e1 )
P ( e1 ) P ( e 2 ) P ( e n ) 1 / n
因此, 若事件A e i1 , e i2 , , e ik 包含了k个基本事件, 则 事件A发生的概率 P ( A) k / n
使 A 发生的基本事件是第一次抽到合格品 , 且第二次也抽到合格品, 共有mA=8×8=64种取法.于是 P(A)= mA/n=64/100 同理B包含的基本事件数mB=2×2=4.所以 P(B)= mB /n=4/100 由于C=A+B,且AB=,所以

1-2(概率的定义、古典概率)

1-2(概率的定义、古典概率)

P( AB) P( A) P( B) P( A B)
P( A) P( B) 1 0.3 —— 最小值
最小值在 P( A B) 1 时取得
P( AB) P( A) 0.6
—— 最大值
最大值在 P( A B) P( B) 时取得
三.几何概率
早在概率论发展初期,人们就认识到, 只考虑有限个等可能样本点的古典方法是不 够的. 把等可能推广到无限个样本点场合,人们 引入了几何概型. 由此形成了确定概率的另 一方法——几何方法.
P( AB ) P( A) P( AB) 0.7 0.1 0.6 (2) P( A B) P( A) P( B) P( AB) 0.8
(1)
(3) P( A B) P( A B) 0.2
例2 设A , B满足 P ( A ) = 0.6, P ( B ) = 0.7, 在 何条件下, P(AB) 取得最大(小)值?最大(小) 值是多少? 解 P( A B) P( A) P( B) P( AB)
P ( Ai ) P ( Ai )
i 1 i 1 n n 1 i j n
P( A A )
i j
1 i j k n
P( A A A )
i j k
„ ( 1)
n1
P ( A1 A2 „ An )
例1 小王参加“智力大冲浪”游戏, 他能 答出甲、乙二类问题的概率分别为0.7和0.2, 两类问题都能答出的概率为0.1. 求小王 (1) 答出甲类而答不出乙类问题的概率 (2) 至少有一类问题能答出的概率 (3) 两类问题都答不出的概率 解 事件A , B分别表示“能答出甲,乙类问题”

古典概型定义及公式

古典概型定义及公式

古典概型定义及公式好的,以下是为您生成的文章:咱今儿就来唠唠古典概型,这玩意儿在咱数学里头可是挺重要的角儿。

话说我之前教过一个学生,叫小李。

这小李啊,平时看着挺机灵,但一碰到古典概型的问题,就跟那霜打的茄子——蔫儿了。

有一次课堂测验,有道题是这样的:一个盒子里有 5 个红球和 3 个白球,从中随机取出一个球,求取出红球的概率。

这小李可好,抓耳挠腮半天,愣是没整明白。

咱先来说说古典概型的定义哈。

简单来讲,古典概型就是那种试验结果有限,而且每个结果出现的可能性相等的概率模型。

比如说掷骰子,骰子就六个面,1 点到 6 点,每次掷出的结果就那么几种,而且出现每个点数的可能性都一样,这就是典型的古典概型。

再比如抽奖,假设箱子里有 100 张奖券,其中 10 张有奖,你随机抽一张,这也是古典概型。

为啥呢?因为结果就那么 100 种,而且每张奖券被抽到的机会均等。

那古典概型的公式是啥呢?就是P(A) = n(A) / n(Ω) 。

这里的 P(A) 表示事件 A 发生的概率,n(A) 表示事件 A 包含的基本事件个数,n(Ω) 表示样本空间Ω包含的基本事件总数。

还是拿前面说的盒子里取球的例子来说。

总共有 8 个球,取出红球这个事件 A 包含 5 个基本事件(也就是 5 个红球),样本空间Ω包含的基本事件总数是 8 个球,所以取出红球的概率 P(取出红球) = 5 / 8 。

咱再举个例子,抛硬币。

抛一次硬币,结果不是正面就是反面,这就是有限的结果,而且出现正面和反面的可能性相等。

假设我们关心的事件 A 是抛出正面,那 n(A) 就是 1 ,n(Ω) 就是 2 ,所以抛出正面的概率 P(抛出正面) = 1 / 2 。

我后来给小李单独辅导的时候,就拿这些例子反复跟他讲。

我让他自己动手多做几道类似的题目,慢慢地,小李好像开了窍。

其实啊,古典概型在生活中也挺常见的。

像买彩票,虽然中奖概率低得可怜,但从概率的角度来看,也能算是古典概型。

概率论 2概率的统计定义、古典概型

概率论 2概率的统计定义、古典概型

个。
• 例8 从1~100的一百个整数中任取一数,试求取到的整数能被 6或8整除的概率。
几何概率( Geometric Probability)
将古典概率中的有限性推广到无限性,而保留等可
能性,就得到几何概率。
特点
有一个可度量的几何图形S 试验E看成在S中随机地投掷一点
事件A就是所投掷的点落在S中的可度量图形A中
投掷两颗骰子,试计算两颗骰子的点数之 和在4和10之间的概率. 解:设A表示点数之和在4和10之间
1 2 5 P( A) 1 2 2 36 36 6

P A B, P A B, P A B
设 P A 0.4,
P AB P A B P A AB 0.2
A B 0.4 0.7 0.2 0.9
0.4 0.3 0.2 0.5
古典概率 (Classical Probability)
考察如下几个试验:
抛两枚均匀的硬币,观察它们出现的正反面的情况。 掷骰子一颗,观察其点数。 掷一颗骰子并抛一枚硬币,观察骰子的点数和硬币的 正反面情况。
(2) 事件A,B有包含关系
解 (1) 由于 AB , 因此 A B A, B A B P( A B) P( A) 0.3 P( B A) P( B) 0.6
(2) 由已知条件和性质3,推得必定有
A B
P( A B) P() 0
P( B A) P( B) P( A) 0.3
它们都具备如下特点: (1)每次试验中,所有可能的结果只有有限多个。 (2)每次试验中,每一种可能的结果发生的可能性相同。 满足这些条件的数学模型称作古典概率。

