算法讲稿5分枝定界法
分枝定界法
![分枝定界法](https://img.taocdn.com/s3/m/d5119fc4d4d8d15abe234e52.png)
4
x1
x2 x1
16.5 4
x1 0, x2 0
结论1 :(IP)的最优解一定在某个子问题中
2 :子问题的可行域 父问题的可行域 子问题的最优解 ≤ 父问题的最优值
3 :子问题中的整数解都是(IP)的可行解
二: 定界,以每个后继问题为一分枝标明求解结 果,在解的结果中,找出最优目标函数值最大者作 为新的上界.从已符合整数条件的各分支中,找出 目标函数值为最大者作为新的下界,若无,则下界 为0.
x1 x2 x3 x4 x5 解
检 0 0 -20/3 0 -50/3 Z-440/3
x2 0
x1 1 x4 0
1 1/3 0
00
0
0 -1/3 1
-2/3 17/6 13 -10/3 5/3
L1最优解:x1 3,x2 17 6 , x3 0
x4
5 3
,
x5
0,
最优值:z1
440 3
求解子问题L3 :
x1 x2 x3
检 0 0 -20/3
x2 0 1 1/3 x1 1 0 0 x4 0 0 -1/3
x6 0 1 0
x4 x5
x6
0 -50/3 0
00 1
解 Z-440/3 17/6 3 5/3
2
最优解:
xx14
35,/ 2x,2 x52, x03,
11 4,x2 0,x4
3, 52,
z3 130 得下界
x5 14 , x6 0
z4
285 2
z3
L5
:x1 x3
2,x2 0,x4
数模常用算法系列--整数线性规划(分枝定界法)、整数非线性规划(蒙特卡洛法)
![数模常用算法系列--整数线性规划(分枝定界法)、整数非线性规划(蒙特卡洛法)](https://img.taocdn.com/s3/m/20c338d977eeaeaad1f34693daef5ef7ba0d1218.png)
数模常⽤算法系列--整数线性规划(分枝定界法)、整数⾮线性规划(蒙特卡洛法)整数线性规划求解----分枝定界法什么是整数规划?线性规划中的变量(部分或全部)限制为整数时,称为整数规划。
若在线性规划模型中,变量限制为整数,则称为整数线性规划。
⽬前所流⾏的求解整数规划的⽅法,往往只适⽤于整数线性规划。
⽬前还没有⼀种⽅法能有效地求解⼀切整数规划。
整数规划的分类- 变量全限制为整数时,称(完全)整数规划- 变量部分限制为整数时,称混合整数规划什么是分枝定界法原理如下:设有最⼤化的整数规划问题A,与它相应的线性规划为问题B,从解问题B开始,若其最优解不符合A的整数条件,那么B的最优⽬标函数必是A的最优⽬标函数z^*的上界\overline{z};⽽A的任意可⾏解的⽬标函数值将是z^*的⼀个下界\underline z ,分枝定界法就是将B的可⾏域分成⼦区域的⽅法。
逐步减⼩\overline z和增⼤\underline z最终求到z^*本质就是个分治回溯,逼近最⼤值的算法。
Matlab算法如下:(强烈警告,(不会验证)由于⽐较懒,并未对算法正确性验证,思路上验证了⼀下没问题就码上来了,如果有错,请⼀定联系~~)% c,A,Aeq,Beq,LB,UB,是linprog函数的相关参数,知道了它们就可以求出对应的线性规划最优解,% now是⽬前已经知道的整数解的最⼤值function y = control(c,A,Aeq,Beq,LB,UB,now)ret = 0;[x,fval] = linprog(c,A,Aeq,Beq,LB,UB); % x是最优解的解向量,fval是对应的函数值if fval < nowy = fval;return;end % 如果得到的当前最优解fval⼩于已知的now,那说明最优整数解不在这个区间,则剪枝返回。
for i = 1 : length(x)if rem(x(i),1) ~= 0 % rem(x,1)如果返回值不为0,则表⽰是⼩数。
第 5 章 分枝定界
![第 5 章 分枝定界](https://img.taocdn.com/s3/m/2b5592106c175f0e7cd137dc.png)
第 5 章分枝定界任何美好的事情都有结束的时候。
现在我们学习的是本书的最后一章。
幸运的是,本章用到的大部分概念在前面各章中已作了介绍。
类似于回溯法,分枝定界法在搜索解空间时,也经常使用树形结构来组织解空间(常用的树结构是第1 6章所介绍的子集树和排列树)。
然而与回溯法不同的是,回溯算法使用深度优先方法搜索树结构,而分枝定界一般用宽度优先或最小耗费方法来搜索这些树。
本章与第1 6章所考察的应用完全相同,因此,可以很容易比较回溯法与分枝定界法的异同。
相对而言,分枝定界算法的解空间比回溯法大得多,因此当内存容量有限时,回溯法成功的可能性更大。
5.1 算法思想分枝定界(branch and bound)是另一种系统地搜索解空间的方法,它与回溯法的主要区别在于对E-节点的扩充方式。
每个活节点有且仅有一次机会变成E-节点。
当一个节点变为E-节点时,则生成从该节点移动一步即可到达的所有新节点。
在生成的节点中,抛弃那些不可能导出(最优)可行解的节点,其余节点加入活节点表,然后从表中选择一个节点作为下一个E-节点。
从活节点表中取出所选择的节点并进行扩充,直到找到解或活动表为空,扩充过程才结束。
