第五章 主成分分析x
第五节 主成分分析
•
•
其中Li为p维正交化向量(Li*Li=1),zi之间互 不相关且按照方差由大到小排列,则称Zi为X的第 I个主成分。设X的协方差矩阵为Σ,则Σ必为半正 定对称矩阵,求特征值λi(按从大到小排序)及 其特征向量,可以证明,λi i所对应的正交化特征 向量,即为第I个主成分Zi所对应的系数向量Li, 而Zi的方差贡献率定义为λi/Σλj,通常要求提取的主 成分的数量k满足Σλk/Σλj>0.85。
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
68.337 95.416 62.901 86.624 91.394 76.912 51.274 68.831 77.301 76.948 99.265 118.505 141.473 137.761 117.612 122.781
0.408 0.255 -0.755 0.069 -0.93 -0.046 0.156 -0.078 -0.109 -0.031 0.744 0.094 -0.924 0.073
(2)由相关系数矩阵计算特征值,以及各个 主成分的贡献率与累计贡献率(见表 3.5.2)。由表3.5.2可知,第一,第二,第 三主成分的累计贡献率已高达86.596% (大于85%),故只需要求出第一、第二、 第三主成分z1,z2,z3即可。
8.128 8.135 18.352 16.861 18.279 19.793 4.005 9.11 19.409 11.102 4.383 10.706 11.419 9.521 18.106 26.724
4.065 4.063 2.645 5.176 5.643 4.881 4.066 4.484 5.721 3.133 4.615 6.053 6.442 7.881 5.789 7.162
主成分分析法精华讲义及实例
主成分分析类型:一种处理高维数据的方法。
降维思想:在实际问题的研究中,往往会涉及众多有关的变量。
但是,变量太多不但会增加计算的复杂性,而且也会给合理地分析问题和解释问题带来困难。
一般说来,虽然每个变量都提供了一定的信息,但其重要性有所不同,而在很多情况下,变量间有一定的相关性,从而使得这些变量所提供的信息在一定程度上有所重叠。
因而人们希望对这些变量加以“改造”,用为数极少的互补相关的新变量来反映原变量所提供的绝大部分信息,通过对新变量的分析达到解决问题的目的。
一、总体主成分1.1 定义设 X 1,X 2,…,X p 为某实际问题所涉及的 p 个随机变量。
记 X=(X 1,X 2,…,Xp)T ,其协方差矩阵为()[(())(())],T ij p p E X E X X E X σ⨯∑==--它是一个 p 阶非负定矩阵。
设1111112212221122221122Tp p Tp pT pp p p pp p Y l X l X l X l X Y l X l X l X l X Y l X l X l X l X⎧==+++⎪==+++⎪⎨⎪⎪==+++⎩ (1) 则有()(),1,2,...,,(,)(,),1,2,...,.T T i i i i TT T i j ijij Var Y Var l X l l i p Cov Y Y Cov l X l X l l j p ==∑===∑= (2)第 i 个主成分: 一般地,在约束条件1T i i l l =及(,)0,1,2,..., 1.T i k i k Cov Y Y l l k i =∑==-下,求 l i 使 Var(Y i )达到最大,由此 l i 所确定的T i i Y l X =称为 X 1,X 2,…,X p 的第 i 个主成分。
1.2 总体主成分的计算设 ∑是12(,,...,)T p X X X X =的协方差矩阵,∑的特征值及相应的正交单位化特征向量分别为120p λλλ≥≥≥≥及12,,...,,p e e e则 X 的第 i 个主成分为1122,1,2,...,,T i i i i ip p Y e X e X e X e X i p ==+++= (3)此时(),1,2,...,,(,)0,.Ti i i i Ti k i k Var Y e e i p Cov Y Y e e i k λ⎧=∑==⎪⎨=∑=≠⎪⎩ 1.3 总体主成分的性质1.3.1 主成分的协方差矩阵及总方差记 12(,,...,)T p Y Y Y Y = 为主成分向量,则 Y=P T X ,其中12(,,...,)p P e e e =,且12()()(,,...,),T T p Cov Y Cov P X P P Diag λλλ==∑=Λ=由此得主成分的总方差为111()()()()(),p ppTTiii i i i Var Y tr P P tr PP tr Var X λ=====∑=∑=∑=∑∑∑即主成分分析是把 p 个原始变量 X 1,X 2,…,X p 的总方差1()pii Var X =∑分解成 p 个互不相关变量 Y 1,Y 2,…,Y p 的方差之和,即1()pii Var Y =∑而 ()k k Var Y λ=。
主成分分析讲解范文
