高等工程数学

合集下载

高等工程数学第二章习题及答案

高等工程数学第二章习题及答案

第2章 线性代数方程组数值解法 研究n 阶线性方程组Ax b =的数值解法.()ij A a =是n n⨯矩阵且非奇异,12(,,,)Tn x x x x = ,12(,,,)Tn b b b b =两类数值方法:(1) 直接法:通过有限次的算术运算,若计算过程中没有舍入误差,可以求出精确解的方法.Ax b Gx d == 等价变换G 通常是对角矩阵、三角矩阵或者是一些结构简单的矩阵的乘积.(2) 迭代法:用某种极限过程去逐次逼近方程组的解的方法.(1)()i i Ax b x Bx k x Bx k +==+−−−−−→=+ 等价变换建立迭代格式,0,1,i =一、向量范数与矩阵范数 1. 向量范数【定义】 若对nK 上任一向量x ,对应一个非负实数x ,对任意,nx y R ∈及K α∈,满足如下条件(向量范数三公理) (1) 非负性:0x ≥,且0x =的充要条件是0x =;(2)齐次性:x xαα=;(3)三角不等式:x y x y+≤+.则称x为向量x的范数.常用的向量范数: (1) 1—范数11nii x x ==∑(2) 2—范数12221()ni i x x ==∑(3) ∞—范数1max ii nxx ∞≤≤=(4) 一般的p —范数11()pnpi pi xx ==∑2. 矩阵范数【定义】 若n nK ⨯上任一矩阵()ij n n A a ⨯=,对应一个非负实数A ,对任意的,n nA B K ⨯∈和K α∈,满足如下条件(矩阵范数公理):(1) 非负性:0A ≥,且0A =的充要条件是0A =;(2)齐次性:A Aαα=;(3)三角不等式:A B A B +≤+;(4)乘法不等式:AB A B≤.则称A为矩阵A的范数.矩阵范数与向量范数是相容的:Ax A x≤向量范数产生的从属范数或算子范数:10max maxx x AxA Ax x=≠==常见从属范数:(1) 1—范数111max ||nij j ni A a ≤≤==∑(2) ∞—范数11max ||nij i nj A a ∞≤≤==∑(3) 2—范数2A =谱半径1()max ||H i i n A A ρλ≤≤=,iλ为H A A 的特征值.H A 为A 的共轭转置. 注:矩阵A 的谱半径不超过A 的任一范数,即()A A ρ≤范数等价性定理:,s t x x为n R 上向量的任意两种范数,则存在常数12,0c c >,使得12,ns t s c x x c x x R ≤≤ ∀∈.注:矩阵范数有同样的结论. 【定理2.1】是任一向量范数,向量序列()k x 收敛于向量*x 的充要条件是()*0,k x x k -→ →∞二、 Gauss 消去法 1.顺序Gauss 消去法 将方程Ax b =写成如下形式11112211,121122222,11122,1n n n n n n n n nn n n n a x a x a x a a x a x a x a a x a x a x a ++++++=⎧⎪+++=⎪⎨⎪⎪+++=⎩其中记,1,1,2,,.i n i a b i n +==消元过程:第一次消元:设110a ≠,由第2,3,,n 个方程减去第一个方程乘以1111/(2,3,,)i i m a a i n == ,则将方程组中第一个未知数1x消去,得到同解方程11112211,1(1)(1)(1)22222,1(1)(1)(1)22,1n n n n n n n nn n n n a x a x a x a a x a x a a x a x a ++++++=⎧⎪ ++=⎪⎨⎪⎪ ++=⎩其中, (1)11,2,3,,;2,3,,,1ijij i j a a m a i n j n n =-==+ . 1111/i i m a a =,2,3,,i n = .第二次消元:设(1)220a ≠,.由第2,3,,n 个方程减去方程组中的第2个方程乘以(1)(1)2222/(3,4,,)i i m a a i n == ,则将方程组第2个未知数2x 消去,得到同解方程11112213311,1(1)(1)(1)(1)2222322,1(2)(2)(2)33333,1(2)(2)(2)33,1n n n n n n n n n nnn n n n a x a x a x a x a a x a a x a a x a x a a x a x a ++++++++=⎧⎪ +++=⎪⎪ ++=⎨⎪⎪⎪ ++=⎩其中(2)(1)(1)22, 3,4,,; 3,4,,,1ij ij i j a a m a i n j n n =-==+ . (1)(1)2222/i i m a a =,3,4,,i n = .经过1n -次消元后,原方程组变成等价方程组11112213311,1(1)(1)(1)(1)2222322,1(2)(2)(2)33333,1(1)(1),1n n n n n n n n n n n nn n n n a x a x a x a x a a x a a x a a x a x a a x a +++--+++++=⎧⎪ +++=⎪⎪ ++=⎨⎪⎪⎪ =⎩其中()(1)(1), 1,2,,k k k ij ij ik ij a a m a i k k n --=-=++ , 1,2,,,1j k k n n =+++ .(1)(1)/k k ik ik kkm a a --=,1,2,,i k k n =++ ;1,2,,1k n =- .回代过程:(1)(1),1(1)(1)(1),1,,1/[]/,1,2,,2,1.n n n n n m n i i i ii n i j j i j j i x a a x a a x a i n n --+---+=+⎧=⎪⎨=-=--⎪⎩∑计算量:按常规把乘除法的计算次数合在一起作为Gauss 消去法总的计算量,而略去加减法的计算次数. 在消去过程中,对固定的消去次数(1,2,,1)k k n =- ,有:除法(1)(1),,/,1,1,,k k ik i k k k m a a i k k n --= =++ 共计n k -次;乘法(1),,1,2,,;1,2,,,1k ik k j m a i k k n j k k n n - =++ =+++ 共计()(1)n k n k --+次.因此,消去过程总的计算量为1311[()(1)]3n k M n k n k n k n-==--++-≈∑ 回代过程的乘除法计算次数为21()2n n +.与消去法计算量相比可以略去不计.所以, Gauss 消去法总的计算量大约为313n .2. Gauss-Jordan 消去法Gauss-Jordan 消去法是Gauss 消去法的一种变形.此方法的第一次消元过程同Gauss 消去法一样,得到(1)(1)(1)(1)11112213311,1(1)(1)(1)(1)22223322,1(1)(1)(1)(1)32233333,1(1)(1)(1)(1)2233,1,,,,n n n n n n n n n nn nn n n n a x a x a x a x a a x a x a x a a x a x a x a a x a x a x a ++++⎧++++=⎪ +++=⎪ +++=⎨ +++= ⎪⎪⎪⎪⎩其中,(1)11,2,,,1jj a a j n n ==+ . 第二次消元:设(1)220a ≠,由第1,3,4,,n 个方程减去第2个方程乘以(1)(1)2222/(1,3,4,,)i i m a a i n == ,则得到同解方程组(2)(2)(2)11113311,1(1)(2)(2)(2)22223322,1(2)(2)(2)33333,1(2)(2)33,1,,,n n n n n n n n n nnn n n n a x a x a x a a x a x a x a a x a x a a x a x a +++++ +++= +++= ++= ++= (2),⎧⎪⎪⎪⎨⎪⎪⎪⎩继续类似的过程,在第k 次消元时,设(1)k kk a -,将第i 个方程减去第k 个方程乘以(1)(1)/k k ik ik kk m a a --=,这里1,3,4,1,1,,i k k n =-+ .经过1n -次消元,得到(2)1111,1(1)(2)2222,1(2)(2)33,1,,,n n n n n a x a a x a a x a +++⎧ =⎪ =⎪⎪ ⎨⎪⎪⎪ =⎩其中()(1)(1),1,2,,1,1,,k k k ij ij ik kj a a m a i k k n --=-=-+ ;1,2,,,1; 1,2,,1j n n k n =+=- .此时,求解回代过程为(1)(1),1/,1,2,,n i i i n iix a a i n --+= = 经统计,总的计算量约为312M n ≈次乘除法. 从表面上看Gauss-Jordan 消去法似乎比Gauss 消去法好,但从计算量上看Gauss -Jordan 消去法明显比Gauss消去法的计算量要大,这说明用Gauss-Jordan 消去法解线性方程组并不可取.但用此方法求矩阵的逆却很方便. 3.列选主元Gauss 消去法在介绍Gauss 消去法时,始终假设(1)0k kk a -≠,称(1)k kka -为主元.若(1)0k kka -=,显然消去过程无法进行.实际上,既使(1)0k kka -≠,但(1)k kka -很小时,用它作除数对实际计算结果也是很不利的.称这样的(1)k kka -为小主元.【例2.2】设计算机可保证10位有效数字,用消元法解方程1112120.3100.7,0.9,x x x x -⎧⨯+=⎪⎨ +=⎪⎩【解】经过第一次消元:第2个方程减去第1个方程乘以212111/m a a =得1112(1)(1)222230.3100.7x x a x a -⎧⨯+=⎪⎨ =⎪⎩其中(1)1222222111/0.333333333310a a a a =-=-⨯,(1)123323211113(/)0.233333333310a a a a a =-⋅=-⨯于是解得(1)(1)223221/0.7000000000,0.0000000000,x a a x ⎧==⎪⎨=⎪⎩而真解为120.2,0.7x x = =注:造成结果失真的主要因素是主元素11a太小,而且在消元过程中作了分母,为避免这个情况发生,应在消元之前,作行交换.