有两种常用的方法可用来选择下一个E-节点(虽然也可能存在其他的方法):1) 先进先出(F I F O)即从活节点表中取出节点的顺序与加入节点的顺序相同,因此活节点表的性质与队列相同。
2) 最小耗费或最大收益法在这种模式中,每个节点都有一个对应的耗费或收益。
如果查找一个具有最小耗费的解,则活节点表可用最小堆来建立,下一个E-节点就是具有最小耗费的活节点;如果希望搜索一个具有最大收益的解,则可用最大堆来构造活节点表,下一个E-节点是具有最大收益的活节点。
例5-1 [迷宫老鼠] 考察图16-3a 给出的迷宫老鼠例子和图1 6 - 1的解空间结构。
使用F I F O 分枝定界,初始时取(1,1)作为E-节点且活动队列为空。
迷宫的位置( 1 , 1)被置为1,以免再次返回到这个位置。
4.3.1 分枝定界法
![4.3.1 分枝定界法](https://img.taocdn.com/s3/m/fe0d84e1551810a6f524860a.png)
四、分枝定界法求解实例
LP0 : 1 7 5 x1 3 , x 2 2 , Z 3 2 9 9 9
上界: 32 下界: 0 5 9
x1≤3
L P1 : 6 2 , Z 32 7 7
x1 ≥4
LP 2 : x 1 4 , x 2 1, Z 2 9
上界: 32 下界: 29 2 7
z 0, z 35 .5
x2≥7 无可行解
z 0, z 35 .3
x1≥5 LP5:X=(5,5) Z5=35 分枝过程图示
z 35, z 35
OR:SM
x* (5,5), z* 35
例2:
MaxZ 6 x1 5 x 2 2 x1 x 2 9 5 x 7 x 35 1 2 s .t . x1 , x 2 0 x1 , x 2 取整数
运筹学--管理科学方法
李军
桂林电子科技大学商学院
第三节 (I)分枝定界法
1.分枝定界法的创立者 2.分枝定界法求解依据 3. 分枝定界法求解步骤 4.分枝定界法求解实例 5.分枝定界法求解小结 6. 算法应用注意事项
2
OR:SM
一、分枝定界法的创立者
理查德·卡普(Richard Karp)教授1935年1月3日生 于波士顿,从小时起就兴趣广泛,聪明过人。在哈 佛大学时他文理兼修, 1955 年先获得文学学士学位 ,第二年又获得理科硕士学位。之后他进入哈佛大 学的计算实验室攻读博士,于 1959 年取得应用数学 博士学位。现任美国加州大学伯克利分校计算机科 学讲座教授,美国科学院、美国工程院、美国艺术 与科学院、欧洲科学院院士。因其在计算机科学领 域的杰出贡献曾获图灵奖、冯诺依曼奖、美国国家 科学勋章、哈佛大学百年奖章等奖项. 卡普和他的同事海尔特(M.Held)20世纪60年代,经过反复研究,提出 了一种称为“分枝限界法”(branch—and—bound method)的新方法。该方 法的要点是:对解集合反复进行分枝,每次分枝时,都对所得的子集计算最 优解的界。如果对某个子集求得的界不优于已知的允许解,则抛弃此子集不 再进行分枝;否则继续分枝以探索更好的解,直到所得的子集仅含有一个解 时为止。分枝限界法就其实质而言是一种求解策略而非算法,具体算法要根 据实际问题的特点去实现。但由于这种方法在求解许多问题中都非常实用, 因此常常被直呼为“分枝限界算法”。
运筹学_分支定界法
![运筹学_分支定界法](https://img.taocdn.com/s3/m/054be8f3aef8941ea76e0552.png)
⑵
5 x1 6 x 2 3 0
x2
A 3 B
⑴x
1
x2 2
⑶
x1 4
1
1
3
x1 5 x 2 Z
x1
求(LP2) ,如图所示。
m a x Z x1 5 x 2 x1 x 2 2 5 x 6 x2 30 1 ( IP 2 ) x 1 4 x 2 1 x1 , x 2 0 且 为 整 数
x1 x 2 2 x1 x 2 2 5 x 6 x2 30 5 x 6 x2 30 1 1 x1 x1 4 4 ( IP 2 2 ) ( IP 2 1) 2 2 x1 x1 x x 4 3 2 2 x1 , x 2 0 且 为 整 数 x1 , x 2 0 且 为 整 数
第三节 分枝定界法
(一)、基本思路 考虑纯整数问题:
m ax Z
n
c
j 1
n
j
xj
a ij x j b i ( i 1 .2 m ) ( IP ) j 1 x 0 ,( j 1 .2 n ) 且 为 整 数 j
m ax Z
c
j 1
n
记为(IP)
解:首先去掉整数约束,变成一般线性规划问题
m a x Z x1 5 x 2 x1 x 2 2 5 x1 6 x 2 3 0 4 x1 x ,x 0 1 2
记为(LP)
用图解法求(LP)的最 优解,如图所示。
m a x Z x1 5 x 2 x1 x 2 2 5 x1 6 x 2 3 0 4 x1 x ,x 0 1 2
分枝定界法
![分枝定界法](https://img.taocdn.com/s3/m/0269300ecf84b9d528ea7ab2.png)
束——缩小可行域;将原整数规划问题分枝——分为两个子 规划,再解子规划的伴随规划……通过求解一系列子规划的 伴随规划及不断地定界 .最后得到原整数规划问题的整数最 优解 . 下面结合一个极大化例题来介绍分枝定界法的主要思路 .
