地质雷达技术应用.ppt

合集下载

地质雷达技术讲解(课件)

地质雷达技术讲解(课件)
Page 27
数据处理 地震波却恰好相反;地质雷达的穿透深度比地震波要浅得
多。所以单一地移植、借鉴地震资料处理技术是不够的。 通常我们得到的雷达数据是原始数据,为了更容易的识别 目标体和得到更清晰的反射信号,还需要对雷达原始数据 进行进一步的后处理。这里以瑞典 MALA 公司的 Ground Vision采集处理软件为例,简要说明数据处理的过程。
隧道检测
Page 11
准备工作
初支或二衬壁上每5m做一标记(红点或红竖杠),每20m 做一里程标记(如DK123+880);
搭设检测台架,可以以3-10km/h速度移动,台架上要能站 立2人且有护栏,站在台架上的人员要能触摸到拱顶和拱 腰位置;
配备了解现场情况的工程技术人员2人,司机1人,安全防 护人员1人,配合检测工人4人;
Page 8
地质雷达应用领域
市政设施及管线探测
铁路工程探测
公路探测
建筑结构、桥梁、隧道检测
Page 9
地质与环境探测 考古探测
军事安全探测
Page 10
隧道检测
隧道探测要解决的主要问题 隧道衬砌厚度检查 隧道内部结构物检查—钢筋、钢拱架等 隧道衬砌混凝土质量检查 隧道衬砌混凝土密实度检查 隧道衬砌防水板检查 隧道超前预报
Page 16
现场采集 7.安全要求: 测量拱顶和拱腰位置时,工作人员和天线都要用安全带或
绳索与周边物体进行固定,防止工人高空作业时发生危险 和天线滑落摔坏。 8.地面要求: 地面平坦,无杂物、无影响车辆通行的障碍物。
Page 17
衬砌检测报检单
Page 18
衬砌检测报检单
Page 19
2.检测原理及方法; 3.检测里程汇总; 4.问题缺陷汇总表; 5.结论及建议; 6.附表--检测厚度汇总表; 7.附图--厚度检测曲线图、雷达检测图像。

第三讲(地质雷达)

第三讲(地质雷达)
地质雷达由发射部分和接收部分组成。 地质雷达由发射部分和接收部分组成。发射部分由 发射部分 组成 产生高频脉冲波的发射机和向外辐射电磁波的天线(Tx) 产生高频脉冲波的发射机和向外辐射电磁波的天线 组成。通过发射天线电磁波以 ° 组成。通过发射天线电磁波以60°~90°的波束角向地 ° 下发射电磁波,电磁波在传播途中遇到电性分界面产生 下发射电磁波, 反射。反射波被设置在某一固定位置的接收天线( 反射。反射波被设置在某一固定位置的接收天线(Rx )接收,与此同时接收天线还接收到沿岩层表层传播的 接收, 直达波, 直达波,反射波和直达波同时被接收机记录或在终端将 两种显示出来。 两种显示出来。
100MHz
200MHz
400MHz
2009.10
中国矿业大学。 中国矿业大学。地球探测与信息技术
2.1
SIR雷达介绍 SIR雷达介绍
900MHz
1200MHz
2009.10
中国矿业大学。 中国矿业大学。地球探测与信息技术
2.1
SIR雷达介绍 SIR雷达介绍
2009.10
中国矿业大学。 中国矿业大学。地球探测与信息技术
2009.10
中国矿业大学。 中国矿业大学。地球探测与信息技术
2.1
SIR雷达介绍 SIR雷达介绍
SIR-20高速高精度多通道透视雷达 高速高精度多通道透视雷达
SIR-3000便携式透地雷达 便携式透地雷达
2009.10
中国矿业大学。 中国矿业大学。地球探测与信息技术
2.1
SIR雷达介绍 SIR雷达介绍
2009.10
中国矿业大学。 中国矿业大学。地球探测与信息技术
对地下雷达探测目标的解释,离不开必要的地 质理论和地质工程知识,更确切地说,探测地下 目标的雷达系统应称为“地质雷达系统 ”(Geologic radar system)。