概率的统计定义 古典概型

概率的统计定义 古典概型

p
p44 p4
10
4321 10 9 8 7
1. 210
2020/6/11
17
课堂练习
1o 分房问题 将张三、李四、王五3人等可能地 分配到3 间房中去,试求每个房间恰有1人的概率.
(答案 : 3! 33 )
2o 生日问题 某班有20个学生都 是同一年出生的,求有10个学生生 日是1月1日,另外10个学生生日是 12月31日的概率. (答案 : p 2010 36520 )
2o 骰子问题 掷3颗均匀骰子,求点数之和为4的
概率.
(答案 : p 3 63 )
2020/6/11
14
4.古典概型的基本模型:球放入杯子模型
(1)杯子容量无限
问题1 把 4 个球放到 3个杯子中去,求第1、2个 杯子中各有两个球的概率, 其中假设每个杯子可 放任意多个球.
3
3
3
3
4个球放到3个杯子的所有放法 3 3 3 3 34种,
第3次摸到红球 4种 第12次摸到黑球 6种
第123次摸球 10种
2020/6/11
13
样本点总数为 101010 103,
A 所包含样本点的个数为 6 6 4,

P( A)
664 103
0.144.
课堂练习
1o 电话号码问题 在7位数的电话号码中,求各位
数字互不相同的概率. (答案 : p P170 107 )
实验者
德.摩根 蒲丰 K.皮尔逊 K.皮尔逊
n
2048 4040 12000 24000
nH
1061 2048 6019 12012
f
0.5181 0.5069 0.5016 0.5005

高中古典概型的概率公式

高中古典概型的概率公式

高中古典概型的概率公式高中数学中,概率是一个重要的概念,我们常用古典概型来计算事件的概率。

古典概型是指在同等条件下,事件发生的可能性相等。

这里介绍高中古典概型的概率公式。

1. 古典概型的定义首先我们来回顾一下古典概型的定义。

古典概型是指在同等条件下,事件发生的可能性相等。

比如掷一枚骰子,每个点数的概率都相等。

这就是古典概型。

2. 古典概型的概率公式对于古典概型,我们可以用公式来计算事件的概率。

公式如下:P(A) = n(A) / n(S)其中,P(A) 表示事件 A 发生的概率,n(A) 表示事件 A 中元素的个数,n(S) 表示样本空间中元素的个数。

例如,掷一枚骰子,求点数为 3 的概率。

这个事件的样本空间为 {1, 2, 3, 4, 5, 6},其中点数为 3 的元素个数为 1,样本空间的元素个数为 6。

因此,点数为 3 的概率为:P(点数为 3) = 1 / 6又例如,从一副扑克牌中抽出一张牌,求抽到黑桃的概率。

这个事件的样本空间为 52 张牌,其中黑桃牌的个数为 13 张,因此,抽到黑桃的概率为:P(抽到黑桃) = 13 / 52 = 1 / 43. 古典概型的应用古典概型的应用非常广泛,我们可以用它来计算各种事件的概率。

比如掷硬币、抽扑克牌、摇色子等等。

下面举一个例子。

假设有一个装有 5 个红球和 3 个蓝球的盒子。

现在从盒子中任取 2 个球,求取出的球都是红球的概率。

这个问题可以用古典概型来解决。

首先,样本空间中元素的个数为:n(S) = C(8, 2) = 28其中,C(n, m) 表示从 n 个元素中取出 m 个元素的组合数。

在这个问题中,从 8 个球中取出 2 个球的组合数为 28。

接着,事件中元素的个数为:n(A) = C(5, 2) = 10其中,从 5 个红球中取出 2 个红球的组合数为 10。

因此,取出的球都是红球的概率为:P(取出的球都是红球) = n(A) / n(S) = 10 / 28 = 5 / 144. 总结古典概型是解决概率问题的一种常用方法。

古典概型的概率计算例题和知识点总结

古典概型的概率计算例题和知识点总结

古典概型的概率计算例题和知识点总结在概率论中,古典概型是一种非常基础且重要的概率模型。

它具有简单直观、易于理解和计算的特点。

接下来,我们将通过一些具体的例题来深入理解古典概型的概率计算方法,并对相关知识点进行总结。

一、古典概型的定义与特点古典概型是指试验中所有可能的结果是有限的,并且每个结果出现的可能性相等。

例如,掷一枚均匀的硬币,结果只有正面和反面两种,且出现正面和反面的可能性相等;掷一个均匀的骰子,结果有 1、2、3、4、5、6六种,每种结果出现的概率都是 1/6。

二、古典概型的概率计算公式如果一个试验有n 个等可能的结果,事件A 包含其中的m 个结果,那么事件 A 发生的概率 P(A) = m / n 。

三、例题解析例 1:从装有 3 个红球和 2 个白球的口袋中随机取出 2 个球,求取出的 2 个球都是红球的概率。

解:从 5 个球中取出 2 个球的组合数为 C(5, 2) = 10 种。

取出 2 个红球的组合数为 C(3, 2) = 3 种。

所以取出 2 个球都是红球的概率为 3 / 10 。

例 2:一个盒子里有 5 个完全相同的球,分别标有数字 1、2、3、4、5,从中随机摸出一个球,求摸到奇数球的概率。

解:总共有 5 个球,摸到每个球的可能性相等。

奇数球有 1、3、5 三个。

所以摸到奇数球的概率为 3 / 5 。

例 3:同时掷两个均匀的骰子,求点数之和为 7 的概率。

解:同时掷两个骰子,总的结果数为 6 × 6 = 36 种。

点数之和为7 的情况有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1),共 6 种。

所以点数之和为 7 的概率为 6 / 36 = 1 / 6 。

四、古典概型概率计算的注意事项1、要确保试验结果的等可能性。

如果试验结果不是等可能的,就不能使用古典概型的概率计算公式。

2、计算基本事件总数和事件包含的基本事件数时,要注意不重不漏。

3、对于复杂的问题,可以通过分类讨论或分步计算来解决。

等可能概型(古典概型)