例2 某公司计划建筑两种类型的宿舍.甲种每幢占地0.25 ×103m2, 乙种每幢地0.4×103m2.该公司拥有土地3×103m2. 计划甲种宿舍不超过 8 幢,乙种宿舍不超过4幢.甲种宿舍每 幢利润为10万元,乙种宿舍利润为每幢20万元.问该公司应
x2 3 x1, x2 0
问题 B4
max f 20 x1 10 x2
5x1 8x2 60
x1 8
s.t
x2 4 x1 6
x2 4 x1, x2 0
它们的可行域分别为 K3, K4 ( ). 见图3。
第21页/共34页
x2
因为 K4 ,问题 B4
4
无可行解,此问题已
3
作出问题 A1, 的A2伴随规划 B则1, 问B2题, 的可B1行, B2, 域为 K1, K见2图, 2(b). 以下我们将由同一问题分解出的两
个分枝问题称为"一对分枝".
第15页/共34页
x2
4
x2
3
2 1
O
246
8 x1
O
12 4
6
8
x1
(a)
(b)
图2 ( a )
4. 分别求解一对分枝
在一般情况下,对某个分枝问题(伴随规划)求解时,可能出现 以下几种可能:
x1, x2 0, 整数
(1)
第3页/共34页
若暂且不考虑 x1, x取2 整数这一条件.则(1)就变为下列 线性规划 :
5.2 分支定界法
![5.2 分支定界法](https://img.taocdn.com/s3/m/15639e91bceb19e8b8f6bac8.png)
LP
用图解法求松弛问题的最优解,如图所示。
x1=18/11, x2 =40/11 Z=-218/11≈(-19.8) 即Z 也是IP最小值的下限。 对于x1=18/11≈1.64,
分枝定界法注意事项:
(1)、分枝变量选择原则: ① 按目标函数系数:选系数绝对值最大者变 量 先分。
对目标值升降影响最大。
② 选与整数值相差最大的非整数变量先分枝。
③ 按使用者经验,对各整数变量排定重要性
的优先顺序。
(2)、分枝节点选择:
① 深探法(后进先出法):
最后打开的节点最先选,尽快找到整数解。 整数解质量可能不高。 ② 广探法: 选目标函数当前最大值节点,找到的整数 解质量高。慢。
max Z 4 x1 3 x 2
10
B
LP2:X=(4,6.5), Z2=35.5
LP1 LP2 o 3 4 C ①
1.2 x1 0.8 x 2 10 2 x1 2.5 x 2 25 LP 2 : x1 4 x1 , x 2 0
②
x2
选 择 目 标 值 最 大 的 分 LP 枝 2进 行 分 枝 , 增 加 约 束 x 2 6及x 2 7, 显 然 x 2 7不 可 行 , 得 到 线 性 规 划
例5.6 用分枝定界法求解整数规划问题
min Z x1 5 x 2 x 1 x 2 2 IP 5 x1 6 x 2 30 4 x1 x1 , x 2 0且 全 为 整 数
解:首先去掉整数约束,变成一般线性规划问题(原整数规划 问题的松驰问题)
算法讲稿5分枝定界法
![算法讲稿5分枝定界法](https://img.taocdn.com/s3/m/b5ec362a49d7c1c708a1284ac850ad02de800784.png)
Q.Delete(Ew); // 取下一扩展结 点
15
四、构造最优解
为了在算法结束后能方便 地构造出与最优值相应的 最优解,算法必须存储相 应子集树中从活结点到根 结点的路径。为此目的, 可在每个结点处设置指向 其父结点的指针,并设置 左、右儿子标志。
找到最优值后,可以根据 parent回溯到根节点,找到 最优解。
for (int i = 0; i <= n+1; i++) grid[i][0] = grid[i][m+1] = 1; // 左翼和右翼
for (int i = 0; i < NumOfNbrs; i++) {
}
}
11
6.3 装载问题
一、问题描述 二、队列式分支限界法 三、算法的改进 四、构造最优解 五、优先队列式分支限界法
12
一、问题描述
有 的一轮批船共,个其集 中装 集箱 装要 箱装i的上重2量艘为载w重i,量且分∑别wi为≤CC1+1和C2 C2 装载问题要求确定是否有一个合理的装载方案可将
优先队列式分支限界法:
[A] B, C => B(45), C(0) [B, C] D, E => E(45) [E, C] J, K => K(45) [1, 0, 0] [C] F, G => F(25), G(0) [F, G] L, M => L(50), [0, 1, 1] M(25) [G] N, O => N(25), O(0)
在优先队列式分支限界法中,一旦有一个叶结 点成为当前扩展结点,则可以断言该叶结点所 相应的解即为最优解。此时可终止算法。
17
6.4 布线问题
分支定界法
![分支定界法](https://img.taocdn.com/s3/m/ad8d1e5a9e314332386893ad.png)
分支定界法分支定界法,顾名思义,就是按照定好的界进行分支。
这里说的分支意思是“剪枝”。
剪的枝是问题解空间树的枝。
所谓解空间树,即此问题所有解和中间解形成的树型结构,是有序的。
