九 年 级 数 学 周 周 练(1)
2019-2020年九年级(上)第1周周练数学试卷(一元二次方程)
2019-2020年九年级(上)第1周周练数学试卷(一元二次方程)一、选择题:1.下列方程中,关于x的一元二次方程是()A.(x+1)2=2(x+1)B.C.ax2+bx+c=0 D.x2+2x+c=x2﹣12.方程2x(x﹣3)=5(x﹣3)的根为()A.B.x=3 C.D.3.用配方法解方程3x2﹣6x+1=0,则方程可变形为()A.(x﹣3)2= B.3(x﹣1)2= C.(x﹣1)2= D.(3x﹣1)2=14.一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>2 B.k<2且k≠1 C.k<2 D.k>2且k≠15.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c6.设a,b是方程x2+x﹣xx=0的两个根,则a2+2a+b的值为()A.xx B.xx C.2011 D.xx二、填空题:7.一元二次方程x(x﹣1)=2的一般形式是,根的情况.8.一元二次方程x2+mx+3=0的一个根为﹣1,则另一个根为.9.三角形的两边长为2和4,第三边长是方程x2﹣6x+8=0的根,则这个三角形的周长是.10.若关于x的方程x2+5x+k=0有实数根,则k的取值范围是.11.若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为.12.若x+2与x﹣2互为倒数,则x= .13.某工厂经过两年时间将某种产品的产量从每年14400台提高到16900台,设平均每年增长的百分率为x,根据题意列方程.14.已知(x2+y2+1)(x2+y2+3)=8,则x2+y2= .15.已知x=1是方程x2﹣2mx+1=0的一个根,则另一根为,m= .16.方程x2﹣5x+2=0的两实数根的平方和为.17.求代数式3x2+18x﹣1的最小值.三、解答题18.用适当的方法解下列方程:(1)(x+2)2=4;(2)x2+3x﹣1=0;(3)3x2﹣6x+1=0(用配方法解)(4)(x+3)2=5(x+3)(5)x2﹣2x﹣3=0.19.已知:关于x的一元二次方程x2+kx﹣1=0,求证:方程有两个不相等的实数根.20.已知关于x的方程k2x2+(2k﹣1)x+1=0有两个不相等的实数根,求k的取值范围.21.请用配方法说明代数式﹣2x2+6x﹣10的值恒小于零.22.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg.在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价.23.如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,将边BC折叠,使点B落在边OA的点D处.已知折痕CE=5,且AE:AD=3:4.(1)判断△OCD与△ADE是否相似?请说明理由;(2)求直线CE与x轴交点P的坐标;(3)是否存在过点D的直线l,使直线l、直线CE与x轴所围成的三角形和直线l、直线CE与y轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.24.如图,点A在y轴上,点B在x轴上,且OA=OB=1,经过原点O的直线l交线段AB于点C,过C作OC的垂线,与直线x=1相交于点P,现将直线L绕O点旋转,使交点C从A向B运动,但C点必须在第一象限内,并记AC的长为t,分析此图后,对下列问题作出探究:(1)当△AOC和△BCP全等时,求出t的值;(2)通过动手测量线段OC和CP的长来判断它们之间的大小关系并证明你得到的结论;(3)①设点P的坐标为(1,b),试写出b关于t的函数关系式和变量t的取值范围.②求出当△PBC为等腰三角形时点P的坐标.xx学年江苏省无锡市江阴市陆桥中学九年级(上)第1周周练数学试卷(一元二次方程)参考答案与试题解析一、选择题:1.下列方程中,关于x的一元二次方程是()A.(x+1)2=2(x+1)B.C.ax2+bx+c=0 D.x2+2x+c=x2﹣1【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0.这两个条件得到相应的关系式,再求解即可.【解答】解:A、是一元二次方程,故A正确;B、是分式方程,故B错误;C、a=0时是元一次方程,故C错误;D、是一元一次方程,故D错误;故选:A.2.方程2x(x﹣3)=5(x﹣3)的根为()A.B.x=3 C.D.【考点】解一元二次方程-因式分解法.【分析】首先把5(x﹣3)从方程的右边移到方程的左边,然后利用因式分解法分解因式,提公因式x﹣3,可以得到(2x﹣5)(x﹣3)=0,最后把它分解成两个方程2x﹣5=0或x﹣3=0,可解得答案.【解答】解:移项,得2x(x﹣3)﹣5(x﹣3)=0,提公因式,得(2x﹣5)(x﹣3)=0,∴2x﹣5=0或x﹣3=0,解得x1=,x2=3.故选C.3.用配方法解方程3x2﹣6x+1=0,则方程可变形为()A.(x﹣3)2= B.3(x﹣1)2= C.(x﹣1)2= D.(3x﹣1)2=1【考点】解一元二次方程-配方法.【分析】方程二次项系数化为1,常数项移到右边,两边加上一次项系数一半的平方,变形即可得到结果.【解答】解:方程变形得:x2﹣2x=﹣,配方得:x2﹣2x+1=,即(x﹣1)2=,故选C.4.一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>2 B.k<2且k≠1 C.k<2 D.k>2且k≠1【考点】根的判别式.【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有不相等的实数根下必须满足△=b2﹣4ac>0.【解答】解:∵a=1﹣k,b=﹣2,c=﹣1,一元二次方程有两个不相等的实数根,∴△=b2﹣4ac=22﹣4×(1﹣k)×(﹣1)>0,解得k<2,∵(1﹣k)是二次项系数,不能为0,∴k≠1且k<2.故选B.5.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c【考点】根的判别式.【分析】因为方程有两个相等的实数根,所以根的判别式△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,化简即可得到a 与c的关系.【解答】解:∵一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,∴△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,即(a+c)2﹣4ac=a2+2ac+c2﹣4ac=a2﹣2ac+c2=(a﹣c)2=0,∴a=c.