动量动量守恒定律实验课件
合集下载
动量定律、动量守恒定律课件
(2)已测得小车 A 的质量 m1=0.4 kg,小车 B 的质量为 m2=0.2 kg,则 碰前两小车的总动量为__0_.4_2_0___ kg·m/s,碰后两小车的总动量为_0_._4_1_7_ kg·m/s。
甲
乙
解析 (1)从分析纸带上打点的情况看,BC 段既表示小车做匀速运动,
又表示小车有较大速度,因此 BC 段能较准确地描述小车 A 在碰撞前的运
(3)实验:一个小球静止,拉起另一个小球,放下时它们相碰。 (4)测速度:通过测量小球被拉起的角度,从而算出碰撞前对应小球的速 度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度。 (5)改变条件:改变碰撞条件,重复实验。 (6)验证:一维碰撞中的动量守恒。 方案三:在光滑桌面上两车碰撞完成一维碰撞实验。 (1)测质量:用天平测出两小车的质量。 (2)安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时 器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥。 (3)实验:接通电源,让小车 A 运动,小车 B 静止,两车碰撞时撞针插入 橡皮泥中,把两小车连接成一体运动。
【解题导思】 (1)碰撞前系统的总动量的表达式,碰撞后系统的总动量的表达式。
答:碰撞前系统总动量 m1v1,碰撞后系统总动量(m1+m2)v。
(2)纸带和滑块受到的阻力对实验会产生影响吗?
答:阻力对实验会产生影响,会使总动量减小。
解析 (1)使用打点计时器时应先接通电源,后放开滑块 1。 (2)作用前滑块 1 的速度 v1=00..21 m/s=2 m/s,其质量与速度的乘积为 0.310×2 kg·m/s=0.620 kg·m/s,作用后滑块 1 和滑块 2 具有相同的速度 v =00.1.1648 m/s=1.2 m/s,其质量与速度的乘积之和为(0.310+0.205)×1.2 kg·m/s=0.618 kg·m/s。 (3)相互作用前后动量减小的主要原因是纸带与打点计时器的限位孔 有摩擦。
【大学物理】第四章 动量 动量守恒定律PPT课件
21
F x N si M n M a ( 1 )
F x m sg i n m m x a m a a M co s (3 ) F y N m cg o m s m y a m M sa in(4 )
由(1)、(3)、(4) 解得:
y
N m
a
am
mg
aM
x
N
Mmg cos M m sin
牛顿F 第 二d 定p 律的特一例般形F 式 m a vc
d t
4
二. 质点系
1. 质点系的动量
N个质量分别为 m1,m2,,mN,动量分别为
p 1,p 2, ,p N
的质点组成质点系,其总动量:
p
p
1
m1v1
p2
m
2
v2
p
N
m N vN
mivi
i
N
如何简化?
质点
F
d t
p pi M vc
dp
i
dt F外
v c F ma
F外 M ac
基本方法:用质心作为物体(质点系)的代表, 描述质点系整体的平动。
刚体或柔体
12
§4.2 习题课 —— 运动定律的应用
一. 惯性系和非惯性系
惯性系:惯性定律在其中成立的参考系,即其中不受外 力作用的物体(自由粒子)永远保持静止或匀速直线运 动的状态。 如何判断一个参考系是否惯性系?
即:
权重
r cm 1r m 11 m m 2r 2 2 m m N Nr N
质心位矢是各质点 位矢的加权平均
z
m
1
r1
O
m2
r2
C
rc
rN
F x N si M n M a ( 1 )
F x m sg i n m m x a m a a M co s (3 ) F y N m cg o m s m y a m M sa in(4 )
由(1)、(3)、(4) 解得:
y
N m
a
am
mg
aM
x
N
Mmg cos M m sin
牛顿F 第 二d 定p 律的特一例般形F 式 m a vc
d t
4
二. 质点系
1. 质点系的动量
N个质量分别为 m1,m2,,mN,动量分别为
p 1,p 2, ,p N
的质点组成质点系,其总动量:
p
p
1
m1v1
p2
m
2
v2
p
N
m N vN
mivi
i
N
如何简化?