常有排列树和子集树之分,举个例子,n个物品的0-1背包问题的解空间树就是子集树(每个物品都可能为0或1),而最短路径问题的解空间树是一颗排列树。
分支定界法一般有两种实现形式:1.优先队列法2.FIFO队列法。
这与分支定界的思想无太多本质联系,只是前者在一般情况下能更快的求得问题解。
分支定界法要对问题的解空间树进行“剪枝”操作以减少对解空间树的搜索。
那么问题是,如何“剪枝”?这就要回答如何定界的问题。
在分支定界法中,“界”的作用就是用来阻止对不可行分支的搜索的。
当解空间树很深时(叶子节点为解),如果能在前面几层就预先的知道了“此路不通”或者“此路不是最优”而停止此路的继续,这样能大幅度的提高算法效率。
如何定界要放入具体问题中考虑,一般可以以“理论最大最小”这个概念来求界。
以0-1背包问题为例,设所有物品预先已经按照单位价值量递减排列。
在解空间树的第i层(此时正在考虑第i个物品是否应该被放入的时刻),设左子树为放入i物品,右子树为不放i物品。
那么在确定左子树的上界的时候有:界=当前价值+i的价值+MaxValue(背包剩余重量-i物品重量);其中的MaxValue为放i后剩余背包容量能获得的最大价值,应该注意的是此最大价值为理论意义上的最大价值,比如在继续放入p个后(按单位价值量递减),放不下第p+1个,此时应该按(Value[p+1]/Weight[p+1])*(WeightLeft)来计p+1物品的价值,(实际中不可能放入零点几个某物品。
);右子树的情形类似。
知道了如何定界,那么在实际流程中就要根据当前目标节点的界来剪枝了(是用上界还是下界,具体问题具体分析)。
今天准备举个稍微有点挑战的例子---NPC问题中的TSP问题。
在TSP问题中,由于是环路,每个节点都要进出各一次,我们可以将每个节点最小的入度和最小的出度的和累加作为一个下界,这个下界几乎不可能达到!(全部最小出度的和即为下面提到的rcost的初值)初始时我们创建一个最小堆,表示活节点队列。
分支定界法基本思路
![分支定界法基本思路](https://img.taocdn.com/s3/m/004ba46f326c1eb91a37f111f18583d049640f34.png)
分支定界法基本思路分支定界法(BranchandBound)是一种求解多维空间内最优解的技术,它能够有效地解决数学优化问题,并且在面临一定限制条件的情况下,能够获得较为有效的最优解。
本文将着重介绍分支定界法的基本思路和实施步骤。
1、义问题分支定界法是一种求解多维空间内最优解的技术,它的典型应用有组合优化、资源分配、路径规划等。
组合优化指的是要求设计者给出一系列解决方案,并且找出能够达到目标要求的解决方案,例如求解一个给定的多项式的顶点值问题;资源分配指的是在给定资源限制的情况下,以极小的成本耗费获得最大的收益;路径规划指的是在给定的网络中求一条最优路径,并且求解这条路径的最短路径等。
2、问题抽象分支定界法的基本思路是将复杂的优化问题分解成若干个子问题,逐步进行求解,利用“分支定界”技术来求得该子问题的最小值,然后在各个子问题最小值之间进行比较,得到总体问题的最小值。
在实际应用中,具体步骤是:首先,将原问题抽象为一个数学模型,并将该模型简化为一个多维空间内的数学问题;然后,利用“分支定界”的技术,对其中的多个点进行分枝,即找出最小的点;最后,将该点经过完善的求解后,把它作为最优点,以此作为定界,停止分枝,这个过程重复直至找出全局最优解。
3、实施步骤(1)构造初始子集:构造初始子集是分支定界法的第一步,在构造初始子集时,需要考虑当前子集中变量数量、变量取值范围等因素,构造出一个尽可能大的初始子集。
(2)根据初始子集构造子集树:构造子集树是分支定界法的第二步,根据初始子集构造出一棵完整的子集树,其目的是将多个子集之间的联系关系清楚地表达出来,并且指向每一个子集,使空间复杂度降低。
(3)进行分支:进行分支是分支定界法的第三步,当构造出子集树之后,根据拓扑结构选择一个子集,并将该子集构造成两个新子集,根据确定的拓扑结构继续进行分支并将其更新。
(4)定界:定界是分支定界法的第四步,在分支的时候可以找到一些子集的最小值,其目的是通过对子集最小值的比较,来比较各个子集的最小值,从而可以确定一个全局最小值。
第15章 分枝定界法
![第15章 分枝定界法](https://img.taocdn.com/s3/m/8f9ec40bb4daa58da0114ae4.png)
应用
(2)改进 可通过使用定界函数来改进上述问题的求解过程, 即只有当右孩子对应的重量加上剩余货箱的重量超出 当前最优解时才选择右孩子,如以下程序所示。
如果查找的是具有最小耗费的解,则活结点表可 用最小堆来建立,下一个扩展结点就是具有最小耗 费的活结点;如果查找的是具有最大收益的解,则 可用最大堆来构造活结点表,下一个扩展结点便是 具有最大收益的活结点。
例15-1