故选A6.设a,b是方程x2+x﹣xx=0的两个根,则a2+2a+b的值为()A.xx B.xx C.2011 D.xx【考点】根与系数的关系;一元二次方程的解.【分析】把x=a代入方程x2+x﹣xx=0得出a2+a﹣xx=0,求出a2+a=xx,根据根与系数的关系得出a+b=﹣1,代入求出即可.【解答】解:∵把x=a代入方程x2+x﹣xx=0得:a2+a﹣xx=0,∴a2+a=xx,∵a,b是方程x2+x﹣xx=0的两个根,∴a+b=﹣1,∴a2+2a+b=a2+a+a+b=xx+(﹣1)=2011.故选C.二、填空题:7.一元二次方程x(x﹣1)=2的一般形式是x2﹣x﹣2=0 ,根的情况有两个不相等实数根.【考点】根的判别式.【分析】首先去括号移项,可得一般形式,再用根的判别式进行计算即可得该方程根的情况.【解答】解:x(x﹣1)=2,x2﹣x﹣2=0,∵△=(﹣1)2﹣4×1×(﹣2)=9>0,∴方程有两个不相等实数根.故答案为:x2﹣x﹣2=0;有两个不相等实数根.8.一元二次方程x2+mx+3=0的一个根为﹣1,则另一个根为﹣3 .【考点】根与系数的关系;一元二次方程的解.【分析】因为一元二次方程的常数项是已知的,可直接利用两根之积的等式求解.【解答】解:∵一元二次方程x2+mx+3=0的一个根为﹣1,设另一根为x1,由根与系数关系:﹣1•x1=3,解得x1=﹣3.9.三角形的两边长为2和4,第三边长是方程x2﹣6x+8=0的根,则这个三角形的周长是10 .【考点】解一元二次方程-因式分解法;三角形三边关系.【分析】先解方程求得方程的两根,那么根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【解答】解:解方程x2﹣6x+8=0得第三边的边长为2或4.∵2<第三边的边长<6,∴第三边的边长为4,∴这个三角形的周长是2+4+4=10.故答案为10.10.若关于x的方程x2+5x+k=0有实数根,则k的取值范围是k≤.【考点】根的判别式.【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.关于x的方程x2+5x+k=0有实数根,△=b2﹣4ac≥0.【解答】解:∵a=1,b=5,c=k,∴△=b2﹣4ac=52﹣4×1×k=25﹣4k≥0,∴k≤.11.若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为﹣2 .【考点】一元二次方程的解.【分析】利用方程解的定义找到相等关系n2+mn+2n=0,再把所求的代数式化简后整理出m+n=﹣2,即为所求.【解答】解:把n代入方程得到n2+mn+2n=0,将其变形为n(m+n+2)=0,因为n≠0所以解得m+n=﹣2.12.若x+2与x﹣2互为倒数,则x= .【考点】倒数;解一元二次方程-直接开平方法.【分析】根据互为倒数的积为1列方程,解出即可.【解答】解:由题意得:(x+2)(x﹣2)=1,x2﹣4=1,x2=5,x=,故答案为:.13.某工厂经过两年时间将某种产品的产量从每年14400台提高到16900台,设平均每年增长的百分率为x,根据题意列方程14400(1+x)2=16900 .【考点】由实际问题抽象出一元二次方程.【分析】根据平均每年增长的百分率为x,则在第一年是14400(1+x),第二年是14400(1+x)2,即可列方程.【解答】解:设平均每年增长的百分率为x,第一年是14400(1+x),第二年是14400(1+x)2,故14400(1+x)2=16900.故答案为:14400(1+x)2=16900.14.已知(x2+y2+1)(x2+y2+3)=8,则x2+y2= 1 .【考点】解一元二次方程-因式分解法.【分析】设a=x2+y2,已知等式化为关于a的方程,求出方程的解得到a的值,即可确定出x2+y2的值.【解答】解:设a=x2+y2,已知等式变形为:(a+1)(a+3)=8,整理得:a2+4a﹣5=0,即(a﹣1)(a+5)=0,解得:a=1或a=﹣5(舍去),则x2+y2=1.故答案为:1.15.已知x=1是方程x2﹣2mx+1=0的一个根,则另一根为 1 ,m= 1 .【考点】根与系数的关系;一元二次方程的解.【分析】把x=1代入原方程,即可求m,再把m的值代入,可得关于x的一元二次方程,利用因式分解法求解方程,可得x1=5,x2=﹣1,从而可求答案.【解答】解:把x=1代入方程,得12﹣2m+1=0,∴m=1,∴原方程为x2﹣2x+1=0,解得x1=x2=1,即另一根为x=1.故答案是1;1.16.方程x2﹣5x+2=0的两实数根的平方和为21 .【考点】根与系数的关系.【分析】首先利用一元二次方程的根与系数的关系分别求出两根之和两根之积,然后利用完全平方公式把方程的两根的平方和变形即可求解.【解答】解:设一元二次方程x2﹣5x+2=0的两根为a、b,则a+b=5,ab=2.∴两根的平方和为a2+b2=(a+b)2﹣2ab=52﹣2×2=21.故答案为:21.17.求代数式3x2+18x﹣1的最小值﹣28 .【考点】配方法的应用;非负数的性质:偶次方.【分析】根据配方法把原式变形,根据非负数的性质解答即可.【解答】解:3x2+18x﹣1=3(x2+6x+9)﹣27﹣1=3(x+3)2﹣28,∵(x+3)2≥0,∴3(x+3)2﹣28≥﹣28,∴代数式3x2+18x﹣1的最小值是﹣28,故答案为:﹣28.三、解答题18.用适当的方法解下列方程:(1)(x+2)2=4;(2)x2+3x﹣1=0;(3)3x2﹣6x+1=0(用配方法解)(4)(x+3)2=5(x+3)(5)x2﹣2x﹣3=0.【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法;解一元二次方程-配方法.【分析】(1)应用直接开平方法,求出(x+2)2=4的解是多少即可.(2)应用配方法,求出x2+3x﹣1=0的解是多少即可.(3)应用配方法,求出3x2﹣6x+1=0的解是多少即可.(4)应用因式分解法,求出(x+3)2=5(x+3)的解是多少即可.(5)应用因式分解法,求出x2﹣2x﹣3=0的解是多少即可.【解答】解:(1)∵(x+2)2=4,∴x+2=±2,解得x1=0,x2=﹣4.(2)∵x2+3x﹣1=0,∴x2+3x=1,∴x2+3x+=1+,∴(x+)2=,∴x+=±,解得x1=﹣+,x2=﹣﹣.(3)∵3x2﹣6x+1=0,∴x2﹣2x+=0,∴x2﹣2x=﹣,∴x2﹣2x+1=﹣+1,∴(x﹣1)2=,∴x﹣1=±解得x1=1﹣,x2=1+.