质点
F
d t
p pi M vc
dp
i
dt F外
v c F ma
F外 M ac
基本方法:用质心作为物体(质点系)的代表, 描述质点系整体的平动。
刚体或柔体
12
§4.2 习题课 —— 运动定律的应用
一. 惯性系和非惯性系
惯性系:惯性定律在其中成立的参考系,即其中不受外 力作用的物体(自由粒子)永远保持静止或匀速直线运 动的状态。 如何判断一个参考系是否惯性系?
即:
权重
r cm 1r m 11 m m 2r 2 2 m m N Nr N
质心位矢是各质点 位矢的加权平均
z
m
1
r1
O
m2
r2
C
rc
rN
动量守恒定律 (共19张PPT)
B
A
总
结
F外 0
F x =0
F y =0
5、斜面B置于光滑水平面上,物体A沿 光滑斜面滑下,则AB组成的系统动量守 恒吗? 光滑
x
光滑
F外 0
F x =0
F y 0
空中爆炸
F外 0
但是F 内 ?
F x 0
F y 0
F
外
3. 成立条件
(1) 系统不受外力或所受外力的矢量和为零。
4、动量的变化P
1、表达式:
P2
P1
△P
P=P2-P1 =mv2-mv1=m(v2-v1)
2、运算:
(1)成θ角,平行四边形定则 (2)在一条直线上,确定正方向后,用正 负表示方向,就转化为代数运算
3、方向:与速度变化量的方向相同。
预 学
理解三个概念:
(请自主阅读教材P12)
1. 系统:相互作用的 两个或多个物体 组成的整体。系统可按 解决问题的需要灵活选取。
这个系统的总动量保持不变。
m11 m2 2 m11 m2 2
二、动量守恒定律成立的条件 1. 系统不受力,或者 F外合 = 0 2. F内 >> F外合
3. 若系统在某一方向上满足上述 1 或 2,则在该方向上系
统的总动量守恒。
三、应用动量守恒定律解决问题的基本步骤
定系统
判条件
2. 动量守恒定律是一个 独立的实验定律 ,它适用于目前为 止物理学研究的 一切 领域。
3. 与牛顿运动定律相比较,动量守恒定律解决问题优越性表 现在哪里? 动量守恒定律只涉及始末两个状态,与过程中力的 细节无关,往往能使问题大大简化。
课 堂 总 结
A
总
结
F外 0
F x =0
F y =0
5、斜面B置于光滑水平面上,物体A沿 光滑斜面滑下,则AB组成的系统动量守 恒吗? 光滑
x
光滑
F外 0
F x =0
F y 0
空中爆炸
F外 0
但是F 内 ?
F x 0
F y 0
F
外
3. 成立条件
(1) 系统不受外力或所受外力的矢量和为零。
4、动量的变化P
1、表达式:
P2
P1
△P
P=P2-P1 =mv2-mv1=m(v2-v1)
2、运算:
(1)成θ角,平行四边形定则 (2)在一条直线上,确定正方向后,用正 负表示方向,就转化为代数运算
3、方向:与速度变化量的方向相同。
预 学
理解三个概念:
(请自主阅读教材P12)
1. 系统:相互作用的 两个或多个物体 组成的整体。系统可按 解决问题的需要灵活选取。
这个系统的总动量保持不变。
m11 m2 2 m11 m2 2
二、动量守恒定律成立的条件 1. 系统不受力,或者 F外合 = 0 2. F内 >> F外合
3. 若系统在某一方向上满足上述 1 或 2,则在该方向上系
统的总动量守恒。
三、应用动量守恒定律解决问题的基本步骤
定系统
判条件
2. 动量守恒定律是一个 独立的实验定律 ,它适用于目前为 止物理学研究的 一切 领域。
3. 与牛顿运动定律相比较,动量守恒定律解决问题优越性表 现在哪里? 动量守恒定律只涉及始末两个状态,与过程中力的 细节无关,往往能使问题大大简化。
课 堂 总 结
1.3.1动量守恒定律课件共13张PPT
小试牛刀
2.(多选)下列四幅图所反映的物理过程中,系统动量守恒的是 ( ACD )
小试牛刀
3、如图所示的装置中,木块B与水平桌面间的接触是光滑的,子 弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将
子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子
弹开始射入木块到弹簧压缩至最短的整个过程中( B )A.动量
二、动量守恒定律
1.内容:物体在碰撞时,如果系统所受的合外力为零,则系统的 总动量保持不变
2.表达式(:1)m1v1+m2v2=m1v1′+m2v2′ 或 p=p′
(系统作用前的总动量等于作用后的总动量).