下面分别用FIFO分枝定界法和最大收益分枝定界方法解决 例14-1的背包问题并进行比较,即n = 3,w = [20, 15, 15], p = [40, 25, 25],c = 30,它们的解空间也与上一章例的解空 间相同。 ① FIFO分枝定界利用一个队列来记录活结点,结点按照 FIFO 顺序从队列中取出。在该方法的搜索过程中,初始以根结点 A 作为扩展结点,活结点队列为空,对A进行扩展时,生成结点B 和 C ,由于这两个结点都是可行的,因此都被加入活结点队列 中,结点A被删除。 下一个扩展结点 B,产生结点 D和 E ,由于 D是不可行的,因此 被删除,而E被加入队列中。下一步选择结点C为扩展结点,生 成结点F和G,两者都是可行结点,加入队列中。下一个扩展结 点E生成结点J和K,J不可行而被删除,K是一个可行的叶结点, 并产生一个到目前为止可行的解,它的收益值为40。
回溯法比分枝定界法占用更少的内存空间,回溯法占用的内 存是O(解空间的最大路径长度 ),而分枝定界所占用的内存为 O(解空间大小 )。对于一个子集空间,回溯法需要O(n)的内存 空间,而分枝定界则需要 O(2n)的空间。对于排列空间,回溯 需要O(n)的内存空间,分枝定界需要 O(n!)的空间。虽然最大 收益(或最小耗费)分枝定界法在许多情况下可能会比回溯法 检查更少的结点,但在实际应用中,它可能在回溯法超出允许 的时间限制之前就超出了内存的限制。
分支定界法
![分支定界法](https://img.taocdn.com/s3/m/b94a83d28bd63186bcebbca2.png)
其松弛问题的最优解为:A(3/2,10/3)
因X1=3/2, 所以IP问题的最优解中x1的取值范围一定满 足x1≤1(区域1)或x1≥2(区域2),如下图所示。
A(3 2 ,10 3)
区域1
区域2
1
2
3
x1
⑴ 分支 假设松弛问题中 xi b i 不是整数,则构造两 b i 及 xi b i 1 个约束条件 xi 分别加入松弛问题中得到子问题LP1与LP2,即 两个后继问题,并求解之。
LP0 z 29 6 1.5, x 2 10/3 z 0 29 / 6
x1 2
x 1 2 , x 2 23 / 9 S2 z 0 41 / 9
z0
Байду номын сангаас
LP1
LP2
z 41 9 z0
x2 2
x2 3
z 61 14 z0
S21
x1 33 / 14 , x 2 2 z 0 61 / 14
LP21
LP22
S22 x2 3 S212 x1 3, x 2 1
z0 4
无可行解
x1 2
z4 z4
S211
x1 2 , x 2 2 z0 4
LP211
LP212
返回
第三节 分支定界法
一、分支定界法步骤 二、示例
一、分支定界法步骤
使用范围:纯整数、混合整数规划。 基本思想:求松弛问题最优解,逐步缩小可域。
1、求解松弛问题的最优解,若非整数解,转2。 2、分支与定界。下面我们先通过示例来了解一下第2 步的思路。例: max Z x x 1 2
9 51 x x 1 14 2 14 1 2 x1 x2 3 x1 , x2 0且取整数
5.2-分支界定解法
![5.2-分支界定解法](https://img.taocdn.com/s3/m/3d3a886759fb770bf78a6529647d27284b7337e6.png)
第一步:
具体作法是:首先,删去整数条件, 把原整数规划化成相应线性规划。其次,求解相应线性规划。
主要特征就是放宽条件。
最后,①如果相应线性规划没有可行解, 则原整数规划也没有可行解。则停止; ②如果相应线性规划有最优解, 且符合原整数规划问题的整数条件, 则这个最优解也是原整数规划的最优解, 那么整个计算过程结束;
其中z11<z12
L2的最优解为(2. 5,3),z2=13.5Fra bibliotekL12的解为最优解
第三步:比较与剪枝
x22
x23
x13
x14
UB=14. 5LB=0
UB=14. 75LB=0
UB=14LB=14
例2:A问题为
B问题为
问题B x1=4.81 ,x2=1.82 Z=356
Z=356 Z=0
B的最优解不满足A的整数条件,所以它并非A的最优解。
2.分枝:由B的最优解(x1 , x2)= ( 2.25 , 3.75 )中,选择决策变量x2=3.75,按照既定的原则写出B的两枝:
把它们依次记作B1和B2。 解B1得:最优解(x1,x2)=(3,3),最优值 ymax= 39解B2得:最优解(x1,x2)=(1.8,4),最优值 ymax= 41
非整数解
此整数解即最优解
整数解,目标函数值优于问题1
非整数解
问题2继续分枝
非整数解
此整数解即最优解
整数解
无可行解
无可行解
无可行解
情况 2, 5, 8 找到最优解
关注
是否整数解
是否整数解目标值
是否整数解目标值
基本思想:先求出相应的线性规划最优解,若此解不符合整数条件,那么其目标函数的值就是整数规划问题最优值的上界,而任意满足整数条件的可行解的目标函数值将是其下界(定界),然后将相应的线性规划问题进行分枝,分别求解后续的分枝问题。如果后续分枝问题的最优值小于上述下界, 则剪掉此枝;如果后续某一分枝问题的最优解满足整数条件,且其最优值大于上述下界,则用其取代上述下界,继续考虑其它分枝,直到最终求得最优的整数解.