主成分分析讲解范文下面我们来具体讲解主成分分析的步骤和原理:1.数据预处理在进行主成分分析之前,需要对原始数据进行预处理,包括去除噪声、处理缺失值和标准化等操作。
这些操作可以使得数据更加准确和可靠。
2.计算协方差矩阵协方差矩阵是衡量各个变量之间相关性的指标。
通常,我们会对数据进行标准化处理,使得各个变量具有相同的尺度。
然后,计算标准化后的数据的协方差矩阵。
3.计算特征值和特征向量通过对协方差矩阵进行特征分解,可以得到特征值和特征向量。
其中,特征值表示新坐标系中的投影方差,特征向量表示新坐标系的方向。
4.选择主成分根据特征值的大小,我们可以按照降序的方式选择主成分。
选取一部分较大的特征值所对应的特征向量,即可得到相应的主成分。
这些主成分是原始数据中最重要的成分。
5.生成投影数据通过将原始数据投影到选取的主成分上,即可得到降维后的数据。
每个样本在各个主成分上的投影即为新的特征值。
6.重构数据在需要恢复原始数据时,可以通过将降维后的数据乘以选取的主成分的转置矩阵,再加上原始数据的均值,即可得到近似恢复的原始数据。
主成分分析在实际应用中有很广泛的用途。
首先,它可以用于数据的降维,使得复杂的数据集可以在低维空间中进行可视化和分析。
其次,它可以用于数据的简化和压缩,减少数据存储和计算的成本。
此外,主成分分析还可以用于数据的特征提取和数据预处理,辅助其他机器学习和统计分析方法的应用。
然而,主成分分析也有一些限制和注意事项。
首先,主成分分析假设数据具有线性关系,对于非线性关系的数据可能失效。
其次,主成分分析对于离群值敏感,需要对离群值进行处理。
另外,主成分分析得到的主成分往往是原始数据中的线性组合,不易解释其具体含义。
总之,主成分分析是一种常用的降维数据分析方法,通过寻找新的投影空间,使得数据的方差最大化,实现数据的降维和简化。
它可以应用于数据可视化、数据压缩和特征提取等方面,是数据分析和机器学习中常用的工具之一、在应用主成分分析时,需要注意数据的预处理和对主成分的解释和理解。
主成分分析法及其应用PPT课件
x4 -0.34 0.644 0.07 1 0.383 0.069 -0.05 -0.031 0.073
x5 0.309 0.42 -0.74 0.383 1
0.734 0.672 0.098 0.747
x6 0.408 0.255 -0.755 0.069 0.734
1 0.658 0.222 0.707
演讲人:XXXXXX 时 间:XX年XX月XX日
荷的平方
三个主成分的
占方差的百分数
“占方差的百分
z1
z2
z3
(%)
数:各个主成分提 取了第i个指标的
x1
0.739
-0.532 -0.0061
82.918
“效率”之和, 它等于各个主成
x2
0.123
0.887 -0.0028
x3
-0.964 0.0096 0.0095
80.191 92.948
分在第i个指标上 的载荷的平方之
x 2:人 均耕地 面积
(ha)
0.352
2 141.5 1.684
3 100.7 1.067
4 143.74 1.336
5 131.41 1.623
x 3:森 林覆盖 率(%)
16.101
x 4:农 民人均 纯收入 (元/人)
192.11
x 5:人 均粮食 产量 (kg/
人)
295.34
x 6:经济 作物占农 作物播面 比例(%)
表3.5.1 相关系数矩阵
x1
x2
x3
x4
x5
x6
x7
x8
x9
x1
1 -0.327 -0.714 -0.336 0.309 0.408 0.79 0.156 0.744
第五章 因子分析和主成分分析
3. 子得分
计算因子得分的途径是用原有变量来描述因子, 第j个因子在第i个样本上的值可表示为: Fji = j1xi1 + j2xi2 +…+ jpxip (j = 1,2,…,k) 式中,xi1,xi2,…,xip分别是第1,2,…,p个原 有变量在第i个样本上的取值,j1,j2,…,jp分别 是第j个因子和第1,2,…,k个原有变量间的因子值 系数。可见,它是原有变量线性组合的结果(与因子 分析的数学模型正好相反),因子得分可看作各变量 值的加权(j1,j2,…,jp)总和,权数的大小表示了 变量对因子的重要程度。
用数据矩阵X的p个列向量(即p个指标向量)X1, X2,…,Xp作线性组合,得综合指标向量: F1 a11 X 1 a21 X 2 ... a p1 X p F a X a X ... a X 2 12 1 22 2 p2 p ...... Fp a1 p X 1 a2 p X 2 ... a pp X p 简写成: Fi = a1iX1 + ai2X2 +…+apiXp i = 1,2,…,p
2. 因子旋转(正交变换)
所谓因子旋转就是将因子载荷矩阵A右乘一个正交 矩阵T后得到一个新的矩阵A*。它并不影响变量Xi的 共同度hi2,却会改变因子的方差贡献qj2。因子旋转 通过改变坐标轴,能够重新分配各个因子解释原始 变量方差的比例,使因子更易于理解。