等可能概型(古典概型)
概率的取值具有非负性,即对于任何事 件A,都有P(A)>=0。
概率的加法原理
概率的加法原理是指对于任意两个事 件A和B,有P(A∪B)=P(A)+P(B)P(A∩B)。
当事件A和B互斥时,即A∩B=∅,概 率的加法原理可以简化为 P(A∪B)=P(A)+P(B)。
概率的乘法原理
01
概率的乘法原理是指对于任意两个事件A和B,有 P(A∩B)=P(A)×P(B|A)。
条件
样本空间中的样本点数量是有限的,且每个样本点都 是互斥的。
特点
01
02
03
04
等可能性
在古典概型中,每个样 本点被选中的概率是相 等的。
有限性
古典概型的样本空间是 有限的,即样本点的数 量是有限的。
互斥性
样本空间中的样本点是 互斥的,即一个样本点 被选中后,其他样本点 就不能再被选中。
独立性
在古典概型中,各次试 验的结果是相互独立的, 即前一次试验的结果不A|B)。
02
计算公式
$P(A|B) = frac{P(A cap B)}{P(B)}$
03
应用场景
在决策理论、统计学、信息理论等领域中,条件概率都有广泛的应用。
贝叶斯定理
定义
贝叶斯定理是关于条件概率的定理,它提供了从事件B发生的条 件下计算事件A的条件概率的方法。
计算公式
$P(A|B) = frac{P(B|A) times P(A)}{P(B)}$
3
计算步骤
确定样本空间的大小,利用组合数公式计算概率。
公式法
定义
公式法是一种利用概率 的基本公式来计算概率 的方法。
适用范围
适用于样本空间较大, 且样本点之间有顺序的 情况。