【定义】 若 (1)(1)||max ||k k k r k ik k i na a --≤≤=,则称(1)||k k r k a - 为列主元素. k r 行为主元素行,这时可将第 k r行与第k 行进行交换,使(1)||k k r k a - 位于交换后的等价方程组的 (1)k kk a - 位置,然后再施实消去法,这种方法称为列选主元Gauss 消去法或部分主元Gauss 消去法.【例2.3】 应用列选主元Gauss 消去法解上述方程. 【解】 因为2111a a >,所以先交换第1行与第2行,得1211120.9,0.3100.7,x x x x -⎧+=⎪⎨⨯+=⎪⎩ 然后再应用Gauss 消去法,得到消元后的方程组为1220.9,0.7.x x x ⎧+=⎨=⎩回代求解,可以得到正确的结果.即120.2,0.7x x = =.三、三角分解法 设方程组Ax b =的系数矩阵A 的顺序主子式不为零.即1112121222110,1,2,,.kk k k k kka a a a a a k n a a a ∆=≠=在Gauss 消去法中,第一次消元时,相当于用单位下三角阵211131111010010n m L m m -⎡⎤⎢⎥- ⎢⎥⎢⎥=- ⎢⎥ ⎢⎥⎢⎥- ⎢⎥⎣⎦ ,左乘方程组Ax b =,得11A x b =,其中11121(1)(1)122211(1)200n n n nn a a a a a A L a a -(1)⎡⎤⎢⎥ ⎢⎥==⎢⎥ ⎢⎥⎢⎥ ⎣⎦ ,1(1)(1)111,11,1,1(,,,)Tn n n n b L b a a a -+++== .第二次消元时,相当于用单位下三角阵1232210101001n L m m - ⎡⎤⎢⎥ ⎢⎥⎢⎥= - ⎢⎥⎢⎥⎢⎥ - ⎢⎥⎣⎦0 ,左乘方程组11A x b =,得22A x b =其中11121(1)(1)22211(2)(2)221333(2)(2)300000n n n n nn a a a a a A L L A a a a a --⎡⎤ ⎢⎥ ⎢⎥⎢⎥== ⎢⎥⎢⎥ ⎢⎥ ⎢⎥⎣⎦ ,11(1)(2)(2)2211,12,13,1,1(,,,,).Tn n n n n b L L b a a a a --++++==经过1n -次消元,最后得到等价方程组11n n A x b --=其中11121(1)222111111221(1)n n n n n n nn a a a a a A L L L L A a (1)--------⎡⎤⎢⎥ ⎢⎥==⎢⎥⎢⎥⎢⎥ ⎣⎦1111(1)(1)112221,12,1,1(,,,)n Tn n n n n n n b L L L L b a a a --------+++==注意到1n A -是一个上三角阵,记111111221n n n U A L L L L A -------==则121()n A L L L U LU -==其中,121n L L L L -= . 不难验证21313212_1111n n nn m L m m m m m ⎡⎤⎢⎥ ⎢⎥⎢⎥= ⎢⎥ ⎢⎥⎢⎥ 1 ⎢⎥⎣⎦是单位下三角阵.于是解线性方程组Ax b =,就转化为解方程 LUx b =,若令Ux y =就得到一个与 Ax b =等价的方程组Ly b Ux y =⎧⎨=⎩【定理2.2】 若 A 为 n 阶方阵,且 A 的所有顺序主子式0k ∆≠,1,2,,k n = .则存在唯一的一个单位下三角矩阵 L 和一个上三角矩阵 U ,使A LU =.在上述过程中,若不假设A 的顺序主子式都不为零,只假设A 非奇异,那么Gauss 消去法将不可避免要应用两行对换的初等变换.第一次消元,将第1行与第1r 行交换,相当于将方程组Ax b =左乘矩阵11r P :1111r r P Ax P b=经第一次消元得11111111r r L P Ax L P b--=即系数矩阵为11111r A L P A-=,其中110111r P ⎡⎢ ⎢ 1= 1 0 1 ⎣0 0 ⎤⎥⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎦1 列 1r列 类似地,经1n -次消元,有121111111,22,11n n n n n r n n r r A L P L P L P A----------= .如果预先知道每一个(1,2,,1)iir P i n =- ,则在消元之前就全部作交换,得 1211,2,1,n n n r n r r A P P P A PA----== ,其中,1211,2,1,n n n r n r r P P P P ----= .即原方程变为PAx Pb =然后再消元,相当于对PA 做三角分解PA LU =由以上讨论,可得结论 【定理2.3】 若A 非奇异,则一定存在排列矩阵 P ,使得 PA 被分解为一个单位下三角阵和一个上三角1 行1行r阵的乘积,即PA LU =成立.这时,原方程组Ax b = 等价于 PAx Pb =,即等价于求解LUx Pb =令Ux y =则Ly Pb =实际求解时,先解方程组Ly Pb =,再根据 y 求解 Ux y =,即得原方程组Ax b =的解. 这种求解方法称为三角分解法.常用三角分解方法有以下几种. 1.Doolittle 分解方法 假设系数矩阵A 不需要进行行交换,且三角分解是唯一的. 记21121110n n l L l l ⎡⎤⎢⎥ ⎢⎥=⎢⎥ ⎢⎥ ⎢⎥⎣⎦ , 11121222n n nn u u u u u U u ⎡⎤⎢⎥ ⎢⎥=⎢⎥ ⎢⎥ 0 ⎣⎦ 于是有1112111121222212222112111110n n n n n n n n nn a a a u u u u u a a a l l l a a a ⎡⎤ ⎡⎤⎢⎥⎢⎥ ⎢⎥⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎣⎦⎣⎦ nn u ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥0 ⎣⎦从前面讨论A 的LU 分解过程可看出,L 、U 的元素都是用有关的(1)k ij a -来表示的,而它们的计算较麻烦.现在给出直接从系数矩阵A ,通过比较等式的两边逐步把L 和U 构造出来的方法,而不必利用Gauss 消去法的中间结果(1)k ij a -.计算步骤: (1) 由L 阵的第1行分别乘U 阵的各列,先算出U 阵的第1行元素 11,1,2,,j j u a j n = = .然后,由L 阵的各行分别去乘U 阵的第1列,算出L 阵的第1列元素1111/,2,3,,i i l a a i n = = .(2)现假设已经算出U 阵的前1r -行元素,L 阵的前1r -列元素,下面来算U 阵的第r 行元素,L 阵的第r 列元素.由L 阵的第r 行分别乘U 阵的第j 列(,1,,)j r r n =+ ,得11r ij rk kj rjk a l u u -==+∑所以,得U 阵的第r 行元素11,,1,,r rj rj rk kj k u a l u j r r n-==- =+∑ .再由L 阵的第i 行(1,2,,)i r r n =++ 分别去乘U 阵的第r 列,得11r ir ik kr ir rrk a l u l u -==+∑,所以,得L 阵的第r 列元素11[]/,1,2,,.r ir ir ik kr rr k l a l u u i r r n -==- =++∑取1,2,,r n = 逐步计算,就可完成三角分解A LU =;(3)解与Ax b = 等价的方程组Ly b Ux y =⎧⎨=⎩逐次用向前代入过程先解Ly b = 得1111,2,3,,.i i i ij j j y b y b l y i n -==⎧⎪⎨=- =⎪⎩∑然后再用逐次向后回代过程解Ux y =得1/,()/,1,2,,2,1.n n nn n i i ij j ii j i x y u x y u x u i n n =+=⎧⎪⎨=- =--⎪⎩∑2.Crout 分解方法仍假设系数矩阵A 不需要进行行交换,且三角分解是唯一的.即ˆA L=ˆU .与Doolittle 分解方法的区别在111212122211n n n n nn a a a a a a a a a ⎡⎤ ⎢⎥ ⎢⎥=⎢⎥ ⎢⎥⎢⎥ ⎣⎦ 1122ˆˆl l ⎡⎤ 0⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎢⎥⎣⎦ 122ˆ1ˆ10n u u ⎡⎤⎢⎥ ⎢⎥⎢⎥ ⎢⎥ 1 ⎣⎦ 比较两边,则可推导出与Doolittle 分解方法类似的公式,不过Crout 分解方法是先算ˆL 的第r 列,然后再算ˆU的第r 行.3.Cholesky 分解方法若 A 为对称正定矩阵,则有 ˆT U L =,即11()()TT T A LDL LD LD LL ===其中L 为下三角阵. 进一步展开为1121111211112122221222221212n n n n n n nn n n nn a a a l l l l a a a l l l l l l l a a a ⎡⎤⎡⎤ ⎢⎥⎢⎥ 0 ⎢⎥⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥ ⎢⎥ ⎢⎥⎣⎦⎣⎦ 0nn l ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ ⎣⎦ 比较两边对应元素,容易得到12121()r rr rr rk k l a l -==-∑ ,11()/r ir ir ik rk rrk l a l l l -==-∑ 1,2,,;1,2,,.r n i r r n ==++Cholesky 分解的优点:不用选主元. 由21rrr rk k a l ==∑ 可以看出||1,2,,.rk l k r ≤=这表明中间量rk l得以控制,因此不会产生由中间量放大使计算不稳定的现象. Cholesky 分解的缺点:需要作开方运算. 