2012年山东省淄博市中考数学试卷及解析
淄博中考数学试卷真题
淄博中考数学试卷真题真题1:(一)选择题1. 已知直线l1的方程为y = -2x + 3,直线l2的斜率为3,且直线l1与l2垂直,则直线l2的方程为()A. y = 3x + 8B. y = 3x + 7C. y = 7 - 3xD. y = 8 - 3x据已知,直线l1的斜率为-2,而l2与l1垂直,所以l2的斜率为-1/(-2) = 1/2。
与在直线上已知一点(0, 3),可得直线l2的方程为y = 1/2x+ 3。
2. 一件商品原价为p元,现在降价20%后售出。
若已知降价后的售价为42元,则原价p为()A. 52B. 48C. 50D. 55根据题意,降价后的价格为商品原价的80%,即0.8p = 42。
解方程可得p = 52。
3. 数列{an}满足a1 = 3,an+1 = 2an - 1 (n ≥ 1)。
则a3的值为()A. 6B. 13C. 23D. 43根据题意,a2 = 2a1 - 1 = 2(3) - 1 = 5,a3 = 2a2 - 1 = 2(5) - 1 = 9。
故选A。
4. 若a:b=2:3,b:c=5:4,则a:b:c的比值为()A. 4:6:5B. 10:12:9C. 5:7:6D. 8:12:9根据题意,可得a:b:c = a:(2a/3):(5(2a/3)/4) = 6:8:10 = 3:4:5。
故选C。
5. 实数x满足(3x - 1)/(2x - 1) = 5,则x的值为()A. 2B. -2C. 1D. -1根据题意,可得3x - 1 = 5(2x - 1)。
解方程可得x = 2。
故选A。
(二)填空题6. 若正数x满足x² - 3x + 2 = 0,则x = ______。
解:根据题意,可得(x - 1)(x - 2) = 0,所以x = 1或x = 2。
故x = 1或x = 2。
7. 在平行四边形ABCD中,若∠A = 120°,则∠C = _______。
2012淄博市中考数学试题答案及评分标准
淄博市2012年初中学业考试数学试题(A卷)参考答案及评分标准评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.每小题只给出一种或两种解法,对考生的其它解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一、选择题(本大题共12小题,第1~3小题每题3分,第4~12小题每题4分,共45分.错选、不选或选出的答案超过一个,均记零分):题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D A C D D B A C D A B B二、填空题(本大题共5小题,每小题4分,共20分):13.2-;14.70;15.122-或;16.3;17.如110,个位或十位上的数字有一个为0,其余两个数字相等且不为0.三、解答题(本大题共7小题,共55分):18.(本题满分6分)解:方程两边都乘以(1)x-,得22(1)x x-=-,…………………………………………………3分解得0x=,………………………………………………………5分检验:当0x=时1x-≠0,0x=是原方程的解.……………… 6分19.(本题满分6分)证明:∵ABCD是平行四边形,∴A F∥CE,……………………………………………………3分∵AF=CE,∴四边形AECF 是平行四边形. ………………………………6分20.(本题满分8分)解:(1)将这7个数由小到大排列为:12.87 12.88 12.91 12.92 12.93 12.95 12.97 …………2分 所以这7个成绩的中位数是12.92(秒); ……………………3分 极差是12.97−12.87=0.1(秒).…………………………………4分 (2) 方法一:__12.9712.8712.9112.8812.9312.9212.957x ++++++=≈12.92(秒)……………………………………8分方法二:__0.070.030.010.020.030.020.0512.907x -+-+++=+≈12.92(秒).21.(本题满分8分)解:(1)抛物线的对称轴为1x =-………………………………………2分 (2)……………………………………………………………6分(3)…………8分22.(本题满分9分) 解:由25204x x --=,得212951(1),,422x x x -===-,……………3分 当152x =是29(2)04x k x -++=的根时, 21119204x x kx --+=,11404kx -+=,x … −7 −5 −3 −1 1 35…y … −9−4 −1−1−4 −9 …yxO 115722k =,75k =………………………………………………………6分 当212x =-是29(2)04x k x -++=的根时,22229204x x kx --+=, 21404kx -+=, 1722k -=,7k =-. …………………………………………………9分 23.(本题满分9分) 解:(1)当G 与D 重合时,∵四边形ABCD 是矩形,AC ,BG 是矩形ABCD 对角线,BG ⊥AC ,∴四边形ABCD 是正方形,∴x =4…………………………2分(2) 方法一:∵四边形ABCD 是矩形,BG ⊥AC ,∴∠ABF +∠CBF =90°,∠ACB +∠CBF =90°,∴∠ACB =∠ABF ,∴△ABC ∽△F AB ,…………………………………………4分∴AF ABAB BC=, ∵F 为AD 中点,∴AF =2 ,2,224xx x ==………………………5分 ∵F 为AD 中点. 由对称性得,BF =CF . ……………………………………… …6分 ∵AF ∥BC ,∴△AEF ∽△CEB ,…………………………………………8分 ∴12EF AF EB BC ==, 在Rt △CFE 中,sin ∠ECF =13EF EF CF FB ==.…………………9分 方法二:连接BD ,∵F 为AD 中点,四边形ABCD 是矩形. 由对称性得∠FBD =∠FCA ,AB =GD ∵AC ⊥BG∴∠F AE +∠AFE =∠FGD +∠GFDA B C D E F G (第23题)∵∠AFE =∠GFD ∴∠F AE =∠FGD ∴△AFC ∽△GBD∴AC CFBG BD=∵AC =BD ,BG =2CF ∴222AC CF = 22162(4)x x +=+ 22x =……………5分 以下同法一 24.(本题满分9分)解:(1) 设反比例函数解析式为xky =,∵点E (3,4)在该函数图象上, ∴43k=,12=k ,反比例函数的解析式为xy 12=;…………2分(2)∵正方形AOCB 的边长为4,点D 在线段BC 上, ∴点D 的横坐标为4, ∵点D 在xy 12=的图象上, ∴D (4,3), ∵直线b x y +-=21过点D , ∴5,3421==+⨯-b b ,直线的解析式为521+-=x y . ∵点F在直线521+-=x y 上,纵坐标为4,∴2,4521==+-x x ,F (2,4).…………………………………4分(3) ∠AOF 21=∠EOC ………………………………………………5分证明:取CB 的中点G ,连接OG ,连接EG 并延长交x 轴于点M , ∵四边形AOCB 是正方形,点F (2,4),∴点F ,G 分别是AB ,BC 的中点, ∴AO =CO ,AF =CG ,∠OAF =∠OCG =90°,∴△OAF ≌△OCG ,∴∠AOF =∠COG , ∵BG =CG ,∠B =∠GCM =90°,∠EGB =∠MGCA B y D E F G∴△EGB ≌△MGC∴EG =MG ……………………………7分在R t △OAE 中,∵2222243,5OE OA AE OE =+=+=, OM =OC +CM =OC +BE =4+1=5,∴OM =OE ,即△OEM 是等腰三角形, ∴OG 是∠EOC 的平分线, ∠AOF =∠COG 21=∠EOC .………9分。
山东省淄博市城南中学2012年初中数学学业水平考试模拟试题 人教新课标版
某某省某某市城南中学2012年学业水平考试数学模拟试题第Ⅰ卷(选择题共45分)一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的, 请把正确的选项涂在答题卡的相应位置上.第1~3小题,每小题3分;第4~12小题,每小题4分,错选、不选或选出的答案超过一个,均记0分.1. 计算-1-2的结果是 ( )(A)-1 (B)1 (C)-3 (D)32. 下列计算中,正确的是 ( ) (A)541-= (B)2a a = (C)824= (D)623= 3.下列运算正确的是 ( )(A)6332x x x =+ (B)8x ÷2x =4x (C) mnn m x x x = (D)()4520x x -=4. 不等式组10420x x ->⎧⎨-⎩,≤的解集在数轴上表示为 ()5. 方程组x y 12x y 5+=⎧⎨-=⎩的解是( ) (A)x 2y 1=⎧⎨=-⎩ (B)x 2y 3=-⎧⎨=⎩ (C)x 2y 1=⎧⎨=⎩ (D)x 1y 2=-⎧⎨=⎩6.用直角钢尺检查某一工件是否恰好是半圆环形,根据图所表示的情形,四个工件哪一个肯定是半圆环形( )1 02 (A).12 (B)1 02 (C)1 02(D)7.下列说法正确的是( )(A) 要调查人们对“低碳生活”的了解程度,宜采用普查方式 (B) 一组数据3,4,4,6,8,5的众数和中位数都是3 (C) 必然事件的概率是100%,随机事件的概率是50%(D) 若甲组数据的方差S 甲2=0.128,乙组数据的方差S 乙2=0.036;则乙组数据比甲组数据稳定8. 将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为 ( )(A) 45° (B) 60° (C) 75° (D) 85°9. 如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC=3,则折痕CE 的长为 ( )(A)32(B)23(C) 3(D) 610. 小明的父亲饭后出去散步,从家中出发走20分钟到一个离家900米的报亭看报10分钟后,用15分钟返回家,下列图中表示小明的父亲离家的距离y (米)与离家的时间x (分)之间的函数关系的是( )(A)(B)(C) (D)11. 反比例函数y=x6 与y=x 3在第一象限的图象如图所示,作一条平行于x 轴的直线分别交双曲线于A 、B 两点,连接OA 、OB ,则△AOB 的面积为( ) A .23(B) 2 (C) 3 (D) 1 12.如图为菱形ABCD 与△ABE 的重迭情形,其中D 在BE 上.若AB=17,BD=16,AE=25,则DE 的长度为( )(A) 8 (B) 9 (C) 11 (D) 12第Ⅱ卷(非选择题共75分)二、填空题:本题共5小题,满分20分.只要求填写最后结果,每小题填对得4分.13. 二次函数21(2)12y x =---的顶点坐标是_____________.14. 某某移动经过11年多的不断发展,手机客户数量达到了380万,接近某某市总人口的90%,实现了近30倍增长的骄人业绩。
山东省淄博市中考数学试卷含答案解析版修订稿
山东省淄博市中考数学试卷含答案解析版 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】2017年山东省淄博市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)(2017淄博)﹣23的相反数是( ) A .32 B .−32 C .23 D .﹣23【考点】14:相反数.【分析】直接根据相反数的定义即可得出结论.【解答】解:∵﹣23与23是只有符号不同的两个数, ∴﹣23的相反数是23. 故选C .【点评】本题考查的是相反数的定义,熟知只有符号不同的两个数叫互为相反数是解答此题的关键.2.(4分)(2017淄博)C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个,请将100万用科学记数法表示为( )A .1×106B .100×104C .1×107D .×108【考点】1I :科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:将100万用科学记数法表示为:1×106.故选:A .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(4分)(2017淄博)下列几何体中,其主视图为三角形的是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】找出四个选项中几何体的主视图,由此即可得出结论.【解答】解:A、圆柱的主视图为矩形,∴A不符合题意;B、正方体的主视图为正方形,∴B不符合题意;C、球体的主视图为圆形,∴C不符合题意;D、圆锥的主视图为三角形,∴D符合题意.故选D.【点评】本题考查了简单几何体的三视图,牢记圆锥的主视图为三角形是解题的关键.4.(4分)(2017淄博)下列运算正确的是()A.a2a3=a6B.(﹣a2)3=﹣a5C.a10÷a9=a(a≠0)D.(﹣bc)4÷(﹣bc)2=﹣b2c2【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的乘法、除法、积的乘方和幂的乘方进行计算即可.【解答】解:A、a2a3=a5,故A错误;B、(﹣a2)3=﹣a6,故B错误;C、a10÷a9=a(a≠0),故C正确;D、(﹣bc)4÷(﹣bc)2=b2c2,故D错误;故选C.【点评】本题考查了同底数幂的乘法、除法、积的乘方和幂的乘方,掌握运算法则是解题的关键.5.(4分)(2017淄博)若分式|x|−1x+1的值为零,则x的值是()A.1 B.﹣1 C.±1 D.2【考点】63:分式的值为零的条件.【分析】直接利用分式的值为零,则分子为零,分母不为零,进而得出答案.【解答】解:∵分式|x|−1x+1的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选:A.【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.6.(4分)(2017淄博)若a+b=3,a2+b2=7,则ab等于()A.2 B.1 C.﹣2 D.﹣1【考点】4C:完全平方公式.【分析】根据完全平方公式得到(a+b)2=9,再将a2+b2=7整体代入计算即可求解.【解答】解:∵a+b=3,∴(a+b)2=9,∴a2+2ab+b2=9,∵a2+b2=7,∴7+2ab=9,∴ab=1.故选:B.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.7.(4分)(2017淄博)将二次函数y=x2+2x﹣1的图象沿x轴向右平移2个单位长度,得到的函数表达式是()A.y=(x+3)2﹣2 B.y=(x+3)2+2 C.y=(x﹣1)2+2 D.y=(x﹣1)2﹣2【考点】H6:二次函数图象与几何变换.【分析】根据题目中的函数解析式,可以先化为顶点式,然后再根据左加右减的方法进行解答即可得到平移后的函数解析式.【解答】解:∵y=x2+2x﹣1=(x+1)2﹣2,∴二次函数y=x2+2x﹣1的图象沿x轴向右平移2个单位长度,得到的函数表达式是:y=(x+1﹣2)2﹣2=(x﹣1)2﹣2,故选D.【点评】本题考查二次函数的图象与几何变换,解答本题的关键是明确二次函数平移的特点,左加右减、上加下减,注意一定将函数解析式化为顶点式之后再平移.8.(4分)(2017淄博)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0 C.k<﹣1 D.k<﹣1或k=0【考点】AA:根的判别式.【分析】利用一元二次方程的定义和判别式的意义得到k≠0且△=(﹣2)2﹣4k(﹣1)>0,然后其出两个不等式的公共部分即可.【解答】解:根据题意得k≠0且△=(﹣2)2﹣4k(﹣1)>0,解得k>﹣1且k≠0.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.9.(4分)(2017淄博)如图,半圆的直径BC恰与等腰直角三角形ABC的一条直角边完全重合,若BC=4,则图中阴影部分的面积是()A.2+πB.2+2πC.4+πD.2+4π【考点】MO:扇形面积的计算;KW:等腰直角三角形.【分析】如图,连接CD,OD,根据已知条件得到OB=2,∠B=45°,根据三角形和扇形的面积公式即可得到结论.【解答】解:如图,连接CD,OD,∵BC=4,∴OB=2,∵∠B=45°,∴∠COD=90°,∴图中阴影部分的面积=S△BOD +S扇形COD=12×2×2+90?x×22360=2+π,故选A.【点评】本题考查了扇形的面积的计算,等腰直角三角形的性质,正确的作出辅助线是解题的关键.10.(4分)(2017淄博)在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n .如果m ,n 满足|m ﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是( )A .38B .58C .14D .12【考点】X6:列表法与树状图法;15:绝对值.【分析】画出树状图列出所有等可能结果,由树状图确定出所有等可能结果数及两人“心领神会”的结果数,根据概率公式求解可得.【解答】解:画树状图如下:由树状图可知,共有16种等可能结果,其中满足|m ﹣n|≤1的有10种结果,∴两人“心领神会”的概率是1016=58, 故选:B .【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.11.(4分)(2017淄博)小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h 与注水时间t 之间的变化情况的是( )A .B .C .D .【考点】E6:函数的图象.【分析】根据用一注水管沿大容器内壁匀速注水,即可分段求出小水杯内水面的高度h (cm )与注水时间t (min )的函数图象.【解答】解:一注水管向小玻璃杯内注水,水面在逐渐升高,当小杯中水满时,开始向大桶内流,这时水位高度不变,当桶水面高度与小杯一样后,再继续注水,水面高度在升高,升高的比开始慢.故选:D .【点评】此题主要考查了函数图象,关键是问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.12.(4分)(2017淄博)如图,在Rt △ABC 中,∠ABC=90°,AB=6,BC=8,∠BAC ,∠ACB 的平分线相交于点E ,过点E 作EF ∥BC 交AC 于点F ,则EF 的长为( )A .52B .83C .103D .154【考点】S9:相似三角形的判定与性质;KF :角平分线的性质;KJ :等腰三角形的判定与性质.【分析】延长FE交AB于点D,作EG⊥BC、作EH⊥AC,由EF∥BC可证四边形BDEG是矩形,由角平分线可得ED=EH=EG、∠DAE=∠HAE,从而知四边形BDEG是正方形,再证△DAE≌△HAE、△CGE≌△CHE得AD=AH、CG=CH,设BD=BG=x,则AD=AH=6﹣x、CG=CH=8﹣x,由AC=10可得x=2,即BD=DE=2、AD=4,再证△ADF∽△ABC可得DF=163,据此得出EF=DF﹣DE=103.【解答】解:如图,延长FE交AB于点D,作EG⊥BC于点G,作EH⊥AC于点H,∵EF∥BC、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四边形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠DAE=∠HAE,∴四边形BDEG是正方形,在△DAE和△HAE中,∵{∠xxx=∠xxx xx=xx∠xxx=∠xxx,∴△DAE≌△HAE(SAS),∴AD=AH,同理△CGE≌△CHE,∴CG=CH,设BD=BG=x,则AD=AH=6﹣x、CG=CH=8﹣x,∵AC=√xx2+xx2=√62+82=10,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=2,AD=4,∵DF ∥BC ,∴△ADF ∽△ABC ,∴xx xx =xx xx ,即46=xx 8, 解得:DF=163, 则EF=DF ﹣DE=163﹣2=103, 故选:C .【点评】本题主要考查相似三角形的判定与性质、全等三角形的判定与性质及正方形的判定与性质,熟练掌握角平分线的性质和正方形的判定与性质、相似三角形的判定与性质是解题的关键.二、填空题(本大题共5小题,每小题4分,共20分)13.(4分)(2017淄博)分解因式:2x 3﹣8x= 2x (x ﹣2)(x+2) .【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式2x ,再对余下的项利用平方差公式分解因式.【解答】解:2x 3﹣8x ,=2x (x 2﹣4),=2x (x+2)(x ﹣2).【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式. 运用平方差公式进行因式分解的多项式的特征:(1)二项式;(2)两项的符号相反;(3)每项都能化成平方的形式.14.(4分)(2017淄博)已知α,β是方程x 2﹣3x ﹣4=0的两个实数根,则α2+αβ﹣3α的值为 0 .【考点】AB :根与系数的关系.【专题】11 :计算题.【分析】根据根与系数的关系得到得α+β=3,再把原式变形得到a(α+β)﹣3α,然后利用整体代入的方法计算即可.【解答】解:根据题意得α+β=3,αβ=﹣4,所以原式=a(α+β)﹣3α=3α﹣3α=0.故答案为0.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣xx,x1x2=xx.15.