(2)Δp1=-Δp2 或 m1Δv1=-m2Δv2
(系统内一个物体的动量变化与另一物体的动量变化等大反向)
核心素养
➢ 知道什么是内力、外力,理解动量守恒的条件, 掌握动量守恒定律的内容
➢ 验证动量守恒定律 ➢ 体会将不易测量的物理量转换为易测量的物理量
的实验设计思想
温故知新
动量定理:物体所受合力的冲量等于物体动量的改变量
V0 F m
光滑
V1 F
t 表达式:F·t= mv1– mv0=Δp
由动量定理知,若物体所受合力为零,则其动量不发生改变
对于物体2,根据动量定理:F2t m2v2' m2v2
根据牛顿第三定律: F1 F2
得到: m1v1' m2v2' m1v1 m2v2 0
整理得:m1v1' m2v2' m1v1 m2v2
结论:物体在碰撞时,如果系统所受的合外力为零, 则系统的总动量保持不变,这就是动量守恒定律
和为物v1体,v22的,质碰量撞分后别,为物m体1,1m和2物,体碰2撞的前速,度物分体别1为和物v1'体,v22' 的。速度分别
《动量与动量守恒》课件
动量的计算公式
总结词
动量的计算公式是P=mv,其中m表示物体的质量,v表示物 体的速度。
详细描述
动量的计算公式是P=mv,其中m表示物体的质量,单位是 千克(kg),v表示物体的速度,单位是米/秒(m/s)。这 个公式用于计算物体的动量,即物体运动时的质量和速度的 乘积。
动量单位与符号
总结词
在国际单位制中,动量的单位是千克·米/秒(kg·m/s),符号为P。
动量定理在日常生活和科技领域中有广泛的应用。例如,在车辆安全设计中,可以利用 动量定理来分析碰撞过程中车辆的变形和受力情况,从而优化车辆的结构设计。在航天 工程中,可以利用动量定理来分析火箭发动机喷气速度与推力之间的关系,从而优化火
箭的设计和发射过程。此外,在体育运动、军事等领域中也有广泛的应用。
06 动量与动量守恒的实验验证
详细描述
动量定理的推导过程可以通过牛顿第二定律 (F=ma)和积分运算来完成。首先,根据 牛顿第二定律,物体的加速度与作用力成正 比,然后通过积分运算,可以得到物体动量 的变化量与作用力与时间的乘积成正比,即 动量定理的表述。
动量定理的应用
总结词
动量定理在日常生活和科技领域中有广泛的应用。
详细描述
VS
详细描述
动量守恒定律只在满足一定条件时才成立 。这些条件包括系统不受外力作用或者系 统所受的外力作用之和为零。这是因为动 量守恒定律是在理想状态下推导出来的, 忽略了空气阻力、摩擦力等外部因素的影 响。因此,在实际应用中,只有当系统满 足这些条件时,才能应用动量守恒定律。
动量守恒定律的推导
总结词
总结词
动量定理的表述是物体动量的变化量等于作用力与时间的乘积。
详细描述
动量定理是物理学中的一个基本定理,它描述了物体动量的变化与作用力之间的关系。具体来说,一 个物体动量的变化量等于作用力与作用时间的乘积。这个定理在经典力学和相对论力学中都有应用。
动量守恒定律 (共30张PPT)
系统之外与系统发生相互作用的 其他物体统称为外界。
碰撞 系统Leabharlann 重力势能属于地面附近 的物体与地球组成的系统。
弹簧具有的弹性势能 属于构成它的许多小小 的物质单元(这些物质单 元之间有弹力的作用)组 成的系统。
研究炸弹的爆炸时,它的 所有碎片及产生的燃气也要作 为一个系统来。
2、内力:属于同一个系统内,它们之间的力。 系统以外的物体施加的力,叫做外力。
解得:v共=88.2m/s正值,方向不变。
解: ①以子弹木块系统为研究对象,取右为正方向。
②碰撞前子弹的动量P子=mv,木块的动量P2=0