(4)∵(x+3)2=5(x+3),∴(x+3)2﹣5(x+3)=0,∴(x+3)(x+3﹣5)=0,∴(x+3)(x﹣2)=0,∴x+3=0或x﹣2=0,解得x1=﹣3,x2=2.(5)∵x2﹣2x﹣3=0,∴(x+1)(x﹣3)=0,∴x+1=0或x﹣3=0,解得x1=﹣1,x2=3.19.已知:关于x的一元二次方程x2+kx﹣1=0,求证:方程有两个不相等的实数根.【考点】根的判别式.【分析】要证明方程有两个不相等的实数根,即证明△>0即可.△=k2﹣4×1×(﹣1)=k2+4,因为k2≥0,可以得到△>0.【解答】证明:∵△=k2﹣4×1×(﹣1)=k2+4,而k2≥0,∴△>0.所以方程有两个不相等的实数根.20.已知关于x的方程k2x2+(2k﹣1)x+1=0有两个不相等的实数根,求k的取值范围.【考点】根的判别式.【分析】根据方程有两个不相等的实数根,得到根的判别式大于0,求出k的范围即可.【解答】解:∵k2x2+(2k﹣1)x+1=0有两个不相等的实数根,∴△=(2k﹣1)2﹣4k2=﹣4k+1>0,且k2≠0,解得:k<且k≠0.21.请用配方法说明代数式﹣2x2+6x﹣10的值恒小于零.【考点】配方法的应用;非负数的性质:偶次方.【分析】把原式根据配方法进行变形,根据偶次方的非负性解答即可.【解答】解:﹣2x2+6x﹣10=﹣2(x2﹣3x+)+﹣10=﹣2(x﹣)2﹣,∵(x﹣)2≥0,∴﹣2(x﹣)2≤0,∴﹣2(x﹣)2﹣<0,即代数式﹣2x2+6x﹣10的值恒小于零.22.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg.在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价.【考点】一元二次方程的应用.【分析】若销售单价为x元,则每千克降低(70﹣x)元,日均多销售出2(70﹣x)千克,日均销售量为[60+2(70﹣x)]千克,每千克获利(x﹣30)元,根据题意可得等量关系:每千克利润×销售量﹣500元=总利润,根据等量关系列出方程即可.【解答】解:设销售单价为 x元,由题意得:(x﹣30)[60+2(70﹣x)]﹣500=1950,解得:x1=85,x2=45,∵销售单价不得高于每千克70元,也不得低于每千克30元,∴x=85不合题意,舍去.答:销售单价为45元时,日均获利为1950元.23.如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,将边BC折叠,使点B落在边OA的点D处.已知折痕CE=5,且AE:AD=3:4.(1)判断△OCD与△ADE是否相似?请说明理由;(2)求直线CE与x轴交点P的坐标;(3)是否存在过点D的直线l,使直线l、直线CE与x轴所围成的三角形和直线l、直线CE与y轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.【考点】相似形综合题.【分析】(1)结论△OCD与△ADE相似:根据同角的余角相等即可得出∠OCD=∠EDA,由此可证得两三角形相似.(2)求出C、E点的坐标,根据待定系数法即可解决问题.(3)应该有两条如图①直线BF满足条件,根据B、D两点的坐标求出此直线的解析式.②假设直线DN满足条件,因为△PDM∽△NCM,推出∠PDM=∠NCM,推出∠ODN=∠PCO,所以tan∠PCO=tan∠ODN,得到=,即=,推出ON=12,然后根据N、D两点的坐标求出直线DN的解析式.【解答】解:(1)△OCD与△ADE相似.理由如下:由折叠知,∠CDE=∠B=90°,∴∠CDO+∠EDA=90°,∵∠CDO+∠OCD=90°,∴∠OCD=∠EOA.又∵∠COD=∠DAE=90°,∴△OCD∽△ADE.(2)∵tan∠EDA==,∴设AE=3t,则AD=4t,由勾股定理得DE=5t,∴OC=AB=AE+EB=AE+DE=3t+5t=8t.由(1)△OCD∽△ADE,得 =,∴=,∴CD=10t.在△DCE中,∵CD2+DE2=CE2,∴(10t)2+(5t)2=(5)2,解得t=1.∴OC=8,AE=3,点C的坐标为(0,8),点E的坐标为(10,3),设直线CE的解析式为y=kx+b,∴,解得,∴y=﹣x+8,则点P的坐标为(16,0).(3)存在.①直线BF满足条件.∵CE必垂直平分BD,∴∠DGP=∠CGF=90°,∵∠CFG+∠FCE=90°,∠DPG+∠FCE=90°∴∠CFG=∠DPG,∴△DPG∽△CFG,∴直线BD符合条件,∵D(6,0),B(10,8),∴直线BD的解析式为y=2x﹣12.②假设直线DN满足条件,∵△PDM∽△NCM,∴∠PDM=∠NCM,∴∠ODN=∠PCO,∴tan∠PCO=tan∠ODN,∴=,∴=,∴ON=12,∵N(0,12),D(6,0),∴直线DN的解析式为y=﹣2x+12.综上所述,满足条件的直线l有2条:y1=﹣2x+12,y2=2x﹣12.24.如图,点A在y轴上,点B在x轴上,且OA=OB=1,经过原点O的直线l交线段AB于点C,过C作OC的垂线,与直线x=1相交于点P,现将直线L绕O点旋转,使交点C从A向B运动,但C点必须在第一象限内,并记AC的长为t,分析此图后,对下列问题作出探究:(1)当△AOC和△BCP全等时,求出t的值;(2)通过动手测量线段OC和CP的长来判断它们之间的大小关系并证明你得到的结论;(3)①设点P的坐标为(1,b),试写出b关于t的函数关系式和变量t的取值范围.②求出当△PBC为等腰三角形时点P的坐标.【考点】一次函数综合题.【分析】(1)△AOC和△BCP全等,则AO=BC=1,又∵AB=,t=AB﹣BC=﹣1;(2)过点C作x轴的平行线,交OA与直线BP于点T、H,证△OTC≌△CHP即可;(3)根据题意可直接得出b=1﹣t;当t=0或1时,△PBC为等腰三角形,即P (1,1),P(1,1﹣),但t=0时,点C不在第一象限,所以不符合题意.【解答】解:(1)△AOC和△BCP全等,则AO=BC=1,又AB=,所以t=AB﹣BC=﹣1;(2)OC=CP.证明:过点C作x轴的平行线,交OA与直线BP于点T、H.∵PC⊥OC,∴∠OCP=90°,∵OA=OB=1,∴∠OBA=45°,∵TH∥OB,∴∠BCH=45°,又∠CHB=90°,∴△CHB为等腰直角三角形,∴CH=BH,∵∠AOB=∠OBH=∠BHT=90°,∴四边形OBHT为矩形,∴OT=BH,∴OT=CH,∵∠TCO+∠PCH=90°,∠CPH+∠PCH=90°,∴∠TCO=∠CPH,∵HB⊥x轴,TH∥OB,∴∠CTO=∠THB=90°,TO=HC,∠TCO=∠CPH,∴△OTC≌△CHP,∴OC=CP;(3)①∵△OTC≌△CHP,∴CT=PH,∴PH=CT=AT=AC•cos45°=t,∴BH=OT=OA﹣AT=1﹣t,∴BP=BH﹣PH=1﹣t,∴;(0<t<)②t=0时,△PBC是等腰直角三角形,但点C与点A重合,不在第一象限,所以不符合,PB=BC,则﹣t=|1﹣t|,解得t=1或t=﹣1(舍去),∴当t=1时,△PBC为等腰三角形,即P点坐标为:P(1,1﹣).xx年1月14日-----如有帮助请下载使用,万分感谢。