分支定界法
![分支定界法](https://img.taocdn.com/s3/m/be98a515852458fb770b56a2.png)
以下内容基本为转载内容:1. 模型整数规划的模型与线性规划基本相同,只是额外的添加了部分变量为整数的约束。
2. 求解步骤整数规划求解的基本框架是分支定界法(Branch and bound,BnB)。
首先去除整数约束得到“松弛模型”,使用线性规划的方法求解。
若有某个变量不是整数,在松弛模型上分别添加约束:x<=floor(A)和x>=ceil(A)然后再分别求解,这个过程叫做分支。
当节点求解结果中所有变量都是整数时,停止分支。
这样不断迭代,形成了一棵树。
定界,指的是叶子节点产生后,相当于给问题定了一个下界。
之后在求解过程中一旦某个节点的目标函数值小于这个下界,那就直接pass,不用再进行分支了;每次新产生叶子节点,则更新下界。
3. python算法实现import mathfrom scipy.optimize import linprogimport sysdef integerPro(c,A,b,Aeq,beq,t=1.0E-12):res=linprog(c,A_ub=A,b_ub=b,A_eq=Aeq,b_eq=beq)if(type(res.x)is float):#produces error codebestX=[sys.maxsize]*len(c)else:bestX=res.xbestVal=sum([x*y for x,y in zip(c,bestX)])if all(((x-math.floor(x))<t or(math.ceil(x)-x)<t)for x in bestX): return(bestVal,bestX)else:ind=[i for i,x in enumerate(bestX)if(x-math.floor(x))>t and (math.ceil(x)-x)>t][0]newCon1=[0]*len(A[0])newCon2=[0]*len(A[0])newCon1[ind]=-1newCon2[ind]=1newA1=A.copy()newA2=A.copy()newA1.append(newCon1)newA2.append(newCon2)newB1=b.copy()newB2=b.copy()newB1.append(-math.ceil(bestX[ind]))newB2.append(math.floor(bestX[ind]))r1=integerPro(c,newA1,newB1,Aeq,beq)r2=integerPro(c,newA2,newB2,Aeq,beq)if r1[0]<r2[0]:return r1else:return r2例子:输入c=[3,4,1]A=[[-1,-6,-2],[-2,0,0]]b=[-5,-3]Aeq=[[0,0,0]]beq= [0]print(integerPro(c,A,b,Aeq,beq))输出(8.0,array([2.,0., 2.]))其中8是目标函数值,2,0,2是3个整数变量的值。
分枝定界算法
![分枝定界算法](https://img.taocdn.com/s3/m/e37e17ae90c69ec3d4bb756b.png)
12345 1 max 24 34 14 15 -14 2 19 max 20 9 6 -6 3 7 9 max 6 8 -6 4 23 10 22 max 7 -7 5 20 8 11 20 Max -8
分枝定界
回溯算法:在问题的整个状态空间图上搜索一 个解或全部解,并不断地使用约束函数(或约 束条件)来控制搜索进程,一旦发现以某个节 点为根的子树上不可能产生问题的解,就终止 对这一子图的搜索,从而避免了许多不必要的 工作,提高了效率。
分枝限界法:使用比回溯更为有效的约束函数 来控制这种搜索进程,使 之能更好的朝着状态 空间上有最佳解(即有最大目标函数或极小目 标函数)的分支推进,以尽快地找出一个最佳 解。
产生式规则: 5条,即向CR(R=1,2,3,4,5)城市移动
生成结点的条件: 第一、 所求下界小于当前的上界(已求路径的费用) 第二、 到CR城市可行(即费用不为max)。
搜索策略 (BFS)
框图:
初始 head=0 Tail=1
初始化INIT;初始结点入队;DD ←max 结点出队out(temp1);
-1 -0 -3 -0 -0
1
2
3
4
5
1 max 10 17 0
1 -14
2 12 max 11 3
0 -6
3
0
2 max 0
2 -6
4 15 3 12 max 0 -7
5 11 0
0 12 Max -8
-1 -0 -3 -0 -0
14+6+6+7+8+1+0+3+0+0=45
分支定界法基本思路
![分支定界法基本思路](https://img.taocdn.com/s3/m/b96cd342b94ae45c3b3567ec102de2bd9605def9.png)
分支定界法基本思路
分支定界法是一种常用的计算机科学解析技术,它的基本思路是
先将复杂的问题分解成简单的子问题,然后将原问题的解决方案由子
问题的解决方案派生出来。
例如,假设某计算机程序需要解决以下问题:找出从一组由零个或多个整数组成的子集的和的最大值。
使用分支定界法来解决这个问题,首先需要将问题分解成子问题,即从一组由一个整数组成的子集中求和的最大值问题,以此类推,一
直到从一组由n个整数组成的子集中求和的最大值。
之后,就可以使用分支定界法正式开始求解。
首先建立一张表,
表中列出了可能的各种子集,但是首先最大值可能是每元素中的一个,之后可以把它们合并到一起,并计算他们的和以及比较哪个更大。
在
把这种可能的每一种结果一一列出来以后,就可以找出最大值,从而
得出原问题的解决方案。