第四讲 古典概型

第四讲 古典概型

第四讲古典概型概率的一般加法公式[新知初探]1.古典概型的概念(1)定义:如果一个概率模型满足:①试验中所有可能出现的基本事件只有有限个;②每个基本事件发生的可能性是均等的.那么这样的概率模型称为古典概率模型,简称古典概型.(2)计算公式:对于古典概型,任何事件A的概率P(A)=事件A包含的基本事件数试验的基本事件总数.注意事项:基本事件的三个探求方法(1)列举法:把试验的全部结果一一列举出来.此方法适合于较为简单的试验问题.(2)树状图法:树状图法是使用树状的图形把基本事件列举出来的一种方法,树状图法便于分析基本事件间的结构关系,对于较复杂的问题,可以作为一种分析问题的主要手段,树状图法适用于较复杂的试验的题目.求解古典概型的概率“四步”法2.概率的一般加法公式(1)事件A与B的交(或积):由事件A和B同时发生所构成的事件D,称为事件A与B的交(或积),记作D=A∩B(或D=AB).(2)概率的一般加法公式:设A,B是Ω的两个事件,则有P(A∪B)=P(A)+P(B)-P(A∩B).[小试身手]1.下列关于古典概型的说法中正确的是( )①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③每个基本事件出现的可能性相等;④基本事件的总数为n,随机事件A若包含k个基本事件,则P(A)=k n .A.②④B.①③④C.①④D.③④解析:选B 根据古典概型的特征与公式进行判断,①③④正确,②不正确,故选B.2.下列试验是古典概型的是( )A.口袋中有2个白球和3个黑球,从中任取一球,基本事件为{}取中白球和{}取中黑球B.在区间[-1,5]上任取一个实数x,使x2-3x+2>0C.抛一枚质地均匀的硬币,观察其出现正面或反面D.某人射击中靶或不中靶解析:选C A中两个基本事件不是等可能的;B中基本事件的个数是无限的;D中“中靶”与“不中靶”不是等可能的;C符合古典概型的两个特征,故选C.3.从甲、乙、丙三人中任选两人担任课代表,甲被选中的概率为( )A.12B.13C.23D.1解析:选C 从甲、乙、丙三人中任选两人有:(甲、乙)、(甲、丙)、(乙、丙)共3种情况,其中,甲被选中的情况有2种,故甲被选中的概率为P =23.4.两个骰子的点数分别为b ,c ,则方程x 2+bx +c =0有两个实根的概率为( )A.12B.1536C.1936D.56解析:选C (b ,c )共有36个结果,方程有解,则Δ=b 2-4c ≥0,∴b 2≥4c ,满足条件的数记为(b 2,4c ),共有(4,4),(9,4),(9,8),(16,4),(16,8),(16,12),(16,16),(25,4),(25,8),(25,12),(25,16),(25,20),(25,24),(36,4),(36,8),(36,12),(36,16),(36,20),(36,24),19个结果,P =1936.典型例题[典例] (1)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的所有基本事件数为( )A .2B .3C .4D .6(2)连续掷3枚硬币,观察这3枚硬币落在地面上时是正面朝上还是反面朝上.①写出这个试验的所有基本事件; ②求这个试验的基本事件的总数;③“恰有两枚硬币正面朝上”这一事件包含哪些基本事件?[解析] (1)用列举法列举出“数字之和为奇数”的可能结果为:(1,2),(1,4),(2,3),(3,4),共4种可能.[答案] C(2)解:①这个试验包含的基本事件有:(正,正,正),(正,正,反),(正,反,正)(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反).②这个试验包含的基本事件的总数是8;③“恰有两枚硬币正面朝上”这一事件包含以下3个基本事件:(正,正,反),(正,反,正),(反,正,正).[活学活用]将一枚骰子先后抛掷两次,则:(1)一共有几个基本事件?(2)“出现的点数之和大于8”包含几个基本事件?解:(树状图法):一枚骰子先后抛掷两次的所有可能结果用树状图表示.如图所示:(1)由图知,共36个基本事件.(2)“点数之和大于8”包含10个基本事件(已用“√”标出).[典例] 袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:(1)A:取出的两球都是白球;(2)B:取出的两球1个是白球,另1个是红球.[解] 设4个白球的编号为1,2,3,4,2个红球的编号为5,6.从袋中的6个小球中任取2个球的取法有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种.(1)从袋中的6个球中任取两个,所取的两球全是白球的取法总数有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个.∴取出的两个球全是白球的概率为P(A)=615=25.(2)从袋中的6个球中任取两个,其中一个是红球,而另一个是白球,其取法包括(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)共8种.∴取出的两个球1个是白球,1个是红球的概率为P(B)=8 15 .[活学活用]某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,①列出所有可能的抽取结果;②求抽取的2所学校均为小学的概率.解:(1)从小学、中学、大学中分别抽取的学校数目为3,2,1.(2)①在抽取到的6所学校中,3所小学分别记为A1,A2,A3,2所中学分别记为A4,A5,1所大学记为A6,则抽取2所学校的所有可能结果为(A1,A2),(A1,A3),(A1,A4),(A1,A5),(A1,A6),(A2,A3),(A2,A4),(A2,A5),(A2,A6),(A3,A4),(A3,A5),(A3,A6),(A4,A5),(A4,A6),(A5,A6),共15种.②从这6所学校中抽取的2所学校均为小学(记为事件B)的所有可能结果为(A1,A2),(A1,A3),(A2,A3),共3种,所以P(B)=315=15.[典例] 有A,B,C,D四位贵宾,应分别坐在a,b,c,d四个席位上,现在这四人均未留意,在四个席位上随便就座.(1)求这四人恰好都坐在自己的席位上的概率;(2)求这四人恰好都没坐在自己的席位上的概率;(3)求这四人恰有一位坐在自己的席位上的概率.[解] 将A,B,C,D四位贵宾就座情况用如图所示的图形表示出来.a 席位b 席位c 席位d 席位 a 席位b 席位c 席位d 席位a 席位b 席位c 席位d 席位 a 席位b 席位c 席位d 席位 由图可知,所有的等可能基本事件共有24个.(1)设事件A 为“这四人恰好都坐在自己的席位上”,则事件A 只包含1个基本事件,所以P (A )=124. (2)设事件B 为“这四人恰好都没坐自己的席位上”,则事件B 包含9个基本事件,所以P (B )=924=38. (3)设事件C 为“这四人恰有一位坐在自己的席位上”,则事件C 包含8个基本事件,所以P (C )=824=13. [活学活用]把一枚骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b ,试就方程组⎩⎨⎧ax +by =3,x +2y =2解的情况,解答下列各题:(1)求方程组只有一个解的概率;(2)求方程组只有正数解的概率.解:若第一次出现的点数为a ,第二次出现的点数为b 记为有序数值组(a ,b ),则所有可能出现的结果有:(1,1)(1,2)(1,3)(1,4)(1,5)(1,6), (2,1)(2,2)(2,3)(2,4)(2,5)(2,6), (3,1)(3,2)(3,3)(3,4)(3,5)(3,6), (4,1)(4,2)(4,3)(4,4)(4,5)(4,6), (5,1)(5,2)(5,3)(5,4)(5,5)(5,6), (6,1)(6,2)(6,3)(6,4)(6,5)(6,6), 共36种.由方程组⎩⎨⎧ax +by =3,x +2y =2,可得⎩⎨⎧2a -b x =6-2b ,2a -by =2a -3,(1)若方程组只有一个解,则b ≠2a ,满足b =2a 的有(1,2),(2,4),(3,6),故适合b ≠2a 的有36-3=33个.其概率为:P 1=3336=1112. (2)方程组只有正数解,需满足b -2a ≠0且⎩⎪⎨⎪⎧x =6-2b 2a -b >0,y =2a -32a -b >0.分两种情况:当2a >b 时,得⎩⎨⎧a >32,b <3,当2a <b 时,得⎩⎨⎧a <32,b >3.易得包含的基本事件有13个:(2,1),(3,1),(4,1),(5,1),(6,1),(2,2),(3,2),(4,2),(5,2),(6,2),(1,4),(1,5),(1,6),因此所求的概率P 2=1336.[层级一 学业水平达标]1.若连续抛掷两次骰子得到的点数分别为m ,n ,则点P (m ,n )在直线x +y =4上的概率是( )A.13 B.14 C.16D.112解析:选D 由题意(m ,n )的取值情况有(1,1),(1,2),…,(1,6);(2,1),(2,2),…,(2,6);…;(6,1),(6,2),…,(6,6),共36种,而满足点P (m ,n )在直线x +y =4上的取值情况有(1,3),(2,2),(3,1),共3种.