(4分)(2017淄博)运用科学计算器(如图是其面板的部分截图)进行计算,按键顺序如下:则计算器显示的结果是﹣959 .【考点】1M:计算器—基础知识.【分析】根据计算器的按键顺序,写出计算的式子.然后求值.【解答】解:根据题意得:(﹣)×312+√4=﹣959,故答案为:﹣959.【点评】本题目考查了计算器的应用,根据按键顺序正确写出计算式子是关键.16.(4分)(2017淄博)在边长为4的等边三角形ABC中,D为BC边上的任意一点,过点D分别作DE⊥AB,DF⊥AC,垂足分别为E,F,则DE+DF=2√3.【考点】KK:等边三角形的性质.【分析】作AG ⊥BC 于G ,根据等边三角形的性质得出∠B=60°,解直角三角形求得AG=2√3,根据S △ABD +S △ACD =S △ABC 即可得出DE+DF=AG=2√3. 【解答】解:如图,作AG ⊥BC 于G , ∵△ABC 是等边三角形, ∴∠B=60°,∴AG=√32AB=2√3, 连接AD ,则S △ABD +S △ACD =S △ABC , ∴12ABDE+12ACDF=12BCAG , ∵AB=AC=BC=4, ∴DE+DF=AG=2√3, 故答案为:2√3.【点评】本题考查了等边三角形的性质,解直角三角函数以及三角形面积等,根据S △ABD +S △ACD =S △ABC 即可得出DE+DF=AG 是解题的关键.17.(4分)(2017淄博)设△ABC 的面积为1.如图1,分别将AC ,BC 边2等分,D 1,E 1是其分点,连接AE 1,BD 1交于点F 1,得到四边形CD 1F 1E 1,其面积S 1=13.如图2,分别将AC ,BC 边3等分,D 1,D 2,E 1,E 2是其分点,连接AE 2,BD 2交于点F 2,得到四边形CD 2F 2E 2,其面积S 2=16;如图3,分别将AC ,BC 边4等分,D 1,D 2,D 3,E 1,E 2,E 3是其分点,连接AE 3,BD 3交于点F 3,得到四边形CD 3F 3E 3,其面积S 3=110;…按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形CDn EnFn,其面积S=2(x+1)(x+2).【考点】38:规律型:图形的变化类;K3:三角形的面积.【分析】先连接D1E1,D2E2,D3E3,依据D1E1∥AB,D1E1=12AB,可得△CD1E1∽△CBA,且x1x1xx1=x1x1xx=12,根据相似三角形的面积之比等于相似比的平方,即可得到S△CD1E1=14S△ABC=14,依据E1是BC的中点,即可得出S△D1E1F1=13S△BD1E1=13×14=112,据此可得S1=13;运用相同的方法,依次可得S2=16,S2=16;根据所得规律,即可得出四边形CDn EnFn,其面积Sn=1(x+1)2+1(x+1)2×n×11+x+1,最后化简即可.【解答】解:如图所示,连接D1E1,D2E2,D3E3,∵图1中,D1,E1是△ABC两边的中点,∴D1E1∥AB,D1E1=12AB,∴△CD1E1∽△CBA,且x1x1xx1=x1x1xx=12,∴S△CD1E1=14S△ABC=14,∵E1是BC的中点,∴S△BD1E1=S△CD1E1=14,∴S△D1E1F1=13S△BD1E1=13×14=112,∴S1=S△CD1E1+S△D1E1F1=14+112=13,同理可得:图2中,S2=S△CD2E2+S△D2E2F2=19+118=16,图3中,S3=S△CD3E3+S△D3E3F3=116+380=110,以此类推,将AC,BC边(n+1)等分,得到四边形CDn EnFn,其面积Sn =1(x+1)2+1(x+1)2×n×11+x+1=2(x+1)(x+2),故答案为:2(x+1)(x+2).【点评】本题主要考查了图形的变化类问题以及三角形面积的计算,解决问题的关键作辅助线构造相似三角形,依据相似三角形的性质进行计算求解.解题时注意:相似三角形的面积之比等于相似比的平方.三、解答题(本大题共7小题,共52分)18.(5分)(2017淄博)解不等式:x−22≤7−x3.【考点】C6:解一元一次不等式.【专题】11 :计算题;524:一元一次不等式(组)及应用.【分析】不等式去分母,去括号,移项合并,把x系数化为1,即可求出解集.【解答】解:去分母得:3(x﹣2)≤2(7﹣x),去括号得:3x﹣6≤14﹣2x,移项合并得:5x≤20,解得:x≤4.【点评】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.19.(5分)(2017淄博)已知:如图,E,F为ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.【考点】L5:平行四边形的性质;KD :全等三角形的判定与性质. 【分析】证明△AEB ≌△CFD ,即可得出结论. 【解答】证明:∵四边形ABCD 是平行四边形, ∴AB ∥DC ,AB=DC . ∴∠BAE=∠DCF .在△AEB 和△CFD 中,{xx =xx∠xxx =∠xxxxx =xx ,∴△AEB ≌△CFD (SAS ). ∴BE=DF .【点评】本题考查平行四边形的性质和全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.20.(8分)(2017淄博)某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km 的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h ,求汽车原来的平均速度. 【考点】B7:分式方程的应用.【分析】求的汽车原来的平均速度,路程为420km ,一定是根据时间来列等量关系,本题的关键描述语是:从甲地到乙地的时间缩短了2h .等量关系为:原来时间﹣现在时间=2.【解答】解:设汽车原来的平均速度是x km/h ,根据题意得:420x ﹣420(1+50%)x =2,解得:x=70经检验:x=70是原方程的解. 答:汽车原来的平均速度70km/h .【点评】本题考查了分式方程的应用.应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.(8分)(2017淄博)为了“天更蓝,水更绿”某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图:空气污染指数(ω)30 40 70 80 90 110 120 140天数(t) 1 2 3 5 7 6 4 2说明:环境空气质量指数(AQI)技术规定:ω≤50时,空气质量为优;51≤ω≤100时,空气质量为良;101≤ω≤150时,空气质量为轻度污染;151≤ω≤200时,空气质量为中度污染,…根据上述信息,解答下列问题:(1)直接写出空气污染指数这组数据的众数90 ,中位数90 ;(2)请补全空气质量天数条形统计图:(3)根据已完成的条形统计图,制作相应的扇形统计图;(4)健康专家温馨提示:空气污染指数在100以下适合做户外运动,请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图;W4:中位数;W5:众数.【分析】(1)根据众数的定义就可以得出这组数据的众数为90,由30各数据中排在第15和第16两个数的平均数就可以得出中位数为90;(2)根据统计表的数据分别计算出,优、良及轻度污染的时间即可;(3)由条形统计图分别计算出优、良及轻度污染的百分比及圆心角的度数即可;(4)先求出30天中空气污染指数在100以下的比值,再由这个比值乘以365天就可以求出结论.【解答】解:(1)在这组数据中90出现的次数最多7次,故这组数据的众数为90;在这组数据中排在最中间的两个数是90,90,这两个数的平均数是90,所以这组数据的中位数是90;故答案为:90,90.(2)由题意,得轻度污染的天数为:30﹣3﹣15=12天.(3)由题意,得优所占的圆心角的度数为:3÷30×360=36°,良所占的圆心角的度数为:15÷30×360=180°,轻度污染所占的圆心角的度数为:12÷30×360=144°(4)该市居民一年(以365天计)中有适合做户外运动的天数为:18÷30×365=219天.【点评】本题是一道数据分析试题,考查了中位数,众数的运用,条形统计,扇形统计图的运用,样本数据估计总体数据的运用,解答时根据图表数据求解是关键.22.(8分)(2017淄博)如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数y=xx(k>0)的图象经过BC边的中点D(3,1)(1)求这个反比例函数的表达式;(2)若△ABC与△EFG成中心对称,且△EFG的边FG在y轴的正半轴上,点E 在这个函数的图象上.①求OF的长;②连接AF,BE,证明四边形ABEF是正方形.【考点】GB:反比例函数综合题.【分析】(1)由D点坐标可求得k的值,可求得反比例函数的表达式;(2)①由中心对称的性质可知△ABC≌△EFG,由D点坐标可求得B点坐标,从而可求得BC和AC的长,由全等三角形的性质可求得GE和GF,则可求得E点坐标,从而可求得OF的长;②由条件可证得△AOF≌△FGE,则可证得AF=EF=AB,且∠EFA=∠FAB=90°,则可证得四边形ABEF为正方形.【解答】解:(1)∵反比例函数y=xx(k>0)的图象经过点D(3,1),∴k=3×1=3,∴反比例函数表达式为y=3x ;(2)①∵D为BC的中点,∴BC=2,∵△ABC与△EFG成中心对称,∴△ABC≌△EFG,∴GF=BC=2,GE=AC=1,∵点E在反比例函数的图象上,∴E(1,3),即OG=3,∴OF=OG﹣GF=1;②如图,连接AF、BE,∵AC=1,OC=3,∴OA=GF=2,在△AOF和△FGE中{xx=xx∠xxx=∠xxx xx=xx∴△AOF≌△FGE(SAS),∴∠GFE=∠FAO=∠ABC,∴∠GFE+∠AFO=∠FAO+∠BAC=90°,∴EF∥AB,且EF=AB,∴四边形ABEF为平行四边形,∴AF=EF,∴四边形ABEF为菱形,∵AF⊥EF,∴四边形ABEF为正方形.【点评】本题为反比例函数的综合应用,涉及待定系数法、中心对称的性质、全等三角形的判定和性质、正方形的判定等知识.在(1)中注意待定系数法的应用,在(2)①中求得E点坐标是解题的关键,在(2)②中证得△AOF≌△FGE是解题的关键.本题考查知识点较多,综合性较强,难度适中.23.(9分)(2017淄博)如图,将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合(点P不与点C,D重合),折痕为MN,点M,N分别在边AD,BC上,连接MB,MP,BP,BP与MN相交于点F.(1)求证:△BFN∽△BCP;(2)①在图2中,作出经过M,D,P三点的⊙O(要求保留作图痕迹,不写做法);②设AB=4,随着点P在CD上的运动,若①中的⊙O恰好与BM,BC同时相切,求此时DP的长.【考点】MR:圆的综合题.【分析】(1)根据折叠的性质可知,MN垂直平分线段BP,即∠BFN=90°,由矩形的性质可得出∠C=90°=∠BFN,结合公共角∠FBN=∠CBP,即可证出△BFN ∽△BCP;(2)①在图2中,作MD、DP的垂直平分线,交于点O,以OD为半径作圆即可;②设⊙O与BC的交点为E,连接OB、OE,由△MDP为直角三角形,可得出AP为⊙O的直径,根据BM与⊙O相切,可得出MP⊥BM,进而可得出△BMP为等腰直角三角形,根据同角的余角相等可得出∠PMD=∠MBA,结合∠A=∠PMD=90°、BM=MP,即可证出△ABM≌△DMP(AAS),根据全等三角形的性质可得出DM=AB=4、DP=AM,设DP=2a,根据勾股定理结合半径为直径的一半,即可得出关于a的方程,解之即可得出a值,再将a代入OP=2a中求出DP的长度.【解答】(1)证明:∵将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合,∴MN垂直平分线段BP,∴∠BFN=90°.∵四边形ABCD为矩形,∴∠C=90°.∵∠FBN=∠CBP,∴△BFN∽△BCP.(2)解:①在图2中,作MD、DP的垂直平分线,交于点O,以OD为半径作圆即可.如图所示.②设⊙O与BC的交点为E,连接OB、OE,如图3所示.∵△MDP为直角三角形,∴AP为⊙O的直径,∵BM与⊙O相切,∴MP⊥BM.∵MB=MP,∴△BMP为等腰直角三角形.∵∠AMB+∠PMD=180°﹣∠AMP=90°,∠MBA+∠AMB=90°,∴∠PMD=∠MBA.在△ABM和△DMP中,{∠xxx=∠xxx∠x=∠xxx=90°xx=xx,∴△ABM≌△DMP(AAS),∴DM=AB=4,DP=AM.设DP=2a,则AM=2a,OE=4﹣a,BM=√xx2+xx2=2√4+x2.∵BM=MP=2OE,∴2√4+x2=2×(4﹣a),解得:a=3 2,∴DP=2a=3.【点评】本题考查了相似三角形的判定、矩形的性质、角的计算、切线的性质、全等三角形的判定与性质以及勾股定理,解题的关键是:(1)根据矩形的性质结合翻折的性质,找出∠C=90°=∠BFN;(2)①利用尺规作图,画出⊙O;②根据全等三角形的判定定理AAS证出△ABM≌△DMP.24.(9分)(2017淄博)如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(32,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB若存在,求出点P的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)由直线解析式可求得B点坐标,由A、B坐标,利用待定系数法可求得抛物线的表达式;(2)过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于点F,可设出C点坐标,利用C点坐标可表示出CD的长,从而可表示出△BOC的面积,由条件可得到关于C点坐标的方程,可求得C点坐标;(3)设MB交y轴于点N,则可证得△ABO≌△NBO,可求得N点坐标,可求得直线BN的解析式,联立直线BM与抛物线解析式可求得M点坐标,过M作MG⊥y轴于点G,由B、C的坐标可求得OB和OC的长,由相似三角形的性质可求得xxxx的值,当点P在第一象限内时,过P作PH⊥x轴于点H,由条件可证得△MOG∽△POH,由xxxx=xxxx=xxxx的值,可求得PH和OH,可求得P点坐标;当P点在第三象限时,同理可求得P点坐标.【解答】解:(1)∵B(2,t)在直线y=x上,∴t=2,∴B(2,2),把A、B两点坐标代入抛物线解析式可得{4x+2x=294x+32x=0,解得{x=2x=−3,∴抛物线解析式为y=2x2﹣3x;(2)如图1,过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD 于点F,∵点C是抛物线上第四象限的点,∴可设C(t,2t2﹣3t),则E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC =S△CDO+S△CDB=12CDOE+12CDBF=12(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面积为2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1);(3)存在.设MB交y轴于点N,如图1,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中{∠xxx=∠xxx xx=xx∠xxx=∠xxx∴△AOB≌△NOB(ASA),∴ON=OA=3 2,∴N(0,32),∴可设直线BN解析式为y=kx+3 2,把B点坐标代入可得2=2k+32,解得k=14,∴直线BN的解析式为y=14x+32,联立直线BN和抛物线解析式可得{x=14x+32x=2x2−3x,解得{x=2x=2或{x=−38x=4532,∴M (﹣38,4532),∵C (1,﹣1),∴∠COA=∠AOB=45°,且B (2,2), ∴OB=2√2,OC=√2,∵△POC ∽△MOB , ∴xx xx =xx xx=2,∠POC=∠BOM , 当点P 在第一象限时,如图3,过M 作MG ⊥y 轴于点G ,过P 作PH ⊥x 轴于点H ,∵∠COA=∠BOG=45°,∴∠MOG=∠POH ,且∠PHO=∠MGO ,∴△MOG ∽△POH , ∴xx xx =xx xx =xx xx=2, ∵M (﹣38,4532),∴MG=38,OG=4532,∴PH=12MG=316,OH=12OG=4564,∴P (4564,316);当点P 在第三象限时,如图4,过M 作MG ⊥y 轴于点G ,过P 作PH ⊥y 轴于点H ,同理可求得PH=12MG=316,OH=12OG=4564,∴P(﹣316,4564);综上可知存在满足条件的点P,其坐标为(4564,316)或(﹣316,4564).【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、全等三角形的判定和性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中用C点坐标表示出△BOC的面积是解题的关键,在(3)中确定出点P的位置,构造相似三角形是解题的关键,注意分两种情况.本题考查知识点较多,综合性较强,难度较大.。
山东省淄博市2012年初中毕业班数学模拟试题(六)
山东省淄博市2012年初中毕业班数学模拟试题(六) 注意事项:1.答题前请考生务必在答题卡及试卷的规定位置将自己的姓名、考试号、考试科目、座号等内容填写(涂)准确.2.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷(1—4页)为选择题,44分;第Ⅱ卷(5—12页)为非选择题,76分;共120分.考试时间为120分钟.3.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD )涂黑.如需改动,须先用橡皮擦干净,再改涂其它答案.第Ⅱ卷须用蓝黑钢笔或圆珠笔直接答在试卷上.考试时,不允许使用计算器.4.考试结束后,由监考教师把第Ⅰ卷和第Ⅱ卷及答题卡一并收回.第Ⅰ卷(选择题 共44分)一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项涂在答题卡的相应位置上.第1~4小题每题3分,第5~12小题每题4分,错选、不选或选出的答案超过一个,均记0分.1.如图,在数轴上点A 表示的数可能是(A )-2.6(B )2.6(C )-1.5(D )1.52.不等式组⎪⎩⎪⎨⎧<≥-32,03x x 的所有整数解之和是 (A )9(B )12(C )15(D )183.图中有四条互相不平行的直线所截出的七个角.关于这七个角的度数关系,下面选项中正确的是(A )∠2=∠4+∠7(B )∠3=∠1+∠6(C )∠1+∠4+∠6=180°(D )∠2+∠3+∠5=360°4.已知2111=-b a ,则ba ab -的值是 (A )21 (B )-21 (C )2(D )-25.对于反比例函数y =x1,下列说法正确的是 (A )图象经过点(1,-1)(B )图象位于第二、四象限(C )图象是中心对称图形(D )当x <0时,y 随x 的增大而增大6.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为(A )600m(B )500m(C )400m(D )300m7.两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是(A )两个外离的圆(B )两个外切的圆(C )两个相交的圆 (D )两个内切的圆 8.下列二次函数中,图象以直线x =2为对称轴,且经过点(0,1)的是(A )y =(x -2)2+1(B )y =(x +2)2+1(C )y =(x -2)2-3(D )y =(x +2)2-39.如图,A ,B 是数轴上的两点,在线段AB 上任取一点C ,则点C 到表示-1的点的距离不大于2的概率是(A )21 (B )32主视方向(C )43 (D )54 10.坐标平面上有一个轴对称图形,A (3,-25),B (3,-211)两点在此图形上且互为对称点.若此图形上有一点C (-2,-9),则C 的对称点坐标为(A )(-2,1)(B )(-2,-23) (C )(-23,-9) (D )(8,-9)11.下列四个结论中,正确的是(A )方程x +x 1=-2有两个不相等的实数根 (B )方程x +x1=1有两个不相等的实数根 (C )方程x +x1=2有两个不相等的实数根 (D )方程x +x1=a (其中a 为常数,且∣a ∣>2)有两个不相等的实数根 12.如图,在四边形ABCD 中,E ,F 分别是AB ,AD 的中点,若EF =2,BC =5,CD =3,则tan C 等于(A )43 (B )34 (C )53 (D )54第Ⅱ卷(非选择题 共76分)二、填空题:本题共5小题,满分20分,只要求填写最后结果,每小题填对得4分.13.若2x =是关于x 的方程2310x m +-=的解,则m 的值为 .14.若822=-n m ,且2m n -=,则=+n m .15.如图,已知△ABC 是等边三角形,点B ,C ,D ,E 在同一直线上,且C G =CD ,DF =DE ,则∠E = 度.16.已知a ,b 为两个连续的整数,且a <28<b ,则a +b = .17.如图,在△ABC 中,AB =BC ,将△ABC 绕点B 顺时针旋转α度,得到△A 1BC 1,A 1B 交AC 于点E ,A 1C 1分别交AC ,BC 于点D ,F ,下列结论:①∠CDF =α,②A 1E =CF ,③DF =FC ,④AD =CE ,⑤A 1F =CE .其中正确的是___________________(写出正确结论的序号).三、解答题:本大题共7小题,共56分.解答要写出必要的文字说明、证明过程或演算步骤.18.