设p维可观测向量X满足因子模型:X = AF +ε。T为 正交阵,则因子模型可写为 X = ATT'F +ε = A*F* +ε 其中A* = AT,F* = T'F。 易知,∑ = AA' + D = A*A*' + D(其中A* = AT)。这 说明,若A,D是一个因子解,任给正交阵T,A* = AT, D也是因子解。在这个意义下,因子解是不惟一的。 由于因子载荷阵是不惟一的,所以可对因子载荷 阵进行旋转。目的是使因子载荷阵的结构简化,使 载荷矩阵每列或行的元素平方值向0和1两极分化, 这样的因子便于解释和命名。
主成分分析方法
主成分分析方法主成分分析(Principal Component Analysis,PCA)是一种常用的数据降维技术,它可以将高维数据转化为低维数据,同时保留数据的主要特征。
主成分分析方法在数据挖掘、模式识别、图像处理等领域被广泛应用,本文将介绍主成分分析的基本原理、算法步骤和应用场景。
1. 基本原理。
主成分分析的基本原理是通过线性变换将原始的特征空间转换为新的特征空间,新的特征空间是由原始特征的线性组合构成的,这些线性组合被称为主成分。
主成分分析的目标是找到能够最大程度保留原始数据信息的主成分,从而实现数据的降维。
2. 算法步骤。
主成分分析的算法步骤如下:(1)标准化数据,对原始数据进行标准化处理,使得每个特征的均值为0,方差为1。
(2)计算协方差矩阵,根据标准化后的数据计算特征之间的协方差矩阵。
(3)计算特征值和特征向量,对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。
(4)选择主成分,按照特征值的大小,选择最大的k个特征值对应的特征向量作为主成分。
(5)数据转换,利用选定的主成分进行数据转换,将原始数据映射到新的低维空间中。
3. 应用场景。
主成分分析方法在实际应用中具有广泛的场景,例如:(1)数据可视化,通过主成分分析可以将高维数据转化为二维或三维数据,便于数据的可视化展示和分析。
(2)特征提取,在图像处理和模式识别领域,主成分分析可以用于提取图像的主要特征,从而实现图像的压缩和识别。
(3)数据预处理,在机器学习和数据挖掘任务中,主成分分析可以用于数据的降维处理,减少特征的数量和复杂度,提高模型的训练效率和预测准确度。
总结。
主成分分析是一种重要的数据分析方法,它通过线性变换将高维数据映射到低维空间,从而实现数据的降维和特征提取。
在实际应用中,主成分分析具有广泛的应用场景,能够帮助人们更好地理解和分析数据。
希望本文的介绍能够帮助读者更好地理解主成分分析方法,并在实际工作中加以应用。
(完整版)主成分分析法的原理应用及计算步骤...doc
zm
lm1x1
lm 2x2
lmpxp
系数lij的确定原 :
①zi与zj(i≠j;i,j=1,2,⋯,m)相互无关;
②z1是x1,x2,⋯,xP的一切 性 合中方差最大者,z2是与z1不相关的x1,x2,⋯,xP的所有 性 合中方差最大者;zm是与z1,z2,⋯⋯,zm-1都不相关的x1,x2,⋯xP, 的所有 性 合中方差最大者。
标准化后的变量的协方差矩阵就是原变量的相关系数矩阵 。 也就是说, 在标准化前后变量的相关系数矩阵不变化。
根据以上论述,为消除量纲的影响,将变量标准化后再计算其协方差矩阵,就是直接计算原变量的相关系数矩阵,所以主成分分析的实际常用计算步骤是:☆计算相关系数矩阵
☆求出相关系数矩阵的特征值i及相应的正交化单位特征向量ai
与原 量Xj之 的相互
关 程度:
( ,
xi
)
(
, 1,2,
L
, ;
1,2,
L
, )
P Zk
kakii
p k
m
三、主成分分析法的计算步骤
主成分分析的具体步 如下:
(1) 算 方差矩
算 品数据的 方差矩 :Σ=(sij)pp,其中
1
n
i,j=1,2,⋯,p
sij
( xki
xi)( xkj
xj)
n
1k 1
解特征方程
I
R 0
,常用雅可比法(Jacobi)求出特征 ,并使其按大
小 序排列1
2
p
0;
p
1,2, L , p)
2
e ( i
分 求出 于特征
i
的特征向量
什么是主成分分析精选全文
可编辑修改精选全文完整版主成分分析(principal component analysis, PCA)如果一组数据含有N个观测样本,每个样本需要检测的变量指标有K个, 如何综合比较各个观测样本的性质优劣或特点?这种情况下,任何选择其中单个变量指标对本进行分析的方法都会失之偏颇,无法反映样本综合特征和特点。
这就需要多变量数据统计分析。
多变量数据统计分析中一个重要方法是主成份分析。
主成分分析就是将上述含有N个观测样本、K个变量指标的数据矩阵转看成一个含有K维空间的数学模型,N个观测样本分布在这个模型中。
从数据分析的本质目的看,数据分析目标总是了解样本之间的差异性或者相似性,为最终的决策提供参考。
因此,对一个矩阵数据来说,在K维空间中,总存在某一个维度的方向,能够最大程度地描述样品的差异性或相似性(图1)。
基于偏最小二乘法原理,可以计算得到这个轴线。
在此基础上,在垂直于第一条轴线的位置找出第二个最重要的轴线方向,独立描述样品第二显著的差异性或相似性;依此类推到n个轴线。
如果有三条轴线,就是三维立体坐标轴。
形象地说,上述每个轴线方向代表的数据含义,就是一个主成份。
X、Y、Z轴就是第1、2、3主成份。
由于人类很难想像超过三维的空间,因此,为了便于直观观测,通常取2个或者3个主成份对应图进行观察。
图(1)PCA得到的是一个在最小二乘意义上拟合数据集的数学模型。