改进的Cholesky 分解: 改为使用分解T A LDL =即11121121121221222121111n n n n n n n n nn a a a d l l l d a a a l l d a a a ⎡⎤ 1 ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥ 1 1 ⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥ ⎢⎥ ⎣⎦⎣⎦⎣⎦ 2n l ⎡⎤⎢⎥ ⎢⎥⎢⎥ ⎢⎥ 1⎣⎦其中21ˆl 1ˆn l 2ˆn l ˆnn l 1ˆn u12111()/r r rr rk k k r ir ir ik k rk rk d a l d l a l d l d-=-=⎧=-⎪⎪⎨⎪=-⎪⎩∑∑,1,2,,;1,2,,.r n i r r n ==++Cholesky 分解方法或平方根法:应用Cholesky 分解可将Ax b =分解为两个三角形方程组T Ly b L x y ⎧= ⎪⎨= ⎪⎩分别可解得111111/,()/.i i i ik k ii k y b l y b l y l i n -=⎧=⎪⎨=-, =2,3,,⎪⎩∑和1/,()/1,.n n nn n i i ki k ii k i x y l x y l x l i n n =+⎧=⎪⎨=-, =--2,,2,1⎪⎩∑改进的Cholesky 分解方法或改进的平方根法:应用改进的Cholesky 分解,将方程组Ax b =分解为下面两个方程组1,,T Ly b L x D y -= ⎧⎨= ⎩同理可解得1111,,2,3,,.i i i ik k k y b y b l y i n ==⎧=⎪⎨=- =⎪⎩∑和1/,/,1,2,,2,1.n n n n i i i ki k k i x y d x y d l x i n n =+⎧=⎪⎨=- =--⎪⎩∑ 4.解三对角方程组的追赶法若()ij n n A a ⨯=满足1||||,1,2,,.nii ij j j ia a i n =≠> =∑则称A 为严格对角占优矩阵.若A 满足1||||,1,2,,.nii ij j j ia a i n =≠≥ =∑且其中至少有一个严格不等式成立,则称A 为弱对角占优矩阵.现在考虑Ax d = 的求解,即11112222211111n n n n n n n n n b c x d a b c x d a b c x d d a b x -----⎡⎤⎡⎤⎡⎤ ⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ = ⎢⎥⎢⎥⎢⎥ ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 系数矩阵A 满足条件11||||0,||||||,,0,2,3,, 1.||||0,i i i i i n n b c b a c a c i n b a ⎧>>⎪≥+ ≠=-⎨⎪>>⎩采用Crout 分解方法11112222221111n n n n n n n b c a b c a b c a b βαβγαγα---⎡⎤ ⎡⎤⎢⎥ 1 ⎢⎥⎢⎥ ⎢⎥⎢⎥ = ⎢⎥⎢⎥ ⎢⎥ ⎢⎥ ⎢⎥⎢⎥⎣⎦ ⎣⎦ 1n β-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥1 ⎢⎥⎢⎥ 1 ⎣⎦其中,,,i i i αβγ为待定系数.比较上式两边可得到111111,;,,2,3,,;,2,3,, 1.i i i i i i i i i b c a b i n c i n ααβγγβααβ-= == =+ == =-进而可导出1111111,2,3,,.,/,,2,3,,./(),2,3,, 1.i i i i i i ii i i i a i n b c b b i n c b i n γαβααββαβ--⎧= =⎪= =⎪⎨=- =⎪⎪=- =-⎩由此可看出,真正需要计算的是(1,2,,1)i n β=- ,而i α可由,i i b a 和1i β-产生.因此,实现了A 的Crout 分解后,求解Ax d =就等价于解方程组Ly dUx y =⎧⎨=⎩从而得到解三对角方程组的追赶法公式: (1) 计算i β的递推公式:1111/,/(),2,3,, 1.i i i i i c b c b i n ββαβ-⎧=⎪⎨=- =-⎪⎩(2) 解方程组Ly d =:11111/()/(),2,3,,.i i i i i i i y d b y d a y b a i n β--⎧=⎪⎨=-- =⎪⎩(3) 解方程组Ux y =:1,1,2,,2,1.n n i i i i x y x y x i n n β+⎧=⎪⎨=- =--⎪⎩追赶法的乘除法次数是66n -次.将计算121n βββ-→→→ 及12n y y y →→→ 的过程称之为“追”的过程,将计算方程组Ax d =的解121n n x x x x -→→→→ 的过程称之为“赶”的过程.四、迭代法 将Ax b =改写为一个等价的方程组 x Bx k =+建立迭代公式 (1)(),0,1,2,.i i x Bx k i +=+ =称矩阵B 为迭代矩阵.【定义】 如果对固定的矩阵B及向量k,对任意初始猜值向量(0)x ,迭代公式(1)()i i +()i()*lim i i x x →+∞=成立,其中*x 是一确定的向量,它不依赖于(0)x 的选取.则称此迭代公式是收敛的,否则称为发散的.如果迭代收敛,则应有**,x Bx k =+1. 收敛性()()*,0,1,2,i i x x i ε=- =为第i步迭代的误差向量.则有(1)(1)*()*()(),0,1,2,.x x B x x B i εε++=-=-==所以,容易推出()(0),0,1,2,,i i B i εε= =其中,(0)(0)*xxε=-为初始猜值的误差向量.设n nB K ⨯∈,lim 0i i B →+∞=⇔ ()1B ρ<.迭代法收敛基本定理: 下面三个命题是等价的 (1) 迭代法(1)()i i x Bx k +=+收敛;(2)()1B ρ<;(3) 至少存在一种矩阵的从属范数⋅,使1B <注:当条件()1B ρ<难以检验时,用1B 或B ∞等容易求出的范数,检验11B <或1B∞<来作为收敛的充分条件较为方便.常用迭代法如下. 2.Jacob 迭代 考察线性方程组Ax b =,设A 为非奇异的n 阶方阵,且对角线元素0ii a ≠(1,2,,)i n = .此时,可将矩阵A 写成如下形式A D L U =++,1122(,,,)nn D diag a a a = ,21313212000n n a L a a a a ⎡⎤⎢⎥ ⎢⎥⎢⎥= ⎢⎥ ⎢⎥⎢⎥ 0 ⎢⎥⎣⎦ ,12131232000n n a a a a a U ⎡⎤ ⎢⎥ ⎢⎥⎢⎥= 0 ⎢⎥ ⎢⎥⎢⎥ ⎢⎥⎣⎦ ,建立Jacobi 迭代公式(1)1()1(),i i x D L U x D b +--=-++迭代矩阵11()J B D L U I D A --=-+=-J B 的具体元素为112111122122221200n n J n n nn nn a a a a a a B a a a a a a ⎡⎤ - -⎢⎥⎢⎥⎢⎥- - ⎢⎥=⎢⎥⎢⎥ ⎢⎥⎢⎥- - 0 ⎢⎥⎣⎦ Jacobi 迭代法的分量形式如下1(1)()()111(),j n i i i jj jm m jm m m m j jj xb a x a x a -+==+=--∑∑1,2,,;0,1,2,.j n i = =3.Gauss-Seidel 迭代容易看出,在Jacobi 迭代法中,每次迭代用的是前一次迭代的全部分量()(1,2,,)i jx j n = .实际上,在计算(1)i j x +时,最新的分量(1)(1)(1)121,,,i i i j x x x +++- 已经算出,但没有被利用.事实上,如果Jacobi 迭代收敛,最新算出的分量一般都比前一次旧的分量更加逼近精确解,因此,若在求(1)i j x+时,利用刚刚计算出的新分量(1)(1)(1)121,,,i i i j x x x+++- ,对Jacobi 迭代加以修改,可得迭代公式1(1)(1)()111(),j ni i i jj jm m jm m m m j jj xb a x a x a -++==+=--∑∑1,2,,;0,1,2,.j n i = =矩阵形式(1)1()1()(),0,1,2,.i i x D L Ux D L b i +--=-++-+=1()G B D L U -=--+注:(1)两种迭代法均收敛时,Gauss-Seidt 迭代收敛速度更快一些.(2)但也有这样的方程组,对Jacobi 迭代法收敛,而对Gauss-Seidel 迭代法却是发散的. 【例2.4】 分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下面的方程组121232342,46,4 2.x x x x x x x ⎧- =⎪-+-=⎨⎪-+=⎩初始猜值取0(0,0,0)x =. 【解】 Jacobi 迭代公式为(1)()12(1)()()213(1)()321(2),41(6),0,1,2,41(2),4i i i i i i i x x x x x i x x +++⎧=+⎪⎪⎪=++=⎨⎪⎪=+⎪⎩迭代计算4次的结果如下 (1)(2)(3)(4)(0.5,1.5,0.5),(0.875,1.75,0.875),(0.938,1.938,0.938),(0.984,1.969,0.984).T T T T x x x x ====Gauss-Seidel 迭代公式为(1)()12(1)(1)()213(1)(1)321(2),41(6),0,1,2,41(2),4i i i i i i i x x x x x i x x +++++⎧=+⎪⎪⎪=++=⎨⎪⎪=+⎪⎩迭代计算4次的结果如下(1)(2)(3)(4)(0.5,1.625,0.9063),(0.9063,1.9532,0.9883),(0.9883,2.0,0.9985),(0.9985,1.999,0.9998).T T T T x x x x ====从这个例子可以看到,两种迭代法作出的向量序列(){}i x 逐步逼近方程组的精确解*(1,2,1)T x =,而且Gauss-Seidel 迭代法收敛速度较快.一般情况下,当这两种迭代法均收敛时,Gauss-Seidt 迭代收敛速度更3.超松弛迭代法为了加快迭代的收敛速度,可将Gauss-Seidel 迭代公式改写成1(1)()(1)()11(),j ni i i i jjj jm m jm m m m jjj xx b a x a x a -++===+--∑∑ 1,2,,;0,1,2,.j n i = =并记1(1)(1)()11(),j ni i i jj jm m jm m m m jjj rb a x a x a -++===--∑∑称 (1)i j r + 为 1i + 步迭代的第 j 个分量的误差向量.