碰撞后不粘一起,P'子=mv',P'木=Mv'木
③列表带入公式:系统初动量=系统末动量
碰撞前
碰撞后
物块1 物块2 = 物块1 物块2
mv 0
mv' Mv'木
所以:mv=mv'+Mv'木
解:动量问题只与初末状态有关。
①以第一节车厢和把剩余车厢看为整体的系统为研究
对象,取右为正方向。
②碰撞前的动量P=mv,剩余车厢的动量P余=0
碰撞后粘一起,P共=(m+15m)v共
③列表带入公式:系统初动量=系统末动量
碰撞前
碰撞后
物块1 物块2 = 物块1 物块2
mv 0
(m+15m) v共
所以:mv=(m+15m)v共
解得:v'B=7.4m/s
带数据得:5×9+4×6=5v'1+4×10 正值,方向不变。
3、质量是10g的子弹,以300m/s的速度射入质量是24g、静止在光滑水平桌面上的木 块,并留在木块中。子弹留在木块中以后,木块运动的速度是多大?如果子弹把木块 打穿,子弹穿过后的速度为100ms,这时木块的速度又是多大?
碰撞 系统Leabharlann 重力势能属于地面附近 的物体与地球组成的系统。
弹簧具有的弹性势能 属于构成它的许多小小 的物质单元(这些物质单 元之间有弹力的作用)组 成的系统。
研究炸弹的爆炸时,它的 所有碎片及产生的燃气也要作 为一个系统来。
2、内力:属于同一个系统内,它们之间的力。 系统以外的物体施加的力,叫做外力。
解得:v共=88.2m/s正值,方向不变。
解: ①以子弹木块系统为研究对象,取右为正方向。
②碰撞前子弹的动量P子=mv,木块的动量P2=0
碰撞后不粘一起,P'子=mv',P'木=Mv'木
③列表带入公式:系统初动量=系统末动量
碰撞前
碰撞后
物块1 物块2 = 物块1 物块2
mv 0
mv' Mv'木
所以:mv=mv'+Mv'木
解:动量问题只与初末状态有关。
①以第一节车厢和把剩余车厢看为整体的系统为研究
对象,取右为正方向。
②碰撞前的动量P=mv,剩余车厢的动量P余=0
碰撞后粘一起,P共=(m+15m)v共
③列表带入公式:系统初动量=系统末动量
碰撞前
碰撞后
物块1 物块2 = 物块1 物块2
mv 0
(m+15m) v共
所以:mv=(m+15m)v共
解得:v'B=7.4m/s
带数据得:5×9+4×6=5v'1+4×10 正值,方向不变。
3、质量是10g的子弹,以300m/s的速度射入质量是24g、静止在光滑水平桌面上的木 块,并留在木块中。子弹留在木块中以后,木块运动的速度是多大?如果子弹把木块 打穿,子弹穿过后的速度为100ms,这时木块的速度又是多大?
《动量动量守恒》PPT课件
(3)测量小车碰撞前后的速度,计算碰撞前后两小车的总动量
定
律
Go
2、数据分析 (已知:m1=250g,L1=0.870cm;m2=60g,L2=0.510cm)
滑片1宽度
第
滑块1质量m
一 章
时间1
碰
碰前速度v
撞
碰前1的动量
与
动
滑片2宽度
量 守
滑块2质量m
恒
时间1
定
律
碰前速度v
碰前2的动量
系统总动量
F
F
v =v t
F
v =—v0 —— F 作用了时间 t — v =v t
F
F
分析:
由牛顿第二定律知:F = m a
而加速度: a vt v0
t
F m vt v0 t
整理得: Ft mvvt mvv00 可以写成:I p
动量定理
——物体所受合外力的冲量等于物体的动量变化。即: I合=△p
3、动量守恒m定1v律1 成立m的2v条2 件是m1:v1'系统m不2v受2' 外力
守 恒
或者所受外力之和为零.