即,主成分上所有观测值的坐标投影方差最大。
从理论上看,主成分分析是一种通过正交变换,将一组包含可能互相相关变量的观测值组成的数据,转换为一组数值上线性不相关变量的数据处理过程。
这些转换后的变量,称为主成分(principal component, PC)。
主成分的数目因此低于或等于原有数据集中观测值的变量数目。
PCA最早的发明人为Karl Pearson,他于1901年发表的论文中以主轴定理(principal axis theorem)衍生结论的形式提出了PCA的雏形,但其独立发展与命名是由Harold Hotelling于1930年前后完成。
主成分分析(principal component analysis)
一、主成分分析的思想主成分分析是数据处理中常用的降维方法。
我们需要处理的数据往往是高维数据,把它看成是由某个高维分布产生。
高维分布的不同维之间可能具有较强的相关性,这也就为数据降维提供了可能。
为了叙述清楚主成分分析的思想,我们通过二维数据进行叙述,即数据是由随机向量 (X_1,X_2) 产生,并假设X_1=X_2 。
通过该分布得到的样本点如图下所示:如果我们把每个数据点用 (x_1,x_2) 表示,那么,每个数据是二维的。
实际上,容易发现,我们只需要将坐标系进行旋转,旋转到红色坐标系位置,此时,每个数据点在新坐标系下的表示形式为为 (x_1^{'},0) ,由于每个数据点的第二维坐标都是 0 ,所以每个数据点只需要用一个数表示就行了,这样就把数据的维数从二维降到了一维。
接下来考虑不是完全线性关系,但是具有强相关性的情况,如下图所示:在这种情况下,我们不可能通过坐标系的平移与旋转,使所有点都落在一根轴上,即不可能精确地把数据用一维表示。
但是注意到 (X_1,X_2) 仍然有强相关性,我们仍然将坐标轴旋转到红色位置,可以看出,将数据在 x_1^{'} 上的投影近似代表原数据,几乎可以完全反映出原数据的分布。
直观看,如果要将数据投影到某根轴,并用投影来表示原数据,将数据压缩成一维,那么投影到 x_1^{'} 是最好的选择。
因为投影到这跟轴,相比于投影到其他轴,对原数据保留的信息量最多,损失最小。
如何衡量保留的信息量呢?在主成分分析中,我们用数据在该轴的投影的方差大小来衡量,即投影后方差越大(即投影点越分散),我们认为投影到该轴信息保留量最多。
从这种观点看,投影到 x_1^{'} 确实是最好的选择,因为投影到这根轴,可使得投影点最分散。
我们将数据的中心平移到原点(即新坐标轴的原点在数据的中心位置),为了消除单位的影响,我们将数据的方差归一化。
进一步考虑如下数据分布:根据上述,如果要将数据压缩为一维的,那么应该选择 F_1 轴进行投影,如果用该投影表示原数据的损失过大,我们可以再选择第二根轴进行投影,第二根轴应该与 F_1 垂直(保证在两根轴上的投影是不相关的)并且使得数据在该轴上投影方差最大,即图中的 F_2 轴(如果是二维情况,第一根轴确定后,第二根轴就确定了。
主成分分析
目录
CONTENTS
01 理论讲解
案例引入 概念介绍 函数说明
02 SPSS操作及结果
03 应用
Part one
案例引入……主成分分析法对毕业生素质的评价
计算 机
校内 工作
英语
思想 品德
获赞
基础 课
体育
处罚
物理 实验
降维
第三 主成
分
第二主成分
第一主成分
用少数主成分表示原始多变量的大部分信息
Qi
i
p
i 1, 2, ...,p
k
k 1
前i个主成分的累计贡献率为
i
k
Q
k 1 p
i 1, 2, ...,p
k
k 1
当前 i个主成分累计贡献率达到80%——85%,就取前i个 主成分作为新变量。
13
Part two
SPSS操作及结果分析
Part three
THANKS
到每个方程式中的系数向量不是别的而恰好是X的协差阵 的特征值
所对应的特征向量;也就是说,数学上可以证明使Var(F1)达到最
大,这个最大值是在
的第一个特征值所对应特征向量处达到。
依此类推使Var(Fp)达到最大值是在 Var(Fp) 的
8
系数lij由以下原则确定
1、zi与zj(i≠j;i,j=1,2,…,m)相互无关 2、z1是x1,x2,…,xp的一切线性组合中方差最大者;z2是与z1不相关的x1, x2,…,xp的所有线性组合中方差最大者;………..;zm是与z1,z2,z3,…, zm-1都不相关的x1,x2,…,xp的所有线性组合中方差最大者。
1、计算相关系数
第五章主成分分析解析
满足如下的条件:
1.每个主成分的系数平方和为1,即:
u2 1i
u2 2i
u2 pi
1
2.主成分之间相互独立,即无重叠的信息,即: Cov( Fi, Fj) 0, i j, i, j 1, 2, , p
3.主成分的方差依次递减,重要性依次递减,即: Var( F1) Var(F2 ) Var(Fp )
第五章 主成分分析
汇报什么?
• 假定你是一个公司的财务经理,掌握了公司的所有 数据,比如固定资产、流动资金、每一笔借贷的数 额和期限、各种税费、工资支出、原料消耗、产值、 利润、折旧、职工人数、职工的分工和教育程度等 等。
• 如果让你向上面介绍公司状况,你能够把这些指标 和数字都原封不动地摆出去吗?