当迭代收敛时,显然有所有的误差向量(1)0(),1,2,,.i j r i j n +→→∞=为了获得更快的迭代公式,引入因子R ω∈,对误差向量 (1)i j r + 加以修正,得超松弛迭代法(简称SOR 方法)(1)()(1),0,1,2,.i i i j j j x x r i ω++=+ =即1(1)()(1)()1(),j ni i i i jjj jm mjm m m m jjjxx b a xa x a ω-++===+--∑∑1,2,,;0,1,2,.j n i = =适当选取因子ω,可望比Gauss-Seidel 迭代法收敛得更快.称ω为松弛因子.特别当1ω=时,SOR 方法就是Gauss-Seidel 迭代法.写成矩阵向量形式(1)1()1()[(1)](),j i x D L D U x D L b ωωωωω+--=+--++0,1,2,.i =迭代矩阵为1()[(1)].B D L D U ωωωω-=+--实际计算时,大部分是由计算经验或通过试算法来确定opt ω的近似值.所谓试算法就是从同一初始向量出发,取不同的松驰因子ω迭代相同次数(注意:迭代次数不应太少),然后比较其相应的误差向量()()i i r b Ax =-(或()(1)i i x x --),并取使其范数最小的松弛因子ω作为最佳松弛因子opt ω的近似值.实践证明,此方法虽然简单,但往往是行之有效的. 4.迭代收敛其它判别方法:用迭代法收敛基本定理来判断收敛性时,当n 较大时,迭代矩阵的谱半径计算比较困难,因此,人们试图建立直接利用矩阵元素的条件来判别迭代法的收敛定理. (1) 若方程组Ax b =中的系数矩阵A 是对称正定阵,则 Gauss-Seidel 迭代法收敛. 对于SOR 方法,当02ω<< 时迭代收敛(2)若A 为严格对角占优阵,则解方程组 Ax b = 的Jacobi 迭代法,Gauss -Seidel 迭代法均收敛. 对于SOR 方法,当01ω<< 时迭代收敛.【例2.5】 设线性方程组为121221,32,x x x x ⎧+=-⎪⎨+=⎪⎩建立收敛的Jacobi 迭代公式和Gauss -Seidel 迭代公式. 【解】 对方程组直接建立迭代公式,其Jacobi 迭代矩阵为0230J B -⎡⎤=⎢⎥- ⎣⎦,显见谱半径()1J B ρ=>,故Jacobi 迭代公式发散.同理Gauss -Seidel 迭代矩阵为0206G B -⎡⎤=⎢⎥ ⎣⎦,谱半径()61G B ρ=>,故Gauss -Seidel 选代公式也发散. 若交换原方程组两个方程的次序,得一等价方程组121232,21,x x x x ⎧+=⎪⎨+=-⎪⎩其系数矩阵显然对角占优,故对这一等价方程组建立的Jacobi 迭代公式,Gauss -Seidel 迭代公式皆收敛. (3)SOR 方法收敛的必要条件是 02ω<<【定理2.5】 如果A 是对称正定阵,且02ω<<,则解Ax b =的SOR 方法收敛.注:当(0,2)ω∈ 时,并不是对任意类型的矩阵A ,解线性方程组Ax b =的SOR 方法都是收敛的.当SOR 方法收敛时,通常希望选择一个最佳的值opt ω使SOR 方法的收敛速度最快.然而遗憾的是,目前尚无确定最佳超松弛因子opt ω的一般理论结果.实际计算时,大部分是由计算经验或通过试算法来确定opt ω的近似值.所谓试算法就是从同一初始向量出发,取不同的松驰因子ω迭代相同次数(注意:迭代次数不应太少),然后比较其相应的误差向量()()i i r b Ax =-(或()(1)i i x x --),并取使其范数最小的松弛因子ω作为最佳松弛因子opt ω的近似值.实践证明,此方法虽然简单,但往往是行之有效的.【例2.6】 求解线性方程组Ax b =,其中10.3000900.308980.30009100.4669110.274710.30898A - -- -0.46691 0= - -- 00.274711(5.32088,6.07624,8.80455,2.67600).T b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥ - ⎣⎦ =-分别利用Jacobi 迭代法,Gauss -Seidel 迭代法,SOR 迭代法求解. 【解】其结果列入下表中,方程组精确解(五位有效数字)为*(8.4877,6.4275, 4.7028,4.0066).T x =-Jacobi 迭代法计算结果i()1i x()2i x ()3i x ()4i x ()2||||i r0 012.3095 1 5.3209 6.0762 -8.8046 2.6760 5.3609 27.97113.5621 -5.2324 1.90143.631820 8.4872 6.4263 -4.7035 4.0041 0.0041 218.48606.4271 -4.7050 4.0063 0.0028Gauss-Seidel 迭代法计算结果i()1i x()2i x()3i x()4i x()2||||i r0 012.3095 1 5.3209 7.6730 -5.2220 2.8855 3.6202 28.51506.1933 -5.1201 3.90040.49098 8.4832 6.4228 -4.7064 4.0043 0.0078 98.48556.4252-4.70554.00550.0038SOR 迭代法计算结果(1.16ω=)i()1i x()2i x()3i x()4i x()2||||i r0 012.3095 1 6.1722 9.1970 -5.2320 3.6492 3.6659 29.69416.1177 -4.8999 4.43351.33136 8.4842 6.4253 -4.7005 4.4047 0.0051 78.48686.4288-4.70314.00650.0016计算结果表明,若求出精确到小数点后两位的近似解,Jacobi 迭代法需要21次,Gauss -Seidel 迭代法需要9次,而SOR 迭代法(选松弛因子 1.16ω=)仅需要7次,起到加速作用.5.误差分析 【定理2.6】设 *x 是方程 Ax b = 的惟一解,v ⋅ 是某一种向量范数,若对应的迭代矩阵其范数1v B <,则迭代法(1)(),0,1,2,.i i xBx k i +=+ = 收敛,且产生向量序列(){}i x 满足()*()(1)||||||||||||1||||i i i vv vvB x x x x B --≤--()*(1)(0)||||||||||||1||||i i vv vvB x x x x B -≤--【证明】 由迭代收敛基本定理的(3)知,迭代法(1)(),0,1,2,.i i x Bx k i +=+ =收敛到方程的解*x .于是,由迭代公式立即得到(1)*()*(1)()()(1)(),().i i i i i i x x B x x x x B x x ++--=--=-为书写方便把v 范数中v 略去,有估计式(1)*()*||||||||||||,i i x x B x x +-≤⋅-(1)()()(1)||||||||||||.i i i i x x B x x +--≤⋅-再利用向量范数不等式||||||||||||x y x y -≥-于是得第一个不等式()(1)(1)()()*(1)*()*||||||||||||||||||||(1||||)||||,i i i i i i i B x x x x x x x x B x x -++ -≥-≥--- ≥--再反复递推即第二个不等式.注:(1)若事先给出误差精度ε,利用第二个不等式可得到迭代次数的估计(1)(0)(1||||)ln ln ||||||||v v v B i B x x ε⎡⎤->⎢⎥-⎣⎦ (2)在||||v B 不太接近1的情况下,由第一个不等式,可用()(1)||||i i v x x ε--<作为控制迭代终止的条件,并取 ()i x 作为方程组 Ax b = 的近似解.但是在||||v B 很接近1时,此方法并不可靠.一般可取1,2,v =∞或F .【例2.7】 用Jacobi 迭代法解方程组123123123202324,812,231530.x x x x x x x x x ⎧++=⎪++=⎨⎪-+=⎩问Jacobi 迭代是否收敛?若收敛,取(0)(0,0,0)T x =,需要迭代多少次,才能保证各分量的误差绝对值小于610-?【解】 Jacobi 迭代的分量公式为(1)()()123(1)()()213(1)()()3121(2423)201(12),0,1,2,81(3022),15i i i i i i i i i x x x x x x i x x x +++⎧=--⎪⎪⎪=-- =⎨⎪⎪=-+⎪⎩Jacobi 迭代矩阵J B 为130102011088210155J B ⎡⎤ - -⎢⎥⎢⎥⎢⎥=- -⎢⎥⎢⎥⎢⎥- ⎢⎥⎣⎦,由5251||||max ,,1208153J B ∞⎧⎫==<⎨⎬⎩⎭知,Jacobi 迭代收敛. 因设(0)(0,0,0)Tx =,用迭代公式计算一次得(1)(1)(1)12363,, 2.52x x x = = =而(1)(0)|||| 2.x x ∞-=于是有6110(1)13ln ln 13.23i -⎡⎤⋅-⎢⎥>=⎢⎥⎢⎥⎣⎦所以,要保证各分量误差绝对值小于610-,需要迭代14次.【例2.8】 用Gauss -Seidel 迭代法解例2.11中的方程组,问迭代是否收敛?若收敛,取(0)(0,0,0)Tx =,需要迭代多少次,才能保证各分量误差的绝对值小于610-?【解】 Gauss -Seidel 迭代矩阵G B 为102403601()03025524000G B D L U - - ⎡⎤⎢⎥=-+= -⎢⎥⎢⎥ 38 -3⎣⎦显然1||||14G B =<,所以迭代收敛. Gauss -Seidel 迭代分量公式为(1)()()123(1)(1)()213(1)(1)(1)3121(2423),201(12),0,1,2,81(3022),15i i i i i i i i i x x x x x x i x x x ++++++⎧=--⎪⎪⎪=-- =⎨⎪⎪=-+⎪⎩因取(0)(0,0,0)T x =,故迭代一次得(1)(1)(1)1231.2, 1.35, 2.11x x x = = =于是有(1)(0)|||| 2.11x x ∞-=,计算得6110(1)14ln ln 10.2.114i -⎡⎤⋅-⎢⎥>=⎢⎥⎢⎥⎣⎦所在,要保证各分量误差绝对值小于610-,需要迭代11次.。