北师大版九年级数学上名校课堂周周练(1.1~1.2.1)(含答案)
周周练(1.1~1.2.1 )(时间:45分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列是矩形与菱形都具有的性质的是( ) A .各角都相等 B .各边都相等 C .对角线相等 D .有两条对称轴2.(青岛中考)如图,菱形ABCD 的对角线AC 、BD 相交于O 点,E 、F 分别是AB 、BC 边上的中点,连接EF.若EF =3,BD =4,则菱形ABCD 的周长为( ) A .4 B.12C .47D .283.如图是一张矩形纸片ABCD ,AD =10 cm ,若将纸片沿DE 折叠,使DC 落在DA 上,点C 的对应点为点F ,若BE =6 cm ,则CD =( ) A .4 cm B .6 cm C .8 cm D.10 cm4.下列说法中正确的是( ) A .四边相等的四边形是菱形B .一组对边相等,另一组对边平行的四边形是菱形C .对角线互相垂直的四边形是菱形D .对角线互相平分的四边形是菱形5.如图,矩形ABCD 中,AB =8,AD =6,将矩形ABCD 绕点B 按顺时针方向旋转后得到矩形A ′BC ′D ′.若边A ′B 交线段CD 于H ,且BH =DH ,则DH 的值是( )A.74 B .8-2 3 C.254 D .6 26.顺次连接四边形四条边的中点,所得的四边形是菱形,则原四边形一定是( ) A .平行四边形 B .对角线相等的四边形 C .矩形D .对角线互相垂直的四边形7.如图,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上任一点(点P 不与点A 、C 重合 )且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是( ) A .2 B.52 C .3 D.538.如图,在Rt △ABC 中,∠A =90°,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,动点P 从点B 出发,沿着BC 匀速向终点C 运动,则线段EF 的值大小变化情况是( ) A .一直增大 B .一直减小 C .先减小后增大 D .先增大后减少二、填空题(每小题4分,共16分)9.(铜仁中考)已知一个菱形的对角线长分别为 6 cm 和8 cm ,则这个菱形的面积是________cm 2.10.(三明中考)如图,在四边形ABCD 中,对角线AC ,BD 交于点O ,OA =OC ,OB =OD ,添加一个条件使四边形ABCD 是菱形,那么所添加的条件可以是____________________________________(写出一个即可).11.(毕节中考)将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使其面积为矩形面积的一半(木条宽度忽略不计),则这个平行四边形的最小内角为________度.12.如图,矩形ABCD的两条对角线交于点O,过点O作AC的垂线EF,分别交AD,BC 于点E,F,连接CE,已知△CDE的周长为24 cm,则矩形ABCD的周长是________cm.三、解答题(共52分)13.(12分)在菱形ABCD中,E、F分别是BC、CD的中点,连接AE、AF.求证:AE=AF.14.(12分)如图,在矩形ABCD中,以顶点B为圆心、边BC长为半径作弧,交AD边于点E,连接BE,过C点作CF⊥BE于F.猜想线段BF与图中现有的哪一条线段相等?然后再加以证明.15.(13分)(雅安中考)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB ⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.16.(15分)如图,在矩形ABCD中,点E为CD上一点,将△BCE沿BE翻折后点C恰好落在AD边上的点F处,将线段EF绕点F旋转,使点E落在BE上的点G处,连接CG. (1)证明:四边形CEFG是菱形;(2)若AB=8,BC=10,求四边形CEFG的面积;(3)试探究当线段AB与BC满足什么数量关系时,BG=CG,请写出你的探究过程.参考答案1.D2.C3.A4.A5.C6.B7.B8.C9.24 10.AB =AD(答案不唯一) 11.30 12.4813.证明:∵四边形ABCD 是菱形, ∴AB =BC =CD =AD ,∠B =∠D. ∴12BC =12CD. ∵E 、F 分别是BC 、CD 的中点, ∴BE =12BC ,DF =12CD.∴BE =DF.在△ABE 和△ADF 中,⎩⎪⎨⎪⎧AB =AD ,∠B =∠D ,BE =DF ,∴△ABE ≌△ADF(SAS ). ∴AE =AF. 14.猜想:BF =AE.证明:∵四边形ABCD 是矩形. ∴∠A =90°,AD ∥BC. ∴∠AEB =∠FBC. ∵CF ⊥BE ,∴∠A =∠BFC =90°. ∵BC =BE , ∴△BFC ≌△EAB. ∴BF =AE.15.(1)证明:∵△BAD 是由△BEC 绕点B 旋转60°而得, ∴DB =CB ,∠ABD =∠EBC ,∠ABE =60°.又∵AB ⊥BC.∴∠ABC =90°.∴∠DBE =∠CBE =30°. 在△BDE 和△BCE 中,⎩⎪⎨⎪⎧DB =CB ,∠DBE =∠CBE ,BE =BE ,∴△BDE ≌△BCE.(2)四边形ABED 是菱形.由(1)得△BDE ≌△BCE.又∵△BAD 是由△BEC 旋转得到,∴△BAD ≌△BEC.∴BA =BE ,AD =ED =EC. 又∵BE =CE ,∴AB =BE =ED =DA. ∴四边形ABED 是菱形.16.(1)证明:根据翻折的方法可得EF =EC ,∠FEG =∠CEG . 又∵GE =GE ,∴△EFG ≌△ECG .∴FG =GC. ∵线段FG 是由EF 绕F 旋转得到的, ∴EF =FG.∴EF =EC =FG =GC. ∴四边形FGCE 是菱形. (2)连接FC 交GE 于O 点. 根据折叠可得BF =BC =10. ∵AB =8,∴在Rt △ABF 中,根据勾股定理得AF =BF 2-AB 2=6. ∴FD =AD -AF =10-6=4. 设EC =x ,则DE =8-x ,EF =x ,在Rt △FDE 中,FD 2+DE 2=EF 2,即42+(8-x )2=x 2, 解得x =5.即CE =5.S 菱形CEFG =CE ·FD =5×4=20. (3)当AB BC =32时,BG =CG ,理由:由折叠可得BF =BC ,∠FBE =∠CBE ,∵在Rt △ABF 中,AB BF =32,∴BF =2AF.∴∠ABF =30°.又∵∠ABC =90°,∴∠FBE =∠CBE =30°,EC =12BE.∵∠BCE =90°,∴∠BEC =60°. 又∵GC =CE ,∴△GCE 为等边三角形. ∴GE =CG =CE =12BE.∴G 为BE 的中点.∴CG =BG =12BE.。