定 律
4、动量守恒定律是自然界普遍适用的基本规律
之一.它即适用于宏观、低速物体,也适用于微
观、高速物体
总结:
mv—0 —— F 作用了时间 t — mvtt
F
F
动量定理:合外力的冲量等于物体动量的改变。
动量定理
——物体所受合外力的冲量等于物体的动量变化。即: I合=△p
F合 t=mvt-mv0
【说明】
⑴公式中F合是物体所受合外力,t是物体从初动量变化到末动
量所需时间, vt是末速度,v0是初速度。
《动量守恒定律 》课件
03
动量守恒定律的应用
碰撞问题
总结词
碰撞问题中动量守恒定律的应用
VS
详细描述
在碰撞问题中,动量守恒定律是一个重要 的应用。当两个物体发生碰撞时,它们的 总动量在碰撞前后保持不变。通过应用动 量守恒定律,可以解决一系列碰撞问题, 例如确定碰撞后的速度、计算碰撞过程中 的能量损失等。
火箭推进原理
总结词
《动量守恒定律》 PPT课件
目录
• 动量守恒定律的概述 • 动量守恒定律的推导 • 动量守恒定律的应用 • 动量守恒定律的实验ቤተ መጻሕፍቲ ባይዱ证 • 动量守恒定律的意义与价值
01
动量守恒定律的概述
定义与公式
总结词
动量守恒定律的定义和公式是理解该定律的基础,通过 定义和公式可以明确动量的概念和计算方法。
详细描述
未来科技
随着科技的不断进步和创新,动量 守恒定律将继续发挥其重要的理论 价值,为未来的科技发展提供有力 支持。
THANKS
感谢观看
04 结果四
总结实验结论,并提出改
进意见和建议。
05
动量守恒定律的意义与价值
在物理学中的地位与作用
01 基础性原理
动量守恒定律是物理学中的基础性原理,是理解 和分析力学系统运动规律的重要工具。
02 理论基石
为其他物理理论如牛顿第三定律、动能定理等提 供了理论支持,是整个经典力学体系的基石之一 。
动量守恒定律的定义为系统内动量的总和在不受外力作 用或合外力为零的情况下保持不变。公式表示为: m₁v₁+m₂v₂=m₃v₃+m₄v₄,其中m和v分别代表质量和 速度,下标表示不同的参考系。
动量的矢量性
总结词
动量具有矢量性,方向与速度方向相同,通过了解动量的矢量性可以更好地理解动量守恒定律 的应用。
动量与动量守恒ppt课件
精选ppt课件
I=k4+ km1
2gR k+1. 12
例、如图所示,在光滑水平面上,有一极薄的长
为S=20m,质量为m=20kg的木板,木板正中
间放有一质量为m=20kg的滑块(可视为质 点),让木板和滑块一起以v0=10m/s的速度 向右匀速行驶,在其正前方有一摆长为L=4m
的单摆,摆球质量为M= 30kg,若滑块与摆球 碰撞时间极短,且无动能损失,滑块和木板之
3
几个典型“问题单元”分析
共速
?
“二合一”
共速
“弹性碰撞”
?
“滑块、木板”临界问题
共速?
反冲运动
精选ppt课件
4
6.恒力F作用在质量为m的物体上,如 图所示,由于地面对物体的摩擦力较大, 没有被拉动,则经时间t,下列说法正确的 是( ) BD
A.拉力F对物体的冲量大小为零 B.拉力F对物体的冲量大小为Ft C.拉力F对物体的冲量大小是Ftcos θ D.合力对物体的冲量大小为零
间摩擦系数为μ=0.2,求碰后:
(1
(2)2s末滑块离木板右端
v0
的距离(g=10m/s2)
答案:(1)h=3.2m ; (2)2s末滑块离精木选p板pt课右件 端距离为ΔS=28m 13
在纳米技术中需要移动或修补原子,必须使在不停 地做热运动(速率约几百米每秒)的原子几乎静 止下来且能在一个小的空间区域内停留一段时间, 为此已发明了“激光制冷”的技术,若把原子和 入射光分别类比为一辆小车和一个小球,则“激 光制冷”与下述的力学模型很类似。
(1)物块C的质量;
(2)墙壁对B的冲量;
(3)B离开墙后的运动过程中弹簧具有的最大弹性
势能.