故所求概率为336=112,故选D. 2.从1,2,3,4这四个数字中,任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为( )A.12B.13C.14D.15解析:选A 从1,2,3,4这四个数字中,任取两个不同的数字,可构成12个两位数:12,13,14,21,23,24,31,32,34,41,42,43,其中大于30的有:31,32,34,41,42,43共6个,所以所得两位数大于30的概率为P =612=12. 3.设a 是从集合{}1,2,3,4中随机取出的一个数,b 是从集合{}1,2,3中随机取出的一个数,构成一个基本事件(a ,b ).记“这些基本事件中,满足log b a ≥1”为事件E ,则E 发生的概率是( )A.12B.512C.13D.14解析:选B 试验发生包含的事件是分别从两个集合中取1个数字,共有4×3=12种结果,满足条件的事件是满足log b a≥1,可以列举出所有的事件,当b=2时,a=2,3,4,当b=3时,a=3,4,共有3+2=5个,∴根据古典概型的概率公式得到概率是5 12 .4.一个袋子中装有编号分别为1,2,3,4的4个小球,现有放回地摸球,规定每次只能摸一个球,若第一次摸到的球的编号为x,第二次摸到的球的编号为y,构成数对(x,y),则所有数对(x,y)中满足xy=4的概率为( )A.316B.18C.118D.16解析:选A 由题意可知两次摸球得到的所有数对(x,y)有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个,其中满足xy=4的数对有(1,4),(2,2),(4,1),共3个.故所求事件的概率为3 16 .5.为迎接2016奥运会,某班开展了一次“体育知识竞赛”,竞赛分初赛和决赛两个阶段进行,在初赛后,把成绩(满分为100分,分数均为整数)进行统计,制成如下的频率分布表:(1)求a,(2)若得分在[90,100]之间的有机会进入决赛,已知其中男女比例为2∶3,如果一等奖只有两名,求获得一等奖的全部为女生的概率.解:(1)a =50×0.1=5,b =2550=0.5,c =50-5-15-25=5,d =1-0.1-0.3-0.5=0.1.(2)把得分在[90,100]之间的五名学生分别记为男1,男2,女1,女2,女3. 事件“一等奖只有两名”包含的所有事件为(男1,男2),(男1,女1),(男1,女2),(男1,女3),(男2,女1),(男2,女2),(男2,女3),(女1,女2),(女1,女3),(女2,女3),共10个基本事件;事件“获得一等奖的全部为女生”包含(女1,女2),(女1,女3),(女2,女3),共3个基本事件.所以,获得一等奖的全部为女生的概率为P =310. [层级二 应试能力达标]1.某部三册的小说,任意排放在书架的同一层上,则各册从左到右或从右到左恰好为第1,2,3册的概率为( )A.16 B.13 C.12D.23解析:选B 所有基本事件为:123,132,213,231,312,321.其中从左到右或从右到左恰好为第1,2,3册包含2个基本事件,∴P =26=13.故选B.2.袋中有大小相同的黄、红、白球各一个,每次任取一个,有放回地取3次,则89是下列哪个事件的概率( )A .颜色全同B .颜色不全同C .颜色全不同D .无红球解析:选B 有放回地取球3次,共27种可能结果,其中颜色全相同的结果有3种,其概率为327=19;颜色不全相同的结果有24种,其概率为2427=89;颜色全不同的结果有3种,其概率为327=19;无红球的情况有8种,其概率为827,故选B.3.电子钟一天显示的时间是从00:00到23:59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为( )A.1180 B.1288 C.1360 D.1480解析:选C 当“时”的两位数字的和小于9时,则“分”的那两位数字和要求超过14,这是不可能的.所以只有“时”的和为9(即“09”或“18”),“分”的和为14(“59”);或者“时”的和为10(即“19”),“分”的和为13(“49”或“58”).共计有4种情况.因一天24小时共有24×60分钟,所以概率P =424×60=1360.故选C. 4.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木、木克土、土克水、水克火、火克金.”从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为( )A.310B.25C.12D.35 解析:选 C 从五种不同属性的物质中随机抽取两种,有(金,木)、(金,水)、(金,火)、(金,土)、(木,水)、(木,火)、(木,土)、(水,火)、(水,土)、(火,土),共10种等可能发生的结果.其中金克木,木克土,土克水,水克火,火克金,即相克的有5种,则不相克的也是5种,所以抽取的两种物质不相克的概率为12. 5.有四个大小、形状完全相同的小球,分别编号为1,2,3,4,现从中任取两个,则取出的小球中至少有一个号码为奇数的概率为________.解析:从四个小球中任取两个,有6种取法,其中两个号码都为偶数只有(2,4)这一种取法,故其对立事件,即至少有一个号码为奇数的概率为1-16=56.答案:5 66.在5瓶饮料中,有2瓶已过了保质期,从中任取2瓶,取到的全是已过保质期的饮料的概率为________.解析:设过保质期的2瓶记为a,b,没过保质期的3瓶用1,2,3表示,试验的结果为:(1,2),(1,3),(1,a),(1,b),(2,3),(2,a),(2,b),(3,a),(3,b),(a,b)共10种结果,2瓶都过保质期的结果只有1个,∴P=1 10.答案:1 107.设a,b随机取自集合{1,2,3},则直线ax+by+3=0与圆x2+y2=1有公共点的概率是________.解析:将a,b的取值记为(a,b),则有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共9种可能.当直线与圆有公共点时,可得3a2+b2≤1,从而符合条件的有(1,3),(2,3),(3,1),(3,2),(3,3),共5种可能,故所求概率为5 9 .答案:5 98.小李在做一份调查问卷,共有5道题,其中有两种题型,一种是选择题,共3道,另一种是填空题,共2道.(1)小李从中任选2道题解答,每一次选1题(不放回),求所选的题不是同一种题型的概率;(2)小李从中任选2道题解答,每一次选1题(有放回),求所选的题不是同一种题型的概率.解:将3道选择题依次编号为1,2,3;2道填空题依次编号为4,5.(1)从5道题中任选2道题解答,每一次选1题(不放回),则所有基本事件为(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,2),(3,4),(3,5),(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4),共20种,而且这些基本事件发生的可能性是相等的.设事件A为“所选的题不是同一种题型”,则事件A包含的基本事件有(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),共12种,所以P(A)=1220=0.6.(2)从5道题中任选2道题解答,每一次选1题(有放回),则所有基本事件为(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),共25种,而且这些基本事件发生的可能性是相等的.设事件B为“所选的题不是同一种题型”,由(1)知所选题不是同一种题型的基本事件共12种,所以P(B)=1225=0.48.9.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.解:(1)标号为1,2,3的三张红色卡片分别记为A,B,C,标号为1,2的两张蓝色卡片分别记为D,E,从五张卡片中任取两张的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共10种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从五张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A,D),(A,E),(B,D),共3种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为3 10 .(2)记F为标号为0的绿色卡片,从六张卡片中任取两张的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从六张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A,D),(A,E),(B,D),(A,F),(B,F),(C,F),(D,F),(E,F),共8种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为8 15 .。