• 本章和下一章就介绍两种把变量维数降低以便于描述、理解 和分析的方法:主成分分析(principal component analysis) 和因子分析(factor analysis)。实际上主成分分析可以说是 因子分析的一个特例。
§1 主成分分析基本思想
一项十分著名的工作是美国的统计学家斯 通(stone)在1947年关于国民经济的研究。他曾利 用美国1929一1938年各年的数据,得到了17个反 映国民收入与支出的变量要素,例如雇主补贴、 消费资料和生产资料、纯公共支出、净增库存、 股息、利息外贸平衡面数据表 进行最佳综合简化,也就是说,对高维变量 空间进行降维处理。
很显然,识辨系统在一个低维空间要 比在一个高维空间容易得多。
在力求数据信息丢失最少的原则下,对高维的 变量空间降维,即研究指标体系的少数几个线性组 合,并且这几个线性组合所构成的综合指标将尽可 能多地保留原来指标变异方面的信息。这些综合指 标就称为主成分。
主成分分析法
四、主成份分析法旳环节
1)数据归一化处理:数据原则化(Z) 2)Βιβλιοθήκη 算有关系数矩阵R: 3)计算特征值;
特征值越大阐明主要程度越大。
4)计算主成份贡献率及方差旳合计贡献率; 5)计算主成份载荷与特征向量:
主成份旳负荷值大小反应了主成份因子对可测变量旳影响程 度;载荷值越大阐明此变量对主成份旳解释越多,及贡献越大。
• 因子分析 优点:第一它不是对原有变量旳取舍,而是根据原始变 量旳信息进行重新组合,找出影响变量旳共同因子,化简 数据;第二,它经过旋转使得因子变量更具有可解释性, 命名清楚性高。 缺陷 :在计算因子得分时,采用旳是最小二乘法,此法 有时可能会失效。
总之,主成份分析是因子分析旳一种特例。
谢 谢 观 看!
旋转后旳主成份因子载荷矩阵
景区满意度旋转前后成份矩阵图对比
5、碎石图分析
选用主成份旳个数,急转处是拟定主成份旳个数处。
景区满意度碎石图
八、与因子分析法旳区别
1、基本概念
➢ 主成份分析就是将多项指标转化为少数几项综合 指标,用综合指标来解释多变量旳方差- 协方差构 造。综合指标即为主成份。所得出旳少数几种主 成份,要尽量多地保存原始变量旳信息,且彼此 不有关。
注意:进行主成份旳变量之间必须要有有关性, 经过分析后变量之间独立。
二、主成份分析法基本原理
主成份分析就是设法将原来众多具有一定有关性 旳变量(如p个变量),重新组合成一组新旳相互无 关旳综合变量来替代原来变量。怎么处理?
一般数学上旳处理就是将原来p个变量作线性组合 作为新旳综合变量。怎样选择?
假如将选用旳第一种线性组合即第一种综合变量 记为F1,自然希望F1尽量多旳反应原来变量旳信 息。怎样反应?
第五章主成分分析 (2)PPT课件
12
第二节 总体主成分
主成分分析也称主分量分析,是由Hotelling于 1933年首先提出的。由于多个变量之间往往存在着 一定程度的相关性。人们自然希望通过线性组合的 方式,从这些指标中尽可能快地提取信息。当第一 个线性组合不能提取更多的信息时,再考虑用第二 个线性组合继续这个快速提取的过程,……,直到 所提取的信息与原指标相差不多时为止。这就是主 成分分析的思想。一般说来,在主成分分析适用的 场合,用较少的主成分就可以得到较多的信息量。 以各个主成分为分量,就得到一个更低维的随机向 量;因此,通过主成分既可以降低数据“维数”又 保留了原数据的大部分信息。
假定有n个样本每个样本共有p个变量构成一个np阶的数据矩阵2221121151假设我们所讨论的实际问题中有p个指标我们把这p个指标看作p个随机变量记为x主成分分析就是要把这p个指标的问题转变为讨论p个指标的线性组合的问题而这些新的指标ykp按照保留主要信息量的原则充分反映原指标的信息并且相互不相关
主成分分析
• • •
•
• • •• •
•
• •
• •
•• •
•
•• • • • • •
•
•
•
•
• ••
• • ••
•
•• • •
•
•• •
•• •
•
x1
释
•
••
• •
•
23
为了方便,我们在二维空间中讨论主成分的几何意义。 设有n个样品,每个样品有两个观测变量xl和x2,在由变 量xl和x2 所确定的二维平面中,n个样本点所散布的情况 如椭圆状。由图可以看出这n个样本点无论是沿着xl 轴方 向或x2轴方向都具有较大的离散性,其离散的程度可以分 别用观测变量xl 的方差和x2 的方差定量地表示。显然,如 果只考虑xl和x2 中的任何一个,那么包含在原始数据中的 经济信息将会有较大的损失。
(完整版)主成分分析法的原理应用及计算步骤..