精选ppt课件
I=k4+ km1
2gR k+1. 12
例、如图所示,在光滑水平面上,有一极薄的长
为S=20m,质量为m=20kg的木板,木板正中
间放有一质量为m=20kg的滑块(可视为质 点),让木板和滑块一起以v0=10m/s的速度 向右匀速行驶,在其正前方有一摆长为L=4m
的单摆,摆球质量为M= 30kg,若滑块与摆球 碰撞时间极短,且无动能损失,滑块和木板之
3
几个典型“问题单元”分析
共速
?
“二合一”
共速
“弹性碰撞”
?
“滑块、木板”临界问题
共速?
反冲运动
精选ppt课件
4
6.恒力F作用在质量为m的物体上,如 图所示,由于地面对物体的摩擦力较大, 没有被拉动,则经时间t,下列说法正确的 是( ) BD
A.拉力F对物体的冲量大小为零 B.拉力F对物体的冲量大小为Ft C.拉力F对物体的冲量大小是Ftcos θ D.合力对物体的冲量大小为零
间摩擦系数为μ=0.2,求碰后:
(1
(2)2s末滑块离木板右端
v0
的距离(g=10m/s2)
答案:(1)h=3.2m ; (2)2s末滑块离精木选p板pt课右件 端距离为ΔS=28m 13
在纳米技术中需要移动或修补原子,必须使在不停 地做热运动(速率约几百米每秒)的原子几乎静 止下来且能在一个小的空间区域内停留一段时间, 为此已发明了“激光制冷”的技术,若把原子和 入射光分别类比为一辆小车和一个小球,则“激 光制冷”与下述的力学模型很类似。
(1)物块C的质量;
(2)墙壁对B的冲量;
(3)B离开墙后的运动过程中弹簧具有的最大弹性
势能.
精选ppt课件
动量守恒定律 课件(18张)
小结:动量守恒
动量守恒定律是自然界最重要的 最普遍的规律之一,它不仅适用于宏 观系统,也适用于微观系统;不仅适 用于低速运动,也适用于高速运动。 还适用于由任意多个物体组成的系统, 以及各种性质的力之间。这一定律已 成为人们认识自然、改造自然的重要 工具。
布置作业:
后,两球速度变为v1’和v2’,仍在原来直 线上运动。试分析碰撞中,两球动量变
化有什么关系?
v1
m1
v2
m2
隔离法:
1、对两个球碰撞的时候受力分析:
2、如果碰撞时间为t,那么 v1 m1 v2 m2
一球和二球的动量变化是多
少呢?(以向左为正方向)
F1
对一球:m1v1' m1v1 F1t
对二球:m2v2' m2v2 F2t
牛顿摆
X射线的散射是单个电子和单个光子发生弹性碰撞的 结果
从科学实践的角度来看,迄今为止,人们尚未发现 动量守恒定律有任何例外。相反,每当在实验中观察 到似乎是违反动量守恒定律的现象时,物理学家们就 会提出新的假设来补救,最后总是以有新的发现而胜 利告终。如静止的原子核发生β衰变放出电子时,按 动量守恒,反冲核应该沿电子的反方向运动。但云室 照片显示,两者径迹不在一条直线上。为解释这一反 常现象,1930年泡利提出了中微子假说。由于中微子 既不带电又几乎无质量,在实验中极难测量,直到 1956年人们才首次证明了中微子的存在。
车,发射炮弹)
应用动量守恒定律解题的步骤
一般步骤 (1)分析题意,明确研究对象。 (2)受力分析,判断是否动量守恒。 (3)规定正方向,确定始、末状态;
(4)列方程求解。
例一:
光滑水平面上,质量为m的小球A以速 率v运动时,和静止的小球B发生碰撞, 碰后A球的速率变为v/2,已知B球的 质量为3m。求B球的速度。
1.1 动量 课件(共24张PPT)
和速率的乘积叫做动量,忽略了动量的方向性。
惠更斯:明确提出动量的守恒性
和方向性。
牛顿:把笛卡儿的定义做了修改,明确的用
物体的质量和速度的乘积叫做动量,更清楚 的表示动量的守恒性和方向性。
动量 1. 定义:在 用字物母理学p 中表,示把。物体的质量 m 和速度 v的乘积叫做物体的动量 ,
2.定义式: p = mv
结论:碰撞后A球停止运动而静止,B球开始
运动,最终摆到和A球拉起时同样的高度。A 的速度传递给了B。
猜想:碰撞前后,两球速度之和是不变的?