地质雷达原理及应用PPT课件

地质雷达原理及应用PPT课件
适应性强
地质雷达可以在各种复杂的环 境下进行探测,如山地、河流
、城市等。
地质雷达的缺点
成本较高
地质雷达设备成本较高,对于一些小 型项目来说可能不太经济。
对操作员要求高
地质雷达的操作需要专业人员进行, 对于普通人员来说可能需要较长时间 的学习和培训。
受环境影响较大
地质雷达的探测效果受到环境因素的 影响较大,如土壤湿度、电磁噪声等。
时域和频域分析等处理。
数据处理软件还具有地图显示 功能,可将探测结果以图像形 式展示,方便用户分析和解释

04
地质雷达应用实例
地下管线探测
总结词
利用地质雷达的高频电磁波探测地下管线的位置和深度,提高城市规划和建设 的安全性。
详细描述
通过向地下发射高频电磁波,并接收反射回来的信号,地质雷达能够准确测定 地下管线的位置和埋深,为城市地下管线的规划、建设和维护提供重要依据。
THANK YOU
感谢聆听
数据处理复杂
地质雷达获取的数据量较大,需要进 行复杂的数据处理和分析,对于数据 处理技术要求较高。
地质雷达的发展趋势
技术升级
数据处理智能化
随着科技的不断发展,地质雷达的技术也 在不断升级,未来将会有更高效、更精确 的探测技术出现。
随着人工智能技术的发展,未来地质雷达 的数据处理将更加智能化,能够自动识别 和提取地下物体的信息。
详细描述
地质雷达能够快速、准确地监测地质灾害的发生和发展,如滑坡、泥石流等,为 灾害预警和应急救援提供及时、准确的信息,有效降低灾害造成的损失。
矿产资源勘探
总结词
利用地质雷达的高分辨率探测矿产资源的分布和储量,为矿 产资源的合理开发和利用提供科学依据。

地质雷达课件(内部参考)

地质雷达课件(内部参考)

第一讲地质雷达的应用领域探地雷达(Ground Penetrating Radar,简称GPR),又称地质雷达,是近些年发展起来的高效的浅层地球物理探测新技术,它利用主频为数十兆赫至千兆赫兹波段的电磁波,以宽频带短脉冲的形式,由地面通过天线发射器发送至地下,经地下目的体或地层的界面反射后返回地面,为雷达天线接受器所接受,通过对所接受的雷达信号进行处理和图像解译,达到探测前方目的体的目的。

与传统的地球物理方法相比,探地雷达最大的优点就是具有快速便捷、探测精度高以及对原物体无破坏作用。

因此,探地雷达在道路建设和公路质量检测领域已逐渐被认识到并广泛应用起来。

地质雷达自上世纪80年代中期开始应用至今将近20年了,其应用领域逐渐扩大,在考古、建筑、铁路、公路、水利、电力、采矿、航空各领域都有重要的应用,解决场地勘查、线路选择、工程质量检测、病害诊断、超前预报、地质构造等问题。

1.1 工程场地勘察地质雷达最早用于工程场地勘查,解决松散层厚度分布,基岩风化层分布,以及节理带断裂带等问题。

有时也用于研究地下水分布,普查地下溶洞、人工洞室等。

在粘土补发育的地区,探查深度可达20m以上,效果很好。

1.2 埋设物与考古探察考古是地质雷达应较早的领域,在欧洲有成功的实例,如意大利罗马遗址考古、中国长江三峡库区考古等项目都应用了雷达技术。

利用雷达探测古建筑基础、地下洞室、金属物品等。

在现今城市改造中,有时也需要了解地下管网,如电力管线、热力管线、上下水管线、输气管线、通信电缆等,这对于地质雷实是很容易的。

目前地质雷达为地下管线探测发展了高分辨3D探测系统及软件,如PATHFINDER雷达、R I S-2K/S等雷达都可以胜任这类工作,不但可探测到水平位置分布,还可以确定其深度,得到三维分布图。