高等工程数学难度排名

高等工程数学难度排名

高等工程数学难度排名
高等工程数学的难度排名可能因人而异,但通常来说,以下是高等工程数学中一些科目的难度排名:
1. 微积分:作为高等工程数学的基础,微积分的难度相对较低,但概念较多,需要理解和运用。

2. 线性代数:线性代数的概念相对抽象,但难度适中,掌握了基本概念和方法后,可以轻松应对。

3. 概率论与数理统计:概率论与数理统计的难度相对较高,需要对概念有深入的理解,并能熟练运用各种概率分布和统计方法。

4. 微分方程:微分方程涉及到函数的导数和微分,以及各种类型的方程,难度相对较高。

需要注意的是,以上排名并不是绝对的,难度也与个人基础和兴趣有关。

在学习高等工程数学时,需要耐心和努力,多做练习和思考,才能掌握好这些科目。

高等工程数学讲义(矩阵理论部分)

高等工程数学讲义(矩阵理论部分)
求 L(1,2,3,4) 的基与维数。
解:以1,2,3,4 为列向量构造矩阵
1 −1 2 1
A
=
2 1
1 1
−1 0
−1 3
,
0
1
1
7
对 A 施行初等行变换化为行最简形矩阵(即厄米特阶梯形矩阵)
2
1 −1 2 1 1 −1 2 1
A
=
2
1
−1
−1


0
3

−3
1 1 0 3 0 2 −2 2
3
在引入矩阵加法和数乘运算后, M mn (F ) 构成数域 F 上的向量空间。
的线性关系。
1.2 矩阵运算及其性质
我们用 M mn (F ) 或 F mn 表示数域 F 上 m n 矩阵的全体,即
M mn (F ) = (aij )mn | aij F .
特别地用 M n (F ) 或 F nn 表示数域 F 上 n 阶方阵的全体。
定义 1.4 设 A = (aij )mn , B = (bij )mn , A 与 B 的和为
0
1
1
7
0
1
1
7
1 0 1 2 1 0 0 -1


0
1
0
4


0
1
0
4
=B.
0 0 1 3 0 0 1 3
0
0
0
0
0
00
0
由矩阵 B 可知,1,2,3 是 L(1,2,3,4) 的基,且生成子空间的维数为 3。
注释:在这里,需要利用以下结论
(1) 设 B = (1, 2, 3, 4), 则 1, 2, 3 是 B 的极大无关组,也是 B 的列空间的基。 (2) A 施行初等行变换化为行最简形矩阵 B ,则它们的列向量组对应具有完全相同

高等工程数学课件--第1章 集合与映射

高等工程数学课件--第1章  集合与映射

定义1.2.3 设X、Y、Z是三个非空集合,并设 有两个映射 f1 : X Y , f2 : Y Z , 由 f1 , f 2 确定 X 到 Z 的映射 f3 : x f2 ( f1 ( x))( x X ) 称为映射 f1 和 f 2 的乘积(product),记为 f 3 f 2 f1 定理1.2.1 设有映射 f1 : X Y , f2 : Y Z , f3 : Z W , 则

lim An Ak .
n k 1

如果 An n 1是单调递减集合序列,则

lim An Ak .
n k 1

1.2 映 射(mapping)
定义1.2.1 设X、Y是两个非空集合,如果存在一
个X 到Y 的对应法则 f ,使得对 X中的每一个元素 x 都有Y中唯一的一个元素 y 与之对应,则称 f 是X 到Y的一个映射,记为 y f (x).
若 B A ,则称 A\B 为B 在A中的余集或B c 的补集,记为 B 。
定理 1.1.1 设A、B、C是三个集合, Ai (i I )为集合X的 子集,则
(1) A ( B C ) ( A B) ( A C ); A ( B C ) ( A B) ( A C );
(2) f 是X 到 Y的满映射当且仅当 Y R( f ).
非空集合,X 到自身的双映射称为X的一 一变换(one-to-one transformation);如果X 是有限集,X 的一一变换称为X 的置换 (permutation)。
非空集合X 上的恒等映射是一个双映射。 例. 微分算子,积分算子,矩阵。
定理1.2.3 映射f :X→Y是可逆映射的充分必 要条件是 f 是X到Y的双映射。 定理1.2.4 设映射f : X→Y , g :Y→Z,则 (1) 如果 f 和 g 都是单映射,则g f 是单映射;

高等工程数学复习重点

高等工程数学复习重点

1.线性变换定义、例子、表示矩阵求法、作用
2.线性变换特征值、特征向量、定义、求法
3.范数定义、向量、矩阵常见范数、求范数
4.矩阵对角化——对角化方法与Jordan标准型的关系、矩阵Jordan标准型的求法
5.子空间定义、常见字空间的构造、直和子空间、分解为直和
6.矩阵的零空间、R n在零空间下的直和分解
7.矩阵的域空间
8.代数精度的定义
9.Newton-Cotes求积公式中节点的定义、性质、与代数精度的关系
10.Newton迭代法的构造及构造原理
11.牛顿插值的定义、差商的定义、性质
12.代数线性方程组的几何数值计算方法
13.主元的定义、类型、在算法中的作用
14.线性方程组中的迭代解法中有关收敛的结论
15.插值多项式构造方法——拉格朗日、牛顿、埃尔米特插值
16.插值余项的定义、构造
17.正态总体下抽样分布的结论
18.t-、x2-、F- 分布有关构造结论
19.单正态总体有关参考数区间估计的结论
20.距估计定义、求法
21.极大似然估计定义、求法、性质(微分法、定义法)
22.常见分布:(0-1)、β(n,p),P(λ),G(p),U(a,b),E(λ),N(µ,σ2)
23.X2-拟合优度检验
24.单因素方差分析、条件、结论、算法、方差分析表
25.回归分析定义、科学意义、条件(G-M条件)、最小二乘法算法、性质、一元线性回归
方程的求法、应用。

高等工程数学课后习题答案

高等工程数学课后习题答案

第六章7、设X 1,X 2,…X n 为总体X~N (μ,σ2)的样本,求E[21)(x x ni i-∑=],D[21)(∑=-ni ix x ]。

解:E[21)(x x ni i -∑=]=(n-1)E[11-n 21)(x x ni i-∑=]=(n-1)σ2因为)1(~)(2212--∑=n X x xni iσ所以 D[21)(∑=-ni ix x ]=])([212σ∑=-ni ix xD =σ22(n-1)8、设X 1,X 2,…X 5为总体X~N (0,1)的样本,(1)试确定常数c 1、d 1,使得)(~)()(2254312211n x x x d x x c χ++++并求出n ;(2)试确定常数c 2、d 2,使得),(~)()(2543222212n m F x x x d x x c +++。

解:(1)212)(1x x n S n i i -=∑=且总体为X~N (0,1),所以c 1=21,d 1=31因为2χ分布具有可加性,即若X i ~2χ(i=1,……k ),且各样本相互独立,则)(~121∑∑==ki i ki in xχ,所以n=2。

(2)因为)2,0(~21N x x +,)3,0(~)(543N x x x ++,)1,0(~221N x x +, )1,0(~3543N x x x ++且相互独立, 所以221]2[x x ++2543]3[x x x ++)2(~2χ 因为)2(~22221χx x +,)1(~3)(22543χx x x ++ 所以)1,2(~)(2)(325432221F x x x x x +++,所以)1,2(,2322F d c =10、设X 1,X 2,…X n ,X n+1为总体X~N (μ,σ2)的样本的容量为n+1的样本,)(11~,1221x x n s x n x i n i i --==∑=试证:(1))1(~~1ˆ1---=+n t sxx n n T n (2))1,0(~21σn n N x x n +-+ (3))1,0(~21σnn N x x -- 证明:(1)因为),(~),1(~~)1(),,(~212222σμχσσμN x n s n n N x n +-- 所以)1,0(~1),1,0(~121N nn xx n n N x x n n +-+-++σσ 所以)1(~)1(~)1(1221---+-+n t n sn n n x x n σσ,即)1(~~1ˆ1---=+n t s x x n n T n (2)因为),(~),,(~212σμσμN x nN x n + 所以)1,0(~21σnn N x x n +-+ (3)因为∑∑==--=-=-ni i n i i x n x n n x n x x x 21111111,011)(1)(1)11(22121=--=--=--∑∑∑===ni n i i n i i n n n x E n x E n n x n x n n E μμ2222221121)1()11(σσσnn nn n x n x n n D ni n i i -=+-=--∑∑== 所以)1,0(~21σnn N x x --15、设X 1,X 2,…X n ,1为总体X 的样本,如果X 具有下列密度函数(其中参数均未知)试分别求这些参数的矩估计量与极大似然估计量。

高等工程数学教学大纲

高等工程数学教学大纲

课程编号:A080007课程名称:高等工程数学英文名称:Advanced Engineering Mathematics开课单位:理学院开课学期:秋课内学时:32 教学方式:讲授适用专业及层次:工科各专业硕士考核方式:考试预修课程:线性代数、高等数学一、教学目标与要求λ矩阵与矩本课程较全面、系统地介绍矩阵的基本理论、方法和某些应用,基本内容有-阵的Jordan标准形、初等矩阵与矩阵的因子分解、Hermite矩阵与正定矩阵、向量与矩阵的范数、矩阵函数与矩阵值函数、广义逆矩阵与线性方程组的解,算子范数等概念。