(本题满分6分)计算:()()22011013132π-⎛⎫-+-⨯- ⎪⎝⎭19.(本题满分6分) 我市规定:出租车起步价允许行驶的最远路程为3千米,超过3千米的部分按每千米另收费.在我市,甲乘出租车走了11千米付了18.5元,乙乘出租车走了23千米付了36.5元.请你算一算出租车的起步价是多少元?以及超过3千米后每千米的车费是多少元?20.(本题满分8分)丁丁要制作一个风筝,想在一个矩形材料中裁剪出如图阴影所示的梯形翅膀,请你根据图中的数据帮助丁丁计算出BE ,CD 的长度.(精确到个位,3≈1.7)21.(本题满分8分)班主任张老师为了了解学生课堂发言情况,对前一天本班男、女生的发言次数进行了统计,并绘制成如下频数分布折线图(图1).(1)请根据图1,回答下列问题:①这个班共有 名学生,发言次数是5次的男生有 人、女生有 人;②男、女生发言次数的中位数分别是 次和 次.(2)通过张老师的鼓励,第二天的发言次数比前一天明显增加,全班发言次数变化的人数的扇形统计图如图2所示.求第二天发言次数增加3次的学生人数和全班增加的发言总次数.22.(本题满分8分)如图,在梯形ABCD 中,AD ∥BC ,AB =DC ,过点D 作DE ⊥BC ,垂足为E ,并延长DE 至F ,使EF =DE .联结BF ,CF ,AC .(1)求证:四边形ABFC 是平行四边形;(2)如果DE 2=BE ·CE ,求证四边形ABFC 是矩形.23.(本题满分10分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A ,B ,C .(1)请完成如下操作:①以点O 为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②适当选用直尺、圆规画出该圆弧所在圆的圆心D的位置(不写作法,保留痕迹),并连结AD ,CD .(2)请在(1)的基础上,完成下列问题:①写出点的坐标:C 、D ;②⊙D 的半径= (结果保留根号);③若扇形ADC 是一个圆锥的侧面展开图,则该圆锥的底面面积为 (结果保留π); ④若已知点E (7,0),试判断直线EC 与⊙D 的位置关系并说明你的理由.24.(本题满分10分) 已知直线3+-=x y 分别交x 轴、y 轴于A ,B 两点,线段OA 上有一动点P 由原点O 向点A运动,速度为每秒1个单位长度,过点P作x轴的垂线交直线AB于点C,设运动时间为t秒.线段OA上另有一动点Q由点A向点O运动,它与点P以相同速度同时出发,当点P到达点A时两点同时停止运动(如图).(1)直接写出t=1秒时C,Q两点的坐标;(2)若以Q,C,A为顶点的三角形与△AOB相似,求t的值.山东省淄博市2012年初中毕业班数学模拟试题(六)参考答案及评分标准说明:1、答案若有问题,请阅卷老师自行修正.2、各解答题只提供其中一种解法的评分标准,若出现不同的解法可参照各题的解法评分标准给分.一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项涂在答题卡的相应位置上.第1~4小题每题3分,第5~12小题每题4分,错选、不选或选出的答案超过一个,均记0分.ABCDC BDCDA DB二、填空题:本题共5小题,满分20分,只要求填写最后结果,每小题填对得4分.13.-1; 14.4; 15.15; 16.11; 17.①②⑤;三、解答题:本大题共7小题,共56分.解答要写出必要的文字说明、证明过程或演算步骤.18.(本题满分6分)原式=3+(-1)⨯1-3+4 …………………………5分 =3. …………………………6分19.(本题满分6分)解:设这种出租车的起步价是x 元,超过3千米后每千米收费y 元,根据题得()()⎩⎨⎧=-+=-+5.363235.18311y x y x , …………………………3分 解得⎩⎨⎧==5.15.6y x . …………………………5分 所以这种出租车的起步价是6.5元,超过3千米后每千米收费1.5元. ……6分20.(本题满分8分)在Rt △BEC 中,∠BCE =30º,EC =51,∴BE =317≈29,AE =63. ………3分 在Rt △AFD 中,∠FAD =45º,FD =FA =51,∴CD =63—51≈12. ………6分 ∴CD =12cm ,BE =29cm . …………………………8分21.(本题满分8分)(1)①40;2;5. …………………………3分 ②4;5. …………………………5分(2)发言次数增加3次的学生人数为4人. …………………………7分 全班增加的发言总次数为52次. …………………………8分22.(本题满分8分)(1)连接BD . …………………………1分 ∵DE ⊥BC ,EF =DE ,∴BD =BF ,CD =CF . …………2分 ∵在梯形ABCD 中,AD //BC ,AB =DC ,F ED C B A∴四边形ABCD是等腰梯形.∴BD=AC.…………3分∴AC=BF,AB=CF.∴四边形ABFC是平行四边形.………4分(2)∵DE2 =BE·CE,EF=DE,∴EF2 =BE·CE.∴EF CEBE EF=.……6分又∵DE⊥BC,∴∠CEF=∠FEB=90°.∴△CEF∽△FEB.∴∠CFE=∠FBE.∵∠FBE+∠BFE=90°,∴∠CFE+∠BFE=90°.即∠BFC=90°.…………7分由(1)知四边形ABFC是平行四边形,∴四边形ABFC是矩形.…………8分23.(本题满分10分)(1)①如图.…………………………1分②如图.…………………………3分(2)①C(6,2),D(2,0).…………………………5分②…………………………6分③54π.…………………………8分④相切.…………………………9分理由:∵CD=CE DE=5,∴CD2+CE2=25=DE2.∴∠DCE=90°即CE⊥CD.∴CE与⊙D相切.…………………………10分24.(本题满分10分)(1)①C(1,2),Q(2,0).…………………………2分②由题意得:P(t,0),C(t,-t+3),Q(3-t,0),分两种情形讨论:情形一:当△AQC∽△AOB时,∠AQC=∠AOB=90°,∴CQ⊥OA.……………4分∵CP⊥OA,∴点P与点Q重合,OQ=OP,即3-t=t,∴t=1.5.………………6分情形二:当△ACQ∽△AOB时,∠ACQ=∠AOB=90°,∵OA=OB=3,∴△AOB是等腰直角三角形,∴△ACQ是等腰直角三角形.…………………………8分∵CP⊥OA,∴AQ=2CP,即t=2(-t+3),∴t=2.…………………………10分∴满足条件的t的值是1.5秒或2秒.。
山东省淄博市2012年初中数学毕业班模拟试题(二) 人教新课标版
某某省某某市2012年初中数学毕业班模拟试题(二) 人教新课标版注意事项:1.答题前请考生务必在答题卡及试卷的规定位置将自己的某某、考试号、考试科目、座号等内容填写(涂)准确.2.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷(1~4页)为选择题,44分;第Ⅱ卷(5~12页)为非选择题,76分;共120分.考试时间为120分钟.3.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD )涂黑.如需改动,须先用橡皮擦干净,再改涂其它答案.第Ⅱ卷须用蓝黑钢笔或圆珠笔直接答在试卷上.考试时,不允许使用计算器.4.考试结束后,由监考教师把第Ⅰ卷(讲评用,单独装订)和第Ⅱ卷及答题卡一并收回.第Ⅰ卷(选择题共44分)一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的, 请把正确的选项涂在答题卡的相应位置上.第1~4小题,每小题3分;第5~12小题,每小题4分,错选、不选或选出的答案超过一个,均记0分.1.抛物线y =(x -1)2+3的对称轴是 ( )(A) 直线x =1 (B) 直线x =3 (C) 直线x =-1 (D) 直线x =-32.下列命题中,是真命题的为( )(A) 锐角三角形都相似 (B) 直角三角形都相似 (C) 等腰三角形都相似 (D) 等边三角形都相似3.一个正比例函数的图象过点(2,3)-,它的表达式为 ( )(A) 6y x -=(B) 23y x = (C)32y x =- (D) 23y x =-4. 四X 2a a =,②323336= 42333=322355=.把四X 卡片洗匀后随意抽出一X ,卡片上的算式计算正确的概率是 ( )(A)12 (B) 14-31-31-31-301(A)(B)(C)(D)火 车 隧 道1234主视图左视图俯视图(2)从正面看(1)(C)34(D)1 5. 已知O ⊙的半径为5,AB 是弦,P 是直线AB 上的一点,3,8PB AB ==,则OPA ∠的正切值是 ( )(A)3(B)37(C)13或73(D)3或376. 不等式组2133x x +⎧⎨-⎩≤,>的解集在数轴上表示正确的是 ( )7.由6个大小相同的正方体搭成的立体图形,被小明拿掉2个后,得到如图(1)所示的几何体,图(2)是原几何体的三视图,请你判断小明拿掉的两个正方体原来放置在 ( )(A) 1号的前后(B)2号的前后 (C)3号的前后(D) 4号的前后8. 假期顾老师带学生乘车外出旅游,在乘车单价相同的情况下,甲、乙两位车主给出了不同的优惠方案.甲车主说“每人八折”,乙车主说“学生九折,老师免费”.李老师计算了一下,无论坐谁的车,费用都一样,则李老师带的学生为 ( )(A) 10名 (B) 9名 (C) 8名 (D) 17名9. 如图,火车匀速通过隧道(隧道长大于货车长)时,火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系用图象描述大致是 ( )(A) (B) (C) (D)x10. 若函数22(2),22x x y x x ⎧+=⎨>⎩ ≤ (),则当函数值y =8时,自变量x 的值是 ( )(A) 4(C) 4 (D)4或x 的方程2(5)410a x x ---=有实数根,则a 满足 ( )(A)1a ≥且5a ≠(B) 1a >且5a ≠ (C) 1a ≥(D) 5a ≠12. 如图,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数4y x =-和2y x=的图象交于点A 和点B ,若点C 是x 轴上的任意一点,连接,AC BC ,那么ABC △的面积为( )(A)3(B)4(C)5(D)绝密★启用前 试卷类型:A初 四 数学试题第Ⅱ卷(非选择题共76分)二、填空题:本题共5小题,满分20分.只要求填写最后结果,每小题填对得4分.13. 化简__________.14. 如图,以点P 为圆心的圆弧与平面直角坐标系中的x 轴交于点,A B ,点P 的坐标为(4,2),点A 的坐标为(2,0),那么点B 的坐标为______________.得 分评卷人C B15. 将一副三角板按如图所示叠放在一起,如果阴影部分的面积为249cm 2,那么 _______cm BF =.16. 在平面直角坐标系中,已知点P 在y 轴上,以点P 为圆心,125为半径的圆与直线4:43l y x =+相切,那么点P 的坐标为__________________.17.如图所示,ABC △的三个顶点的坐标分别为(1,3),(2,2),A B ---(4,2)C -,那么ABC △外接圆半径的长度为.三、解答题:本大题共8小题,共5618.(本题满分6分)0114sin 45(3)()4π-+-+°.得 分评卷人学生及家长对中学生带手机的态度统计图家长对中学生带手 机的态度统计图①②19.(本题满分6分)“校园手机”现象越来越受到社会的关注.“春节”期间,小记者小明随机调查了我区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图①; (2)求图②中表示家长“赞成”的圆心角的度数;(3)从这次接受调查的学生中,随机抽查一个,恰好是“无所谓”态度的学生的概率是多少?得 分评卷人20.(本题满分8分)得分评卷人全球变暖,气候开始恶化,中国政府为了对全球变暖付责任,积极推动节能减排,在全国X围内从2008年起,三年内每年推广5000万只节能灯.居民购买节能灯,国家补贴50%购灯费.在推广财政补贴节能灯时,小明买了4个8W和3个24W的节能灯,一共用了29元,小亮买了2个8W和2个24W的节能灯,一共用了17元.W W节能灯的价格各是多少元?(1)财政补贴50%后,8,24(2)2009年某市已推广通过财政补贴节能灯850万只,预计该市一年可节约电费亿元左右,减排二氧化碳万吨,请你估算一下全国一年大约可节约电费多少亿元?大约减排二氧化碳多少万吨?()21.(本题满分9分)如图,小芳家的落地窗(线段DE )与公路(直线PQ )互相平行,她每天做完作业后都会在点A 处向窗外的公路望去.(1)请在图中画出小芳能看到的那段公路并记为BC .(2)小芳很想知道点A 与公路之间的距离,于是她想到了一个办法.她测出了邻居家小彬在公路BC 段上走过的时间为10秒,又测量了点A 到窗的距离是4米,且窗DE 的长为3米,若小彬步行的平均速度为1.2米/秒,请你帮助小芳计算出点A 到公路的距离.22.(本题满分9分)如图是一个量角器和一个含30°角的直角三角板放置在一起的示意图,其中点B 在量角器半圆O 的直径DE 的延长线上,AB 切半圆O 于点F ,且BC OE .(1)求证DE CF Ⅱ;PQED得 分评卷人得 分评卷人(2)当2OE =时,若以,,O B F 为顶点的三角形与ABC △相似,求OB 的长;(3)若2OE =,移动三角板ABC 且使AB 边始终与半圆O 相切,直角顶点B 在直径DE 的延长线上移动,求出点B 移动的最大距离.23.(本题满分9分)已知关于x 的一元二次方程:2(32)220(0)mx m x m m -+++=>.(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为12,x x (其中12x x <).若y 是关于m 的函数,且212y x x =-,求这个函数的解析式;(3)在(2)的条件下,结合函数的图象回答:当自变量m 的取值X 围满足什么条件时,2y m ≤.D OE BCAF1 2 3 44 3 2 1yO -1 -2 -3 -4 -4-3 -2 -1 得 分评卷人yxQPAMBC O24.(本题满分9分)在平面直角坐标系xOy 中,抛物线的解析式是2114y x =+,点C 的坐标是(4,0)-,平行四边形OABC 的顶点,A B 在抛物线上,AB 与y 轴交于点M ,已知点(,)Q x y 在抛物线上,点(,0)P t 在x 轴上.(1)写出点M 的坐标;(2)当四边形CMQP 是以,MQ PC 为腰的梯形时. ① 求t 关于x 的函数解析式和自变量x 的取值X 围; ② 当梯形CMQP 的两底的长度之比为1:2时,求t 的值.得 分评卷人2011~2012学年度第二学期期中考试初四数学答案及评分建议评卷要求:1.阅卷时本着对学生负责的态度,一丝不苟,精心阅卷.2.在得分栏中,填写得分及阅卷人的姓(名),分数、姓(名)写在相应的空格中,分数及某某写得要规X ,要工整,杜绝狂草等现象.3.在题号得分栏中填写得分及阅卷人的姓(名),要求同2.4.解答正确的一定要画“√”,错误的一定要画“×”,解答中个别的地方有错误的,在有错误的地方下面用“横线”画出.5.个别题目,若有多种解法,务必要阅卷组先商量后,阅卷组长统一得分标准,然后再得分,自己不要随意得分.6.若个别题目什么也没写,一定要画一斜线,表示此题没做.7.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分. 8. 选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分. 一、选择题:计40分.二、填空题:(只要求填写最后结果,每小题填对得4分)13.52;14.(6,0);15.(737)-; 16.(0,0),(0,8);17.13. 三、解答题:以下各题解法可能有多种,按相应步骤得分即可 18.(本题满分6分)01184sin 45(3)()4π-+-+°=222414++ =222214-+=5 …………………………………………………………6分 19.(本题满分6分)题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案 A D C B D A B C A DCA70140210 28014040308030 类别人数学生及家长对中学生带手机的态度统计图学生家长赞成无所谓反对①解:(1)8020%=400÷(人), ………………………….….1分………………………….… 2分(2)40360=36400⨯°°; ……………………………4分 (3)303=140+30+3020. ……………………………6分20.(本题满分8分)解:(1)设财政补贴50%后,8,24W W 节能灯的价格分别是x 元、y 元,根据题意,得:4329,2217x y x y +=⎧⎨+=⎩,解得: 3.5,5x y =⎧⎨=⎩………………………………5分所以财政补贴50%后,8,24W W 节能灯的价格分别是3.5元、5元; ………6分 (2)2.3500013.5850⨯≈(亿元), …………………………..…7分 43.55000255.9850⨯≈(万吨) .……………………... ..8分 所以全国一年大约可节约电费13.5亿元,大约减排二氧化碳255.9万吨. 21.(本题满分9分)解:(1)如图,线段BC 就是小芳能看到的那段公路. …………………2分 (2)过点A 作AM BC ⊥,垂足为M ,交DE 于点N .DE BC Ⅱ,34,1290∴∠=∠∠=∠=°,AN DE ∴⊥,又∵DAE BAC ∠=∠,∴ADE ABC △∽△.∴DE ANBC AM=.根据题意得: 1.21012BC =⨯=(米). 又∵4AN =米,3DE =米,∴3412AM=,∴16AM =(米). 答:点A 到公路的距离为16米. ……………………………9分QEDA4 2 31NM CB22.(本题满分9分) (1)证明:连接OF .AB 切半圆O 于点F ,90OFB ∴∠=°,又90ABC ∠=°,OFB ABC ∴∠=∠,OF BC ∴Ⅱ, 又BC OE =,∴四边形OFCB 是平行四边形,OB CF ∴Ⅱ,即DE CF Ⅱ; ……………………………2分,OE OF =,又30A ∠=°不相切,不符合题意,OE OF BC ==又230A BC ∠=-=°的长为433;……………………………...6分(3)当点A 与点F 重合时,点B 移动的距离最大,这时AC 与FC 重合,30A FBO ∴∠=∠=°,24OE OB =∴=,,所以点B 移动的最大距离是2. …………………………….9分 23.(本题满分9分)(1)证明:2(32)220mx m x m -+++=是关于x 的一元二次方程,222[(32)]4(22)44(2)m m m m m m ∴∆=-+-+=++=+.当0m >时,2(2)0m +>,即0∆>.∴方程有两个不相等的实数根.……..3分 (2)解:由求根公式,得(32)(2)2m m x m+±+=.22m x m +∴=或1x =.0m >,222(1)1m m m m++∴=>. 12x x <,11x ∴=,222m x m +=.21222221m y x x m m+∴=-=-⨯=.(3)解:在同一平面直角坐标系中分别画出2(0)y m m=>与2(0)y m m =>的图象. 由图象可得,当1m ≥时,2y m ≤.………9分 24.(本题满分9分)解:(1)∵OABC 是平行四边形,∴AB ∥OC ,且AB = OC = 4.∵A ,B 在抛物线上,y 轴是抛物线的对称轴,∴ A ,B 的横坐标分别是2和– 2. 代入y =241x +1得, A (2, 2 ),B (– 2,2),∴M (0,2).………2分 (2) ① 过点Q 作QH ⊥x 轴,设垂足为H ,则HQ = y ,HP = x –t ,由△HQP ∽△OMC ,得:42tx y -=, 即:t = x – 2y . ∵ Q (x ,y ) 在y = 241x +1上,∴t = –221x + x –2.当点P 与点C 重合时,梯形不存在,此时,t = – 4,解得x = 1±5; 当Q 与B 或A 重合时,四边形CMQP 为平行四边形,此时,x = ± 2. ∴x 的取值X 围是x ≠ 1±5,且x ≠± 2的所有实数.………6分 ② 分两种情况讨论:1)当CM > PQ 时,则点P 在线段OC 上,1 2 3 44321myO -1 -2 -3 -4 -4-3-2 -1 2(0)y m m=> 2(0)y m m => yxQPAMBCOH2)当CM < PQ 时,则点P 在OC 的延长线上, ∵CM ∥PQ ,CM = 2PQ ,∴点Q 纵坐标为点M 纵坐标的2倍,即21x +1=2⨯2,解得:x = ±.。
淄博市中考数学试卷及答案(解析)