(完整版)主成分分析法的原理应⽤及计算步骤..⼀、概述在处理信息时,当两个变量之间有⼀定相关关系时,可以解释为这两个变量反映此课题的信息有⼀定的重叠,例如,⾼校科研状况评价中的⽴项课题数与项⽬经费、经费⽀出等之间会存在较⾼的相关性;学⽣综合评价研究中的专业基础课成绩与专业课成绩、获奖学⾦次数等之间也会存在较⾼的相关性。
⽽变量之间信息的⾼度重叠和⾼度相关会给统计⽅法的应⽤带来许多障碍。
为了解决这些问题,最简单和最直接的解决⽅案是削减变量的个数,但这必然⼜会导致信息丢失和信息不完整等问题的产⽣。
为此,⼈们希望探索⼀种更为有效的解决⽅法,它既能⼤⼤减少参与数据建模的变量个数,同时也不会造成信息的⼤量丢失。
主成分分析正式这样⼀种能够有效降低变量维数,并已得到⼴泛应⽤的分析⽅法。
主成分分析以最少的信息丢失为前提,将众多的原有变量综合成较少⼏个综合指标,通常综合指标(主成分)有以下⼏个特点:↓主成分个数远远少于原有变量的个数原有变量综合成少数⼏个因⼦之后,因⼦将可以替代原有变量参与数据建模,这将⼤⼤减少分析过程中的计算⼯作量。
↓主成分能够反映原有变量的绝⼤部分信息因⼦并不是原有变量的简单取舍,⽽是原有变量重组后的结果,因此不会造成原有变量信息的⼤量丢失,并能够代表原有变量的绝⼤部分信息。
↓主成分之间应该互不相关通过主成分分析得出的新的综合指标(主成分)之间互不相关,因⼦参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应⽤带来的诸多问题。
↓主成分具有命名解释性总之,主成分分析法是研究如何以最少的信息丢失将众多原有变量浓缩成少数⼏个因⼦,如何使因⼦具有⼀定的命名解释性的多元统计分析⽅法。
⼆、基本原理主成分分析是数学上对数据降维的⼀种⽅法。
其基本思想是设法将原来众多的具有⼀定相关性的指标X1,X2,…,XP (⽐如p 个指标),重新组合成⼀组较少个数的互不相关的综合指标Fm 来代替原来指标。
那么综合指标应该如何去提取,使其既能最⼤程度的反映原变量Xp 所代表的信息,⼜能保证新指标之间保持相互⽆关(信息不重叠)。
第五章 主成分分析课件
0
p
性质2 主成分的总方差等于原始变量的总方
差, p
p
i
2 i
i 1
i 1
性质3 主成分 Yk 与原始变量 X i 的相关系数
Yk , X i
k i
uki, k, i 1,2,
,
p
为并称其为主成分载
荷。
§5.3 主成分的选取
称
k
k i
为第
i 个主成分的方差贡献率
m
称
m
i
i
i1 p
X1, X 2 , , X p 的线性组合中方差最大者(即
cov Yp ,Yi 0,i p, DYp 最大)。
其中: DYi DUiX UiDX Ui Ui Ui
DX 协方差阵
cov Yi ,Yj cov U iX ,U j X U i covX , X U j U i U j
Y1,Y2 , ,Yp 分别称为原始变量 X 的第 一主成分、第二主成分、…、第 p 主成分。
二、主成分的推导
第一主成分:构造目标函数
1U1, U1 U1 U1U1 1
对 U1 求导
1
U 1
2 U1
2U1
0
得 U1 U1 即 U 为正交阵, 为 Y1 的方差值,
若 的特征根为 1 2 p 0,Y1的最大 方差值为 1,相应的单位化特征向量为 U1 。
u22 X 2
u2p X p
Yp u p1 X1 u p2 X 2 u pp X p
其中
即 Y U X
uk21 uk22 uk2p 1,即UkUk 1, k 1,2, , p
原则:
1、Yi 与 Y j 不相关 i j,i, j 1,2, , p 2、 Y1 是 X1, X 2 , , X p 的线性组合中方差最大者 (即 DY1 最大);Y2 与 Y1不相关的 X1, X 2 , , X p 的线性组合中方差最大者(即 covY1,Y2 0, DY2 最大);…;Y p 与 Y1,Y2 , ,Yp1 都不相关的
主成分分析全
• 根据因子载荷矩阵中的数据计算特征向量 矩阵。
方法1:Transform—Compute 方法2:在Excel中计算
主成分表达式
Y1
0.075 X 1*
0.441X
* 2
0.450
X
* 3
0.544
X
* 4
0.550
X
* 5
Y2
0.787
X
* 1
0.519
X
* 2
0.106
X
* 3
0.254
X
F1
u11 X 1*
u21
X
* 2
F2
u12
X
* 1
u22
X
* 2
u
p1
X
* p
u
p
2
X
* p
Fp
u1
p
X
* 1
u2
p
X
* 2
u
pp
X
* p
• 这些系数称为主成分载荷(loading),它表示 主成分和原先各变量的线性相关系数。
解析主成分的实际意义
• 从系数的大小、系数的符号上进行分析。 • 系数绝对值较大,则表明该主成分主要综合了绝
2.576
51.520
51.520
1.389
27.790
79.310
.961
19.222
98.532
.047
.932
99.465
.027
.535
100.000
Co mp one nt Ma tri xa
Component
1
2
3
4
x1
主成分分析简介课件
4、如未收敛则回到步骤3
注:其中 k和 k 是两个待调整的参数;
函数g(y)的选择见参考文献[2]P68
逐次提取独立成分
—投影追踪方法