通过本课程基本概念和基本定理的阐述和论证,培养研究生的抽象思维与逻辑推理能力,提高研究生的数学素养。

在重视数学论证的同时,强调数学概念的物理、力学等实际背景,培养研究生应用数学知识解决实际工程技术问题的能力。

通过本课程的学习,要求研究生掌握矩阵的基本理论和方法,为学习后继课程、开展科学研究打好基础。

二、课程内容与学时分配第一章λ-矩阵与矩阵的Jordan标准形(8学时)1.1 一元多项式1.2 λ-矩阵及其在相抵下的标准形1.3 λ-矩阵的行列式因子和初等因子1.4 矩阵相似的条件1.5 矩阵的Jordan标准形1.6 Cayley-Hamilton定理与最小多项式第二章矩阵的因子分解(5学时)2.1 初等矩阵2.2 满秩分解2.3 三角分解2.4 QR分解2.5 Schur 分解与正规矩阵2.6 奇异值分解及其推广第三章Hermite矩阵与正定矩阵(6学时)3.1 Hermite矩阵与Hermite二次型3.2 Hermite正定(非负定)矩阵3.3 矩阵不等式3.4 Hermite矩阵的特征值* 第四章范数与极限(6学时)4.1 向量范数4.2 矩阵范数4.3 矩阵序列与矩阵级数第五章矩阵函数与矩阵值函数(2学时)5.1 矩阵函数5.2 矩阵值函数5.3 矩阵值函数在微分方程组中的应用第六章广义逆矩阵(5学时)6.1 广义逆矩阵的概念6.2 广义逆矩阵A-与线性方程组的解A-与相容方程组的极小范数解6.3 极小范数广义逆mA-与矛盾方程组的最小二乘解6.4 最小二乘广义逆l6.5 广义逆矩阵A+与线性方程组的极小最小二乘解三、教材戴华,矩阵论,科学出版社,2001主要参考书1.北京大学,高等代数,高等教育出版社,第二版,19882.Lancaster P. and Tismenetsky M. The Theory of Matrices with Applications,Academic Press, 1985.3.史荣昌,矩阵分析,北京理工大学出版社,19964.罗家洪,矩阵分析引论,华南理工大学出版社,19925.张明淳,工程矩阵理论,东南大学出版社,19956.程云鹏,矩阵论,西北工业大学出版社,1999大纲撰写负责人:杨秀绘杨熙授课教师:杨秀绘杨熙。

高等工程数学

高等工程数学

摘要高等工程数学是工程类硕士研究生的一门重要的数学基础课程,在研究生数学素养的训练、创新能力的提高方面具有重要作用。

内容包含矩阵论、数值计算方法和数理统计三部分,其主要内容有:先行空间与线性变换、内积空间、矩阵的标准型、数理统计的基本概念与抽样分布、参数估计、假设检验、回归分析与方差分析。

关键词:线性空间、假设检验、方差分析一、线性空间的综述简单的说,线性空间是这样一种集合,其中任意两元素相加可构成此集合内的另一元素,任意元素与任意数(可以是实数也可以是复数,也可以是任意给定域中的元素)相乘后得到此集合内的另一元素。

线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。

1.1 数域的概念设P是一个非空数集,且至少含有非零的数,若P中任意两个数的和、差、积、商(除分母为零外)仍属于该集合,则称P是一个数域。

容易验证有理数集合Q、实数集合R与复数集合C都是数域,分别称为有理数域、实数域与复数域。

1.2 线性空间定义设V是一个非空集合,P是一个数域,如果:(1)在集合V上定义一个二维运算(通常称为加法),即对V中任意两个元素x,y经过这个运算后得到的结果,仍是集合V中唯一确定的元素,该元素称为x 与y的和记作x+y.(2)在数域P与集合V的元素之间还定义了一种运算,叫做数量乘法,即对于P任意数λ与V中任意元素x,经过这一运算后所得到的结果,仍是V中唯一确定的元素,称为唯一确定的元素,称为λ与x的数量乘积,记作λ x。

如果加法和数量乘法还满足下述规则,则称V为数域P上的线性空间。

1.3线性空间的运算(1)对任意x,y∈V,x+y=y+x;(2)对任意x,y,z∈V,(x+y)+z=x+(y+z);(3)V中存在一个零元素,记作θ,对任意x∈V,都有x+θ=x;(4)对任意x∈V,都有y∈V,使得x+y=θ,元素y称为x的负元素,记作-x;(5)对任意x∈V,都有1x=x;对任何λ,μ∈P,x,y∈V。