新人教版九年级上册数学周周练
一、选择题(每小题3分,共24分)1.下列图形中既是轴对称图形又是中心对称图形的是( )2.经过旋转,下列说法中错误的是( )A.图形上的每一点到旋转中心的距离相等B.图形的形状与大小都没有发生变化C.图形上可能存在不动点D.图形上任意两点的连线与其对应两点的连线长度相等3.如图所示,两个全等的长方形ABCD与CDEF,旋转长方形ABCD能和长方形CDEF重合,则可以作为旋转中心的点有( )A.1个B.2个C.3个D.无数个4.下列各图中,可以看成由下面图形顺时针旋转90°而形成的图形的是( )5.将一图形绕着点O顺时针方向旋转70°后,再绕着点O逆时针方向旋转120°,这时如果要使图形回到原来的位置,需要将图形绕着点O什么方向旋转多少度( )A.顺时针方向50°B.逆时针方向50°C.顺时针方向190°D.逆时针方向190°6.如图所示,点E是正方形ABCD内一点,把△BEC绕点C旋转至△DFC位置,则∠EFC的度数是( )A.90°B.30°C.45°D.60°7.以左图的右边缘所在直线为轴,将该图形对折后,再以O点为旋转中心顺时针方向旋转180°,所得的图形是下图中的( )8.如图所示,正方形OABC的边长为2,则该正方形绕点O逆时针旋转45°后,点B的坐标为( )A.(2,2)B.(0,22)C.(22,0)D.(0,2)二、填空题(每小题4分,共16分)9.如图所示,线段MO绕点O顺时针旋转90°到达线段NO的位置,在这个旋转过程中,旋转中心是O,旋转角是____,它等于____度.10.平面直角坐标系中有一个点A(-2,6),则与点A关于原点对称的点的坐标是____,则经过这两点的直线的解析式为____.11.一条线段绕其上一点旋转90°后与原来的线段____.12.如图所示,直线EF过平行四边形ABCD对角线的交点O,且分别交AD、BC于E、F,那么阴影部分的面积是平行四边形ABCD面积的____.三、解答题(共60分)13.(10分)如图,在△ABC中,∠B=10°,∠ACB=20°,AB=4 cm,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD中点.(1)指出旋转中心,并求出旋转角的度数;(2)求出∠BAE的度数和AE的长.14.(12分)如图所示,△DEF是由△ABC绕点O顺时针旋转180°后形成的图形;(1)请你指出图中所有相等的线段;(2)图中哪些三角形可以被看成是关于点O成中心对称关系?15.(12分)如图所示,在△ABC中,AD是BC边上的中线.(1)画出与△ACD关于点D成中心对称的三角形;(2)找出与AC相等的线段;(3)探究:△ABC中AB与AC的和与中线AD之间有何大小关系?并说明理由;(4)若AB=5,AC=3,求线段AD的取值范围.16.(12分)在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形,解决下面的问题:(1)图中的格点△A′B′C′是由格点△ABC通过哪些方法变换得到的?(2)设每个小正方形的边长为1,如果建立平面直角坐标系后,点A 的坐标为(-3,4),请写格点△DEF 各顶点的坐标,并求出△DEF 的面积.17.(14分)已知:如图,在△ABC 中,AB=AC ,若将△ABC 顺时针旋转180°得到△FEC. (1)试猜想AE 与BF 有何关系,说明理由;(2)若△ABC 的面积为3 cm 2,求四边形ABFE 的面积;(3)当∠ACB 为多少度时,四边形ABFE 为矩形,说明理由.参考答案1.D2.A3.A4.B5.A6.C7.A8.B9.90 10.(2,-6),y=-3x. 11.垂直. 12.41.13.(1)旋转中心为点A ,旋转角∠BAD 的度数为150°;(2)∠BAE=60°,AE=2 cm.14(1)图中相等的线段有:AB=DE ,AC=DF ,BC=EF ,AO=DO ,BO=EO ,CO=FO ;(2)图中关于点O 成中心对称的三角形有:△ABC 与△DEF ,△ABO 与△DEO ,△ACO 与△DFO ,△BCO 与△EFO.15.(12分)如图所示,在△ABC 中,AD 是BC 边上的中线.(1)如图所示,△A ′BD 即为所求;(2)A′B=AC;(3)AB+AC>2AD,理由:由于△A′BD与△ACD关于点D成中心对称,所以AD=A′D,AC=A′B,在△ABA′中,有AB+A′B>AA′,即AB+AC>AD+A′D,因此AB+AC>2AD;(4)由(3)可得,在△ABA′中,有AB-A′B<AA′<AB+A′B,即AB-AC<2AD<AB+AC,因此有2<2AD <8,所以1<AD<4.16.(1)方法不唯一,如:先把△ABC向右平移5小格,使点C移到点C′,再以点C′为旋转中心,顺时针方向旋转90°得到△A′B′C′.(2)D(0,-2),E(-4,-4),F(2,-3),显然点G在DE上,且是DE的中点,则S△DE F=S△DGF+S△GFE==4. 17.(1)由旋转可知:AC=CF,BC=CE,∠ACE=∠BCF,∴△ACE≌△BCF(SAS),∴AE=BF,∠CAE=∠CFB,∴AE∥BF,即AE与BF的关系为:AE∥BF且AE=BF.(2)∵△ACE≌△BCF,∴S△ACE=S△BCF,又∵BC=CE,∴S△ABC=S△ACE,同理:S△CEF=S△BCF,∴S△CE F=S△BCF=S△=S△ABC=3,∴S四边形ABFE=3×4=12(cm2);ACE(3)当∠ACB=60°时,四边形ABFE为矩形.理由是:∵BC=CE,AC=CF,∴四边形ABFE为平行四边形,当∠ACB=60°时,∵AB=AC,∴△ABC为等边三角形,∴BC=AC,∴AF=BE,∴四边形ABFE为矩形,即:当∠ACB=60°时,四边形ABFE为矩形.。
九年级数学上学期周练试卷(4)(含解析) 新人教版