A B
寻求碰撞中的不变量
将上面实验中的A球换成大小相同的C球,
使C球质量大于B球质量,用手拉起C球至某
B
A B
C
一高度后放开,撞击静止的B球。
实验结论:B摆起的最大高度大于C球被拉起时的高度,碰撞后B球
壁后弹回,沿着同一直线以6m/s的速度水平向左运动。碰撞前后钢球的动 量变化了多少?
解:以向右为正方向。
初态动量 p=mv=0.6kg·m/s
末态动量 p′=mv′= -0.6kg·m/s
动量的变化量△p=p′-p= -1.2kg·m/s
∆p的方向水平向左,大小为1.2 kg·m/s
动量的变化量
思考:不在同一直线上的动量变化如何求解
•
使用天平测量出两小
车的质量,并利用光电
门传感器测量出两小车
的碰撞前、后的速度.
寻求碰撞中的不变量
表 两辆小车的质量和碰撞前后的速度
简单的次碰数撞:在光滑m1的/kg平面上,m两2/k个g 物体一v维/(m对·s心-1) 碰撞。v′/(m·s-1)
1
0.519
0.519
0.628
惠更斯:明确提出动量的守恒性
和方向性。
牛顿:把笛卡儿的定义做了修改,明确的用
物体的质量和速度的乘积叫做动量,更清楚 的表示动量的守恒性和方向性。
动量 1. 定义:在 用字物母理学p 中表,示把。物体的质量 m 和速度 v的乘积叫做物体的动量 ,
2.定义式: p = mv
结论:碰撞后A球停止运动而静止,B球开始
运动,最终摆到和A球拉起时同样的高度。A 的速度传递给了B。
猜想:碰撞前后,两球速度之和是不变的?
A B
寻求碰撞中的不变量
将上面实验中的A球换成大小相同的C球,
使C球质量大于B球质量,用手拉起C球至某
B
A B
C
一高度后放开,撞击静止的B球。
实验结论:B摆起的最大高度大于C球被拉起时的高度,碰撞后B球
壁后弹回,沿着同一直线以6m/s的速度水平向左运动。碰撞前后钢球的动 量变化了多少?
解:以向右为正方向。
初态动量 p=mv=0.6kg·m/s
末态动量 p′=mv′= -0.6kg·m/s
动量的变化量△p=p′-p= -1.2kg·m/s
∆p的方向水平向左,大小为1.2 kg·m/s
动量的变化量
思考:不在同一直线上的动量变化如何求解
•
使用天平测量出两小
车的质量,并利用光电
门传感器测量出两小车
的碰撞前、后的速度.