雷达考古雷达探测管道1.3 工程质量检测工程检测近年应用领域急速扩大,特别是在中国的重要工程项目中,质量检测广泛采用雷达技术。

铁路公路隧道衬砌、高速公路路面、机场跑道等工程结构普遍采用地质雷达检测。

地质雷达介绍ppt课件

地质雷达介绍ppt课件

g
e4r
满足Qs+Q>0的距离 ,称为探地雷达的探测距离,亦 即处在距离 r 范围内的目的体的反射信号可以为雷达 系统所探测。
26
1.2 探测距离
与选用的天线频率、地下介质的相对介电常数、电导率相关
对于铜、铁等良导电媒介质,其电导率σ很大,衰减常 数β也很大,因此,电磁波在良导电媒质中传播时,场 矢量的衰减很快,电磁波只能透入良导体表面的薄层内 (电磁波只能在导体以外的空间或电介质中传播),这 种现象称为趋肤效应。电磁波透入导体内的深度称为穿
6
1.电磁波在介质中的传播速度
探地雷达测量的是地下界面的反射波的走时,为了获取地 下界面的深度,必须要有介质的电磁波传播速度 v ,其值为
v [ ( 1 ( )2 1)]1/ 2
2
α为相位系数,σ为导电率(1/ρ),ε为介电系数, μ为磁导率
7
绝大多数岩石介质属非磁性、非导电介质,常常满
13
EKKO 系列 EKKO 100增强型
E K K O 1 0 0 0 型
Noggin 250型
14
SIR 系列
匹配天线
SIR3000型(最新)
15
美国GSSI自行生产的天线
3207型
Next
5103型
5100型
16
Radarteam定制的天线 Subecho 70型
屏蔽Subecho 200型 屏蔽天线900型
4
探地雷达工作原理示意图
发射天线
接收天线
直达波
目标体 反射波
5
• 超高频电磁波(10MHz-5000MHz) • 由于地下介质往往具有不同的物理特性,如介质的介电
性、导电性及导磁性差异,因而对电磁波具有不同的波 阻抗,进入地下的电磁波在穿过地下各地层或管线等目 标体时,由于界面两侧的波阻抗不同,电磁波在介质的 界面上会发生反射和折射,反射回地面的电磁波脉冲其 传播路径、电磁波场强度与波形将随所通过介质的电性 质及几何形态而变化,因此,从接收到的雷达反射回波 走时、幅度及波形资料,可以推断地下介质或管线的埋 深与类型。

地质雷达PPT演示课件

地质雷达PPT演示课件
将雷达子波的周期、持续时间长度和衰减 比三个参数作为子波的波组特征。
子波的频率成分与天线的主频相近,持续 一个半到两个周期,后续震相略有衰减。
12
3.2 地质雷达波组识别的三个要点
反射波的振幅和方向 反射波的频谱特性 反射波同相轴的形态特征
13
3.3 反射层波组的识别
识别反射波组的标志为同相性、相似性、 反射波形特征等。
地质雷达在各种复杂的施工环境中的广泛应用, 面临着各种干扰源的影响。如何去除这些干扰成 为摆在工程人员面前日益紧要的问题之一。
提高处理方法,减少问题的多解性,减少在处理 解释中对人员经验的依赖。尤其在资料的解释过 程中,如何识别不同特征波形对应的地下异常分 布成为提高探测成果质量的关键问题。
确定具有一定形态特征的反射波组是反射 层识别的基础,而反射波组的同相性与相 似性为反射层的追踪提供依据。
通过对比地质雷达反射波图像与钻探结果, 建立测区地层的反射波组特征。根据反射 波组的特征就可以在地质雷达反射波图像 剖面中拾取反射层。
14
3.4 典型目标体的波组特征
基岩的波组特征 地层界面的波组特征 地下管道的波组特征 水底地形的波组特征 第四系含水地层的波组特征 地下空洞的波组特征 地下埋藏物的波组特征
地质雷达数据处理、解释 及其在工程勘查中的应用
地球探测科学与技术学院 指导老师:田钢教授 答辩人:范秦军
1
主要内容
一 绪论 二 地质雷达数据处理方法 三 地质雷达资料的解释 四 地质雷达在工程勘查中的应用 五 结束语
2
一 绪论
地质雷达技术发展历史 问题的提出 本文主要工作
3
1.1 地质雷达技术发展历史
水域断裂调查 陆上工程勘查试验

地质雷达介绍PPT

地质雷达介绍PPT
9
2.电磁波在介质中的吸收特性 吸收系数β 决定了场强在传播过程中的衰减速率,探地雷达工作频率高, 在地下介质中以位移电流为主,即 / 1 ,这时β 的近似值为:


2

即 与导电率成正比,与介电常数的平方根成反比。在空气中,σ =0,则 β =0
当 / 1时(导电介质,传导电流为 主),
1
探地雷达具有以下技术特性,使其在许多领域尤其 是工程地质领域的得到广泛应用。
1.它是一种非破坏性探测技术,可以安全地用于城市和正 在建设中的工程现场,工作场地条件宽松,适应性强; 2.抗电磁干扰能力强,可在城市内各种噪声环境下工作, 环境干扰影响小; 3.具有工程上较满意的探测深度和分辨率,现场直接提供 实时剖面记录图,图像清晰直观; 4.便携微机控制数据采集、记录、存储和处理; 5.由于使用了高频率,电磁波能量在地下的衰减较强烈, 若在高导厚覆盖条件下,探测范围将受到限制。
5
探地雷达工作原理示意图
发射天线 接收天线 直达波
目标体 反射波
6
• 超高频电磁波(10MHz-5000MHz)
• 由于地下介质往往具有不同的物理特性,如介质的介电
性、导电性及导磁性差异,因而对电磁波具有不同的波 阻抗,进入地下的电磁波在穿过地下各地层或管线等目 标体时,由于界面两侧的波阻抗不同,电磁波在介质的 界面上会发生反射和折射,反射回地面的电磁波脉冲其
花岗岩 基性岩 辉长岩 石英 土壤粗砂(干) 卵石(湿) 砂(干) 砂(湿) 粉砂(干) 粉砂(湿) 粘土(湿) 耕作土(干) 耕作土(湿) 泥炭 淡水
电阻率( Ω · M)
7000-15000 7000-15000 10000-14000 5000-10000 20000-80000 1000-5000 5000-20000 200-1000 400-2000 30-200 15-30 1000-15000 200-1000 100-300 10000

地下工程监测与检测技术六地下工程中的地质雷达测试技术ppt课件

地下工程监测与检测技术六地下工程中的地质雷达测试技术ppt课件
测线布置一般应尽可能 与异常的走向垂直;同时测 线的间距应小于或等于目标 尺度与分辨率尺度,以防目 标漏测;对于一般的二度体, 可以布置一个方向的测线, 如需反映三度体的特性或做 成三维成像,应布置多条测 线或构成测网。
三.观测场地与环境记录
观测现场记录很重要,它是资料解释的基础。有些环境 干扰信号被记录下来,如电线杆、侧面墙要点是把那些可能产生反射干扰的地物都记录下来,注明它 们的性质、与测线的距离、位置关系等。
二.电磁波在介质中的传播规律
电磁波根据其波面的形状可以分为平面波、柱面波和球 面波,其中平面波是最基本、最具有电磁波普遍规律的电磁 波类型。
探地雷达所发射的的电磁波可经傅立叶变换换算一系列 的谐波,这些谐波近似为平面波,则探地雷达电磁波传播以 平面谐波的传播规律为基础。
在探地雷达应用中,通常比较关心电磁波的传播速度和衰减因子 。若介质为低损耗介质,此时,平面波的电场强度近似等于磁场强 度;大多数岩石介质为非磁性、非导电介质,此时电磁波的速度主 要取决于介质的介电常数;衰减常数与电导率成正比,与介电常数 的平方根成反比,电磁波能量的衰减主要是由于感生涡流损失引起 的。若介质为良导体,此时,随着电导率、磁导率增加,以及电磁 波频率升高,电磁波的衰减越快。波速与频率的平方根成正比,与 电导率的平方根成反比,波速是频率和电导率的函数。
地质雷达反射剖面示意图
一.麦克斯韦电磁场理论简介
E
.D


B t
.B 0

H

J

D t
麦克斯韦方程组表明,随着时间变化的磁场会产生时间变化的电 场,随着时间变化的电场又会产生随着时间变化的磁场。简言之, 就是变化的磁场和变化的电场相互激发,并且变化的磁场和变化的 电场以一定的速度向外传播,这就形成了电磁波。

地质雷达(grp)检测技术应用

地质雷达(grp)检测技术应用

地质雷达(GRP)检测技术应用XX公司一、前言随着铁路客运专线的陆续施工, 隧道工程以其改善线形、缩短里程和环境保护等无比的优越性和重要作用, 成为路客运专线建设工程结构的重要组成部分。