2015-2016学年北京市北达资源中学九年级(上)周练数学试卷(4)一、选择题(每题4分,共24分)1.已知⊙O的半径是5,OP的长为7,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定2.若两圆没有公共点,则两圆的位置关系是()A.外离B.外切C.内含D.外离或内含3.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为()A.40°B.50°C.65°D.75°4.如图所示,O是线段AB上的一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()A.50°B.40°C.60°D.70°5.如图,正三角形的内切圆半径为1,那么三角形的边长为()A.2 B.3 C.D.26.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CB,CA分别相交于点E,F,则线段EF长度的最小值是()A.B.4.75 C.5 D.4.8二、填空题(每小题4分,共40分)7.如图,△ABC中,∠A=45°,I是内心,则∠BIC=°.8.如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为(度).9.如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是cm.10.如图,PA、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知PA=7cm,则△PCD的周长等于cm.11.如图,已知⊙O是△ABC的内切圆,切点为D、E、F,如果AE=2,CD=1,BF=3,则内切圆的半径r=.12.如图,四边形ABCD内接于⊙O,若∠BOD=138°,则它的一个外角∠DCE等于.13.如图,在△ABC中,已知∠ABC=90°,在AB上取一点E,以BE为直径的☉O恰与AC相切于点D.若AE=2,AD=4.则☉O的直径BE=;△ABC的面积为.14.平面上有⊙O及一点P,P到⊙O上一点的距离最长为6cm,最短为2cm,则⊙O的半径为cm.15.直线AB与⊙O相切于B点,C是⊙O与OA的交点,点D是⊙O上的动点(D与B,C 不重合),若∠A=40°,则∠BDC的度数是.16.已知⊙O的半径OA=1,弦AB、AC的长分别是、,则∠BAC的度数是.三、解答题(第17题16分,第18、19题每题10分,共36分)17.如图,C为圆周上一点,BD是☉O的切线,B为切点.(1)在图(1)中,AB是☉O的直径,∠BAC=30°,则∠DBC的度数为.(2)在图(2)中,∠BA1C=40°,求∠DBC的度数.(3)在图(3)中,∠BA1C=α,求∠DBC的大小.(4)通过(1)、(2)、(3)的探究,你发现的结论是(5)如图(4),AC是☉O的直径,∠ACB=60°,连接AB,过A、B两点分别作☉O的切线,两切线交于点P.若已知☉O的半径为1,则△PAB的周长为.(6)如图(5),C是⊙O的直径AB延长线上的一点,CD切⊙O于D,∠ACD的平分线分别交AD、BD于E、F,试猜想∠DEF的度数并说明理由.18.如图,直线AB、BC、CD分别与⊙O相切于A、E、D,且AB∥CD,若OB=6cm,OC=8cm,求(1)∠BOC 的度数;(2)⊙O的半径;(3)AB+CD的值.19.如图,Rt△ABC中,∠A=90°,以AB为直径的⊙O交BC于点D,点E在⊙O上,CE=CA,AB,CE的延长线交于点F.(1)求证:CE与⊙O相切;(2)若⊙O的半径为3,EF=4,求BD的长.2015-2016学年北京市北达资源中学九年级(上)周练数学试卷(4)参考答案与试题解析一、选择题(每题4分,共24分)1.已知⊙O的半径是5,OP的长为7,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定【考点】点与圆的位置关系.【分析】直接根据点与圆的位置关系即可得出结论.【解答】解:∵⊙O的半径是5,OP的长为7,5<7,∴点P在圆外.故选C.2.若两圆没有公共点,则两圆的位置关系是()A.外离B.外切C.内含D.外离或内含【考点】圆与圆的位置关系.【分析】此题要求两个圆的位置关系,可观察两个圆之间的交点个数,一个交点两圆相切(内切或外切),两个交点两圆相交,没有交点两圆相离(外离或内含).【解答】解:外离或内含时,两圆没有公共点.故选D.3.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为()A.40°B.50°C.65°D.75°【考点】切线的性质.【分析】根据切线的性质可判断∠OBA=90°,再由∠BAO=40°可得出∠O=50°,在等腰△OBC 中求出∠OCB即可.【解答】解:∵AB是⊙O的切线,B为切点,∴OB⊥AB,即∠OBA=90°,∵∠BAO=40°,∴∠O=50°,∵OB=OC(都是半径),∴∠OCB==65°.故选C.4.如图所示,O是线段AB上的一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()A.50°B.40°C.60°D.70°【考点】切线的性质;圆周角定理.【分析】连接OC,由CE为圆O的切线,根据切线的性质得到OC垂直于CE,即三角形OCE 为直角三角形,再由同弧所对的圆心角等于所对圆周角的2倍,由圆周角∠CDB的度数,求出圆心角∠COB的度数,在直角三角形OCE中,利用直角三角形的两锐角互余,即可求出∠E的度数.【解答】解:连接OC,如图所示:∵圆心角∠BOC与圆周角∠CDB都对弧BC,∴∠BOC=2∠CDB,又∠CDB=20°,∴∠BOC=40°,又∵CE为圆O的切线,∴OC⊥CE,即∠OCE=90°,则∠E=90°﹣40°=50°.故选A.5.如图,正三角形的内切圆半径为1,那么三角形的边长为()A.2 B.3 C.D.2【考点】三角形的内切圆与内心;锐角三角函数的定义.【分析】欲求三角形的边长,已知内切圆半径,可过内心向正三角形的一边作垂线,连接顶点与内切圆心,构造直角三角形求解.【解答】解:过O点作OD⊥AB,则OD=1;∵O是△ABC的内心,∴∠OAD=30°;Rt△OAD中,∠OAD=30°,OD=1,∴AD=OD•cot30°=,∴AB=2AD=2.故选D.6.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CB,CA分别相交于点E,F,则线段EF长度的最小值是()A.B.4.75 C.5 D.4.8【考点】切线的性质;勾股定理的逆定理;圆周角定理.