度量非正态性(非高斯性):
可以认为,两个独立变量之和形成的分布比两 个原始变量中的任意一个都更接近于正态分布
由于Z是Y的线性组合,只要找到一个度 量非正态性的量,使达到最大,就可以 使Y中各分量独立性最大
所找到的矩阵起到将 Qz (M ) 对角化的作 用
基于四阶累积量的JADE法
步骤: 1、取一组矩阵 M i , 由定义分别求 Qz (M i ) (矩阵的简单取法:取N*N个矩阵,分别
只有一个元素为1,或取一组对称/反对 称的基矩阵,引自[2]P53) 通过优化求解U,使各 Qz (M i ) 联合 对角化(使 (M i ) 中非对角元素的平方 和最小)
此法的矩阵集合可取为 Z [K ijkliikk ijkl (Z )]2
分解结果:
Aˆ W U , Bˆ Aˆ 1 U W , Y BX U WX
非线性PCA的自适应算法
以均方误差最小作为收敛判据, 非线性PCA引入非线性因素等效于考虑高
阶矩 算法具体步骤为: 1、对观测值求均值,用递归法求白化阵
—投影追踪方法
5、归一化: ui (k 1) ui (k 1) 2
ui (k 1)
如果 u p 未收敛,回到步骤3;
令p加1,当p<=m时,回到步骤3。
参考文献
[1] A.Hyvarinen等著,周宗潭等译,独 立成分分析,北京:电子工业出版社, 2007年
[2]杨福生、洪波著,独立分量分析的原 理与应用,北京:清华大学出版社, 2006年
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多元统计分析方法
基本思想
主成分分析方法就是在尽可能多的保留原数据信 息的前提下,实现对高维数据降维。
主成分分析过程实质上是对原坐标系进行平移和旋 转变换,使得新坐标的原点与原数据点的重心重合, 新坐标系的第一轴与原数据变异的最大方向对应, 新坐标系的第二轴与第一轴标准正交,并且对应于 数据变异的第二大方向……依此类推。 这些新轴分别被称为第一主轴y1,第二主轴y2…… 若经舍弃少量信息后,主轴y1,y2, ……,ym(m<p) 能够十分有效地表示原数据的变异情况,则原来p维 空间降致m维空间。
第五章 主成分分析
•§5.1 主成分分析的基本思想与理论 •§5.2 主成分分析的几何意义 •§5.3 总体主成分及其性质 •§5.4 样本主成分的导出 •§5.5 有关问题的讨论 •§5.6 主成分分析步骤及框 图 •§5.7 主成分分析的上机实 现
引子
假定你是一个公司的财务经理,掌握了公 司的所有数据,这包括
§5.2 主成分分析的几何意义
经过这样的旋转之后, 个样品点在 轴上的离 散程度最大,变量 代表了原始数据绝大部分信息, 这样,有时在研究实际问题时,即使不考虑变量 也无损大局。
因此,经过上述旋转变换就可以把原始数据的 信息集中到 轴上,对数据中包含的信息起到了浓 缩的作用。进行主成分分析的目的就是找出转换矩 阵 ,而进行主成分分析的作用与几何意义也就很 明了了。
经过主成分分析计算,最后选择两个主成分 作为综合评价经济效益的依据,变量数由9 个减少到2个,而且更容易进行经济解释。 这两个主成分代表的信息可达92.6%。
多元统计分析方法
第一主成分反映工业生产中投入的资金、劳力所 产生的效益,它是“投入”与“产出”之比。 第一主成分所占信息量已是信息总量的72.8%, 从而可知在我国目前企业效益主要反映在投入 产出比上。
征根的彼此正交的特征向量。这样,求主成分的问题就变成了
求特征根与特征向量的问题。
§5.3.1 总体主成分
(二)主成分的性质
性质1 的协方差阵为对角阵 。
这一性质可由上述结论容易得到,证明略。
性质2 记
,有
证明:记
则有
于是
§5.3.1 总体主成分
定义 5.1 称 差贡献率,称
为主成分
为第 个主成分 的方 的累积贡献率。
基于上述问题,人们就希望在定量研究中涉及的变量较 少,而得到的信息量又较多。
§5.1.1 主成分分析的基本思想
在保留原始变量主要信息的前提下起到降维与简化问题 的作用,使得在研究复杂问题时更容易抓住主要矛盾。一 般地说,利用主成分分析得到的主成分与原始变量之间有 如下基本关系:
1.每一个主成分都是各原始变量的线性组合 2.主成分的数目大大少于原始变量的数目 3.主成分保留了原始变量绝大多数信息 4.各主成分之间互不相关
由此进一步可知,主成分分析是把个 随机变量的总方差
分解为 个不相关的随机变量的方差之和,使第一主成分的方差
达到最大,第一主成分是以变化最大的方向向量各分量为系数
的原始变量的线性函数,最大方差为 。
表明了 的方差
在全部方差中的比值,称 为第一主成分的贡献率。这个值越
大,表明
这个新变量综合
信息的能力越强,
如果第一主成分不足以代表原所有p个变量,则考虑第二个 主成分: C2=w21X1+w22X2+ … +w2pXp,
要求使 Var(C2)最大;
约束条件: w212+w222+ … +w2p2=1 Cov(C1,C2)=0
为零C,ov目(C的1,是C2为)=了0即使第C一1中、已第有二的主信成息分不的在协C方2中差出(现相。关结系果数是) 在与第一个向量垂直的所有方向中,找到一个使得所有个体在 其上的投影与在其它方向上的投影相比最为分散。
(1)
,即 为 阶正交阵;
(2) 的分量之间互不相关;
(3) 的 个分量是按方差由大到小排列。
最大方差理论
那么左右两条中哪个好呢?