山东省淄博市中考数学试卷一、选择题(共12小题,每小题4分)1.(4分)(山东淄博)计算(﹣3)2等于()A.﹣9 B.﹣6 C. 6 D.9考点:有理数的乘方.分析:根据负数的偶次幂等于正数,可得答案.解答:解:原式=32=9.故选:D.点评:本题考查了有理数的乘方,负数的偶次幂是正数.2.(4分)(山东淄博)方程﹣=0解是()A.x=B.x=C.x=D.x=﹣1考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:3x+3﹣7x=0,解得:x=,经检验x=是分式方程的解.故选B点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.3.(4分)(山东淄博)如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是()A.8,6 B.8,5 C.52,53 D.52,52考点:频数(率)分布直方图;中位数;众数.专题:计算题.分析:找出出现次数最多的速度即为众数,将车速按照从小到大顺序排列,求出中位数即可.解答:解:根据题意得:这些车的车速的众数52千米/时,车速分别为50,50,51,51,51,51,51,52,52,52,52,52,52,52,52,53,53,53,53,53,53,54,54,54,54,55,55,中间的为52,即中位数为52千米/时,则这些车的车速的众数、中位数分别是52,52.故选D点评:此题考查了频数(率)分布直方图,中位数,以及众数,弄清题意是解本题的关键.4.(4分)(山东淄博)如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S1,S2,S3,则S1,S2,S3的大小关系是()A.S1>S2>S3B.S3>S2>S1C.S2>S3>S1D.S1>S3>S2考点:简单组合体的三视图.分析:根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图,根据边角面积的大小,可得答案.解答:解:主视图的面积是三个正方形的面积,左视图是两个正方形的面积,俯视图是一个正方形的面积,S1>S3>S2,故选:D.点评:本题考查了简单组合体的三视图,分别得出三视图是解题关键.5.(4分)(山东淄博)一元二次方程x2+2x﹣6=0的根是()A.x1=x2=B.x1=0,x2=﹣2C.x1=,x2=﹣3D.x1=﹣,x2=3考点:解一元二次方程-公式法.分析:找出方程中二次项系数a,一次项系数b及常数项c,再根据x=,将a,b及c的值代入计算,即可求出原方程的解.解答:解:∵a=1,b=2,c=﹣6∴x====﹣±2,∴x1=,x2=﹣3;故选C.点评:此题考查了利用公式法求一元二次方程的解,利用公式法解一元二次方程时,首先将方程化为一般形式,找出二次项系数,一次项系数及常数项,计算出根的判别式,当根的判别式大于等于0时,将a,b及c的值代入求根公式即可求出原方程的解.6.(4分)(山东淄博)当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7 B. 3 C. 1 D.﹣7考点:代数式求值.专题:整体思想.分析:把x=1代入代数式求值a、b的关系式,再把x=﹣1代入进行计算即可得解.解答:解:x=1时,ax3﹣3bx+4=a﹣3b+4=7,解得a﹣3b=3,当x=﹣1时,ax3﹣3bx+4=﹣a+3b+4=﹣3+4=1.故选C.点评:本题考查了代数式求值,整体思想的利用是解题的关键.7.(4分)(山东淄博)如图,等腰梯形ABCD中,对角线AC、DB相交于点P,∠BAC=∠CDB=90°,AB=AD=DC.则cos∠DPC的值是()A.B. C. D.考点:等腰梯形的性质.分析:先根据等腰三角形的性质得出∠DAB+∠BAC=180°,AD∥BC,故可得出∠DAP=∠ACB,∠ADB=∠ABD,再由AB=AD=DC可知∠ABD=∠ADB,∠DAP=∠ACD,所以∠DAP=∠ABD=∠DBC,再根据∠BAC=∠CDB=90°可知,3∠ABD=90°,故∠ABD=30°,再由直角三角形的性质求出∠DPC的度数,进而得出结论.解答:解:∵梯形ABCD是等腰梯形,∴∠DAB+∠BAC=180°,AD∥BC,∴∠DAP=∠ACB,∠ADB=∠ABD,∵AB=AD=DC,∴∠ABD=∠ADB,∠DAP=∠ACD,∴∠DAP=∠ABD=∠DBC,∵∠BAC=∠CDB=90°,∴3∠ABD=90°,∴∠ABD=30°,在△ABP中,∵∠ABD=30°,∠BAC=90°,∴∠APB=60°,∴∠DPC=60°,∴cos∠DPC=cos60°=.故选A.点评:本题考查的是等腰梯形的性质,熟知等腰梯形同一底上的两个角相等是解答此题的关键.8.(4分)(山东淄博)如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A.y=x2﹣x﹣2 B.y=x2﹣x+2 C.y=x2+x﹣2 D.y=x2+x+2考点:待定系数法求二次函数解析式;反比例函数图象上点的坐标特征.专题:计算题.分析:将A坐标代入反比例解析式求出m的值,确定出A的坐标,将A与B坐标代入二次函数解析式求出b与c的值,即可确定出二次函数解析式.解答:解:将A(m,4)代入反比例解析式得:4=﹣,即m=﹣2,∴A(﹣2,4),将A(﹣2,4),B(0,﹣2)代入二次函数解析式得:,解得:b=﹣1,c=﹣2,则二次函数解析式为y=x2﹣x﹣2.故选A.点评:此题考查l待定系数法求二次函数解析式,以及反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.9.(4分)(山东淄博)如图,ABCD是正方形场地,点E在DC的延长线上,AE与BC相交于点F.有甲、乙、丙三名同学同时从点A出发,甲沿着A﹣B﹣F﹣C的路径行走至C,乙沿着A﹣F﹣E﹣C﹣D的路径行走至D,丙沿着A﹣F﹣C﹣D的路径行走至D.若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是()A.甲乙丙B.甲丙乙C.乙丙甲D.丙甲乙考点:正方形的性质;线段的性质:两点之间线段最短;比较线段的长短.分析:根据正方形的性质得出AB=BC=CD=AD,∠B=∠ECF,根据直角三角形得出AF>AB,EF>CF,分别求出甲、乙、丙行走的距离,再比较即可.解答:解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=90°,甲行走的距离是AB+BF+CF=AB+BC=2AB;乙行走的距离是AF+EF+EC+CD;丙行走的距离是AF+FC+CD,∵∠B=∠ECF=90°,∴AF>AB,EF>CF,∴AF+FC+CD>2AB,AF+FC+CD<AF+EF+EC+CD,∴甲比丙先到,丙比乙先到,即顺序是甲丙乙,故选B.点评:本题考查了正方形的性质,直角三角形的性质的应用,题目比较典型,难度适中.10.(4分)(山东淄博)如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C.则矩形的一边AB的长度为()A. 1 B. C. D. 2考点:勾股定理;线段垂直平分线的性质;矩形的性质.分析:本题要依靠辅助线的帮助,连接CE,首先利用线段垂直平分线的性质证明BC=EC.求出EC后根据勾股定理即可求解.解答:解:如图,连接EC.∵FC垂直平分BE,∴BC=EC(线段垂直平分线的性质)又∵点E是AD的中点,AE=1,AD=BC,故EC=2利用勾股定理可得AB=CD==.故选:C.点评:本题考查的是勾股定理、线段垂直平分线的性质以及矩形的性质,本题的关键是要画出辅助线,证明BC=EC后易求解.本题难度中等.11.(4分)(山东淄博)如图,直线AB与⊙O相切于点A,弦CD∥AB,E,F为圆上的两点,且∠CDE=∠ADF.若⊙O的半径为,CD=4,则弦EF的长为()A. 4 B.2C.5D. 6 考点:切线的性质.分析:首先连接OA,并反向延长交CD于点H,连接OC,由直线AB与⊙O相切于点A,弦CD∥AB,可求得OH的长,然后由勾股定理求得AC的长,又由∠CDE=∠ADF,可证得EF=AC,继而求得答案.解答:解:连接OA,并反向延长交CD于点H,连接OC,∵直线AB与⊙O相切于点A,∴OA⊥AB,∵弦CD∥AB,∴AH⊥CD,∴CH=CD=×4=2,∵⊙O的半径为,∴OA=OC=,∴OH==,∴AH=OA+OH=+=4,∴AC==2.∵∠CDE=∠ADF,∴=,∴=,∴EF=AC=2.故选B.点评:此题考查了切线的性质、圆周角定理、垂径定理以及勾股定理等知识.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.12.(4分)(山东淄博)已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A. 6 B. 5 C. 4 D. 3考点:二次函数的性质.专题:计算题.分析:根据抛物线的顶点式得到抛物线的对称轴为直线x=h,由于所给数据都是正数,所以当对称轴在y轴的右侧时,比较点A和点B都对称轴的距离可得到h<4.解答:解:∵抛物线的对称轴为直线x=h,∴当对称轴在y轴的右侧时,A(0,2)到对称轴的距离比B(8,3)到对称轴的距离小,∴x=h<4.故选D.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.二、填空题(共5小题,每小题4分,满分20分)13.(4分)(山东淄博)分解因式:8(a2+1)﹣16a=8(a﹣1)2.考点:提公因式法与公式法的综合运用.分析:首先提取公因式8,进而利用完全平方公式分解因式得出即可.解答:解:8(a2+1)﹣16a=8(a2+1﹣2a)=8(a﹣1)2.故答案为:8(a﹣1)2.点评:此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.14.(4分)(山东淄博)某实验中学九年级(1)班全体同学的综合素质评价“运动与健康”方面的等级统计如图所示,其中评价为“A”所在扇形的圆心角是108度.考点:扇形统计图.分析:首先计算出A部分所占百分比,再利用360°乘以百分比可得答案.解答:解:A所占百分比:100%﹣15%﹣20%﹣35%=30%,圆心角:360°×30%=108°,故答案为:108.点评:此题主要考查了扇形统计图,关键是掌握圆心角度数=360°×所占百分比.15.(4分)(山东淄博)已知▱ABCD,对角线AC,BD相交于点O,请你添加一个适当的条件,使▱ABCD成为一个菱形,你添加的条件是AD=DC.考点:菱形的判定;平行四边形的性质.专题:开放型.分析:根据菱形的定义得出答案即可.解答:解:∵邻边相等的平行四边形是菱形,∴平行四边形AB CD的对角线AC、BD相交于点O,试添加一个条件:可以为:AD=DC;故答案为:AD=DC.点评:此题主要考查了菱形的判定以及平行四边形的性质,根据菱形的定义得出是解题关键.16.(4分)(山东淄博)关于x的反比例函数y=的图象如图,A、P为该图象上的点,且关于原点成中心对称.△PAB中,PB∥y轴,AB∥x轴,PB与AB相交于点B.若△PAB的面积大于12,则关于x的方程(a﹣1)x2﹣x+=0的根的情况是没有实数根.考点:根的判别式;反比例函数的性质.分析:由比例函数y=的图象位于一、三象限得出a+4>0,A、P为该图象上的点,且关于原点成中心对称,得出2xy>12,进一步得出a+4>6,由此确定a的取值范围,进一步利用根的判别式判定方程根的情况即可.解答:解:∵反比例函数y=的图象位于一、三象限,∴a+4>0,a>﹣4,∵A、P关于原点成中心对称,PB∥y轴,AB∥x轴,△PAB的面积大于12,∴2xy>12,即a+4>6,a>2∴a>2.∴△=(﹣1)2﹣4(a﹣1)×=2﹣a<0,∴关于x的方程(a﹣1)x2﹣x+=0没有实数根.故答案为:没有实数根.点评:此题综合考查了反比例函数的图形与性质,一元二次方程根的判别式,注意正确判定a的取值范围是解决问题的关键.17.(4分)(山东淄博)如图,在正方形网格中有一边长为4的平行四边形ABCD,请将其剪拼成一个有一边长为6的矩形.(要求:在答题卡的图中画出裁剪线即可)考点:作图—应用与设计作图;图形的剪拼.分析:如图先过D点向下剪出一个三角形放在平行四边形的左边,再在剪去D点下面两格的小正方形放在右面,就组成了一人矩形.解答:解:如图:点评:本题一方面考查了学生的动手操作能力,另一方面考查了学生的空间想象能力,重视知识的发生过程,让学生体验学习的过程.三、解答题(共7小题,共52分)18.(5分)(山东淄博)计算:•.考点:分式的乘除法.专题:计算题.分析:原式约分即可得到结果.解答:解:原式=•=.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.19.(5分)(山东淄博)如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,求∠2的度数.考点:平行线的性质.分析:根据垂直定义和邻补角求出∠3,根据平行线的性质得出∠2=∠3,代入求出即可.解答:解:∵AB⊥BC,∴∠ABC=90°,∴∠1+∠3=90°,∵∠1=55°,∴∠3=35°,∵a∥b,∴∠2=∠3=35°.点评:本题考查了垂直定义,平行线的性质的应用,注意:两直线平行,同位角相等.20.(8分)(山东淄博)节能灯根据使用寿命分成优等品、正品和次品三个等级,其中使用寿命大于或等于8000小时的节能灯是优等品,使用寿命小于6000小时的节能灯是次品,其余的节能灯是正品.质检部门对某批次的一种节能灯(共200个)的使用寿命进行追踪调查,并将结果整理成此表.(1)根据分布表中的数据,在答题卡上写出a,b,c的值;(2)某人从这200个节能灯中随机购买1个,求这种节能灯恰好不是次品的概率.寿命(小时)频数频率4000≤t≤5000 10 0.055000≤t<6000 20 a6000≤t<7000 80 0.407000≤t<8000 b 0.158000≤t<9000 60 c合计 200 1考点:频数(率)分布表;概率公式.分析:(1)由频率分布表中的数据,根据频率=频数÷数据总数及频数=数据总数×频率即可求出a、b、c的值;(2)根据频率分布表中的数据,用不是次品的节能灯个数除以节能灯的总个数即可求解.解答:解:(1)根据频率分布表中的数据,得a==0.1,b=200×0.15=30,c==0.3;(Ⅱ)设“此人购买的节能灯恰好不是次品”为事件A.由表可知:这批灯泡中优等品有60个,正品有110个,次品有30个,所以此人购买的节能灯恰好不是次品的概率为P(A)==0.85.点评:本题考查了读频数(率)分布表的能力和利用统计图获取信息的能力及古典概型的概率,用到的知识点:频率=频数÷数据总数,概率=所有出现的情况数与总数之比.21.(8分)(山东淄博)为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:档次每户每月用电数(度)执行电价(元/度)第一档小于等于200 0.55第二档大于200小于400 0.6第三档大于等于400 0.85例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各月电多少度?考点:二元一次方程组的应用.分析:某户居民五、六月份共用电500度,就可以得出每月用电量不可能都在第一档,分情况讨论,当5月份用电量为x度≤200度,6月份用电(500﹣x)度,当5月份用电量为x 度>200度,六月份用电量为(500﹣x)度>x度,分别建立方程求出其解即可.解答:解:当5月份用电量为x度≤200度,6月份用电(500﹣x)度,由题意,得0.55x+0.6(500﹣x)=290.5,解得:x=190,∴6月份用电500﹣x=310度.当5月份用电量为x度>200度,六月份用电量为(500﹣x)度,由题意,得0.6x+0.6(500﹣x)=290.5,300=290.5,原方程无解.∴5月份用电量为190度,6月份用电310度.点评:本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,分类讨论思想的运用,解答时由总价=单价×数量是关键.22.(8分)(山东淄博)如图,在直角坐标系中,点A的坐标是(0.3),点C是x轴上的一个动点,点C在x轴上移动时,始终保持△ACP是等边三角形.当点C移动到点O时,得到等边三角形A OB(此时点P与点B重合).(1)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图),求证:△AOC≌△ABP;由此你发现什么结论?(2)求点C在x轴上移动时,点P所在函数图象的解析式.考点:一次函数综合题.分析:(1)由等边三角形的性质易证AO=AB,AC=AP,∠CAP=∠OAB=60°;然后由图示知∠CAP+∠PAO=∠OAB+∠PAO,即∠CAO=∠PAB.所以根据SAS证得结论;(2)利用(1)中的结论PB⊥AB.根据等边三角形的性质易求点B的坐标为B(,).再由旋转的性质得到当点P移动到y轴上的坐标是(0,﹣3),所以根据点B、P的坐标易求直线BP的解析式.解答:(1)证明:∵△AOB与△ACP都是等边三角形,∴AO=AB,AC=AP,∠CAP=∠OAB=60°,∴∠CAP+∠PAO=∠OAB+∠PAO,∴∠CAO=∠PAB,在△AOC与△ABP中,∴△AOC≌△ABP(SAS).∴∠COA=∠PBA=90°,∴点P在过点B且与AB垂直的直线上或PB⊥AB或∠ABP=90°.故结论是:点P在过点B且与AB垂直的直线上或PB⊥AB或∠ABP=90°;(2)解:点P在过点B且与AB垂直的直线上.∵△AOB是等边三角形,A(0,3),∴B(,).当点C移动到点P在y轴上时,得P(0,﹣3).设点P所在的直线方程为:y=kx+b(k≠0).把点B、P的坐标分别代入,得,解得,所以点P所在的函数图象的解析式为:y=x﹣3.点评:本题综合考查了待定系数法求一次函数解析式,旋转的性质,全等三角形的判定与性质等知识.解答(2)题时,求得点P位于y轴负半轴上的坐标是解题的关键.23.(9分)(山东淄博)如图,四边形ABCD中,AC⊥BD交BD于点E,点F,M分别是AB,BC的中点,BN平分∠ABE交AM于点N,AB=AC=BD.连接MF,NF.(1)判断△BMN的形状,并证明你的结论;(2)判断△MFN与△BDC之间的关系,并说明理由.考点:相似三角形的判定与性质;等腰直角三角形;三角形中位线定理.分析:(1)根据等腰三角形的性质,可得AM是高线、顶角的角平分线,根据直角三角形的性质,可得∠EAB+∠EBA=90°,根据三角形外角的性质,可得答案;(2)根据三角形中位线的性质,可得MF与AC的关系,根据等量代换,可得MF与BD 的关系,根据等腰直角三角形,可得BM与NM的关系,根据等量代换,可得NM与BC 的关系,根据同角的余角相等,可得∠CBD与∠NMF的关系,根据两边对应成比例且夹角相等的两个三角形相似,可得答案.解答:(1)答:△BMN是等腰直角三角形.证明:∵AB=AC,点M是BC的中点,∴AM⊥BC,AM平分∠BAC.∵BN平分∠ABE,AC⊥BD,∴∠AEB=90°,∴∠EAB+∠EBA=90°,∴∠MNB=∠NAB+∠ABN=(∠BAE+∠ABE)=45°.∴△BMN是等腰直角三角形;(2)答:△MFN∽△BDC.证明:∵点F,M分别是AB,BC的中点,∴FM∥AC,FM=AC.∵AC=BD,∴FM=BD,即.∵△BMN是等腰直角三角形,∴NM=BM=BC,即,∴.∵AM⊥BC,∴∠NMF+∠FMB=90°.∵FM∥AC,∴∠ACB=∠FMB.∵∠CEB=90°,∴∠ACB+∠CBD=90°.∴∠CBD+∠FMB=90°,∴∠NMF=∠CBD.∴△MFN∽△BDC.点评:本题考查了相似三角形的判定与性质,利用了锐角是45°的直角三角形是等腰直角三角形,两边对应成比例且夹角相等的两个三角形相似.24.(9分)(山东淄博)如图,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.(1)使∠APB=30°的点P有无数个;(2)若点P在y轴上,且∠APB=30°,求满足条件的点P的坐标;(3)当点P在y轴上移动时,∠APB是否有最大值?若有,求点P的坐标,并说明此时∠APB最大的理由;若没有,也请说明理由.考点:圆的综合题;三角形的外角性质;等边三角形的性质;勾股定理;矩形的判定与性质;垂径定理;圆周角定理;切线的性质.专题:综合题;探究型.分析:(1)已知点A、点B是定点,要使∠APB=30°,只需点P在过点A、点B的圆上,且弧AB所对的圆心角为60°即可,显然符合条件的点P有无数个.(2)结合(1)中的分析可知:当点P在y轴的正半轴上时,点P是(1)中的圆与y轴的交点,借助于垂径定理、等边三角形的性质、勾股定理等知识即可求出符合条件的点P的坐标;当点P在y轴的负半轴上时,同理可求出符合条件的点P的坐标.(3)由三角形外角的性质可证得:在同圆或等圆中,同弧所对的圆周角大于同弧所对的圆外角.要∠APB最大,只需构造过点A、点B且与y轴相切的圆,切点就是使得∠APB最大的点P,然后结合切线的性质、三角形外角的性质、矩形的判定与性质、勾股定理等知识即可解决问题.解答:解:(1)以AB为边,在第一象限内作等边三角形ABC,以点C为圆心,AC为半径作⊙C,交y轴于点P1、P2.在优弧AP1B上任取一点P,如图1,则∠APB=∠ACB=×60°=30°.∴使∠APB=30°的点P有无数个.故答案为:无数.(2)①当点P在y轴的正半轴上时,过点C作CG⊥AB,垂足为G,如图1.∵点A(1,0),点B(5,0),∴OA=1,OB=5.∴AB=4.∵点C为圆心,CG⊥AB,∴AG=BG=AB=2.∴OG=OA+AG=3.∵△ABC是等边三角形,∴AC=BC=AB=4.∴CG===2.∴点C的坐标为(3,2).过点C作CD⊥y轴,垂足为D,连接CP2,如图1,∵点C的坐标为(3,2),∴CD=3,OD=2.∵P1、P2是⊙C与y轴的交点,∴∠AP1B=∠AP2B=30°.∵CP2=CA=4,CD=3,∴DP2==.∵点C为圆心,CD⊥P1P2,∴P1D=P2D=.∴P2(0,2﹣).P1(0,2+).②当点P在y轴的负半轴上时,同理可得:P3(0,﹣2﹣).P4(0,﹣2+).综上所述:满足条件的点P的坐标有:(0,2﹣)、(0,2+)、(0,﹣2﹣)、(0,﹣2+).(3)当过点A、B的⊙E与y轴相切于点P时,∠APB最大.①当点P在y轴的正半轴上时,连接EA,作EH⊥x轴,垂足为H,如图2.∵⊙E与y轴相切于点P,∴PE⊥OP.∵EH⊥AB,OP⊥OH,∴∠EPO=∠POH=∠EHO=90°.∴四边形OPEH是矩形.∴OP=EH,PE=OH=3.∴EA=3.∵∠EHA=90°,AH=2,EA=3,∴EH===∴OP=∴P(0,).②当点P在y轴的负半轴上时,同理可得:P(0,﹣).理由:①若点P在y轴的正半轴上,在y轴的正半轴上任取一点M(不与点P重合),连接MA,MB,交⊙E于点N,连接NA,如图2所示.∵∠ANB是△AMN的外角,∴∠ANB>∠AMB.∵∠APB=∠ANB,∴∠APB>∠AMB.②若点P在y轴的负半轴上,同理可证得:∠APB>∠AMB.综上所述:当点P在y轴上移动时,∠APB有最大值,此时点P的坐标为(0,)和(0,﹣).点评:本题考查了垂径定理、圆周角定理、勾股定理、等边三角形的性质、矩形的判定与性质,切线的性质、三角形外角性质等知识,综合性强.同时也考查了创造性思维,有一定的难度.构造辅助圆是解决本题关键.。