但隧道施工中因现有的施工方法及工艺、施工者的偷工减料以及检测控制、施工管理不到位等原因引发的质量通病, 一直是工程管理部门十分关注的问题。

地质雷达探测技术的广泛应用成为解决这一施工难题的有效手段。

地质雷达(GPR)是近十余年来迅速发展起来的一种无损伤高精度的物理探测技术, 在工程地质勘测、古遗址探测、地下埋设物探测和地下污染带划分等方面已得到较广泛应用。

在控制隧道施工时运用地质雷达进行隧道施工超前地质预报、支护结构的质量检测, 在指导隧道工程施工中, 对加强工程进度、质量和安全管理, 提高隧道施工技术水平方面发挥着巨大作用。

作为一种无损检测技术, 地质雷达(GPR)以其仪器较为轻便、检测快捷、操作方便、精度较高和检测结果能以图象方式实现实时显示等优点, 成为一种控制隧道施工质量的有效手段。

二、地质雷达(GPR)检测的原理地质雷达(GPR)是利用电磁波在传播过程中遇到电性界面会发生较强烈的散射原理, 通过向被测介质发生高频电磁宽带脉冲, 并接收由被测介质反射的回波信号, 通过对接收到的反射波进行分析即可推断被测体的情况。

电磁波在介质中传播时, 其路径、电磁强度与波形将随所通过介质的电性质及几何形态而变化。

仪器大体上可分为主机和天线两大部分组成。

主机由显示、控制和储存三部分构成;天线由发射和接收两部分构成。

发射部分由脉冲发生电路和发射天线构成, 产生并发射尖峰脉冲电磁波;接收部分由接收天线、高频放大电路和采样电路构成, 接收的高频信号经放大后, 由采样电路变换为低频信号, 然后送到处理电路;控制部分由基准同步信号发生器、采样控制器和信号处理器等部分组成。

接受到的信号在主机上可以显示、回放和储存, 以便作进一步数据处理和分析图1 地质雷达反射探测原理图发射天线发射的尖峰脉冲电磁波与其行进的速度有如下关系:V =c/√ε式中: v——电磁波在某一材料介质中传播的速度(m/ns);c——电磁波在真空中的传播速度, 等于光速(m/ns);ε——介质的相对介电常数, 无量纲。

地质雷达原理及应用PPT课件

地质雷达原理及应用PPT课件
19
Depth [m]
GPR工作方法 – 层析成像 (钻孔雷达)
2020/1/16
20
二、地下介质的电特性
2020/1/16
21
电特性
• 要探测的介质的电特性, 决定雷达方法是否适用。 • 在用雷达进行地质勘探时, 水是决定电特性的最主要的因素。
• 电导率 (穿透深度…)
• 相对介电常数 (对比度, 信号速度, “足印”…)
采集模式:测距轮(距离):最常用方式,结果解释准确可靠 时间:当无法沿确定测线探测时,如果GPS信号有, 可以采用。 键盘(点测):低频天线做深部探测采用,叠加可以很高
道:在地面上某一点采集的一个完整的波形 道间距/时间间隔:根据探测需要选取 天线中心频率:每个天线都有一个频率范围,它不是单频的
2020/1/16
[t]
35
采样频率:最好大于天线中心频率的10倍(一定不要小于6倍), 一般达到20倍就足够了,再增加采样频率信号也不会改善。
时间窗/样点数:时间窗根据你准备探测的深度确定,最好比你期望 的探测深度大30%。要增大时间窗,最好的办法是增加 样点数,尽量不要降低采样频率。
信号位置/直达波:一般把直达波的起始位置调到30个样点处(通常 自动搜索就够了,不行的话手动调整)
随着现代应用电子技术的高速发展和人们对电磁波认识进一 步加深,地质雷达的应用范围从低耗散介质扩展到土层、岩层、 混凝土等有耗散介质中,例如:地质勘查、考古、无损检测、管 线探测以及建筑结构调查等。
2020/1/16
2
2020/1/16
3
2020/1/16
非屏蔽天线可应用于:基岩 探测、地质分层、岩熔及空 洞探测、湖(河)底形态调查、 隧道超前探测、坝体深部探 测、古墓及其它未知物探测、 冰川调查、滑坡调查等土木 建筑、地质学及水文地质学 方面。