总之,分支定界法是一种通过分解复杂问题,然后从每个子问题
中获得解决方案,最后合并它们来获得原问题的解决方案的技术。
然而,一般来说,这种方法只适用于问题的解决范围有限的情况,当问
题的解决范围变得太大时,该方法就不能采用,因为计算时间特别长。
分支定界法
![分支定界法](https://img.taocdn.com/s3/m/a651631aba1aa8114431d99e.png)
分支定界法求解整数规划时,如果可行域是有界的,首先容易想到的方法就是穷举变量的所有可行的整数组合,对于变量数较小的情况,这种方法是可行的,也是有效的。
对于大型问题,可行的整数组合数是很大的,穷举法是不可取的。
我们一般仅检查可行的整数组合的一部分,就能定出最优的整数解。
分支定界法(branch and bound method)就是其中一种。
分支定界法可用于解纯整数或混合的整数规划问题。
在20世纪60年代由Land Dakin和Dakin等人提出。
由于这方法灵活且便于计算机求解,所以现在它已是解整数规划的重要方法。
设有最大化的整数规划问题A,与它相应的线性规划为问题B,从解问题B 开始,若其最优解不符合A的整数条件,那么B的最优目标函数必是A的最优目标函数*z的上界,记作z;而A的任意可行解的目标函数值将是*z的一个下界Z。
分枝定界法就是将B的可行域分成子区域(称为分支)的方法,逐步减小z和增大Z, 最终求到*z。
下面以实例来说明算法的步骤:例1 求解下面整数规划解:先不考虑条件⑸,求解相应的线性规划问题L,得最优解x=4.81,2x=1.82,0z=356(见图)1x=4.81,对问题L分别增加约束条件:该解不是整数解。
选择其中一个非整数变量,如1≤4,≥5 将问题L分解为两个子问题,(分枝),也就是去掉问题L不含整数解的一部分可行域,将原可行域D变为、两部分(如图)因为没有得到整数解,所以继续对L1进行分解,增加约束:≤2,≥3 将分解成问题与,并求得最优解如下:问题的解已是整数解,它的目标值=340,大于问题L4的目标值,所以问题已无必要再分枝。
但由于问题的目标值大于,分解还有可能产生更好的整数解,因此继续对分枝。
增加约束≤1,≥2 将分解成问题与,并求解,结果如下:问题的,所以不必分解了;问题无可行解,于是可以断定问题的解:=4.00,=2.00即为最优整数解。
整个分枝定界过程如下图所示:用分枝定界法求解整数规划的步骤可总结如下:步骤1:求解与整数规划相对应的线性规划L,若L无可行解,则整数规划也没有可行解,计算停;若L 的最优解是整数解,则该解即为整数规划的最优解,计算停;若L的最优解不是整数解,则转步骤2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
}
}
12
6.3 装载问题
一、问题描述 二、队列式分支限界法 三、算法的改进 四、构造最优解 五、优先队列式分支限界法
13
一、问题描述
有 的一轮批船共,个其集 中装 集箱 装要 箱装i的上重2量艘为载w重i,量且分∑别wi为≤CC1+1和C2 C2 装载问题要求确定是否有一个合理的装载方案可将
第六章 分支限界法
学习要点 理解分支限界法的剪枝搜索策略。 掌握分支限界法的算法框架
1. 队列式(FIFO)分支限界法 2. 优先队列式分支限界法
通过应用范例学习分支限界法的设计策略。
1. 单源最短路径问题 2. 装载问题; 3. 布线问题 4. 0-1背包问题; 5. 最大团问题; 6. 旅行售货员问题 7. 电路板排列问题 8. 批处理作业调度问题
一、基本思想 二、常见的两种分支限界法 三、0-1背包问题 四、旅行售货员问题
3Байду номын сангаас
一、基本思想
分支限界法常以广度优先或以最小耗费(最大 效益)优先的方式搜索问题的解空间树。
在分支限界法中,每一个活结点只有一次机会 成为扩展结点。活结点一旦成为扩展结点,就 一次性产生其所有儿子结点。在这些儿子结点 中,导致不可行解或导致非最优解的儿子结点 被舍弃,其余儿子结点被加入活结点表中。
11
四、算法描述
while (true) {
for (int j = 1; j <= n; j++)
if ((c[E.i][j]<inf)&&(E.length+c[E.i][j]<dist[j])) {
// 顶点i到顶点j可达,且满足控制约束
dist[j]=E.length+c[E.i][j];
[A] B, C, D => B(30), C(6), D(4) [D, C, B] I, J => I(14), J(24) [C, I, J, B] G, H => G(11), H(26) [G, I, J, B, H] M => M(25) [1, 3, 2, 4] [I, J, B, H] O => O(25) [J, B, H] P => P(59) [B, H] B, H 限界掉
可用剪枝函数加速搜索
6
1A0
B
C
D
E
F
G
H I J K LMNO
四、旅行售货员问题
队列式分支限界法:
[A] B, C, D [B, C, D] E, F [C, D, E, F] G, H [D, E, F, G, H] I, J [E, F, G, H, I, J] K(59) [1,2,3,4] [F, G, H, I, J] L(66) [G, H, I, J] M(25) [1, 3, 2, 4] [H, I, J] 1-3-4(26) [I, J] O(25) [J] P(59) 优先队列式分支限界法:
Q.Delete(Ew); // 取下一扩展结 点
16
四、构造最优解
为了在算法结束后能方便 地构造出与最优值相应的 最优解,算法必须存储相 应子集树中从活结点到根 结点的路径。为此目的, 可在每个结点处设置指向 其父结点的指针,并设置 左、右儿子标志。
找到最优值后,可以根据 parent回溯到根节点,找到 最优解。