淄博市2012年学业考试数学试题答案
淄博市2012年初中学业考试 数学试题(A 卷)参考答案及评分标准评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分. 2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.每小题只给出一种或两种解法,对考生的其它解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一、选择题(本大题共12小题,第1~3小题每题3分,第4~12小题每题4分,共45分.错选、不选或选出的答案超过一个,均记零分):二、填空题 (本大题共5小题,每小题4分,共20分) :13. 14.70; 15.122-或; 16.3;17.如110,个位或十位上的数字有一个为0,其余两个数字相等且不为0. 三、解答题 (本大题共7小题,共55分) : 18.(本题满分6分)解:方程两边都乘以(1)x -,得 22(1)x x -=-,…………………………………………………3分解得0x =,………………………………………………………5分检验:当0x =时1x -≠0,0x =是原方程的解.……………… 6分19.(本题满分6分)证明:∵ABCD 是平行四边形,∴A F ∥CE ,……………………………………………………3分 ∵AF =CE ,∴四边形AECF 是平行四边形. ………………………………6分20.(本题满分8分)解:(1)将这7个数由小到大排列为:12.87 12.88 12.91 12.92 12.93 12.95 12.97 …………2分 所以这7个成绩的中位数是12.92(秒); ……………………3分 极差是12.97−12.87=0.1(秒).…………………………………4分 (2) 方法一:__12.9712.8712.9112.8812.9312.9212.957x ++++++=≈12.92(秒)……………………………………8分方法二:__0.070.030.010.020.030.020.0512.907x -+-+++=+≈12.92(秒).21.(本题满分8分)解:(1)分 (2)……………………………………………………………6分(3)8分22.解:由25204x x --=,得212951(1),,422x x x -===-,……………3分 当152x =是29(2)04x k x -++=的根时,21119204x x kx --+=,11404kx -+=,5722k =,75k =………………………………………………………6分 当212x =-是29(2)04x k x -++=的根时,22229204x x kx --+=, 21404kx -+=,1722k -=,7k =-. …………………………………………………9分23.(本题满分9分)解:(1)当G 与D 重合时,∵四边形ABCD 是矩形,AC ,BG 是矩形ABCD 对角线,BG ⊥AC ,∴四边形ABCD 是正方形,∴x =4…………………………2分(2) 方法一:∵四边形ABCD 是矩形,BG ⊥AC ,∴∠ABF +∠CBF =90°,∠ACB +∠CBF =90°,∴∠ACB =∠ABF ,∴△ABC ∽△F AB ,…………………………………………4分∴AF ABAB BC=, ∵F 为AD 中点,∴AF =2,2,4xx x ==………………………5分 ∵F 为AD 中点. 由对称性得,BF =CF . ……………………………………… …6分 ∵AF ∥BC ,∴△AEF ∽△CEB ,…………………………………………8分 ∴12EF AF EB BC ==, 在Rt △CFE 中,sin ∠ECF =13EF EF CF FB ==.…………………9分 方法二:连接BD ,∵F 为AD 中点,四边形ABCD 是矩形. 由对称性得∠FBD =∠FCA ,AB =GD ∵AC ⊥BG∴∠F AE +∠AFE =∠FGD +∠GFD ∵∠AFE =∠GFD ∴∠F AE =∠FGD ∴△AFC ∽△GBD ∴AC CFBG BD=∵AC =BD ,BG =2CF∴222AC CF = 22162(4)x x +=+x =5分 以下同法一 24.(本题满分9分)A B CDE F G(第23题)解:(1) 设反比例函数解析式为xky =,∵点E (3,4)在该函数图象上, ∴43k=,12=k ,反比例函数的解析式为xy 12=;…………2分(2)∵正方形AOCB 的边长为4,点D 在线段BC 上, ∴点D 的横坐标为4, ∵点D 在xy 12=的图象上, ∴D (4,3), ∵直线b x y +-=21过点D , ∴5,3421==+⨯-b b ,直线的解析式为521+-=x y . ∵点F在直线521+-=x y 上,纵坐标为4,∴2,4521==+-x x ,F (2,4).…………………………………4分(3) ∠AOF 21=∠EOC ………………………………………………5分证明:取CB 的中点G ,连接OG ,连接∵四边形AOCB 是正方形,点F (2,4),∴点F ,G 分别是AB ,BC 的中点, ∴AO =CO ,AF =CG ,∠OAF =∠OCG =90∴△OAF ≌△OCG ,∴∠AOF =∠COG , ∵BG =CG ,∠B =∠GCM =90°,∠EGB =∠MGC ∴△EGB ≌△MGC ∴EG =MG ……………………………7分在R t △OAE 中,∵2222243,5OE OA AE OE =+=+=, OM =OC +CM =OC +BE =4+1=5,∴OM =OE ,即△OEM 是等腰三角形, ∴OG 是∠EOC 的平分线, ∠AOF =∠COG 21=∠EOC .………9分。
山东省淄博市中考数学试卷(word版 解析版)
山东省淄博市中考数学试卷一.选择题:本大题共12个小题,每小题4分,共48分.在每小题给出四个选项中,只有一项是符合题目要求.1.(4分)计算结果是()A.0B.1C.﹣1D.2.(4分)下列语句描述事件中,是随机事件为()A.水能载舟,亦能覆舟B.只手遮天,偷天换日C.瓜熟蒂落,水到渠成D.心想事成,万事如意3.(4分)下列图形中,不是轴对称图形是()A. B. C. D.4.(4分)若单项式a m﹣1b2与和仍是单项式,则n m值是()A.3B.6C.8D.95.(4分)与最接近整数是()A.5B.6C.7D.86.(4分)一辆小车沿着如图所示斜坡向上行驶了100米,其铅直高度上升了15米.在用科学计算器求坡角α度数时,具体按键顺序是()A.B.C.D.7.(4分)化简结果为()A. B.a﹣1 C.a D.18.(4分)甲.乙.丙.丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲.乙.丙胜场数相同,则丁胜场数是()A.3B.2C.1D.09.(4分)如图,⊙O直径AB=6,若∠BAC=50°,则劣弧AC长为()A.2πB.C.D.10.(4分)“绿水青山就是金山银山”.某工程队承接了60万平方米荒山绿化任务,为了迎接雨季到来,实际工作时每天工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化面积为x万平方米,则下面所列方程中正确是()A. B.C. D.11.(4分)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN ∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC长为()A.4B.6C.D.812.(4分)如图,P为等边三角形ABC内一点,且P到三个顶点A,B,C距离分别为3,4,5,则△ABC面积为()A. B. C. D.二.填空题(每题4分,共5个小题,满分20分,将直接填写最后结果)13.(4分)如图,直线a∥b,若∠1=140°,则∠2=度.14.(4分)分解因式:2x3﹣6x2+4x=.15.(4分)在如图所示平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内点E处,且AE过BC中点O,则△ADE周长等于.16.(4分)已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B左侧),将这条抛物线向右平移m(m>0)个单位,平移后抛物线于x轴交于C,D两点(点C在点D左侧),若B,C是线段AD三等分点,则m值为.17.(4分)将从1开始自然数按以下规律排列,例如位于第3行.第4列数是12,则位于第45行.第8列数是.三.解答题(本大题共7小题,共52分.解答应写出文字说明.证明过程或演算步骤.)18.(5分)先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.19.(5分)已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.20.(8分)“推进全科阅读,培育时代新人”.某学校为了更好地开展学生读书活动,随机调查了八年级50名学生最近一周读书时间,统计数据如下表:时间(小时)678910人数58121510(1)写出这50名学生读书时间众数.中位数.平均数;(2)根据上述表格补全下面条形统计图.(3)学校欲从这50名学生中,随机抽取1名学生参加上级部门组织读书活动,其中被抽到学生读书时间不少于9小时概率是多少?21.(8分)如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间函数关系式;(2)直接写出当x>0时,不等式x+b>解集;(3)若点P在x轴上,连接AP把△ABC面积分成1:3两部分,求此时点P坐标.22.(8分)如图,以AB为直径⊙O外接于△ABC,过A点切线AP与BC延长线交于点P,∠APB平分线分别交AB,AC于点D,E,其中AE,BD(AE<BD)长是一元二次方程x2﹣5x+6=0两个实数根.(1)求证:PA•BD=PB•AE;(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.23.(9分)(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC中点M,N,G,连接GM,GN.小明发现了:线段GM与GN数量关系是;位置关系是.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般锐角三角形,其中AB>AC,其它条件不变,小明发现上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)基础上,又作了进一步探究.向△ABC内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN形状,并给与证明.24.(9分)如图,抛物线y=ax2+bx经过△OAB三个顶点,其中点A(1,),点B(3,﹣),O为坐标原点.(1)求这条抛物线所对应函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上两点,且n<m,求t取值范围;(3)若C为线段AB上一个动点,当点A,点B到直线OC距离之和最大时,求∠BOC大小及点C坐标.参考答案与试题解析一.选择题:本大题共12个小题,每小题4分,共48分.在每小题给出四个选项中,只有一项是符合题目要求.1.(4分)计算结果是()A.0B.1C.﹣1D.【考点】1A:有理数减法;15:绝对值.【分析】先计算绝对值,再计算减法即可得.【解答】解:=﹣=0,故选:A.【点评】本题主要考查绝对值和有理数减法,解题关键是掌握绝对值性质和有理数减法法则.2.(4分)下列语句描述事件中,是随机事件为()A.水能载舟,亦能覆舟B.只手遮天,偷天换日C.瓜熟蒂落,水到渠成D.心想事成,万事如意【考点】X1:随机事件.【分析】直接利用随机事件以及必然事件.不可能事件定义分别分析得出答案.【解答】解:A.水能载舟,亦能覆舟,是必然事件,故此选项错误;B.只手遮天,偷天换日,是不可能事件,故此选项错误;C.瓜熟蒂落,水到渠成,是必然事件,故此选项错误;D.心想事成,万事如意,是随机事件,故此选项正确.故选:D.【点评】此题主要考查了随机事件,正确把握相关定义是解题关键.3.(4分)下列图形中,不是轴对称图形是()A. B. C. D.【考点】P3:轴对称图形.【分析】观察四个选项图形,根据轴对称图形概念即可得出结论.【解答】解:根据轴对称图形概念,可知:选项C中图形不是轴对称图形.故选:C.【点评】本题考查了轴对称图形,牢记轴对称图形概念是解题关键.4.(4分)若单项式a m﹣1b2与和仍是单项式,则n m值是()A.3B.6C.8D.9【考点】35:合并同类项;42:单项式.【分析】首先可判断单项式a m﹣1b2与是同类项,再由同类项定义可得m.n 值,代入求解即可.【解答】解:∵单项式a m﹣1b2与和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=8.故选:C.【点评】本题考查了合并同类项知识,解答本题关键是掌握同类项中两个相同.5.(4分)与最接近整数是()A.5B.6C.7D.8【考点】2B:估算无理数大小;27:实数.【分析】由题意可知36与37最接近,即与最接近,从而得出答案.【解答】解:∵36<37<49,∴<<,即6<<7,∵37与36最接近,∴与最接近是6.故选:B.【点评】此题主要考查了无理数估算能力,关键是整数与最接近,所以=6最接近.6.(4分)一辆小车沿着如图所示斜坡向上行驶了100米,其铅直高度上升了15米.在用科学计算器求坡角α度数时,具体按键顺序是()A.B.C.D.【考点】T9:解直角三角形应用﹣坡度坡角问题;T6:计算器—三角函数.【分析】先利用正弦定义得到sinA=0.15,然后利用计算器求锐角α.【解答】解:sinA===0.15,所以用科学计算器求这条斜道倾斜角度数时,按键顺序为故选:A.【点评】本题考查了计算器﹣三角函数:正确使用计算器,一般情况下,三角函数值直接可以求出,已知三角函数值求角需要用第二功能键.7.(4分)化简结果为()A. B.a﹣1 C.a D.1【考点】6B:分式加减法.【分析】根据分式运算法则即可求出答案.【解答】解:原式=+==a﹣1故选:B.【点评】本题考查分式运算法则,解题关键是熟练运用分式运算法则,本题属于基础题型.8.(4分)甲.乙.丙.丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲.乙.丙胜场数相同,则丁胜场数是()A.3B.2C.1D.0【考点】O2:推理与论证.【分析】四个人共有6场比赛,由于甲.乙.丙三人胜场数相同,所以只有两种可能性:甲胜1场或甲胜2场;由此进行分析即可.【解答】解:四个人共有6场比赛,由于甲.乙.丙三人胜场数相同,所以只有两种可能性:甲胜1场或甲胜2场;若甲只胜一场,这时乙.丙各胜一场,说明丁胜三场,这与甲胜丁矛盾,所以甲只能是胜两场,即:甲.乙.丙各胜2场,此时丁三场全败,也就是胜0场.答:甲.乙.丙各胜2场,此时丁三场全败,丁胜0场.故选:D.【点评】此题是推理论证题目,解答此题关键是先根据题意,通过分析,进而得出两种可能性,继而分析即可.9.(4分)如图,⊙O直径AB=6,若∠BAC=50°,则劣弧AC长为()A.2πB.C.D.【考点】MN:弧长计算;M5:圆周角定理.【分析】先连接CO,依据∠BAC=50°,AO=CO=3,即可得到∠AOC=80°,进而得出劣弧AC长为=.【解答】解:如图,连接CO,∵∠BAC=50°,AO=CO=3,∴∠ACO=50°,∴∠AOC=80°,∴劣弧AC长为=,故选:D.【点评】本题考查了圆周角定理,弧长计算,熟记弧长公式是解题关键.10.(4分)“绿水青山就是金山银山”.某工程队承接了60万平方米荒山绿化任务,为了迎接雨季到来,实际工作时每天工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化面积为x万平方米,则下面所列方程中正确是()A.B.C. D.【考点】B6:由实际问题抽象出分式方程.【分析】设实际工作时每天绿化面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前30 天完成任务,即可得出关于x分式方程.【解答】解:设实际工作时每天绿化面积为x万平方米,则原来每天绿化面积为万平方米,依题意得:﹣=30,即.故选:C.【点评】考查了由实际问题抽象出分式方程.找到关键描述语,找到合适等量关系是解决问题关键.11.(4分)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN ∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC长为()A.4B.6C.D.8【考点】KO:含30度角直角三角形;JA:平行线性质;KJ:等腰三角形判定与性质.【分析】根据题意,可以求得∠B度数,然后根据解直角三角形知识可以求得NC长,从而可以求得BC长.【解答】解:∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMB=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=6,故选:B.【点评】本题考查30°角直角三角形.平行线性质.等腰三角形判定与性质,解答本题关键是明确题意,找出所求问题需要条件,利用数形结合思想解答.12.(4分)如图,P为等边三角形ABC内一点,且P到三个顶点A,B,C距离分别为3,4,5,则△ABC面积为()A. B. C. D.【考点】R2:旋转性质;KK:等边三角形性质;KS:勾股定理逆定理.【分析】将△BPC绕点B逆时针旋转60°得△BEA,根据旋转性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延长BP,作AF⊥BP于点FAP=3,PE=4,根据勾股定理逆定理可得到△APE为直角三角形,且∠APE=90°,即可得到∠APB度数,在直角△APF中利用三角函数求得AF和PF长,则在直角△ABF中利用勾股定理求得AB长,进而求得三角形ABC面积.【解答】解:∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=AP=,PF=AP=.∴在直角△ABF中,AB2=BF2+AF2=(4+)2+()2=25+12.则△ABC面积是•AB2=•(25+12)=.故选:A.【点评】本题考查了等边三角形判定与性质.勾股定理逆定理以及旋转性质:旋转前后两个图形全等,对应点与旋转中心连线段夹角等于旋转角,对应点到旋转中心距离相等.二.填空题(每题4分,共5个小题,满分20分,将直接填写最后结果)13.(4分)如图,直线a∥b,若∠1=140°,则∠2=40度.【考点】JA:平行线性质.【分析】由两直线平行同旁内角互补得出∠1+∠2=180°,根据∠1度数可得答案.【解答】解:∵a∥b,∴∠1+∠2=180°,∵∠1=140°,∴∠2=180°﹣∠1=40°,故答案为:40.【点评】本题主要考查平行线性质,解题关键是掌握两直线平行同旁内角互补.14.(4分)分解因式:2x3﹣6x2+4x=2x(x﹣1)(x﹣2).【考点】57:因式分解﹣十字相乘法等;53:因式分解﹣提公因式法.【分析】首先提取公因式2x,再利用十字相乘法分解因式得出答案.【解答】解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2).故答案为:2x(x﹣1)(x﹣2).【点评】此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.15.(4分)在如图所示平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内点E处,且AE过BC中点O,则△ADE周长等于10.【考点】PB:翻折变换(折叠问题);L5:平行四边形性质.【分析】要计算周长首先需要证明E.C.D共线,DE可求,问题得解.【解答】解:∵四边形ABCD是平行四边形∴AD∥BC,CD=AB=2由折叠,∠DAC=∠EAC∵∠DAC=∠ACB∴∠ACB=∠EAC∴OA=OC∵AE过BC中点O∴AO=BC∴∠BAC=90°∴∠ACE=90°由折叠,∠ACD=90°∴E.C.D共线,则DE=4∴△ADE周长为:3+3+2+2=10故答案为:10【点评】本题考查了平行四边形性质.轴对称图形性质和三点共线证明.解题时注意不能忽略E.C.D三点共线.16.(4分)已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B左侧),将这条抛物线向右平移m(m>0)个单位,平移后抛物线于x轴交于C,D两点(点C在点D左侧),若B,C是线段AD三等分点,则m值为2.【考点】HA:抛物线与x轴交点;H6:二次函数图象与几何变换.【分析】先根据三等分点定义得:AC=BC=BD,由平移m个单位可知:AC=BD=m,计算点A和B坐标可得AB长,从而得结论.【解答】解:如图,∵B,C是线段AD三等分点,∴AC=BC=BD,由题意得:AC=BD=m,当y=0时,x2+2x﹣3=0,(x﹣1)(x+3)=0,x1=1,x2=﹣3,∴A(﹣3,0),B(1,0),∴AB=3+1=4,∴AC=BC=2,∴m=2,故答案为:2.【点评】本题考查了抛物线与x轴交点问题.抛物线平移及解一元二次方程问题,利用数形结合思想和三等分点定义解决问题是关键.17.(4分)将从1开始自然数按以下规律排列,例如位于第3行.第4列数是12,则位于第45行.第8列数是2018.【考点】37:规律型:数字变化类.【分析】观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行.