2、概率的几种定义(古典概型).

2、概率的几种定义(古典概型).

性大小, 因此在大量重复试验中 常用频率作为概率的近似值.
37
2、频率的稳定性,例如抛硬币(验 证出现正面的概率占0.5,打字机
键盘设计,信息编码(使用频率较
高的字母用较短的码), 密码的破 译。
38
3、概率的统计定义 如果随着试验次数 事件A发生的频率在区间 的增大, 上某
个数字p附近摆动,则称事件A发
率问题,可以将365天看作盒子 , 个人看作
18
个球。
设A=“n个人生日各不相同”
故所求概率为: (生日各不相同的概率) 所以 个人中至少有两人生日 相同的概率为:
19
经计算可得下述结果:
从表中可看出,在仅有64人的班 级里“至少有两人生日相同”这 事件的概率与1相差无几。
20
例4 公平抽签问题:
概率,并称为几何概率。
28
例:约会问题 甲乙二人约定在[0,T] 时段内去某地会面,规定先到者等 候一段时间 再离去,试求 事件A=“甲乙将会面”的概率。
29
解:分别以x,y表示甲乙到达会面地
点的时间,则样本点是坐标平面上 一个点 ,而样本空间 是边长为 T的正方形,由于二人到达时刻的任 意性,样本点在S中均匀分布,属几 何概型。
12
解:(1) 这是一个古典概型问题, 由于每个球可落 入 个盒子中的 任一个盒子,故有
种不同放法(重复排列)
13
事件A中样本点数取决于n个球 放入n个盒子中的顺序,故A包 含的样本点数为:
所以
14
(2) 事件B与事件A的差异仅在于各 含一球的n个盒子没有指定,所以 B的样本点数为:
所以
15
(3) 下面我们来求 事件 C所含样
1.2
随机事件的概率

古典概型知识点总结

古典概型知识点总结

古典概型知识点总结古典概型是概率论中最基础、最简单的一种模型。

它是指在所有可能的结果中,每个结果的概率相等的模型。

本文将总结古典概型的相关知识点,并探讨其应用场景和注意事项。

一、基础定义1. 古典概型的定义古典概型是指在所有可能的结果中,每个结果的概率相等的模型。

例如,掷一次骰子,每个点数出现的概率都是1/6。

2. 样本空间样本空间是指古典概型中所有可能结果的集合。

例如,掷一枚硬币的样本空间为{正面,反面}。

3. 事件事件是样本空间的子集,表示发生某种结果的可能性。

例如,掷一枚硬币出现正面的事件为{正面}。

4. 概率概率是指某个事件发生的可能性大小,通常用小数表示,取值范围在0到1之间。

在古典概型中,概率可以用公式“事件发生的次数÷样本空间中总的可能结果数”来计算。

二、应用场景古典概型主要应用于以下场景:1. 骰子、硬币等随机游戏例如,掷骰子、抛硬币等游戏中,每个结果的概率都相等,符合古典概型的条件。

2. 假设检验在做假设检验时,常常需要确定某种情况下出现某种结果的概率。

如果符合古典概型条件,可以直接根据概率公式计算概率。

3. 统计学在统计学中,古典概型被广泛应用于概率分布的研究与推导。

三、注意事项在使用古典概型时,需要注意以下事项:1. 每个结果的概率相等古典概型中的最重要条件是每个结果的概率相等。

如果存在某些结果概率不等的情况,就不能使用古典概型进行概率计算了。

2. 互斥事件在计算概率时,需要注意事件之间是否互斥。

如果两个事件不互斥,那么它们的概率应该加在一起。

3. 独立事件在计算概率时,需要注意事件之间是否独立。

如果两个事件是独立的,那么它们的概率应该相乘。

四、结论古典概型是概率论中最基础、最简单的一种模型,应用范围广泛。

在使用古典概型进行概率计算时,需要注意每个结果的概率相等、事件之间是否互斥、事件之间是否独立等问题,才能准确计算概率,避免出现错误的结果。

古典概型的概率计算公式古典概型

古典概型的概率计算公式古典概型

5
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
从表中可以看出同时掷两个骰子的结果共有36种。
(2)在上面的结果中,向上的点数之和为5的结果有4种,
分别为: (1,4),(2,3),(3,2),(4,1)
(布,剪) (布,石)( 布,布)
(1)在“剪刀、石头、布”游戏中,甲 赢的概率有多大?
(2)在“剪刀、石头、布”游戏中,分 不出胜负的概率多大?
问题2:抛一个质地均匀的骰子,可能出现几 个结果?
问题3; 以上问题中,每个结果出现的概率为多少?
试验结果的对称性,每个结果的可能性相同
知识点二:古典概型
古典概型的特征:
(1) 有限性 :
试验的所有可能结果只有有限个
(2)等可能性 :
每一个试验结果出现的可能性相 同
典型例题
例2:下列试验是否为古典概型
A、在适宜的条件下,种一粒种子,有2 个结果:发芽 与不发芽 否
B、口袋里有2个白球和2个黑球,这4个 球除颜色外完全相同,从中任取一球 是
C、向一个圆面内随机的投一个点,该点 落在圆内的任意一点 否
D、射击运动员向一靶心进行射击,命中 10环,命中9环,.....命中0环 否
思考交流3
D {b,c} E {b, d} F {c, d} 说一说
(3)设3个黑球编号分别为黑1,黑2,黑3,则从 中任意取两个球,可能的结果为:
白球与黑1,白与黑2,白与黑3, 黑1与黑2,黑1与黑3,黑2与黑3
共6种结果,即6个基本事件
思考交流2
问题1:抛一枚质地均匀的硬币,可能出现几个 结果?