高等工程数学课程评价方案

高等工程数学课程评价方案

高等工程数学课程评价方案一、引言高等工程数学是工程专业的重要基础课程,它涉及到高等数学、线性代数、概率论与数理统计等知识,是工科生必修的一门课程。

为了确保学生能够充分掌握课程要求的知识和技能,对于高等工程数学课程的评价应该更加全面、科学、客观。

因此,我们需要建立一套科学客观的高等工程数学课程评价方案,以便为学生的学习提供有效的指导和促进。

二、目标与内容1. 评价目标高等工程数学课程的评价目标应当是全面客观的,既要充分考察学生在知识掌握和应用能力上的表现,又要考察学生的学习态度和思维能力。

具体包括以下几个方面:(1)学生能够熟练掌握高等数学、线性代数、概率论与数理统计等基本理论和方法。

(2)学生能够运用所学知识解决实际工程问题。

(3)学生具有较强的数学分析和推理能力。

(4)学生具有较强的自主学习能力和团队合作意识。

2. 评价内容高等工程数学课程的评价内容主要包括以下几个方面:(1)考试和测验:包括期中考试、期末考试和平时小测验。

主要考察学生对于课程所学知识的掌握程度和应用能力。

(2)实验和作业:包括实验报告和课堂作业。

主要考察学生的实际动手能力和解决问题的能力。

(3)学习表现:包括参与度、课堂表现等。

主要考察学生的学习态度和团队合作意识。

三、评价方法1. 传统评价方法传统的评价方法主要包括考试、测验和作业,要求学生在限定的时间内,回答一定数量的问题,从而考察学生对所学知识的掌握和理解程度。

这种方法的优点是客观、公正,能够准确反映学生的学习状况。

但是,它也存在一些缺点,比如不能全面考察学生的知识、技能和能力。

2. 综合评价方法综合评价方法是一种将不同的评价方法进行综合考虑,从而更加全面客观地评价学生的学习状况。

比如可以采用以下综合评价方法:(1)成绩评价:将考试、测验、作业等成绩进行综合计算,得出学生的最终成绩。

(2)学习表现评价:考察学生的学习态度、团队合作意识等。

(3)实践能力评价:考察学生的实际动手能力和解决问题的能力。

高等工程数学智慧树知到答案2024年南京理工大学

高等工程数学智慧树知到答案2024年南京理工大学

高等工程数学南京理工大学智慧树知到答案2024年第一章测试1.有限维线性空间上范数1,范数2之间的关系是A:2强于1 B:等价 C:1强于2 D:无法比较答案:B2.赋范线性空间成为Banach空间,需要范数足?A:完备性 B:可加性 C:不变性 D:非负性答案:A3.标准正交系是一个完全正交系的充要条件是满足Parseval等式A:错 B:对答案:B4.在内积空间中,可以从一组线性无关向量得到一列标准正交系A:对 B:错答案:A5.矩阵的F范数不满足酉不变性A:错 B:对答案:A6.与任何向量范数相容的矩阵范数是?A:F范数 B:极大行范数 C:算子范数 D:极大列范数答案:C7.正规矩阵的谱半径与矩阵何种范数一致A:极大行范数 B:极大列范数 C:矩阵2范数 D:算子范数答案:C8.矩阵收敛,则该矩阵的谱半径A:无从判断 B:大于1 C:小于1 D:等于1答案:C9.矩阵幂级数收敛,则该矩阵的谱半径A:等于1 B:大于1 C:无从判断 D:小于1答案:D10.正规矩阵的条件数等于其最大特征值的模与最小特征值的模之商A:错 B:对答案:B第二章测试1.l矩阵不变因子的个数等于( )A:矩阵的列数 B:矩阵的秩 C:行数和列数的最小值 D:矩阵的行数答案:B2.Jordan标准形中Jordan块的个数等于( )A:矩阵的秩 B:行列式因子的个数 C:不变因子的个数 D:初等因子的个数答案:D3.Jordan块的对角元等于其( )A:初等因子的零点 B:初等因子的次数 C:不变因子的个数 D:行列式因子的个数答案:A4.n阶矩阵A的特征多项式等于( )A:A的n个不变因子的乘积 B:A的n阶行列式因子 C:A的行列式因子的乘积 D:A的次数最高的初等因子答案:AB5.下述条件中,幂迭代法能够成功处理的有( )A:主特征值有两个,是一对共轭的复特征值 B:主特征值有两个,是一对相反的实数 C:主特征值是实r重的 D:主特征值只有一个答案:ABCD6.n阶矩阵A的特征值在( )A:A的n个行盖尔圆构成的并集与n个列盖尔圆构成的并集的交集中 B:A的n个列盖尔圆构成的并集中 C:A的n个行盖尔圆构成的并集中 D:都不对答案:ABC7.不变因子是首项系数为1的多项式A:错 B:对答案:B8.任意具有互异特征值的矩阵,其盖尔圆均能分隔开A:对 B:错答案:B9.特征值在两个或两个以上的盖尔圆构成的连通部分中分布是平均的A:错 B:对答案:A10.规范化幂迭代法中,向量序列uk不收敛A:对 B:错答案:B第三章测试1.二阶方阵可作Doolittle分解A:错 B:对答案:A2.若矩阵A可作满秩分解A=FG,则F的列数为A的()A:列数B:都不对C:秩D:行数答案:C3.矩阵的满秩分解不唯一.A:错 B:对答案:B4.酉等价矩阵有相同的奇异值.A:对 B:错答案:A5.求矩阵A的加号逆的方法有()A:满秩分解 B:Greville递推法 C:奇异值分解 D:矩阵迭代法答案:ABCD6.若A为可逆方阵,则A:错 B:对答案:B7.用A的加号逆可以判断线性方程组Ax=b是否有解?A:对 B:错答案:A8.A的加号逆的秩与A的秩相等A:错 B:对答案:B9.若方阵A是Hermite正定矩阵,则A的Cholesky分解存在且唯一.A:错 B:对答案:B10.是Hermite标准形.A:错 B:对答案:A第四章测试1.()是利用Gauss消去法求解线性方程组的条件.A:系数矩阵的顺序主子式均不为0B:系数矩阵满秩C:所有主元均不为0D:都不对答案:AC2.关于求解线性方程组的迭代解法, 下面说法正确的是().A:J法和GS法的敛散性无相关性B:若迭代矩阵谱半径不大于1, 则迭代收敛C:若系数矩阵A对称正定, 则GS迭代法收敛D:都不对答案:AC3.如果不考虑舍入误差, ()最多经n步可迭代得到线性方程组的解.A:SOR法B:共轭梯度法C:最速下降法D:都是答案:B4.关于共轭梯度法, 下面说法正确的是()A:相邻两步的残量正交 B:相邻两步的搜索方向正交 C:搜索方向满足A共轭条件 D:B和C都对答案:D5.下面哪些是求解线性方程组的迭代解法().A:共轭梯度法 B:三角分解解法 C:ABC都对 D:最速下降法答案:AD6.若系数矩阵A对称正定, 则()A:J法和GS法均收敛B:都不对 C:可用Cholesky法求解线性方程组D:SOR法收敛答案:C7.任意线性方程组都可以通过三角分解法求解.A:错 B:对答案:A8.最速下降法和共轭梯度法的区别在于选取的搜索方向不同.A:错 B:对答案:B9.广义逆矩阵法可用于任意线性方程组的求解.A:对 B:错答案:A10.Gauss消去法和列主元素法的数值稳定性相当.A:错 B:对答案:A第五章测试1.对于凸规划,如果x为问题的KKT点,则其为原问题的全局极小点A:对 B:错答案:A2.对于无约束规划问题,如果海塞阵非正定,我们可采用哪种改进牛顿法求解原问题?A:难以处理 B:构造一对称正定矩阵来取代当前海塞阵,并一该矩阵的逆乘以当前梯度的负值作为方向 C:牛顿法 D:阻尼牛顿法答案:B3.共轭梯度法中,为A:FR公式 B:DY公式 C:DM公式 D:PRP公式答案:A4.内点罚函数法中常用的障碍函数有A:三种都可以B:二次函数C:倒数障碍函数D:对数障碍函数答案:CD5.广义乘子罚函数的优点是在罚因子适当大的情形下,通过修正拉格朗日乘子就可逐步逼近原问题的最优解?A:错 B:对答案:B6.分子停留在最低能量状态的概率随温度降低趋于( ).A:2 B:3 C:0 D:1答案:D7.模拟退火算法内循环终止准则可采用的方法.A:固定步数 B:温度很低时 C:接受概率很低时 D:由接受和拒绝的比率控制迭代步答案:AD8.背包问题是组合优化问题吗?A:错 B:对答案:B9.单纯形算法是求解线性规划问题的多项式时间算法.A:对 B:错答案:B10.对于难以确定初始基本可行解的线性规划问题,我们引入人工变量后,可采用哪些方法求解原问题?A:单纯形法 B:无法确定 C:两阶段法 D:大M法答案:CD第六章测试1.如果不限定插值多项式的次数,满足插值条件的插值多项式也是唯一的()A:错 B:对答案:A2.改变节点的排列顺序,差商的值不变()A:错 B:对答案:B3.Hermite插值只能用插值基函数的方法求解()A:错 B:对答案:A4.在最小二乘问题中,权系数越大表明相应的数据越重要()A:错 B:对答案:B5.加窗傅里叶变换时频窗的长宽比是信号自适应的()A:对 B:错答案:B6.傅里叶变换域的点和时间域上的点是一一对应的()A:对 B:错答案:B7.若f(t)的傅里叶变换为,则 f(2t)的傅里叶变换为 ( )A: B: C:答案:B8.小波函数对应了()A:低通滤波器 B:高通滤波器答案:B第七章测试1.有界区域上的弦振动方程定解问题可以用傅里叶积分变换法求解。

【2321】高等工程数学1

【2321】高等工程数学1

高等工程数学(2321)数值分析部分1.非线性方程求根简单迭代法、牛顿法、割线法及其计算效率。

2.线性代数方程组的数值解法向量与矩阵范数,高斯列主元消去法,误差分析;雅可比迭代法、高斯—赛德尔迭代法、超松弛迭代法及其收敛性讨论。

3.插值与拟合逼近函数的拉格朗日插值、牛顿插值、埃尔米特插值、样条插值;曲线拟合的最小二乘逼近方法;误差分析。

4.数值积分代数精度,低阶牛顿—柯特斯求积公式及其复化,龙贝格算法;高斯积分公式;数值积分公式的稳定性。

5.常微分方程初值问题的数值解法常用单步法和多步法及其稳定性讨论;预测—校正格式。

线性代数部分1.行列式行列式的概念、行列式的性质、行列式的展开定理、 cramer法则2. 矩阵矩阵的概念、矩阵的运算、可逆矩阵、分块矩阵、矩阵的初等变换与初等矩阵、矩阵的秩3. 向量与线性空间几何向量及其线性运算、坐标系、n维向量及线性空间、向量组的线性相关与线性无关、基、维数与坐标、向量的数量积、向量积和混合积、直线与平面4. 线性方程组及其在几何学中的应用线性方程组解的存在性、齐次线性方程组解的结构、非齐次线性方程组解的结构、线性方程组的几何应用5. 线性变换线性变换的定义、线性变换的运算、值域与核、线性变换的矩阵表示、正交变换6. 特征值、特征向量及相似矩阵特征值与特征向量、相似矩阵、实对称阵的正交相似对角化7. 二次型与二次曲面二次曲线的一般方程的化简、二次型及其矩阵表示、化二次型光标准形、惯性定理、正定二次型、曲面与曲线、二次曲面的标准方程、化二次曲面的一般方程为标准方程数学物理方程部分掌握偏微分方程的基本概念,数学模型的建立与定解问题,特征线积分法,傅里叶级数理论,分离变量法,本征值问题,椭型方程边值问题,高维问题,δ抢函数与格林函数法,积分变换法等。

《高等工程数学》课程论文

《高等工程数学》课程论文
(1) x+y=y+x; (2) (x+y)+z=x+(y+z) (3) 在 V 中有一元素 0,对于 V 中任一元素 x 都有 x+0=x; (4) 对于 V 中每一个元素 x,都有 V 中的元素 y,使得 x+y=0; (5) 1x=x; (6) k(lx)=(kl)x; (7) (k+l)x=kx+lx; (8) k(x+y)=kx+ky. 其中 x,y,z 为 V 中任意元素,k,l 为数域 F 中的任意元素,1 是 F 的乘法 单位元。 数域 F 称为线性空间 V 的系数域或基域,F 中元素称为纯量或数量,V 中元 素称为向量。 性质: (1)V 中零元素(或称 0 向量)是唯一的; (2)V 中任一向量 x 的负元素(或称负向量)是唯一的; (3)kx=0(其中 k 是域 F 中元素,x 是 V 中元素)当且仅当 k=0 或 x=0; (4)(-k)x=-(kx)=k(-x)。 域的概念: 设 F 是一个非空集合,在 F 中定义加法和乘法两种运算,且这两种运算对 F 来说是封闭的,也就是说,对 F 中的任意两个元素 a,b,a+b 和 ab 仍属于 F, 如果加法和乘法运算满足以下运算规则,则称 F 对所规定的加法和乘法运算作成 一个域: 1.(加法交换律)对 F 中任意两个元素 a,b,有 a+b=b+a 2.(加法结合律)对 F 中任意三个元素 a,b,c,有 (a+b)+c=a+(b+c) 3.(存在 0 元)F 中存在一个元素,我们把它记作 0,使得对 F 中的任意元 素 a,有 a+0=a 4.(存在负元)对 F 中的任意元素 a,在 F 中存在一个元素,我们把它记作 -a,有 a+(-a)=0 5.(乘法交换律)对 F 中任意两个元素 a,b,有 ab=ba 6.(乘法结合律)对 F 中任意三个元素 a,b,c,有

《高等工程数学》课程总结与体会

《高等工程数学》课程总结与体会

短暂又充实的学习时光结束了,这学期我学习了《高等工程数学》这门课程,这门课程是一门研究生重要的数学基础课,涵盖了矩阵论、数值分析、数理统计等内容。

要求以掌握和应用高等工程数学问题的数学方法为主导,使工学硕士研究生掌握一定的数学理论基础知识,能为今后的进一步学习和解决生活、工作中遇到的实际工程数学问题打下坚实的基础。