第8列数是2025﹣7=2018;【解答】解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行.第8列数是2025﹣7=2018,故答案为2018.【点评】本题考查规律型﹣数字问题,解题关键是学会观察,探究规律,利用规律解决问题.三.解答题(本大题共7小题,共52分.解答应写出文字说明.证明过程或演算步骤.)18.(5分)先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【考点】4J:整式混合运算—化简求值;76:分母有理化.【分析】先算平方与乘法,再合并同类项,最后代入计算即可.【解答】解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当时,原式=2(+1)()﹣1=2﹣1=1.【点评】本题考查了整式混合运算﹣化简求值,能正确根据整式运算法则进行化简是解此题关键.19.(5分)已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.【考点】K7:三角形内角和定理.【分析】过点A作EF∥BC,利用EF∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.【解答】证明:过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即∠A+∠B+∠C=180°.【点评】本题考查了三角形内角和定理证明,作辅助线把三角形三个内角转化到一个平角上是解题关键.20.(8分)“推进全科阅读,培育时代新人”.某学校为了更好地开展学生读书活动,随机调查了八年级50名学生最近一周读书时间,统计数据如下表:时间(小时)678910人数58121510(1)写出这50名学生读书时间众数.中位数.平均数;(2)根据上述表格补全下面条形统计图.(3)学校欲从这50名学生中,随机抽取1名学生参加上级部门组织读书活动,其中被抽到学生读书时间不少于9小时概率是多少?【考点】X4:概率公式;VC:条形统计图;W2:加权平均数;W4:中位数;W5:众数.【分析】(1)先根据表格提示数据得出50名学生读书时间,然后除以50即可求出平均数;在这组样本数据中,9出现次数最多,所以求出了众数;将这组样本数据按从小到大顺序排列,其中处于中间两个数是8和9,从而求出中位数是8.5;(2)根据题意直接补全图形即可.(3)从表格中得知在50名学生中,读书时间不少于9小时有25人再除以50即可得出结论.【解答】解:(1)观察表格,可知这组样本数据平均数为:(6×5+7×8+8×12+9×15+10×10)÷50=8.34,故这组样本数据平均数为2;∵这组样本数据中,9出现了15次,出现次数最多,∴这组数据众数是9;∵将这组样本数据按从小到大顺序排列,其中处于中间两个数是8和9,∴这组数据中位数为(8+9)=8.5;(2)补全图形如图所示,(3)∵读书时间是9小时有15人,读书时间是10小时有10,∴读书时间不少于9小时有15+10=25人,∴被抽到学生读书时间不少于9小时概率是=【点评】本题考查了加权平均数.众数以及中位数,用样本估计总体知识,解题关键是牢记概念及公式.21.(8分)如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间函数关系式;(2)直接写出当x>0时,不等式x+b>解集;(3)若点P在x轴上,连接AP把△ABC面积分成1:3两部分,求此时点P坐标.【考点】G8:反比例函数与一次函数交点问题.【分析】(1)求得A(1,3),把A(1,3)代入双曲线y=,可得y与x之间函数关系式;(2)依据A(1,3),可得当x>0时,不等式x+b>解集为x>1;(3)分两种情况进行讨论,AP把△ABC面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,进而得出点P坐标.【解答】解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=,可得m=1×3=3,∴y与x之间函数关系式为:y=;(2)∵A(1,3),∴当x>0时,不等式x+b>解集为:x>1;(3)y1=﹣x+4,令y=0,则x=4,∴点B坐标为(4,0),把A(1,3)代入y2=x+b,可得3=+b,∴b=,∴y2=x+,令y=0,则x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC面积分成1:3两部分,∴CP=BC=,或BP=BC=,∴OP=3﹣=,或OP=4﹣=,∴P(﹣,0)或(,0).【点评】本题考查了反比例函数与一次函数交点问题:求反比例函数与一次函数交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.22.(8分)如图,以AB为直径⊙O外接于△ABC,过A点切线AP与BC延长线交于点P,∠APB平分线分别交AB,AC于点D,E,其中AE,BD(AE<BD)长是一元二次方程x2﹣5x+6=0两个实数根.(1)求证:PA•BD=PB•AE;(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.【考点】MR:圆综合题.【分析】(1)易证∠APE=∠BPD,∠EAP=∠B,从而可知△PAE∽△PBD,利用相似三角形性质即可求出答案.(2)过点D作DF⊥PB于点F,作DG⊥AC于点G,易求得AE=2,BD=3,由(1)可知:,从而可知cos∠BDF=cos∠BAC=cos∠APC=,从而可求出AD和DG长度,进而证明四边形ADFE是菱形,此时F点即为M点,利用平行四边形面积即可求出菱形ADFE面积.【解答】解:(1)∵DP平分∠APB,∴∠APE=∠BPD,∵AP与⊙O相切,∴∠BAP=∠BAC+∠EAP=90°,∵AB是⊙O直径,∴∠ACB=∠BAC+∠B=90°,∴∠EAP=∠B,∴△PAE∽△PBD,∴,∴PA•BD=PB•AE;(2)过点D作DF⊥PB于点F,作DG⊥AC于点G,∵DP平分∠APB,AD⊥AP,DF⊥PB,∴AD=DF,∵∠EAP=∠B,∴∠APC=∠BAC,易证:DF∥AC,∴∠BDF=∠BAC,由于AE,BD(AE<BD)长是x2﹣5x+6=0,解得:AE=2,BD=3,∴由(1)可知:,∴cos∠APC==,∴cos∠BDF=cos∠APC=,∴,∴DF=2,∴DF=AE,∴四边形ADFE是平行四边形,∵AD=AE,∴四边形ADFE是菱形,此时点F即为M点,∵cos∠BAC=cos∠APC=,∴sin∠BAC=,∴,∴DG=,∴在线段BC上是否存在一点M,使得四边形ADME是菱形其面积为:DG•AE=2×=【点评】本题考查圆综合问题,涉及圆周角定理,锐角三角函数定义,平行四边形判定及其面积公式,相似三角形判定与性质,综合程度较高,考查学生灵活运用知识能力.23.(9分)(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC中点M,N,G,连接GM,GN.小明发现了:线段GM与GN数量关系是MG=NG;位置关系是MG⊥NG.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般锐角三角形,其中AB>AC,其它条件不变,小明发现上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)基础上,又作了进一步探究.向△ABC内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN形状,并给与证明.【考点】KY:三角形综合题.【分析】(1)利用SAS判断出△ACD≌△AEB,得出CD=BE,∠ADC=∠ABE,进而判断出∠BDC+∠DBH=90°,即:∠BHD=90°,最后用三角形中位线定理即可得出结论;(2)同(1)方法即可得出结论;(3)同(1)方法得出MG=NG,最后利用三角形中位线定理和等量代换即可得出结论.【解答】解:(1)连接BE,CD相较于H,∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AC=AE,∠BAD=∠CAE=90°∴∠CAD=∠BAE,∴△ACD≌△AEB(SAS),∴CD=BE,∠ADC=∠ABE,∴∠BDC+∠DBH=∠BDC+∠ABD+∠ABE=∠BDC+∠ABD+∠ADC=∠ADB+∠ABD=90°,∴∠BHD=90°,∴CD⊥BE,∵点M,G分别是BD,BC中点,∴MG CD,同理:NG BE,∴MG=NG,MG⊥NG,故答案为:MG=NG,MG⊥NG;(2)连接CD,BE,相较于H,同(1)方法得,MG=NG,MG⊥NG;(3)连接EB,DC,延长线相交于H,同(1)方法得,MG=NG,同(1)方法得,△ABE≌△ADC,∴∠AEB=∠ACD,∴∠CEH+∠ECH=∠AEH﹣∠AEC+180°﹣∠ACD﹣∠ACE=∠ACD﹣45°+180°﹣∠ACD﹣45°=90°,∴∠DHE=90°,同(1)方法得,MG⊥NG.【点评】此题是三角形综合题,主要考查等腰直角三角形性质,全等三角形判定和性质,平行线判定和性质,三角形中位线定理,正确作出辅助线用类比思想解决问题是解本题关键.24.(9分)如图,抛物线y=ax2+bx经过△OAB三个顶点,其中点A(1,),点B(3,﹣),O为坐标原点.(1)求这条抛物线所对应函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上两点,且n<m,求t取值范围;(3)若C为线段AB上一个动点,当点A,点B到直线OC距离之和最大时,求∠BOC大小及点C坐标.【考点】HF:二次函数综合题.【分析】(1)将已知点坐标代入即可;(2)利用抛物线增减性可解问题;(3)观察图形,点A,点B到直线OC距离之和小于等于AB;同时用点A(1,),点B(3,﹣)求出相关角度.【解答】解:(1)把点A(1,),点B(3,﹣)分别代入y=ax2+bx得解得∴y=﹣(2)由(1)抛物线开口向下,对称轴为直线x=当x>时,y随x增大而减小∴当t>4时,n<m.(3)如图,设抛物线交x轴于点F分别过点A.B作AD⊥OC于点D,BE⊥OC于点E∵AC≥AD,BC≥BE∴AD+BE≥AC+BE=AB∴当OC⊥AB时,点A,点B到直线OC距离之和最大.∵A(1,),点B(3,﹣)∴∠AOF=60°,∠BOF=30°∴∠AOB=90°∴∠ABO=30°当OC⊥AB时,∠BOC=60°点C坐标为(,).【点评】本题考查综合考查用待定系数法求二次函数解析式,抛物线增减性.解答问题时注意线段最值问题转化方法.。
【初中数学】山东省淄博市2012年初中毕业班数学模拟试题(共7份) 人教版2
数学试题注意事项:1.答题前请考生务必在答题卡及试卷的规定位置将自己的姓名、考试号、考试科目、座号等内容填写(涂)准确.2.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,44分;第Ⅱ卷为非选择题,76分;共120分.考试时间为120分钟.3.第Ⅰ卷每小题选出答案后,必须用2B铅笔把答题卡上对应题目的答案标号(ABCD)涂黑.如需改动,须先用橡皮擦干净,再改涂其它答案.第Ⅱ卷须用蓝黑钢笔或圆珠笔直接答在答题卷上.考试时,不允许使用计算器.4.考试结束后,由监考教师把第Ⅰ卷和第Ⅱ卷及答题卡和答题卷一并收回.第Ⅰ卷(选择题共44分)一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项涂在答题卡的相应位置上.第1~4小题每题3分,第5~12小题每题4分,错选、不选或选出的答案超过一个,均记零分.1. 6的相反数是(A)-6 (B)1 6(C)±62.下列运算正确的是(A)a+b=ab(B)a2×a3=a5(C)a2+2ab-b2=(a-b)2(D)3a-2a=13.定义一种运算☆,其规则为a☆b=11a b+,根据这个规则计算2☆3的值是(A)56(B)15(C)5 (D)64.小明从家里骑自行车到学校,每小时骑15 km,可早到10分钟,每小时骑12 km就会迟到5分钟,问他家到学校的路程是多少千米?设他家到学校的路程是x km,则据题意列出的方程是(A)10515601260x x+=-(B)10515601260x x-=+(C)10515601260x x-=-(D)1051512x x+=-5.设一元二次方程(x-1)(x-2)=0的两根分别为α、β,且a<β,则a,β分别是(A)α=1,β=2 (B)α=2,β=1(C)α=﹣1,β=﹣2 (D)α=﹣2,β=﹣16.不等式组3043xx x->⎧⎪⎨的最小整数解为(A) 0 (B) 1 (C) 2 (D) ﹣17. 将完全相同的平行四边形和完全相同的菱形镶嵌成如图所示的图案.设菱形中较小角为x 度,平行四边形中较大角为y 度,则y 与x 的关系式是(A) y =13x +90(B) y =12x(C) y =12x +90(D) y =13x8. 如图,直线122y x =-+与x 轴交于C ,与y 轴交于D , 以CD 为边作矩形CDAB ,点A 在x 轴上,双曲线y =xk(k<0)经过点B ,则k 的值为 (A)1 (B)3 (C)4 (D) -69. 2011年春季因干旱影响,政府鼓励居民节约用水,为了解居民用水情况,在某小区随机抽查了20则关于这20户家庭的月用水量,下列说法错误的是(A)中位数是6吨 (B)平均数是5.8吨 (C)众数是6吨(D)极差是4吨10. 如图,在正方形网格上有五个三角形,其中与△ABC 相似(不包括△ABC 本身)有 (A)1个(B)2个 (C)3个 (D)4个11. 如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是(A)点(0,3)(B)点(2,3)A BC(D)点(6,1)12.则在□ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG、BG,∠BDG的大小是度(A)30°(B)45°(C)60°(D)75°数学试题第Ⅱ卷(非选择题共76分)二、填空题:本题共5小题,满分20分.只要求填写最后结果,每小题填对得4分.13.2012年3月5日,国务院总理温家宝在第十一届全国人民代表大会第五次会议上作政府工作报告.指出2011年,我国粮食产量57121万吨,将57121用科学计数法表示为(保留2个有效数字)14.在一个不透明的布袋中,有黄色、白色的乒乓球共10个,这些球除颜色外都相同.小刚通过多次摸球实验后发现其中摸到黄球的频率稳定在60%,则布袋中白色球的个数很可能是个.15.如图,点A,B,C,D都在⊙O上,CD的度数等于84°,CA是∠OCD的平分线,则∠ABD+∠CAO=______度.16. 一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为DEAHAB E CDFG17.在直角梯形ABCD 中,A D B C ∥,90ABC AB BC E ∠==°,,为AB 边上一点,15BCE ∠=°,且AE AD =.连接DE 交对角线AC 于H ,连接BH .则CDE △为三、解答题:本大题共7小题,共56分.解答要写出必要的文字说明、证明过程或演算步骤. 18. (本题满分6分)化简aa a a a -+-÷--2244)111(19. (本题满分6分)已知平面直角坐标系xOy ,一次函数334y x =+的图像与y 轴交于点A ,点M 在正比例函数32y x =的图像上,且MO =MA .求点M 的坐标.20. (本题满分8分)设y x A +=,其中x 可取1-、2,y 可取1-、2-、3. 试求A 是正值的概率.21. (本题满分9分)如图,△A BC 和△CDE 均为等腰直角三角形,点B ,C ,D 在一条直线上,点M 是AE 的中点,BC =3,CD=1.(1)求证tan ∠AEC =CDBC; (2)请探究BM 与DM 的关系,并给出证明.ABCDEM22. (本题满分9分)在平面直角坐标系xOy 中,边长为4的正方形ABCD 的对角线AC 、BD 相交于点P ,顶点A 在x 轴正半轴上运动,顶点B 在y 轴正半轴上运动(x 轴的正半轴、y 轴的正半轴都不包含原点O ),顶点C 、D 都在第一象限.(1)当∠BAO =45°时,求点P 的坐标;(2)无论点A 在x 轴正半轴上、点B 在y 轴正半轴上怎样运动,点P 是否在直线y x =上,如果在,请给出证明,如果不在,请说明理由. .23. (本题满分9分)在Rt △ABC 中,∠ACB =90°,BC =30,AB =50.点P 是AB 边上任意一点,直线PE ⊥AB ,与边AC 相交于E .点M 在线段AP 上,点N 在线段BP 上,EM =EN ,12sin 13EMP ∠=. (1)如图1,当点E 与点C 重合时,求CM 的长;(2)当点E 在AC 边上,且若△AME ∽△ENB (△AME 的顶点A 、M 、E 分别与 △ENB 的顶点E 、N 、B 对应)时,求AP 的长.M P N BACE图2A M P N BC (E )图124. (本题满分9分)如图,一次函数y=-2x+t的图象与x轴,y轴分别交于点C,D.(1)求点C,点D的坐标;(2)已知点P是二次函数y=-x2+3x图象在y轴右侧..部分上的一个动点,若以点C,点D为直角顶点的△PCD与△OCD相似。
山东淄博市2012年初中学业水平模拟考试数学试题(四)
1.答题前请考生务必在答题卡及试卷的规定位置将自己的姓名、考试号、考试科目、座号等内容填写(涂)准确.2.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷(1~4页)为选择题,44分;第Ⅱ卷(5~12页)为非选择题,76分;共120分.考试时间为120分钟.3.第Ⅰ卷每小题选出答案后,必须用2B铅笔把答题卡上对应题目的答案标号(ABCD)涂黑.如需改动,须先用橡皮擦干净,再改涂其它答案.第Ⅱ卷须用蓝黑钢笔或圆珠笔直接答在试卷上.考试时,不允许使用计算器.4.考试结束后,由监考教师把第Ⅰ卷(讲评用,单独装订)和第Ⅱ卷及答题卡一并收回.第Ⅰ卷(选择题共44分)一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项涂在答题卡的相应位置上.第1~4小题,每小题3分;第5~12小题,每小题4分,错选、不选或选出的答案超过一个,均记0分.1.抛物线y=(x-1)2+3的对称轴是( )(A) 直线x=1(B) 直线x=3(C) 直线x=-1(D) 直线x=-32.下列命题中,是真命题的为( )(A) 锐角三角形都相似(B) 直角三角形都相似(C) 等腰三角形都相似(D) 等边三角形都相似3.一个正比例函数的图象过点(2,3)-,它的表达式为( )(A)6yx-=(B)23y x=(C)32y x=-(D)23y x=-4.a,②(A)(B)(C)(D)1234主视图左视图俯视图(2)=④25=.把四张卡片洗匀后随意抽出一张,卡片上的算式计算正确的概率是 ( )(A)12 (B) 14 (C)34(D) 1 5. 已知O ⊙的半径为5,AB 是弦,P 是直线AB 上的一点,3,8PB AB ==,则OPA ∠的正切值是 ( )(A) 3 (B)37(C)13或73(D) 3或376. 不等式组2133x x +⎧⎨-⎩≤,>的解集在数轴上表示正确的是 ( )7. 由6个大小相同的正方体搭成的立体图形,被小明拿掉2个后,得到如图(1)所示的几何体,图(2)是原几何体的三视图,请你判断小明拿掉的两个正方体原来放置在 ( )(A) 1号的前后 (B) 2号的前后 (C) 3号的前后 (D) 4号的前后8. 假期顾老师带学生乘车外出旅游,在乘车单价相同的情况下,甲、乙两位车主给出了不同的优x惠方案.甲车主说“每人八折”,乙车主说“学生九折,老师免费”.李老师计算了一下,无论坐谁的车,费用都一样,则李老师带的学生为 ( )(A) 10名 (B) 9名 (C) 8名 (D) 17名9. 如图,火车匀速通过隧道(隧道长大于货车长)时,火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系用图象描述大致是 ( )10. 若函数22(2),22x x y x x ⎧+=⎨>⎩ ≤ (),则当函数值y =8时,自变量x 的值是 ( )(A) (B) 4(C) 4 (D) 4或11. 关于x 的方程2(5)410a x x ---=有实数根,则a 满足 ( )(A) 1a ≥且5a ≠ (B) 1a >且5a ≠ (C) 1a ≥ (D) 5a ≠12. 如图,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数4y x =-和2y x=的图象交于点A 和点B ,若点C 是x 轴上的任意一点,连接,AC BC ,那么ABC △的面积为 ( )xCB(A) 3 (B) 4 (C) 5 (D) 6绝密★启用前 试卷类型:A2011-2012学年度第二学期期中素质教育质量调研初 四 数 学 试 题第Ⅱ卷(非选择题 共76分)二、填空题:本题共5小题,满分20分.只要求填写最后结果,每小题填对得4分.13.化简__________.14. 如图,以点P 为圆心的圆弧与平面直角坐标系中的x 轴交于点,A B ,点P 的坐标为(4,2),点A 的坐标为(2,0),那么点B 的坐标为______________.15. 将一副三角板按如图所示叠放在一起,如果阴影部分的面积为249cm 2,那么 _______cm BF =.得 分评卷人16. 在平面直角坐标系中,已知点P 在y 轴上,以点P 为圆心,125为半径的圆与直线4:43l y x =+相切,那么点P 的坐标为__________________.17. 如图所示,ABC △的三个顶点的坐标分别为(1,3),(2,2),A B ---(4,2)C -,那么ABC △外接圆半径的长度为 .三、解答题:本大题共8小题,共56分.解答要写出必要的文字说明、证明过程或演算步骤,18.(本题满分6分)0114sin 45(3)()4π-+-+°.