第二讲(古典概型与概率的定义)

第二讲(古典概型与概率的定义)


(1 x )
m n
m n
(1 x ) (1 x )
m
n
运用二项式展开 有
m n j j x j 0 m j1 n n j2 j x j x j1 0 1 j2 0 2
每个盒子容球数无限, 求下列事件的概率:
(1)某指定的 k 个盒子中各有一球;
(2)某指定的一个盒子恰有 m 个球( m k ) (3)某指定的一个盒子没有球; (4)恰有 k 个盒子中各有一球; (5)至少有两个球在同一盒子中; (6)每个盒子至多有一个球.
解 nN 设 (1) ~ (6)的各事件分别为
P ( A) A中的样本点数 S中的样本点数
4
古典概率的性质
1 0 P( A) 1 、
非负性
规范性
A , A2 , , An 1
2、P ( ) 1
3、对于互不相容的事件
n

P( A k ) P( A k )
k 1 k 1
n
有限可加性
这样就把求概率问题转化为计数问题 . 排列组合是计算古典概率的重要工具 . 这里我们先简要复习一下计算古典概率 所用到的 基本计数原理 1. 加法原理 设完成一件事有m种方式, 第一种方式有n1种方法, 第二种方式有n2种方法, …; 第m种方式有nm种方法, 则完成这件事总共 有n1 + n2 + … + nm 种方法 .
的每个基本事件出现一定要是等可能的。
上述古典概型的计算,只适用具有等可能性的 有限样本空间。若试验结果无限,则它显然已经不 适合。为了克服有限的局限性,利用几何方法,可 将古典概型的计算加以推广。

高中数学必修3第三章:概率3.2古典概型

高中数学必修3第三章:概率3.2古典概型

验,如果这2个元素没有顺序,那么这次试验共有
nn-1 2

基本事件;如果这2个元素有顺序,那么这次试验有n(n-1)
个基本事件.可以作为结论记住(不要求证明),在选择题或
填空题中可以直接应用.
计算基本事件个数的常用法
1.列举法 列举法也称枚举法.对于一些情境比较简单,基本事件 个数不是很多的概率问题,计算时只需一一列举即可得出随 机事件所含的基本事件数.但列举时必须按一定顺序,做到 不重不漏.
球,d,e为黑球.
列表如下:
a
b
c
d
e
a
(a,b) (a,c) (a,d) (a,e)
b (b,a)
(b,c) (b,d) (b,e)
c (c,a) (c,b)
(c,d) (c,e)
d (d,a) (d,b) (d,c)
(d,e)
e (e,a) (e,b) (e,c) (e,d)
由于每次取两个球,每次所取两个球不相同,而摸(b,a) 与(a,b)是相同的事件,故共有10个基本事件.
新课引入 “三门问题”是美国一个经典的电视游戏节目,内容如 下:现有三扇门,其中一扇后面有一辆汽车,另外两扇门后 各有一只羊,参赛者选中车门就得车,选中羊门就得羊,首 先参赛者选一扇门,然.后主持人故意打开剩下两门中的一 扇羊门(主持人知道车在何处),接着主持人给参赛者选择机 会,是坚持原门还是换另一扇门?
[解析] 第1个概率模型不是古典概型,因为从区间[1,10] 内任意取出一个数,有无数个对象可取,所以不满足“有限 性”.
第2个概率模型是古典概型,因为试验结果只有10个, 而且每个数被抽到的可能性相等,即满足有限性和等可能 性;
第3个概率模型不是古典概型,而是以后将学的几何概 型;

概率的基本概念概率的定义和概率的计算

概率的基本概念概率的定义和概率的计算

概率的基本概念概率的定义和概率的计算概率的基本概念、概率的定义和概率的计算概率是数学中的一个重要概念,用于描述随机事件发生的可能性。

概率分为基本概念、概率的定义和概率的计算三个方面。

一、基本概念1. 随机试验:具有相同条件的重复实施所得的结果不确定的实验称为随机试验,如抛硬币、掷骰子等。

2. 样本空间:随机试验的所有可能结果构成的集合称为样本空间,通常用Ω表示。

3. 样本点:样本空间中的元素称为样本点,用ω表示。

4. 随机事件:样本空间的一个子集称为随机事件,通常用大写字母A、B、C等表示。

二、概率的定义对于随机试验,定义如下:1. 古典概型:当随机试验的样本空间有限且样本点等可能出现时,可用古典概率来描述。

古典概率的计算公式为:P(A) = n(A)/n(Ω),其中n(A)表示事件A包含的样本点个数,n(Ω)表示样本空间中的样本点个数。

2. 统计概型:当随机试验的样本空间无限或样本点不等可能出现时,可用统计概率来描述。

统计概率的计算公式为:P(A) = lim(n(A)/n),其中n(A)表示事件A发生的次数,n表示试验次数。

三、概率的计算1. 随机事件的补事件:事件A的补事件记作A',表示A不发生的事件。

概率计算公式为:P(A') = 1 - P(A)。

2. 随机事件的和事件:事件A和事件B的和事件记作A∪B,表示A和B中至少有一个发生的事件。

概率计算公式为:P(A∪B) = P(A) +P(B) - P(A∩B),其中A∩B表示A和B的交事件。

3. 随机事件的条件概率:事件A在事件B已发生的条件下发生的概率记作P(A|B),表示已知事件B发生时,事件A发生的概率。

概率计算公式为:P(A|B) = P(A∩B)/P(B)。

4. 随机事件的乘法定理:事件A和事件B同时发生的概率记作P(A∩B),表示A和B同时发生的概率。

概率计算公式为:P(A∩B) =P(A|B) * P(B) = P(B|A) * P(A),其中P(A|B)表示已知事件B发生时,事件A发生的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