【分析】设EF的中点为O,圆O与AB的切点为D,连接OD,连接CO,CD,则有OD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形OC+OD=EF,由三角形的三边关系知,CO+OD >CD;只有当点O在CD上时,OC+OD=EF有最小值为CD的长,即当点O在直角三角形ABC 的斜边AB的高上CD时,EF=CD有最小值,由直角三角形的面积公式知,此时CD=BC•AC÷AB=4.8.【解答】解:如图,∵∠ACB=90°,∴EF是直径,设EF的中点为O,圆O与AB的切点为D,连接OD,CO,CD,则OD⊥AB.∵AB=10,AC=8,BC=6,∴∠ACB=90°,∴EF为直径,OC+OD=EF,∴CO+OD>CD=4.8,∵当点O在直角三角形ABC的斜边AB的高上CD时,EF=CD有最小值∴由三角形面积公式得:CD=BC•AC÷AB=4.8.故选D.二、填空题(每小题4分,共40分)7.如图,△ABC中,∠A=45°,I是内心,则∠BIC=115°.【考点】三角形的内切圆与内心.【分析】由三角形内切定义可知:IB、IC是∠ABC、∠ACB的角平分线,所以可得到关系式∠IBC+∠ICB=(∠ABC+∠ACB),把对应数值代入即可解出∠BIC的值.【解答】解:∵IB、IC是∠ABC、∠ACB的角平分线,∴∠IBC+∠ICB=(∠ABC+∠ACB)==65°,∴∠BIC=180°﹣65°=115°.故答案为:115.8.如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为55(度).【考点】切线的性质.【分析】首先连接OA,OB,由PA、PB分别切⊙O于点A、B,根据切线的性质可得:OA⊥PA,OB⊥PB,然后由四边形的内角和等于360°,求得∠AOB的度数,又由圆周角定理,即可求得答案.【解答】解:连接OA,OB,∵PA、PB分别切⊙O于点A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°,∴∠AOB=360°﹣∠PAO﹣∠P﹣∠PBO=360°﹣90°﹣70°﹣90°=110°,∴∠C=∠AOB=55°.故答案为:55.9.如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是10 cm.【考点】切线的性质;勾股定理;垂径定理.【分析】本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.【解答】解:如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.连接OC,交AB于D点.连接OA.∵尺的对边平行,光盘与外边缘相切,∴OC⊥AB.∴AD=4cm.设半径为Rcm,则R2=42+(R﹣2)2,解得R=5,∴该光盘的直径是10cm.故答案为:1010.如图,PA、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知PA=7cm,则△PCD的周长等于14cm.【考点】切线长定理.【分析】由于DA、DC、BC都是⊙O的切线,可根据切线长定理,将△PCD的周长转换为PA、PB的长,然后再进行求解.【解答】解:如图,设DC与⊙O的切点为E;∵PA、PB分别是⊙O的切线,且切点为A、B;∴PA=PB=7cm;同理,可得:DE=DA,CE=CB;则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=14cm;故△PCD的周长是14cm.11.如图,已知⊙O是△ABC的内切圆,切点为D、E、F,如果AE=2,CD=1,BF=3,则内切圆的半径r=1.【考点】三角形的内切圆与内心;切线长定理.【分析】根据切线长定理得出AF=AE,EC=CD,DB=BF,进而得出△ABC是直角三角形,再利用直角三角形内切圆半径求法得出内切圆半径即可.【解答】解:∵⊙O是△ABC的内切圆,切点为D、E、F,∴AF=AE,EC=CD,DB=BF,∵AE=2,CD=1,BF=3,∴AF=2,EC=1,BD=3,∴AB=BF+AF=3+2=5,BC=BD+DC=4,AC=AE+EC=3,∴△ABC是直角三角形,∴内切圆的半径r==1,故答案为:1.12.如图,四边形ABCD内接于⊙O,若∠BOD=138°,则它的一个外角∠DCE等于69°.【考点】圆内接四边形的性质.【分析】由∠BOD=138°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠A的度数,又由圆的内接四边四边形的性质,求得∠BCD的度数,继而求得∠DCE的度数【解答】解:∵∠BOD=138°,∴∠A=∠BOD=69°,∴∠BCD=180°﹣∠A=111°,∴∠DCE=180°﹣∠BCD=69°.故答案为:69°.13.如图,在△ABC中,已知∠ABC=90°,在AB上取一点E,以BE为直径的☉O恰与AC相切于点D.若AE=2,AD=4.则☉O的直径BE=6;△ABC的面积为24.【考点】切线的性质.【分析】连接OD,由切线的性质可知△OAD为直角三角形,设半径为x,在Rt△AOD中由勾股定理可列方程,可求得x的值,则可求得BE的长;再由条件可证明△AOD∽△ACB,由相似三角形的性质可求得BC的长,则容易求得△ABC的面积.【解答】解:如图,连接OD,∵AC与⊙O相切,∴OD⊥AC,设⊙O的半径为x,则OE=OB=OD=x,∴AO=AE+OE=2+x,在Rt△AOD中,由勾股定理可得AO2=OD2+AD2,即(2+x)2=x2+42,解得x=3,∴BE=2x=6,∴AB=AE+BE=2+6=8,∵∠ABC=∠ADO=90°,∠OAD=∠CAB,∴△AOD∽△ACB,∴=,即=,解得BC=6,∴S△ABC=AB•BC=×8×6=24,故答案为:6;24.14.平面上有⊙O及一点P,P到⊙O上一点的距离最长为6cm,最短为2cm,则⊙O的半径为4或2cm.【考点】点与圆的位置关系.【分析】解答此题应进行分类讨论,点P可能位于圆的内部,也可能位于圆的外部.【解答】解:当点P在圆内时,则直径=6+2=8cm,因而半径是4cm;当点P在圆外时,直径=6﹣2=4cm,因而半径是2cm.所以⊙O的半径为4或2cm.故答案为:4或2.15.直线AB与⊙O相切于B点,C是⊙O与OA的交点,点D是⊙O上的动点(D与B,C 不重合),若∠A=40°,则∠BDC的度数是25°或155°.【考点】切线的性质.【分析】连结OB,根据切线的性质得OB⊥BA,可求出∠AOB=50°,然后讨论:当点D在优弧BC上时,根据圆周角定理即可得到∠BDC=∠AOB=25°;当点D在劣弧BC上时,即在D′点处,则可根据圆内接四边形的性质求出∠BD′C=180°﹣25°=155°.