通过学习这门课程,我的学习总结与体会如下:1.矩阵论。

一个方阵化为对角形的条件十分苛刻,对于n阶矩阵A,其可对角化的充要条件是有n个线性无关特征向量。

具体来说,就是要求A有n个互异的特征值。

显然不是每一个矩阵都可以化为对角形,但是在实数范围内,任意矩阵却可以化为一个分块对角形,而这个分块对角形就是所谓的Jordan标准型。

矩阵化Jordan型的方法总结如下:对λ矩阵经过一系列三类初等行(列)变换,先观察矩阵的特点,使得左上角的元素次数逐渐降低,最终降低到可以整除矩阵内的其他所有元素。

然后得到λ矩阵的不变因子,求出Smith标准型,再求出初等因子,最后通过定义组合出Jordan型矩阵。

这个地方我在计算的时候,老是化出来的矩阵不对,我的错误主要在于:三类初等变换的运用。

在第二类初等变换中所乘的项必须为非0常数,且不可使用多项式。

在第三类初等变换中只能使用多项式,不能使用分式。

在经过大量题目的训练后,我再也不会犯这种概念不清的错误了,解题正确率也上去了。

由此可见,理解数学概念十分重要。

2.误差分析。

在很多情况下,对于实际问题的描述,我们往往得不到最为精确的函数表达,我们只有通过对所描述的问题进行抽象、简化,得到它的近似模型,通过近似模型来反应真实的函数关系。

在这个过程中,就会产生误差,而由误差带来的影响,有时会很严重。

运用计算机进行数值计算的时候,需要注意以下几个原则:1.避免两相近的数相减。

2.避免大数“吃”小数的现象。

3.避免接近零的数做除数。

4.注意计算步骤的简化,减小运算次数。

其中1、3条准则在实际应用时十分重要。

高等工程数学课件--第2章 代数结构与线性空间

高等工程数学课件--第2章 代数结构与线性空间

定理2.1.1设A, B是两个非空集合。 (1)若A上的代数运算 适合结合律,则对任意 n(n 3) 个元 素
a1 ,, an A , a1 a2 an有意义。
(2)如果A上的代数运算 同时适合结合律和交换律,则对任意
n(n 2) 个元素 a1 ,, an A ,a1 an中元素的次序可以交换
e 定理2.2.9 设G与 G是两个群, 与e分别是 G与G的单位元,是G到G的一个同态映射, 则 (1) (e) e; (2) 对a G, (a 1 ) ( (a)) 1 .
定义2.2.10 设G与 G是两个群, e分别是 e与 G与G 的单位元,是G到G 的一个同态映射,
则称G按代数运算 成为半群,或简称G为半群,记为 (G, )。 如果半群G上的代数运算 还适合交换律, 则称G为交换半群或 Abel半群。 例. (1) (N, +), (N, )是半群; (2) ( Rnn , ), ( Rnn , ) 是半群。
定义2.2.2 设 (G, ) 是一个半群, 如果存在
为A到B的一个同态满映射。对集合A和B的代数运算 和 ,
如果存在A到B的一个同态满映射,则称A与B同态。
如果 是A到B的一个同态映射,并且是A到B的双映射,则称
为A到B的一个同构映射。对集合A和B的代数运算 和 ,如果存 在A到B的一个同构映射,则称A与B同构,记为 A B 。
(2) 整数加法群(Z, +)是由1生成的无限阶 循环群。
定理2.2.8 整数加法群Z的每个子群H都是循环群,
即H = {0}或 数。 ,其中m是H中最小正整 H span(m)
一般来说,群G的任意子集A不一定是的子群, 但群G一定有包含A的子群(如G本身)。 G的所 有包含A的子群之交记为span(A),由定理2.2.5知, span(A)是包含A的最小子群(即若H是包含A的子 span( A)。称span(A)为由A生成的子群, )H 群,则 A中的元素称为生成元。

高等工程数学第1章§1线性空间

高等工程数学第1章§1线性空间
即 Pn (t ) 构成实线性空间.
P.13/50 TIME:11:14:47
例 由前例可知 R 按通常的乘法运算构成群
R { x | x 0, x R }
R是否构成线性空间?
研究如何引入数乘运算?
分析 通常的“乘法”是加法,则“数乘”应是更 高一级的运算.
P.14/50 TIME:11:14:47
例 由前例可知 R 按通常的乘法运算构成群
R { x | x 0, x R }
R是否构成线性空间?
研究如何引入数乘运算?
R , k R 定义数乘运算如下: k k
则 R 构成实线性空间. 只验证 (1) , R , k F , 有
则称向量组 {1 , 2 ,, n }是 V 的基.
记 dim V n ,称为 V 的维数 n 维线性空间记为 V n .
k11 k 2 2 k n n
P.19/50 TIME:11:14:47
线性空间的基与维数 设 V { c | c a ib, i 1 } V 是否是线性空间? V 的维数是多少? 答 dimV 2 分析 首先必须弄清楚 V 定义在什么数域上? (1) 若 V 定义在实数域 R 上, 则 V 的基是{1, i }
部分向量组 { i1 , i2 ,, ik } 线性相关
向量组 {1 , 2 ,, m }线性相关
单个零向量 0 线性相关 单个非零向量 线性无关
P.18/50 TIME:11:14:47
线性空间的基与维数 定义 设 {1 , 2 ,, n }是线性空间 V ( F )中线性 无关向量组,若 V 存在 k1 , k2 ,, kn F 使得
TIME:11:14:47

《高等工程数学》课程教学大纲

《高等工程数学》课程教学大纲
8.JohnA.Rice(田金方译).数理统计与数据分析.机械工业出版社,2011.
9.易正俊.数理统计及其工程应用,北京:清华大学出版社,2014.
10.吴翊.应用数理统计,长沙:国防科大出版社,2003.
11.汪荣鑫.数理统计,西安:西安交通大学出版社,1986.
12.栾颖.MATLABR2013a工程分析与仿真,北京:清华大学出版社2014.
【课程知识模块与学时分配】
本课程主要由矩阵分析理论及其工程应用、数理统计及其工程应用两大知识模块构成。根据本专业的专业硕士的要求和课程的培养目标,各知识模块的学时分配为:矩阵分析及其数学建模(26学时)、数理统计及其工程应用(22学时),其中两大知识模块中均包含理论知识研讨(4学时),应用案例实践建模与分析(4学时)。
本课程将采用基础数学知识与数学建模实践相结合的方式进行教学。在教学过程中,以案例为驱动,以数学建模为重点,以科学计算软件为工具,通过在课堂内讲授理论知识、进行案例分析讨论、课外结合专业领域的研究,实现一种综合的立体式教学。课程将以矩阵分析的理论和方法为基础,将统计方法和工程软件相结合,以数学建模、分析和处理为主线贯穿整个教学过程,使学生学会如何简化假设、如何选择合适的数学工具对实际问题进行数学建模、如何实现工程处理与计算、如何对模型性能进行评价及结论分析等。从而达让学生具备运用数学工具分析和解决专业问题的能力,以期达到“在运用数学中学数学”的实践性教学目的。
(8) 假设检验的理论和方法:原假设与备选假设,二类错误,假设检验方法,假设检验的评价方法,非参数假设检验。
(9) 回归分析方法:一元线性回归分析,多元回归分析,包括:参数估计,假设检验,预测等。
(10) 方差分析与正交试验设计:一元方差分析,二元方差分析,正交实验设计。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
括加法、数乘、减法、转置、乘法(包括方阵的正 整数幂)、逆矩阵以及分块运算。 -本讲重点和难点是矩阵的乘法。 3、特殊矩阵 -零矩阵Om×n 、单位矩阵E、数量矩阵aE、对角矩阵、对 称矩阵、反对称矩阵 (上、下)三角矩阵
线性方程组
本讲重点 1、线性方程组的解法,解的情况的判定 2、齐次和非齐次方程组解的结构,特别是基础解系的概 念
Precision Engineering Lab., Xiamen Univ.
高等工程数学
机电工程系 郭隐彪
目 录
Precision Engineering Lab., Xiamen Univ.
第一部分 矩阵论 第二部分 数值计算方法
第一部分 矩阵论
第一章 线性代数基本知识 第二章 方阵的相似化简 第三章 向量范数和矩阵范数 第四章 方阵函数与函数矩阵 第五章 矩阵分解 第六章 线性空间和线性变换
第二部分 数值计算方法
第一章 误差的基本知识 第二章 线性方程组的数值解法 第三章 方阵特征值和特征向量的数值计算 第四章 计算函数零点和极值点的迭代法 第五章 函数的插值与最佳平方逼近 第六章 数值积分与数值微分 第七章 常微分方程数值解法
第一章 线性代数基本知识
§1.1 向量和向量空间 §1.2 矩阵及其运算 §1.3 矩阵的初等变换及其应用 §1.4 线性方程组 §1.5 特征值与特征向量
第五章 矩阵分解
§5.1 方阵的三角分解 §5.2 方阵的正交(酉)三角分解 §5.3 矩阵的奇异值分解
第六章 线性空间和线性变换
§6.1 线性空间 §6.2 线性变换 §6.3 内积空间及两类特殊的线性变换
向量和向量空间
1、向量的内积、长度、夹角和正交等 2、关于向量组的线性相关性 3、关于向量组的极大无关组和向量组的秩
第二章方阵的相似化简
§2.1 Jordan标准形 §2.2 Cayley-Hamilton定理 §2.3 方阵的酉相似化简 §2.4 实方阵的正交相似化简
第三章向量范数和矩阵范数
§3.1 向量范数 §3.2 矩阵范数 §3.3 方阵的谱半径
第四章方阵函数与函数矩阵
§4.1 矩阵序列与矩阵级数 §4.2 方阵函数及其计算 §4.3 函数矩阵及其应用
相关文档
最新文档