你能在2分钟内打开5位码的密码箱吗?
8
例2 袋中装有 个球,其中有 白球和 个黑球,从中任取 问所取的球中恰含有 个黑球的概率。
个 个,
个白球和
9
解:设 A=“所取的球中恰含有 和 个黑球” 个白球
A事件的取法为: 而样本空间的基本事件总数为 :
所以
10
称此为超几何分布公式 此例可推广到
11
例3 将 只球随机地放入 个盒子中去,每球放入各盒等可能, 试求下列事件的概率: ① ② ③
12
解:(1) 这是一个古典概型问题, 由于每个球可落 入 个盒子中的 任一个盒子,故有
种不同放法(重复排列)
13
事件A中样本点数取决于n个球 放入n个盒子中的顺序,故A包 含的样本点数为:
所以
14
(2) 事件B与事件A的差异仅在于各 含一球的n个盒子没有指定,所以 B的样本点数为:
所以
15
(3) 下面我们来求 事件 C所含样
袋中有 个白球, 个彩球, 从中逐一摸出,试求第 次摸得彩 球的概率。
21
解:将
只白球和 只彩球都看作
不同的(设想将其编号)若把摸出 的球依次排列在 个空格内, 则可能的排列法相当于把 元素进行全排列,总数为 个
22
又设
=“第 k 次摸得彩球的概率” 则第 个空格内可以是 个彩球中 的任一个,共有 种结果,其余 个球在余下的 个空 格内进行任意排列,共有 种排列。
2
这种试验是概率论发展早期
研究对象,称古典概型。 古典概型的计算公式:
3
计算事件A的概率,关键在于弄
清楚什么是样本点,样本空间中包含
样本点的总数以及A所包含的样本点
数,当样本点较多时,很难将它们一
一列出,需用排列、组合的知识进行
分析。
4
二 、排列组合公式 ①从 数为: 个不同元素中取出 个元素 且考虑其顺 序称为排列,其排列总
则称这个随机试验 为几何型随机
或称几何概型, 称为
的样本空
间,(可以是一维区间、二维区域、
三维区域,它们通常用长度,面积、
体积来度量大小)
A
S
27
定义:设 是一几何概型, 为它 的样本空间, 且A是可度量的, 以 、 分别表示 S 和 A 的 度量。
设 A=“随机点落在区域A内” 则 称为事件A发生的
44
3)对任何事件A有
45
4)若 则 且 证:由
A B

而 故
S
46
移项即得:
又 故
本点数,我们先取m个球放入指 定盒中,共有 种取法,然 后再把剩下的(n-m)个球任意 放入其余(N-1)个盒中,放法有 种,
16
根据乘法原理可得C的样本点数为:
所以 注:有不少实际问题与(2)有相同模型
17
例如:假设每人的生日在一年365
天中的任一天是等可能的,即都
为: ,则随机选取
个人,它们的生日各不相同的概
生的概率为p。
39
四、概率的公理化定义
由于古典定义,几何定义局限 于等可能性,统计定义试验次数的 不确定性,使用现代数学工具的不 便性,限制了概率论的发展,这就 必须给出更一般的,既能概括前三 种定义,具有一般性,又能使用现 代数学工具,这就产生了概率的公 理化定义。
40
(一)公理化定义:设
是随机试
率问题,可以将365天看作盒子 , 个人看作
18
个球。
设A=“n个人生日各不相同”
故所求概率为: (生日各不相同的概率) 所以 个人中至少有两人生日 相同的概率为:
19
经计算可得下述结果:
从表中可看出,在仅有64人的班 级里“至少有两人生日相同”这 事件的概率与1相差无几。
20
例4 公平抽签问题:
性大小, 因此在大量重复试验中 常用频率作为概率的近似值.
37
2、频率的稳定性,例如抛硬币(验 证出现正面的概率占0.5,打字机
键盘设计,信息编码(使用频率较
高的字母用较短的码), 密码的破 译。
38
3、概率的统计定义 如果随着试验次数 事件A发生的频率在区间 的增大, 上某
个数字p附近摆动,则称事件A发
5
② 从 个元素中取出 个元素,而 不考虑其顺序,称为组合,其组合 的总数为:
6
三、举 例
例1 有一号码锁上有6个拨盘,每个 拨盘有 才能将锁打开。 十个数字,给定 一个6位数字暗码,只有拨对号码时,
问:“一次就能打开”的概率是多
少?
7
解:样本空间中样本点总数为 设 A=“一次就把锁打开” A所含样本点数
30
y
我们关心的事件是 A=“甲乙将会面”
T
t 0 t
T
x
如图 A是正方形S中夹于直线 与直线 间的部分。
31

由几何概率的计算公式得
y
T t 0 t T x
注意t与T的关系
32
三、 概率的统计定义 1、频率:设事件A在 次试验中
出现了 为 次,则称
次试验中事件A出现的频率。 频率能反映事件A发生的可能
验,

的样本空间,对于
E的每一事件A,赋于一实数, 称为事件A的概率,记为 并规定 公理:
41
必须满足下列三条
1)非负性:
2)规范性:
3)可列可加性:若事件 两两互不相容即 则
42
(二) 基本 性质
1)
由公理3)
43
2) 有限可加性:若 两两互不相容, 即
则 令 由公理3)及1) 可得 有限可加性
概率,并称为几何概率。
28
例:约会问题 甲乙二人约定在[0,T] 时段内去某地会面,规定先到者等 候一段时间 再离去,试求 事会面地
点的时间,则样本点是坐标平面上 一个点 ,而样本空间 是边长为 T的正方形,由于二人到达时刻的任 意性,样本点在S中均匀分布,属几 何概型。
1.2
随机事件的概率
对于一个随机事件来说,在一
次试验中可能发生,也可能不发生, 我们希望有一个能刻划随机事件发 生的可能性大小的数量指标,即概 率,以 表示事件A的概率 。
1
一、概率的古典定义 定义2.1 满足以下两个特征的随 机试验称为古典概型。 (1)有限性:试验E的样本空间 中只有有限个样本点 如: (2)等可能性:每个基本事件出现 的可能 性相同,即:
23
所以事件
包含的样本点数为
所以
24
二、 概率的几何定义 古典概率局限于试验结果的有
限性,对许多试验结果无限的情况,
有时可用几何的方法来解决(注意
这里也要求等可能性)。
25
几何概型 向某一可度量的区域 内投一 点,如果所投的点落在 中任意区
域 内的可能性大小与
正比,而与 试验。
26
的度量成
的位置和形状无关,
相关文档
最新文档