寻求碰撞中的不变量
表 两辆小车的质量和碰撞前后的速度
简单的次碰数撞:在光滑m1的/kg平面上,m两2/k个g 物体一v维/(m对·s心-1) 碰撞。v′/(m·s-1)
1
0.519
0.519
0.628
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D、弹簧秤
E、秒表
(3)设入射小球的质量为m1,被碰小球的质量
为m
,
2
P为
碰前
入射
小球
落点
的平
均位
置
,则
关系式
(用m1、m2及图中
字母表示) 成立,即表示碰撞中动量守恒。
CHENLI
13
3、(双选)入射球m1碰撞前的速度以及被碰球m2 碰撞后的速度可用其运动的水平位移来表示,图中
M、N、P是小球的落点,下列说法中正确的是: A、O'是被碰球在碰撞前其球心在纸上的垂直投影 B、O'是碰撞前入射球的球心在纸上的垂直投影 C、被碰球碰撞后的动量可表示为m 2O'Nm 1(OPOM) D、入射球碰撞前的动量可表示为 m2O'Nm1(OPOM)
B、入射小球和被碰小球的直径
C、斜槽轨道的末端距地面的高度
D、入射球滚下到抛出时的高度差
E、入射球末碰撞时飞出的水平距离
F、入射球和被碰球碰撞后飞出的水平距离
CHENLI
11
2、如图为实验室中验证动量守恒实验装置 示意图
(1)若入射小球质量为m1,半径为r1;被碰 小球质量为m2,半径为r2,则:
O O'
M
PN
CHENLI
重 垂 线
OO' M P N 8
实验测量 主要测量的物理量:
a.用天平测两球质量m1、m2 b.用游标卡尺测两球的直径D,
并计算半径r。 c.水平射程:OP、OM、O'N
12
重 垂 线
OOC' HEMNLI P N
9
注意事项
①应使入射球的质量m1大于被碰球的质量m2。
②斜槽末端切线要水平;白纸铺好后不能移动。
⑤、过O、N在纸上作直线,取OO'=2r,O'即 为被碰球被碰时球心投影位置。 1 2
O O'
M
PN
CHENLI
重 垂 线
OO' M P N 7
实验步骤
⑥、用刻度尺量OM、OP、O'N的长度。把两 小球的质量和相应的“速度数值” 代入表达式 看是否成立:
验证的表达式:m1OP=m1OM+m2O'N ⑦、整理实验器材,放回原处。 1 2
A、m1> m2 r1> r2 B、m1> m2 r1< r2
入射小球
被碰小球
C、m1> m2 D、m1< m2
r1=r2 r1=r2
重 垂 线
O MP N
CHENLI
12
(2)为完成此实验,以下所提供的测量工具中 必需的是________________。(填下列对应的 字母)
A、直尺
B、游标卡尺 C、天平
③每次小球下滑要从同一高度由静止开始。 ④要保证对心碰撞,先调高低,再调远近,
最后调左右。 ⑤小球的诸多落点要用圆规画尽可能小的
圆把所有的小球落点都圈在里面,该小圆的 圆心即为小球的平均落点 。
CHENLI
10
1、(双选)在做碰撞中的动量守恒的实验时,
不需要测量的物理量有:
A、入射小球和被碰小球的质量
实验
验证动量守恒定律
CHENLI
1
实验仪器
斜槽、重锤、入射小球1、被碰小球2、 白纸、复写纸、天平、游标卡尺、直尺、
圆规、木板
CHENLI
2
实验原理
1、两小球在水平方向发生正碰, 水平方向合外力为零,动量守恒。
m1v1=m1v1′+m2v2′
12
如何测量 小球的速度呢?
重 垂 线
O CHOEN' LI M P
N
3
• 碰撞前的总动量可转变为:m1·OP • 碰撞后的总动量可转变为:m1·OM+m2·O'N
m1 m2
OO' M P
N
CHENLI
4
实验步骤
①先用天平测量出两个小球的质量m1、m2。 ②安装好实验装置,注意使实验器的斜槽末端点的切线 水平。 把被碰球放在斜槽前的支柱上,调节实验装置 使两球处于同一高度,且两球的球心和槽轴线在一直线 上,两球心间的距离即为槽和支柱间的距离。垫木板和 白纸时,要使木板水平。准确地标绘出槽口中心的竖直 投影点O(表示m1入射前的位置)。
12
重 垂 线
OO' MCHEPNLI N
5
实验步骤 ③、先不放被碰球2,让入射球1从斜槽上同一高 度处滚下,重复3~5次;
12
重 垂 线
O O' M P
CHENLI
N
6
实验步骤 ④、把被碰小球B放在支柱上,让入射小球A从 同一高度滚下,使它们发生正碰,•重复3~5次, 仿步骤③,求出入射小球A的平均落点M和被碰 小球B的平均落点N。
O O'
M
PN
CHENLI
14
Байду номын сангаас