探地雷达技术与应用PPT课件

探地雷达技术与应用PPT课件
复杂环境下的干扰问题
在复杂地质、电磁环境下,探地雷达信号受到严 重干扰,影响探测效果。
3
数据处理与解释难题
大量探地雷达数据需要高效、准确的处理和解释 方法,以提取有用信息。
发展趋势与前沿动态
01
多频、宽频带探地雷达技术
通过采用多频、宽频带技术,提高探地雷达的探测能力和分辨率。
02
三维成像与可视化技术
探地雷达技术与 应用PPT课件
目 录
• 探地雷达技术概述 • 探地雷达技术应用领域 • 探地雷达数据处理与解释 • 探地雷达技术挑战与发展趋势 • 探地雷达技术应用案例
01
CATALOGUE
探地雷达技术概述
探地雷达基本原理
电磁波的发射与接收
探地雷达通过发射天线向地下发射高 频电磁波,当电磁波遇到不同电性介 质界面时,部分能量被反射回地面, 被接收天线接收。
边境安全监测
运用探地雷达对边境地区进行监测,发现非法越境、地道 等安全隐患,维护国家边境安全。
THANKS
感谢观看
历史建筑检测
运用探地雷达对历史建 筑的地基、墙体等结构 进行检测,评估建筑的 稳定性及安全性,为建 筑修缮提供依据。
军事与安全领域案例
战场环境感知
利用探地雷达对战场环境进行实时感知,获取地形地貌、 地下设施等信息,为作战指挥提供情报支持。
未爆弹药探测
通过探地雷达对战场遗留的未爆弹药进行探测和定位,降 低战争遗留问题对人员和环境的威胁。
20世纪中期,电磁波传播理论和信 号处理理论的不断完善为探地雷达 技术的发展提供了理论支持。
技术成熟阶段
20世纪后期至今,随着计算机技术 和电子技术的飞速发展,探地雷达 技术逐渐成熟并广泛应用于各个领 域。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