prev[j]=E.i;
// 加入活结点优先队列
MinHeapNode<Type> N;
顶点I和j间有边,且
N.i=j;
此路径长小于原先从
N.length=dist[j]; H.Insert(N);}
原点到j的路径长
try {H.DeleteMin(E);} // 取下一扩展结点
catch (OutOfBounds) {break;} // 优先队列空
此后,从活结点表中取下一结点成为当前扩展 结点,并重复上述结点扩展过程。这个过程一 直持续到找到所需的解或活结点表为空时为止。
4
二、常见的两种分支限界法
从活结点表中选择下一扩展结点的不同方式导致不 同的分支限界法:
队列式(FIFO)分支限界法:按照队列先进先出(FIFO) 原则选取下一个节点为扩展节点。
在优先队列式分支限界法中,一旦有一个叶结 点成为当前扩展结点,则可以断言该叶结点所 相应的解即为最优解。此时可终止算法。
18
6.4 布线问题
一、问题描述 二、算法思想 三、算法描述 四、实例
19
一、问题描述
印刷电路板将布线区域划分为n×m 个方格阵列,如图所示。
精确的电路板布线问题要求确定连
接方格a的中点到方格b的中点的最
短布线方案。
a
布线时电路只能沿直线或直角布线。
为避免线路相交,已布线方格做上
封闭标记,其他线路布线不允许穿
过封闭区域。
b
为讨论方便,我们假定电路板外面 的区域为已加封闭标记的方格。
20
二、算法思想
解此问题的队列式分支限界法从起始位置a开始将 它作为第一个扩展结点。与该扩展结点相邻并且可 达的方格成为可行结点被加入到活结点队列中,并 且将这些方格标记为1,即从起始方格a到这些方格 的距离为1。
17
五、优先队列式分支限界法
解装载问题的优先队列式分支限界法用最大优 先队列存储活结点表。活结点x在优先队列中的 优先级定义为从根结点到结点x的路径所相应的 载重量再加上剩余集装箱的重量之和。
优先队列中优先级最大的活结点成为下一个扩 展结点。以结点x为根的子树中所有结点相应的 路径的载重量不超过它的优先级。子集树中叶 结点所相应的载重量与其优先级相同。
10
三、剪枝策略
在算法扩展结点的过程中,一旦发现一个结点的下 界不小于当前找到的最短路长,则算法剪去以该结 点为根的子树。
在算法中,利用结点间的控制关系进行剪枝。从源 顶点s出发,2条不同路径到达图G的同一顶点。由 于两条路径的路长不同,因此可以将路长长的路径 所对应的树中的结点为根的子树剪去。
1
引言
分支限界法类似于回溯法,也是一种在问题的解空 间树T中搜索问题解的算法。
分支限界法与回溯法的求解目标不同:
回溯法是找出满足约束条件的所有解 分支限界法是找出满足条件的一个解,或某种意义下
的最优解
搜索方式不同
回溯法:深度优先 分支限界法:广度优先或最小耗费优先
2
6.1 分支限界法的基本思想
队列式分支限界法:
[A] B, C => B, C [B, C] D, E => E [C, E] F, G => F, G [E, F, G] J, K => K(45) [1,0,0] [F, G] L, M =>L(50) [0, 1, 1] M(25) [G] N, 0 =>N(25), O(0) 不搜索一不可行结点为根的子树
优先队列式分支限界法:按照优先队列中规定的优先 级选取优先级最高的节点成为当前扩展节点。
最大优先队列:使用最大堆,体现最大效益优先 最小优先队列:使用最小堆,体现最小费用优先
5
三、0-1背包问题
考虑如下0-1背包问题的实例:
n=3, c=30, w=[16,15,15], p=[45,25,25]
则当ew+r<bestw时,可将 // 加入活结点队列
其右子树剪去。
if (i < n) Q.Add(wt);
另外,为了确保右子树成 功剪枝,应该在算法每一 次进入左子树的时候更新
} // 检查右儿子结点
bestw的值。
if (Ew + r > bestw && i < n)
Q.Add(Ew); // 可能含最优解
接着,算法从活结点队列中取出队首结点作为下一 个扩展结点,并将与当前扩展结点相邻且未标记过 的方格标记为2,并存入活结点队列。这个过程一 直继续到算法搜索到目标方格b或活结点队列为空 时为止。即加入剪枝的广度优先搜索。
21
三、算法描述
Position offset[4]; offset[0].row = 0; offset[0].col = 1; // 右 offset[1].row = 1; offset[1].col = 0; // 下
定义移动方向 的相对位移
offset[2].row = 0; offset[2].col = -1; // 左 offset[3].row = -1; offset[3].col = 0; // 上
活结点队列中的队首元素被取出 作为当前扩展结点,由于队列中 每一层结点之后都有一个尾部标 记-1,故在取队首元素时,活结 点队列一定不空。当取出的元素 是-1时,再判断当前队列是否为 空。如果队列非空,则将尾部标 记-1加入活结点队列,算法开始 处理下一层的活结点。
while (true) { // 检查左儿子结点 if (Ew + w[i] <= c) // x[i] = 1 EnQueue(Q, Ew + w[i], bestw, i, n); // 右儿子结点总是可行的 EnQueue(Q, Ew, bestw, i, n); // x[i] = 0 Q.Delete(Ew); // 取下一扩展结点 if (Ew == -1) { // 同层结点尾部 if (Q.IsEmpty()) return bestw; Q.Add(-1); // 同层结点尾部标志 Q.Delete(Ew); // 取下一扩展结点 i++;} // 进入下一层 } }
1 30 65
3
20
1A
4 2
10
4
2B 3 C
4D
3E 4F 2G 4 H 2 I 3 J