§5.3.1 总体主成分
于是随机向量 与随机向量 之间存在下面的关系式: (5.4)
注:无论 的各特征根是否存在相等的情况,对应的标准化
特征向量
总是存在的,我们总可以找到对应各特
主成分的性质 : 主成分C1,C2,…,Cp具有如下几个性质:
(1) 主成分间互不相关,即对任意i和j,Ci 和Cj的相关
系数Corr(Ci,Cj)=0
ij
(2) 组合系数(wi1,wi2,…,wip)构成的向量为单位向量 ,
wi12+wi22+ … +wip2=1
(3) 各主成分的方差是依次递减的, 即 Var(C1)≥Var(C2)≥…≥Var(Cp)
§5.1.1 主成分分析的基本思想
通过主成分分析,可以从事物之间错综复杂的 关系中找出一些主要成分,从而能有效利用大量 统计数据进行定量分析,揭示变量之间的内在关 系,得到对事物特征及其发展规律的一些深层次 的启发,把研究工作引向深入。
§5.1.2 主成分分析的基本理论
设对某一事物的研究涉及个 指标,分别用 示,这个 指标构成的 维随机向量为 机向量 的均值为 ,协方差矩阵为 。
他原本在华盛顿大学主修新闻学,但后 来转向数学作拓扑领域之相关研究,并 于1924年获得博士学位。 他在主成分分 析和正准相关的发展上也扮演重要的角 色。 1972年他被选为美国国家科学研究院的 院士, 1973年12月26日,卒于北卡罗 来纳的教堂山。
主成分分析是利用降维的思想,在损失很少 信息的前提下把多个指标转化为几个综合指标 的多元统计方法。
我们作如下定义: (1) 若C1=w11X1+w12X2+ … +w1pXp,
且使 Var(C1)最大,则称C1为第一主成分;
加约但束系条数件w:若无w1限12+制w可12使2+V…ar+(Cw11)p无2=限1 大,故
向量组,合代系表数p维(空w间11,中w的12,一…个w方1p向),可相看当作于一全个 部n个个体在该方向上的一个投影。要求 V使a得r(C所1)有最个大体就在是该要方找向一上个的最投“影好最”为的分方散向。,
通常把转化生成的综合指标称之为主成分, 其中每个主成分都是原始变量的线性组合,且 各个主成分之间互不相关,这就使得主成分比 原始变量具有某些更优越的性能。
更容易抓住主要矛盾,揭示事物内部变量之 间的规律性,同时使问题得到简化,提高分析 效率。
这种将多个指标转化为少数互相无关的综合指标的统计 方法叫做主成分分析或主分量分析。 主成分分析的两大目标: 1、减少变量的个数(“降维”) 2、使变量间不相关
§5.3 总体主成分及其性质
由上面的讨论可知,求解主成分的过程就是
求满足三条原则的原始变量
的线性组
合的过程。本节先从总体出发,介绍求解主成分
的一般方法及主成分的性质,然后介绍样本主成
分的导出。
主成分的推导
定理1 若A是p×p阶实对称阵,则一定可以找到正交阵U使
定理2 反之若U是上述矩阵A的特征根所对应的单位特征向
§5.4 样本主成分的导出
为样本协方差矩阵,作为总体协方差阵 的无偏估计, 是样 本相关矩阵,为总体相关矩阵的估计。由前面的讨论知,若原 始资料 阵是经过标准化处理的,则由矩阵 求得的协方差阵 就是相关矩阵,即 与 完全相同。因为由协方差矩阵求解主成 分的过程与同相关矩阵出发求解主成分的过程是一致的,下面 我们仅介绍由相关阵 出发求解主成分。
§5.1.1 主成分分析的基本思想
在对某一事物进行实证研究中,为了更全面、准确地反 映出事物的特征及其发展规律,人们往往要考虑与其有关系 的多个指标,这些指标在多元统计中也称为变量。
这样就产生了如下问题:一方面人们为了避免遗漏重要 的信息而考虑尽可能多的指标,而另一方面随着考虑指标的 增多增加了问题的复杂性,
多元统计分析方法
简言之,主成分分析的处理思路 1、对原有指标进行线性变换(正交变换),新变量 是原有指标的线性组合,y=U’x
2、新变量间不相关,Cov(yi,yj)=0 i≠j
3、选取的主成分在剩余线性组合中方差最大,
Var(yi)→max i=1,2,…
多元统计分析方法
§5.1 主成分分析的基本思想与理论 §5.1.1 主成分分析的基本思想 §5.1.2 主成分分析的基本理论
量组成的矩阵,
称A不同特征
根对应的特征向
多元统计分析方法
§5.3.1 总体主成分
由以上结论,我们把
的协方差矩阵 的非零特
征值
对应的标准化特征向量
分别
作为系数向量,
分别称为随机向
量 的第一主成分、第二主成分、…、第 主成分。 的分量
依次是 的第一主成分、第二主成分、…、第 主成 分的充分必要条件是:
表 。设随
对 进行线性变换,可以形成新的综合变量,用 表示, 也就是说,新的综合变量可以由原来的变量线性表示,即满 足下式:
§5.1.2 主成分分析的基本理论
Y ,Y ,,Y 基于以上三条原则决定的综合变量
分
别称为原始变量的第一、第二、…、1 第 2个主成分。P
其中,各综合变量在总方差中占的比重依次递减,
在实际研究工作中,通常只挑选前几个方差最大的
主成分,从而达到简化系统结构,抓住问题实质的
目的。
§5.2 主成分分析的几何意义
设有 个样品,每个样品有两个观测变量
,这样,
在由变量 组成的坐标空间中, 个样品点散布的情况如
带状,见图5-1。
图5-1
§5.2 主成分分析的几何意义