岩土介质雷达波谱特性
雷达目标波相识别的三项基本要 点3
要点3:反射波同向轴形态特征: 雷达记录资料中,同一连续界面的反射信号形成同相 轴,依据同向轴的时间、形态、强弱、方向反正等进行 解释判断是地质解释最重要的基础。同向轴的形态与埋 藏的物界面的形态并非完全一致,特别是边缘的反射效 应,使得边缘形态有较大的差异。对于孤立的埋设物其 反射的同向轴为向下开口的抛物线,有限平板界面反射 的同向轴中部为平板,两端为半支下开口抛物线
地质雷达的原理
• 地质雷达利用超高频电 磁波探测地下介质分布,它 的基本原理是:发射机通过 发射天线发射中心频率为 12.5M至1200M、脉冲宽度 为0.1 ns的脉冲电磁波讯 号。当这一讯号在岩层中遇 到探测目标时,会产生一个 反射讯号。直达讯号和反射 讯号通过接收天线输入到接 收机,放大后由示波器显示 出来。根据示波器有无反射 汛号,可以判断有无被测目 标;根据反射讯号到达滞后 时间及目标物体平均反射波 速,可以大致计算出探测目
工程质量检测
• 地质雷达最早用于工程场地的勘查,包括重要 工程场地、铁路与公路路基,用以解决松散层 分层和厚度分布,基岩风化层分布,以及节理 带断裂带等问题。有时也用于研究地下水水位 分布,普查地下溶洞、人工洞室等。在粘土不 发育的地区,使用中低频大功率天线,探查深 度可达20m-30m以上。在地震地质研究中, 地质雷达也用于研究隐伏活断层分布,效果很 好。 •
天线与采集参数选定
天线选择 • 衬砌检测900MHZ天线 2 衬砌与围岩检测600MHZ天线 3 路面检测1.2-1.4GHZ天线 4 路基600/900MHZ天线 参数设置 1 记录长度ns [2•h(m)/ 0.1(m/ns)]•1.5 2 样点数512,1024,2048 S(samp/scan)•scan/sec•Bit/samp 3 带宽设定 高截2倍,低截1/2
钢筋反射波的振幅与方向
雷达目标波相识别的三项基本要 点2
要点2:反射波的频谱特性 不同介质有不同的结构特征,内部反射波的高、低频率特征明显不同,这 可以作为区分不同物质界面的依据。如混凝土与岩层相比,比较均质,没 有岩石内部结构复杂,因而围岩中内反射波明显,特别是高频波丰富。而 混凝土内部反射波较少,只是有缺陷的地方有反射。又如,表面松散土电 磁性质比较均匀,反射波较弱;强风化层中矿物按深度分化布,垂向电磁 参数差异较大,呈现低频大振幅连续反射;其下的新鲜基岩中呈现高频弱 振幅反射,从频率特性中可清楚地将各层分开。如围岩中的含水带也表现 出低频高振幅的反射特征,易于识别。节理带、断裂带结构破碎,内部反 射和闪射多,在相应走时位置表现为高频密纹反射。但由于破碎带的散射 和吸收作用,从更远的部位反射回来的后续波能量变弱,信号表现为平静 区。
工程检测资料处理与波相 识别
1 雷达资料预处理
扫描线/里程均一化,去水平波,小波处理 变增益显示/彩色显示;
2
波相识别
表面反射波位置和极性,初衬二衬及内部界面,空洞, 钢筋,多次波;
3
工程解释
衬砌厚度,空洞,欠实区,含水带,钢筋密度;
工程质量检测
工程检测近年应用来领域急速扩大,特别是在 中国的重要工程项目中,质量检测广泛采用雷达技 术。铁路公路隧道衬砌、高速公路路面、机场跑道 等工程结构普遍采用地质雷达检测。用于检测衬砌 厚度、脱空和空洞、渗漏带、回填欠实、围岩扰动 等问题。检测厚度精度可达厘米级。
地下金属管雷达波反射特 性衬砌厚度和脱空的波形特 征
衬砌与围岩之间的脱空区为空气,与混凝土和围岩的波阻抗差异很大,反射波正 反相间,波相先兰后红,反射很强,脱空区断续蜿蜒,位置清晰明显,极易辨别。 下列2张图是南昆铁路隧道衬砌检测图象。衬砌与围岩之间分布有大小脱空区。
衬砌厚度与空洞检测
隧道围岩结构的波相特 征
灰岩是一种节理、裂隙比较发育的岩体,雷达波可将这种岩体结 构清晰的显现出来。节理裂隙断断续续,反射波高频成分较多,时强 时弱,断断续续,反映岩体结构、产状的特征。
工程场地勘察
场地勘察
场地勘察图像
松散层下隐伏灰岩顶面
岩溶陷落洞
雷达目标波相识别的三项基本要 点1
为获得雷达探测的结果,需要对雷达记录进行处理与判读,判读是理论与实践 相结合的综合分析,需要坚实的理论基础和丰富的实践经验。雷达记录的判读也 叫雷达记录的波相识别或波相分析,它是资料解释的基础。在此首先介绍波相分 析的基本要点。 要点1:反射波的振幅与方向 从反射系数的菲涅耳(Fresnel)公式中可以看出两点: 第一点反射振幅的大小,界面两侧介质的电磁学性质差异越大,反射波越强。从 反射振幅上可以判定两侧介质的性质、属; 第二点反射波的极性,波从介电常数小进入介电常数大的介质时,即从高速介质 进入低速介质,从光疏进入光密介质时,反射系数为负,即反射波振幅反向。反 之,从低速进入高速介质,反射波振幅与入射波同向。这是判定界面两侧介质性 质与属性的又一条依据; 如从空气中进入土层、混凝土反射振幅反向,折射波不反向。从混凝土后边的脱 空区再反射回来时,反射波不反向,结果脱空区的反射与混凝土表面的反射方向 正好相反。如果混凝土后边充满水,波从该界面反射也发生反向,与表面反射波 同向,而且反射振幅较大。混凝土中的钢筋,波速近乎为零,反射自然反向,而 且反射振幅特别强。因而,反射波的振幅和方向特征是雷达波判别最重要依据。
地质雷达技术应用
1工程质量检测中的地质雷达技术
2 岩溶勘察中的地质雷达技术
3 国内外地质雷达技术与应用现状
地质雷达的应用领域
地质雷达自上世纪70年代开始应用至今将近30年了, 其应用领域逐渐扩大,在考古、建筑、铁路、公路、 水利、电力、采矿、航空各领域都有重要的应用,解 决场地勘查、线路选择、工程质量检测、病害诊断、 超前预报、地质构造研究等问题。在工程地球物理领 域有多种探测方法,包括反射地震、地震CT、高密度 电法、地震面波和地质雷达等,其中地质雷达的分辨 率最高,而且图象直观,使用方便,所以很受工程界 信赖和欢迎。
相关文档
最新文档