得 分评卷人学生及家长对中学生带手机的态度统计图家长对中学生带手 机的态度统计图①②19.(本题满分6分)“校园手机”现象越来越受到社会的关注.“春节”期间,小记者小明随机调查了我区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图①; (2)求图②中表示家长“赞成”的圆心角的度数;(3)从这次接受调查的学生中,随机抽查一个,恰好是“无所谓”态度的学生的概率是多少?20.(本题满分8分)得 分评卷人得 分评卷人全球变暖,气候开始恶化,中国政府为了对全球变暖付责任,积极推动节能减排,在全国范围内从2008年起,三年内每年推广5000万只节能灯.居民购买节能灯,国家补贴50%购灯费.在推广财政补贴节能灯时,小明买了4个8W和3个24W的节能灯,一共用了29元,小亮买了2个8W和2个24W的节能灯,一共用了17元.W W节能灯的价格各是多少元?(1)财政补贴50%后,8,24(2)2009年某市已推广通过财政补贴节能灯850万只,预计该市一年可节约电费2.3亿元左右,减排二氧化碳43.5万吨,请你估算一下全国一年大约可节约电费多少亿元?大约减排二氧化碳多少万吨?(结果精确到0.1)得分评卷人21.(本题满分9分)如图,小芳家的落地窗(线段DE)与公路(直线PQ)互相平行,她每天做完作业后都会在点A处向窗外的公路望去.(1)请在图中画出小芳能看到的那段公路并记为BC.(2)小芳很想知道点A 与公路之间的距离,于是她想到了一个办法.她测出了邻居家小彬在公路BC 段上走过的时间为10秒,又测量了点A 到窗的距离是4米,且窗DE 的长为3米,若小彬步行的平均速度为1.2米/秒,请你帮助小芳计算出点A 到公路的距离.22.(本题满分9分)如图是一个量角器和一个含30°角的直角三角板放置在一起的示意图,其中点B 在量角器半圆O 的直径DE 的延长线上,AB 切半圆O 于点F ,且BC OE =.(1)求证DE CF Ⅱ;(2)当2OE =时,若以,,O B F 为顶点的三角形与ABC △相似,求OB 的长;(3)若2OE =,移动三角板ABC 且使AB 边始终与半圆O 相切,直角顶点B 在直径DE 的延长线上移动,求出点B 移动的最大距离.PQEDA得 分评卷人23.(本题满分9分)已知关于x 的一元二次方程:2(32)220(0)mx m x m m -+++=>. (1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为12,x x (其中12x x <).若y 是关于m 的函数,且212y x x =-,求这个函数的解析式;(3)在(2)的条件下,结合函数的图象回答:当自变量m 的取值范围满足什么条件时,2y m ≤.得 分评卷人24.(本题满分9分)在平面直角坐标系xOy 中,抛物线的解析式是2114y x =+,点C 的坐标是(4,0)-,平行四边形OABC 的顶点,A B 在抛物线上,AB 与y 轴交于点M ,已知点(,)Q x y 在抛物线上,点(,0)P t 在x 轴上. (1)写出点M 的坐标;(2)当四边形CMQP 是以,MQ PC 为腰的梯形时. ① 求t 关于x 的函数解析式和自变量x 的取值范围; ② 当梯形CMQP得 分评卷人学生及家长对中学生带手机的态度统计图①2011~2012学年度第二学期期中考试初四数学答案及评分建议评卷要求:1. 阅卷时本着对学生负责的态度,一丝不苟,精心阅卷.2. 在得分栏中,填写得分及阅卷人的姓(名),分数、姓(名)写在相应的空格中,分数及姓名写得要规范,要工整,杜绝狂草等现象.3. 在题号得分栏中填写得分及阅卷人的姓(名),要求同2.4. 解答正确的一定要画“√”,错误的一定要画“×”,解答中个别的地方有错误的,在有错误的地方下面用“横线”画出.5. 个别题目,若有多种解法,务必要阅卷组先商量后,阅卷组长统一得分标准,然后再得分,自己不要随意得分.6. 若个别题目什么也没写,一定要画一斜线,表示此题没做.7. 如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.8. 选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.一、选择题:计40分.19.(本题满分6分)解:(1)8020%=400÷(人), ………………………….….1分………………………….… 2分(2)40360=36400⨯°°; ……………………………4分(3)303=140+30+3020. ……………………………6分 20.(本题满分8分)DE BC Ⅱ,34,1290∴∠=∠∠=∠=°,AN DE ∴⊥,又∵DAE BAC ∠=∠,∴ADE ABC △∽△. ∴DE AN BC AM=.根据题意得: 1.21012BC =⨯=(米). 又∵4AN =米,3DE =米,∴3412AM=,∴16AM =(米). 答:点A 到公路的距离为16米. ……………………………9分……………………………...6分 (3)当点A 与点F 重合时,点B 移动的距离最大,这时AC 与FC 重合,30A FBO ∴∠=∠=°,24OE OB =∴=,,所以点B 移动的最大距离是2. …………………………….9分23.(本题满分9分)(3)解:在同一平面直角坐标系中分别画出2(0)y m m=>与2(0)y m m =>的图象. 由图象可得,当1m ≥时,2y m ≤.………9分24.(本题满分9分)解:(1)∵OABC 是平行四边形,∴AB ∥OC ,且AB = OC = 4.∵A ,B 在抛物线上,y 轴是抛物线的对称轴,∴ A ,B 的横坐标分别是2和– 2.代入y =241x +1得, A (2, 2 ),B (– 2,2),∴M (0,2). ………2分 (2) ① 过点Q 作QH ⊥ x 轴,设垂足为H ,则HQ = y ,HP = x –t ,由△HQP ∽△OMC ,得:42t x y -=, 即:t = x – 2y . ∵ Q (x ,y ) 在y = 21x +1上,∴ t = –21x + x –2.0)0)>当点P与点C重合时,梯形不存在,此时,t = – 4,解得x = 1当Q与B或A重合时,四边形CMQP为平行四边形,此时,x = ± 2.∴x的取值范围是x≠ 1且x≠± 2的所有实数. ………6分。
淄博市中考数学 有理数解答题(附答案)
淄博市中考数学有理数解答题(附答案)一、解答题1.如图,在数轴上A点表示的数是-8,B点表示的数是2。
动线段CD=4(点D在点C的右侧),从点C与点A重合的位置出发,以每秒2个单位的速度向右运动,运动时间为t 秒。
(1)①已知点C表示的数是-6,试求点D表示的数;②用含有t的代数式表示点D表示的数。
(2)当AC=2BD时,求t的值。
(3)试问当线段CD在什么位置时,AD+BC或AD-BC的值始终保持不变?请求出它的值并说明此时线段CD的位置。
2.如图,将一个边长为1的正方形纸片分割成7个部分,部分②是部分①面积的一半,部分③是部分②面积的一半,以此类推(1)阴影部分的面积是多少?(2)受此启发,你能求出1+ 的值吗?3.已知数轴上的两点A、B所表示的数分别是a和b,O为数轴上的原点,如果有理数a,b 满足(1)求a和b的值;(2)若点P是一个动点,以每秒5个单位长度的速度从点A出发,沿数轴向右运动,请问经过多长时间,点P恰巧到达线段AB的三等分点?(3)若点C是线段AB的中点,点M以每秒3个单位长度的速度从点C开始向右运动,同时点P以每秒5个单位长度的速度从点A出发向右运动,点N以每秒4个单位长度的速度从点B开始向左运动,点P与点M之间的距离表示为PM,点P与点N之间的距离表示为PN,是否存在某一时刻使得PM+PN=12?若存在,请求出此时点P表示的数;若不存在,请说明理由.4.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是________;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.5.(1)阅读下面材料:点、在数轴上分别表示实数,,、两点之间的距高表示为当、两点中有一点在原点时,不妨设点在原点,如图1,;当、都不在原点时,①如图2,点、都在原点的右侧,;②如图3,点、都在原点的左侧,;③如图4,点、在原点的两侧,;(1)回答下列问题:①数轴上表示2和5的两点间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;②数轴上表示和-1的两点和之间的距离是________,如果,那么为________;③当代数式取最小值时,相应的的取值范围是________;④求的最小值,提示:.6.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示-12,点B表示10,点C表示20,我们称点A和点C在数轴上相距32个长度单位.动点P 从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着折线数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒。
2012年淄博中考数学及答案(word版)
1
7
。�秒�1.0=78.21�79.21 为差极�秒 29.21 数位中的绩成个 7 这∴ �79.21�59.21 �39.21�29.21�19.21�88.21�78.21�为列排大到小从绩成个次 7 将∵�1� �解】案答【 .�秒 10.0 到确精�数均平的绩成个 7 这求�2� �差极、数位中的绩成个 7 这求�1� 59.21 29.21 39.21 88.21 19.21 78.21 79.21
5 72 5 �或
8 为值的 k∴
2
。
72
�
=k 得解� 0
�
4
9
� )2 � k(
� � 2 2 4 � x)2 � k( � � � � �得 0 � �5 � 9 5
2
2
x 入代
5
� =x 把
- 8 -
�下如明证。COE∠
2
1
�FOA∠�3� 。�4�2�为
标坐的 F 点∴。 2
= x 得解� 5 + x
2
1
- = 4 得� 5 + x
2
1
- = y 入代 4 = y 将 - = y为
。5 。 5 = b 得解�
b 4? 2 1
+ x
2
- = 3 ∴�上 b + x
2
1
FD 线直∴ D 点∵
1
- = y 线直在
。�3,4�D 即�3 为标坐纵的 D 点∴�上象图的数函例比反在 D 点∵ 。4 为标坐纵的 F 点�4 为标坐横的 D 点∴�4 为长边的 BCOA 形方正∵�2� 。 。 2 1 = k 即�
- 3 -
�度 ▲ =EFC∠则 �°04=FCE∠若 �F 于 DC 交 �CEB∠分平 FE �E 点于 BA 交 EC �DC∥BA �图如 �41 。 � ▲ =
初中数学中考淄博试题解析
山东省淄博市中考数学试卷一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的.每小题4分,错选、不选或选出的答案超过一个,均记零分.1.(4分)(2013•淄博)9的算术平方根是()A.B.C.3D.±3考点:算术平方根.分析:根据算术平方根的定义求解即可.解答:解:∵32=9,∴9的算术平方根是3.故选C.点评:本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.2.(4分)(2013•淄博)下列运算错误的是()A.B.C.D.考点:分式的基本性质.分析:根据分式的基本性质作答,分子分母同时扩大或缩小相同的倍数,分式的值不变,即可得出答案.解答:解:A、==1,故本选项正确;B、==﹣1,故本选项正确;C、=,故本选项正确;D、=﹣,故本选项错误;故选D.点评:此题考查了分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0.3.(4分)(2013•淄博)把一根长100cm的木棍锯成两段,使其中一段的长比另一段的2倍少5cm,则锯出的木棍的长不可能为()A.70cm B.65cm C.35cm D.35cm或65cm考点:一元一次方程的应用.分析:设一段为x,则另一段为2x﹣5,再由总长为100cm,可得出方程,解出即可.解答:解:设一段为x,则另一段为2x﹣5,由题意得,x+2x﹣5=100,解得:x=35,2x﹣5=65.故选A.点评:本题考查了一元一次方程的应用,解答本题的关键是设出未知数,根据总长为100cm 得出方程,难度一般.4.(4分)(2013•淄博)下面关于正六棱柱的视图(主视图、左视图、俯视图)中,画法错误的是()A.B.C.D.考点:简单组合体的三视图.分析:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.解答:解:从上面看易得俯视图为:,从左面看易得左视图为:,从正面看主视图为:,故选A.点评:本题考查了几何体的三视图,解答本题的关键是掌握三视图的观察方向.5.(4分)(2013•淄博)如果分式的值为0,则x的值是()A.1B.0C.﹣1 D.±1考点:分式的值为零的条件.分析:根据分式的值为零的条件可以求出x的值.解答:解:由分式的值为零的条件得x2﹣1=0,2x+2≠0,由x2﹣1=0,得x=±1,由2x+2≠0,得x≠﹣1,综上,得x=1.故选A.点评:本题考查了分式的值为零的条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.6.(4分)(2013•淄博)如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78°B.75°C.60°D.45°考点:翻折变换(折叠问题);菱形的性质.专题:计算题.分析:连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.解答:解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°﹣(∠CDE+∠C)=75°.故选B.点评:此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及内角和定理,熟练掌握折叠的性质是解本题的关键.7.(4分)(2013•淄博)如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB 绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为()A.(,)B.(2,2)C.(,2)D.(2,)考点:二次函数综合题.专题:综合题.分析:首先根据点A在抛物线y=ax2上求得抛物线的解析式和线段OB的长,从而求得点D 的坐标,根据点P的纵坐标和点D的纵坐标相等得到点P的坐标即可;解答:解:∵Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,∴4=a×(﹣2)2,解得:a=1∴解析式为y=x2,∵Rt△OAB的顶点A(﹣2,4),∴OB=OD=2,∵Rt△OAB绕点O顺时针旋转90°,得到△OCD,∴CD∥x轴,∴点D和点P的纵坐标均为2,∴令y=2,得2=x2,解得:x=±,∵点P在第一象限,∴点P的坐标为:(,2)故选:C.点评:本题考查了二次函数的综合知识,解题过程中首先求得直线的解析式,然后再求得点D的纵坐标,利用点P的纵坐标与点D的纵坐标相等代入函数的解析式求解即可.8.(4分)(2013•淄博)如图,直角梯形ABCD中,AB∥CD,∠C=90°,∠BDA=90°,AB=a,BD=b,CD=c,BC=d,AD=e,则下列等式成立的是()A.b2=ac B.b2=ce C.b e=ac D.b d=ae考点:相似三角形的判定与性质;直角梯形.分析:根据∠CDB=∠DBA,∠C=∠BDA=90°,可判定△CDB∽△DBA,利用对应边成比例,即可判断各选项.解答:解:∵CD∥AB,∴∠CDB=∠DBA,又∵∠C=∠BDA=90°,∴△CDB∽△DBA,∴==,即==,A、b2=ac,成立,故本选项正确;B、b2=ac,不是b2=ce,故本选项错误;C、be=ad,不是be=ac,故本选项错误;D、bd=ac,不是bd=ae,故本选项错误.故选A.点评:本题考查了相似三角形的判定与性质,解答本题的关键是判断△CDB∽△DBA,注意掌握相似三角形的对应边成比例.9.(4分)(2013•淄博)如图,矩形AOBC的面积为4,反比例函数的图象的一支经过矩形对角线的交点P,则该反比例函数的解析式是()A.B.C.D.考点:反比例函数系数k的几何意义.专题:计算题.分析:作PE⊥x轴,PF⊥y轴,根据矩形的性质得矩形OEPF的面积=矩形AOBC的面积=×4=1,然后根据反比例函数y=(k≠0)系数k的几何意义即可得到k=1.解答:解:作PE⊥x轴,PF⊥y轴,如图,∵点P为矩形AOBC对角线的交点,∴矩形OEPF的面积=矩形AOBC的面积=×4=1,∴|k|=1,而k>0,∴k=1,∴过P点的反比例函数的解析式为y=.故选C.点评:本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.10.(4分)(2013•淄博)如果m是任意实数,则点P(m﹣4,m+1)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:求出点P的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.解答:解:∵(m+1)﹣(m﹣4)=m+1﹣m+4=5,∴点P的纵坐标一定大于横坐标,∵第四象限的点的横坐标是正数,纵坐标是负数,∴第四象限的点的横坐标一定大于纵坐标,∴点P一定不在第四象限.故选D.点评:本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).11.(4分)(2013•淄博)假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雌鸟的概率是()A.B.C.D.考点:列表法与树状图法.专题:计算题.分析:画树状图得出所有等可能的情况数,找出恰有两只雌鸟的情况数,即可求出所求的概率.解答:解:画树状图,如图所示:所有等可能的情况数有8种,其中三只雏鸟中恰有两只雌鸟的情况数有3种,则P=.故选B.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.12.(4分)(2013•淄博)如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=10,则PQ的长为()A.B.C.3D.4考点:三角形中位线定理;等腰三角形的判定与性质.分析:首先判断△BAE、△CAD是等腰三角形,从而得出BA=BE,CA=CD,由△ABC的周长为26,及BC=10,可得DE=6,利用中位线定理可求出PQ.解答:解:∵BQ平分∠ABC,BQ⊥AE,∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴点Q是AE中点,点P是AD中点(三线合一),∴PQ是△ADE的中位线,∵BE+CD=AB+AC=26﹣BC=26﹣10=16,∴DE=BE+CD﹣BC=6,∴PQ=DE=3.故选C.点评:本题考查了三角形的中位线定理,解答本题的关键是判断出△BAE、△CAD是等腰三角形,利用等腰三角形的性质确定PQ是△ADE的中位线.二、填空题:本题共5小题,满分20分.只要求填写最后结果,每小题填对得4分.13.(4分)(2013•淄博)当实数a<0时,6+a<6﹣a(填“<”或“>”).考点:不等式的性质.分析:a<0时,则a<﹣a,在不等式两边同时加上6即可得到.解答:解:∵a<0,∴a<﹣a,在不等式两边同时加上6,得:6+a<6﹣a.故答案是:<.点评:本题考查了不等式的基本性质,理解6+a<6﹣a是如何变化得到的是关键.14.(4分)(2013•淄博)请写出一个概率小于的随机事件:掷一个骰子,向上一面的点数为2.考点:概率公式.专题:开放型.分析:根据概率公式P(A)=,再结合本题题意,写出符合要求的事件即可,答案不唯一.解答:解:根据题意得:概率小于的随机事件如:掷一个骰子,向上一面的点数为2;故答案为:掷一个骰子,向上一面的点数为2.点评:此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.(4分)(2013•淄博)在△ABC中,P是AB上的动点(P异于A,B),过点P的一条直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线.如图,∠A=36°,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC的相似线最多有3条.考点:相似三角形的判定;线段垂直平分线的性质.专题:新定义.分析:根据相似三角形的判定方法分别利用平行线以及垂直平分线的性质得出对应角相等即可得出.解答:解:当PD∥BC时,△APD∽△ABC,当PE∥AC时,△BPE∽△BAC,连接PC,∵∠A=36°,AB=AC,点P在AC的垂直平分线上,∴AP=PC,∠ABC=∠ACB=72°,∴∠ACP=∠PAC=36°,∴∠PCB=36°,∴∠B=∠B,∠PCB=∠A,∴△CPB∽△ACB,故过点P的△ABC的相似线最多有3条.故答案为:3.点评:此题主要考查了相似三角形的判定,正确掌握相似三角形的判定方法作出辅助线是解题关键.16.(4分)(2013•淄博)如图,AB是⊙O的直径,,AB=5,BD=4,则sin∠ECB=.考点:相似三角形的判定与性质;圆周角定理;锐角三角函数的定义分析:连接AD,在Rt△ABD中利用勾股定理求出AD,证明△DAC∽△DBA,利用对应边成比例的知识,可求出CD、AC,继而根据sin∠ECB=sin∠DCA=即可得出答案.解答:解:连接AD,则∠ADB=90°,在Rt△ABD中,AB=5,BD=4,则AD==3,∵,∴∠DAC=∠DBA,∴△DAC∽△DBA,∴==,∴CD=,∴AC==,∴sin∠ECB=sin∠DCA==.故答案为:.点评:本题考查了相似三角形的判定与性质,解答本题的关键是作出辅助线,证明△DAC∽△DBA,求出CD、AD的长度,难度一般.17.(4分)(2013•淄博)如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2013个格子中的整数是﹣2.﹣4 a b c 6 b ﹣2 …考点:规律型:数字的变化类.分析:根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是﹣2可得b=﹣2,然后找出格子中的数每3个为一个循环组依次循环,在用2013除以3,根据余数的情况确定与第几个数相同即可得解.解答:解:∵任意三个相邻格子中所填整数之和都相等,∴﹣4+a+b=a+b+c,解得c=﹣4,a+b+c=b+c+6,解得a=6,所以,数据从左到右依次为﹣4、6、b、﹣4、6、b,第9个数与第三个数相同,即b=﹣2,所以,每3个数“﹣4、6、﹣2”为一个循环组依次循环,∵2013÷3=671,∴第2013个格子中的整数与第3个格子中的数相同,为﹣2.故答案为:﹣2.点评:此题主要考查了数字变化规律,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.三、解答题:本大题共7小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤.18.(5分)(2013•淄博)解方程组.考点:解二元一次方程组.专题:计算题.分析:先用加减消元法求出y的值,再用代入消元法求出x的值即可.解答:解:,①﹣2×②得,﹣7y=7,解得y=﹣1;把y=﹣1代入②得,x+2×(﹣1)=﹣2,解得x=0,故此方程组的解为:.点评:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.19.(5分)(2013•淄博)如图,AD∥BC,BD平分∠ABC.求证:AB=AD.考点:等腰三角形的判定与性质;平行线的性质.专题:证明题.分析:根据AD∥BC,可求证∠ADB=∠DBC,利用BD平分∠ABC和等量代换可求证∠ABD=∠ADB,然后即可得出结论.解答:证明:∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD.点评:此题主要考查学生对等腰三角形的判定与性质和平行线性质的理解和掌握,此题很简单,属于基础题.20.(8分)(2013•淄博)某中学积极开展跳绳活动,体育委员统计了全班同学1分钟跳绳的次数,并列出了频数分布表:次数60≤x<80 80≤x<100 100≤x<120 120≤x<140 140≤x<160 160≤x<180频数 5 6 14 9 4(1)跳绳次数x在120≤x<140范围的同学占全班同学的20%,在答题卡中完成上表;(2)画出适当的统计图,表示上面的信息.考点:频数(率)分布表;频数(率)分布直方图.分析:(1)根据跳绳次数x在120≤x<140范围的同学占全班同学的20%,求出总人数,再用总人数减去各段的频数,即可求出在140≤x<160的频数;(2)根据表中提供的数据,从而画出直方图即可.解答:解:(1)∵跳绳次数x在120≤x<140范围的同学占全班同学的20%,∴总人数是9÷20%=45(人),∴在140≤x<160的频数是:45﹣5﹣6﹣14﹣9﹣4=7(人),补表如下:次数60≤x<80 80≤x<100 100≤x<120 120≤x<140 140≤x<160 160≤x<180 频数 5 6 14 9 7 4(2)根据表中的数据,补图如下:点评:此题考查了频率分布直方图,解题的关键是根据频数、频率之间的关系,求出总人数,要能从统计表中获得有关信息,列出算式.21.(8分)(2013•淄博)关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求的值.考点:根的判别式;解一元二次方程-公式法分析:(1)根据一元二次方程的定义和根的判别式得到△=64﹣4×(a﹣6)×9≥0且a﹣6≠0,解得a≤且a≠6,然后在次范围内找出最大的整数;(2)①把a的值代入方程得到x2﹣8x+9=0,然后利用求根公式法求解;②由于x2﹣8x+9=0则x2﹣8x=﹣9,然后把x2﹣8x=﹣9整体代入所求的代数式中得到原式=2x2﹣=2x2﹣16x+,再变形得到2(x2﹣8x)+,再利用整体思想计算即可.解答:解:(1)根据题意△=64﹣4×(a﹣6)×9≥0且a﹣6≠0,解得a≤且a≠6,所以a的最大整数值为7;(2)①当a=7时,原方程变形为x2﹣8x+9=0,△=64﹣4×9=28,∴x=,∴x1=4+,x2=4﹣;②∵x2﹣8x+9=0,∴x2﹣8x=﹣9,所以原式=2x2﹣=2x2﹣16x+=2(x2﹣8x)+=2×(﹣9)+=﹣.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义和解法以及整体思想.22.(8分)(2013•淄博)分别以▱ABCD(∠CDA≠90°)的三边AB,CD,DA为斜边作等腰直角三角形,△ABE,△CDG,△ADF.(1)如图1,当三个等腰直角三角形都在该平行四边形外部时,连接GF,EF.请判断GF 与EF的关系(只写结论,不需证明);(2)如图2,当三个等腰直角三角形都在该平行四边形内部时,连接GF,EF,(1)中结论还成立吗?若成立,给出证明;若不成立,说明理由.考点:平行四边形的性质;全等三角形的判定与性质;等腰直角三角形分析:(1)根据等腰直角三角形的性质以及平行四边形的性质得出∠FDG=∠EAF,进而得出△EAF≌△GDF即可得出答案;(2)根据等腰直角三角形的性质以及平行四边形的性质得出∠FDG=∠EAF,进而得出△EAF≌△GDF即可得出答案.解答:解:(1)∵四边形ABCD是平行四边形,∴AB=CD,∠DAB+∠ADC=180°,∵△ABE,△CDG,△ADF都是等腰直角三角形,∴DG=CG=AE=BE,DF=AF,∠CDG=∠ADF=∠BAE=45°,∴∠GDF=∠GDC+∠CDA+∠ADF=90°+∠CDA,∠EAF=360°﹣∠BAE﹣∠DAF﹣∠BAD=270°﹣(180°﹣∠CDA)=90°+∠CDA,∴∠FDG=∠EAF,∵在△EAF和△GDF中,,∴△EAF≌△GDF(SAS),∴EF=FG,∠EFA=∠DFG,即∠GFD+∠GFA=∠EFA+∠GFA,∴∠GFE=90°,∴GF⊥EF;(2)GF⊥EF,GF=EF成立;理由:∵四边形ABCD是平行四边形,∴AB=CD,∠DAB+∠ADC=180°,∵△ABE,△CDG,△ADF都是等腰直角三角形,∴DG=CG=AE=BE,DF=AF,∠CDG=∠ADF=∠BAE=45°,∴∠BAE+∠FDA+∠EAF+∠ADF+∠FDC=180°,∴∠EAF+∠CDF=45°,∵∠CDF+∠GDF=45°,∴∠FDG=∠EAF,∵在△EAF和△GDF中,,∴△EAF≌△GDF(SAS),∴EF=FG,∠EFA=∠DFG,即∠GFD+∠GFA=∠EFA+∠GFA,∴∠GFE=90°,∴GF⊥EF.点评:此题主要考查了平行四边形的性质以及全等三角形的判定与性质和等腰直角三角形的性质等知识,根据已知得出△EAF≌△GDF是解题关键.23.(9分)(2013•淄博)△ABC是等边三角形,点A与点D的坐标分别是A(4,0),D (10,0).(1)如图1,当点C与点O重合时,求直线BD的解析式;(2)如图2,点C从点O沿y轴向下移动,当以点B为圆心,AB为半径的⊙B与y轴相切(切点为C)时,求点B的坐标;(3)如图3,点C从点O沿y轴向下移动,当点C的坐标为C(0,)时,求∠ODB 的正切值.考点:一次函数综合题.分析:(1)先根据等边三角形的性质求出B点的坐标,直接运用待定系数法就可以求出直线BD的解析式;(2)作BE⊥x轴于E,就可以得出∠AEB=90°,由圆的切线的性质就可以而出B的纵坐标,由直角三角形的性质就可以求出B点的横坐标,从而得出结论;(3)以点B为圆心,AB为半径作⊙B,交y轴于点C、E,过点B作BF⊥CE于F,连接AE.根据等边三角形的性质圆心角与圆周角之间的关系及勾股定理就可以点B 的坐标,作BQ⊥x轴于点Q,根据正切值的意义就可以求出结论.解答:解:(1)∵A(4,0),∴OA=4,∴等边三角形ABC的高就为2,∴B(2,﹣2).设直线BD的解析式为y=kx+b,由题意,得,解得:,∴直线BD的解析式为:y=x﹣;(2)作BE⊥x轴于E,∴∠AEB=90°.∵以AB为半径的⊙S与y轴相切于点C,∴BC⊥y轴.∴∠OCB=90°∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACO=30°,∴AC=2OA.∵A(4,0),∴OA=4,∴AC=8,∴由勾股定理得:OC=4.作BE⊥x轴于E,∴AE=4,∴OE=8,∴B(8,﹣4);(3)如图3,以点B为圆心,AB为半径作⊙B,交y轴于点C、E,过点B作BF⊥CE 于F,连接AE.∵△ABC是等边三角形,∴AC=BC=AB,∠ABC=∠ACB=∠BAC=60°,∴∠OEA=∠ABC=30°,∴AE=2OA.∵A(4,0),∴OA=4,∴AE=8.在Rt△AOE中,由勾股定理,得OE=4.∵C(0,),∴OC=2,在Rt△AOC中,由勾股定理,得AC=2.∵CE=OE﹣OC=4=2.∵BF⊥CE,∴CF=CE=,∴OF=2+=3.在Rt△CFB中,由勾股定理,得BF2=BC2﹣CF2,=28﹣﹣3=25,∴BF=5,∴B(5,﹣3).过点B作BQ⊥x轴于点Q,∴BQ=3,OQ=5,∴DQ=5,∴tan∠ODB==.点评:本题考查了等边三角形的性质的运用,勾股定理的运用,待定系数法求一次函数的解析式的运用,圆周角与圆心角的关系定理的运用,切线的性质的运用及直角三角形的性质的运用,解答时灵活运用勾股定理求线段的值是关键.24.(9分)(2013•淄博)矩形纸片ABCD中,AB=5,AD=4.(1)如图1,四边形MNEF是在矩形纸片ABCD中裁剪出的一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是多少?说明理由;(2)请用矩形纸片ABCD剪拼成一个面积最大的正方形.要求:在图2的矩形ABCD中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).考点:四边形综合题.分析:(1)设AM=x(0≤x≤4)则MD=4﹣x,根据正方形的性质就可以得出Rt△ANM≌Rt△DMF.根据正方形的面积就可以表示出解析式,由二次函数的性质就可以求出其最值;(2)先将矩形纸片分割成4个全等的直角三角形和两个矩形如图,根据赵爽弦图的构图方法就可以拼成正方形.解答:解:(1)正方形的最大面积是16.设AM=x(0≤x≤4),则MD=4﹣x.∵四边形MNEF是正方形,∴MN=MF,∠AMN+∠FMD=90°.∵∠AMN+∠ANM=90°,∴∠ANM=∠FMD.∵在△ANM和△DMF中,∴△ANM≌△DMF(AAS).∴DM=AN.∴S正方形MNEF=MN2=AM2+AN2,=x2+(4﹣x)2,=2(x﹣2)2+8∵函数S正方形MNEF=2(x﹣2)2+8的开口向上,对称轴是x=2,在对称轴的左侧S随x的增大而减小,在对称轴的右侧S随x的增大而增大,∵0≤x≤4,∴当x=0或x=4时,正方形MNEF的面积最大.最大值是16.(2)先将矩形纸片ABCD分割成4个全等的直角三角形和两个矩形如图1,然后拼成如图2的正方形.点评:本题考查了全等三角形的判定及性质的运用,勾股定理的运用,二次函数的解析式的运用,拼图的运用,在解答本题时由正方形的性质建立二次函数是求最值的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年山东淄博中考数学试题(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共45分)一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项涂在答题卡的相应位置上.第1~3小题每题3分,第4~12小题每题4分,错选、不选或选出的答案超过一个,均记零分. 1.和数轴上的点一一对应的是【 】(A )整数 (B )有理数 (C )无理数 (D )实数【答案】D 。
解析:本题考查的是数轴与实数的一一对应的关系。
2.要调查下面的问题,适合做全面调查的是【 】(A )某班同学“立定跳远”的成绩 (B )某水库中鱼的种类 (C )某鞋厂生产的鞋底承受的弯折次数 (D )某型号节能灯的使用寿命 【答案】A 。
解析:本题考查的是全面调查的适用情况。
3.下列命题为假命题的是【 】(A )三角形三个内角的和等于180° (B )三角形两边之和大于第三边(C )三角形两边的平方和等于第三边的平方(D )三角形的面积等于一条边的长与该边上的高的乘积的一半 【答案】C 。
解析:本题考查的是三角形的内角和定理、三角形的三边关系定理、勾股定理、三角形的面积计算公式。
4.若a b >,则下列不等式不一定成立的是【 】(A )a m b m +>+ (B )22a(m 1)b(m 1)+>+ (C )a b22-<- (D )22a b >【答案】D 。
解析:本题考查的是不等式的性质定理。
A a m b m +>+ 应用的是不等式的性质定理1,(B )22a(m 1)b(m 1)+>+ 应用的是不等式的性质定理2,(C )a b22-<-应用的是不等式的性质定理3,(D )22a b >分情况讨论,a ,b 同为正数成立,若同为负数或一正一负则不成立。
5.已知一等腰三角形的腰长为5,底边长为4,底角为β.满足下列条件的三角形不一定与已知三角形全等的是【 】(A )两条边长分别为4,5,它们的夹角为β (B )两个角是β,它们的夹边为4 (C )三条边长分别是4,5,5 (D )两条边长是5,一个角是β 【答案】D 。
63,4,任意抽取一张,所(A )19(D )23【答案】B 。
7.化简222a 1a 1a a a 2a 1+-÷--+(A )1a(B )a(C )1a - (D )11a a -+ 【答案】A 。
解析:本题考查的是分式的除法、多项式的分解因式。
8.如图,OA ⊥OB ,等腰直角三角形CDE 的腰CD 在OB 上,∠ECD =45°,将三角形CDE 绕点C 逆时针旋转75°,点E 的对应点N 恰好落在OA 上,则OCCD的值为【 】(A )12(B )13 (C(D【答案】C 。
解析:本题考查的是直角三角形300所对的直角边是斜边的一半、三角形的旋转的性质定理、勾股定理的应用。
由旋转可知∠NCE =75°,因为∠ECD =45°∠ECD +∠NCE +∠NCO =180°所以,∠NCO =60°,所以∠CNO =30°,所以OC =21CN ,因为三角形CDE 等腰直角三角形,所以CD =22CE ,又因为CN =CE ,所以OCCD CE CN2221==2。
9.如图,⊙O 的半径为2,弦AB=点C 在弦AB 上,B 1A ,则OC 的长为【】(A(D 【答案】D 。
O 作OD 垂直AB ,垂足为D ,在直角三角形OBD 中,利用勾股定理可得,OD =1,在直角三角形OCD 中,利用勾股定理可得,OC10.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计在2012—2013赛季全部32场比赛中最少得到48分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜x 场,要达到目标,x 应满足的关系式是【 】(A )2x (32x)+-≥48 (B )2x (32x)--≥48 (C )2x (32x)+-≤48(D )2x ≥48【答案】A 。
解析:本题考查的是一元一次不等式组解决应用题。
11.如图,将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形,且它的一条直角边等于斜边的一半.这样的图形有【】(A)4个(B)3个(C)2个(D)1个【答案】C。
解析:本题考查的是折叠中线段相等的应用,图(2)、(4)能够得到一个直角三角形,且它的一条直角边等于斜边的一半.12.骰子是6个面上分别写有数字1,2,3,4,5,6的小立方体,它任意两对面上所写的两个数字之和为7.将这样相同的几个骰子按照相接触的两个面上的数字的积为6摆成一个几何体,这个几何体的三视图如图所示.已知图中所标注的是部分面上的数字,则“※”所代表的数是【】(A)2 (B)4 (C)5 (D)6【答案】C。
解析:本题考查的是实际操作的找规律的应用。
第Ⅱ卷(非选择题共75分)二、填空题:本题共5小题,满分20分.只要求填写最后结果,每小题填对得4分.13= ▲ .【答案】解析:本题考查的是二次根式的化简及二次根式的减法计算。
14.如图,AB∥CD,CE交AB于点E,EF平分∠BEC,交CD于F.若∠ECF=40°,则∠CFE= ▲ 度.【答案】70。
解析:本题考查的是平行线的性质定理、角平分线的定义。
15.关于x,y的二元一次方程组x y1mx3y53m+=-⎧⎨-=+⎩中,m与方程组的解中的x或y相等,则m的值为▲ .【答案】2或12 -。
解析:本题考查的是一元一次方程组的解法、一元一次方程得解法。
16.如图,AB,CD是⊙O的弦,AB⊥CD,BE是⊙O的直径.若AC=3,则DE= ▲ .【答案】3。
解析:本题考查的是垂径定理、圆周角定理、三角形相似的判定。
17.一个三位数,其各位上的三个数字的平方和等于其中两个数字乘积的2倍,请写出符合上述条件的一个三位数▲ .【答案】101。
解析:本题考查的是一元二次方程解决实际问题,解一元二次方程。
三、解答题:本大题共7小题,共55分.解答要写出必要的文字说明、证明过程或演算步骤.18.解方程:x22x11x+=--.【答案】解:去分母,得()x22x1-=-,去括号,得x22x2-=-,移项,合并同类项,得x 0-=, 化x 的系数为1,得x 0=。
经检验,x 0=是原方程的根。
∴原方程的解为x 0=。
解析:本题考查的是分式方程的解法。
19.如图,在□ABCD 中,点E ,F 分别在BC ,AD 上,且AF =CE .求证:四边形AECF 是平行四边形.【答案】证明:∵四边形ABCD 是平行四边形,∴AD ∥BC 。
∴AF ∥CE 。
又∵AF =CE ,∴四边形AECF 是平行四边形。
解析:本题考查的是平四边形的性质定理及判定定理。
20.截止到2012年5月31日,“中国飞人”刘翔在国际男子110米栏比赛中,共7次突破13秒关卡.成绩分别是(单位:秒):12.97 12.87 12.91 12.88 12.93 12.92 12.95 (1)求这7个成绩的中位数、极差;(2)求这7个成绩的平均数(精确到0.01秒).【答案】解:(1)∵将7次个成绩从小到大排列为:12.87,12.88,12.91,12.92,12.93,12.95,12.97,∴这7个成绩的中位数12.92秒;极差为12.97-12.87=0.1(秒)。
(2)这7个成绩的平均数为112.8712.8812.9112.9212.9312.9512.9712.927≈(++++++)(秒)。
解析:本题考查的是数据的中位数、极差、平均数的计算。
21.已知:抛物线21y (x 1)4=-+.(1)写出抛物线的对称轴;(2)完成下表;(3)在下面的坐标系中描点画出抛物线的图象.解析:本题考查的是二次函数的对称轴、点的坐标的计算及图像的画法。
22.一元二次方程25x 2x 04--=的某个根,也是一元二次方程29x (k 2)x 04-++=的根,求k 的值.【答案】解:解25x 2x 04--=得1215x =x =22-,。
把1x=2代入29x (k 2)x 04-++=得2119(k 2)0224⎛⎫-++= ⎪⎝⎭,解得k =8。
把5x=2-代入29x (k 2)x 04-++=得2559(k 2)0224⎛⎫-+++= ⎪⎝⎭,解得k = 275-。
∴k 的值为8或275-。
解析:本题考查的是一元二次方程的解法。
23.在矩形ABCD 中,BC =4,BG 与对角线AC 垂直且分别交AC ,AD 及射线CD 于点E ,F ,G ,AB =x .(1)当点G 与点D 重合时,求x 的值;(2)当点F 为AD 中点时,求x 的值及∠ECF 的正弦值.【答案】解:(1)当点G 与点D 重合时,点F 也与点D 重合。
∵矩形ABCD 中,AC ⊥BD ,∴四边形ABCD 是正方形。
∵BC =4,∴x = AB = BC =4。
(2)∵点F 为AD 中点,BC =4,∴AF =2。
∵矩形ABCD 中,AD ∥BC ,∴△AEF ∽△BEB 。
∴AE FE AF 21CE BD CB 42====。
∴CE=2AE BD=2FE ,。
∴AC=3AE BF=3FE ,。
∵矩形ABCD 中,∠ABC =∠BAF =900,∴在Rt △ABC 和Rt △BAF 中由勾股定理得222222AC =AB +BC BF =AF +AB ,,即()()2222223AE =x +43FE =2+x ,。
两式相加,得()2229AE +FE =2x +20。
又∵AC ⊥BG ,∴在Rt △ABE 中,2222AE +FE =AB =x 。
∴229x =2x +20,解得 ∴222212013212048132528AE =+16=FE =4+=CE =4AE =4=976397636363⎛⎫⎛⎫⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭ ,,。
∴在Rt △CEF 中由勾股定理得22248528576CF =FE +CE =+636363=。
∴(24.如图,正方形AOCB3,4).(1(2b +过点D ,与线段AB 相交于点F ,求点F 的坐标;(3)连接OF ,OE ,探究∠AOF 与∠EOC 的数量关系,并证明.【答案】解:(1)设反比例函数的解析式k y x=, ∵反比例函数的图象过点E (3,4),∴k43=,即k=12。
∴反比例函数的解析式12y x=。
(2)∵正方形AOCB 的边长为4, ∴点D 的横坐标为4,点F 的纵坐标为4。