【解答】解:当点D在优弧BC上时,如图,连结OB,∵直线AB与⊙O相切于B点,∴OB⊥BA,∴∠OBA=90°,∵∠A=40°,∴∠AOB=50°,∴∠BDC=∠AOB=25°;当点D在劣弧BC上时,即在D′点处,如图,∵∠BDC+∠BD′C=180°,∴∠BD′C=180°﹣25°=155°,∴∠BDC的度数为25°或155°.故答案为:25°或155°.16.已知⊙O的半径OA=1,弦AB、AC的长分别是、,则∠BAC的度数是15°或75°.【考点】垂径定理;勾股定理.【分析】根据垂径定理和勾股定理可得.【解答】解:分别作OD⊥AB,OE⊥AC,垂足分别是D、E.∵OE⊥AC,OD⊥AB,根据垂径定理得AE=AC=,AD=AB=,∴sin∠AOE===,sin∠AOD==,根据特殊角的三角函数值可得∠AOE=60°,∠AOD=45°,∴∠BAO=45°,∠CAO=90°﹣60°=30°,∴∠BAC=45°+30°=75°,或∠BAC′=45°﹣30°=15°.故答案为:15°或75°.三、解答题(第17题16分,第18、19题每题10分,共36分)17.如图,C为圆周上一点,BD是☉O的切线,B为切点.(1)在图(1)中,AB是☉O的直径,∠BAC=30°,则∠DBC的度数为30°.(2)在图(2)中,∠BA1C=40°,求∠DBC的度数.(3)在图(3)中,∠BA1C=α,求∠DBC的大小.(4)通过(1)、(2)、(3)的探究,你发现的结论是弦切角等于它夹的弧所对的圆周角(5)如图(4),AC是☉O的直径,∠ACB=60°,连接AB,过A、B两点分别作☉O的切线,两切线交于点P.若已知☉O的半径为1,则△PAB的周长为3.(6)如图(5),C是⊙O的直径AB延长线上的一点,CD切⊙O于D,∠ACD的平分线分别交AD、BD于E、F,试猜想∠DEF的度数并说明理由.【考点】圆的综合题.【分析】(1)由切线的性质和圆周角定理以及角的互余关系得出∠DBC=∠A=30°即可;(2)连接AC,由(1)得出∠DBC=∠A,由圆周角定理得出∠A=∠A1,即可得出∠DBC=∠BA1C=40°;(3)由(2)得出∠DBC=∠BA2C=α即可;(4)∠DBC等于所对的圆周角,得出弦切角定理;(5)先在RtABC求出BC,再判断出三角形PAB是等边三角形即可求出结论;(6)先判断出∠CAD=∠COD,∠ACE=∠ACD,再利用切线得出∠COD+∠ACD=90°,最后用三角形的外角的性质即可得出结论;【解答】解:(1)∵BD是⊙0的切线,∴∠ABO=90°,即∠ABC+∠DBC=90°,∵AB是⊙O的直径,∴∠ACB=90°∴∠A+∠ABC=90°,∴∠DBC=∠A=30°;故答案为:30°,(2)连接BO交⊙O于A,连接AC,如图所示:由(1)得:∠DBC=∠A,又∵∠A=∠A1,∴∠DBC=∠BA1C=40°;(3)由(2)得:∠DBC=∠BA2C=α;(4)∠DBC等于所对的圆周角;弦切角等于它夹的弧所对的圆周角,故答案为:弦切角等于它夹的弧所对的圆周角;(5)连接如图OB,在Rt△ABC中,AC=2OA=2,∠ACB=60°,∴AB=,∠AOB=120°∵PA,PB分别与⊙O相切,∴∠PAO=∠PBO=90°,PA=PB∴∠APB=60°,∴△PAB是等边三角形,∴PA=PB=AB=,∴△PAB的周长为3,故答案为3;(6)如图5,连接OD,∴∠DAC=∠COD,∵CD是⊙O的切线,∴∠ODC=90°,∴∠ACD+∠COD=90°,∵CE是∠ACD的角平分线,∴∠ACE=∠ACD∴∠DEF=∠DAC+∠ACE=∠COD+∠ACD=(∠COD+∠ACD)=45°.18.如图,直线AB、BC、CD分别与⊙O相切于A、E、D,且AB∥CD,若OB=6cm,OC=8cm,求(1)∠BOC 的度数;(2)⊙O的半径;(3)AB+CD的值.【考点】切线的性质.【分析】(1)连接OA,OE,证明Rt△OAB≌Rt△OEB,由此可得∠ABO=∠OBE,再由平行的性质即可求解∠BOC 的度数;(2)由勾股定理求得BC,再由三角形的面积求得⊙O的半径.(3)利用(1)中所得AB=BE、CE=CD即可.【解答】解:(1)连接OA,OE.∵直线AB、BC、CD分别与⊙O相切于A、E、D,∴OA⊥AB,OE⊥BC,∴∠OAB=∠OEB=90°,OA=OE在Rt△OAB 与Rt△OEB中∴Rt△OAB≌Rt△OEB(HL)∴∠ABO=∠OBE,AB=BE同理可证:∠OCE=∠OCD,CE=CD,又∵AB∥CD,∴∠ABC+∠DCB=180°,∴∠OBC+∠OCB=90°,∴∠BOC=90°(2)在Rt△BOC中,BC==10∴OB•OC=BC•rr==4.8即:⊙O的半径为4.8(3)由(1)可知:AB=BE,CE=CD,∴AB+CD=BE+CE=BC=10即:BC的值为1019.如图,Rt△ABC中,∠A=90°,以AB为直径的⊙O交BC于点D,点E在⊙O上,CE=CA,AB,CE的延长线交于点F.(1)求证:CE与⊙O相切;(2)若⊙O的半径为3,EF=4,求BD的长.【考点】切线的判定;勾股定理.【分析】(1)连接OE,OC,通过三角形求得证得∠OEC=∠OAC,从而证得OE⊥CF,即可证得结论;(2)根据勾股定理求得OF,解直角三角形求得.进而求得AC=6,从而求得△ABC是等腰直角三角形,根据勾股定理求得BC,然后根据等腰三角形三线合一的性质求得DB即可.【解答】(1)证明:连接OE,OC.在△OEC与△OAC中,∴△OEC≌△OAC(SSS),∴∠OEC=∠OAC.∵∠OAC=90°,∴∠OEC=90°.∴OE⊥CF于E.∴CF与⊙O相切.(2)解:连接AD.∵∠OEC=90°,∴∠OEF=90°.∵⊙O的半径为3,∴OE=OA=3.在Rt△OEF中,∠OEF=90°,OE=3,EF=4,∴,.在Rt△FAC中,∠FAC=90°,AF=AO+OF=8,∴AC=AF•tanF=6,∵AB为直径,∴AB=6=AC,∠ADB=90°.∴BD=.在Rt△ABC中,∠BAC=90°,∴.∴BD=.文本仅供参考,感谢下载!。
九年级(上)A卷周周练数学试卷
九年级数学周周练试卷(考试时间:40分钟,全卷满分100分)一.选择题(每小题4分,共20分):1.下列各式中,属于最简二次根式的是()A.x2+1B.x2y5C.12 D .0.52.用配方法解方程0142=++xx时,方程可变形为()A. 2(2)5x-=B. 2(2)5x+=C. 2(2)3x+=D. 2(2)3x-=3.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A. B.C.D.4.如图,已知AB、CD、EF互相平行,且AB=1,CD=4,那么EF的长是(▲)A.31B.32C.43D.54(第4题图) (第5题图)5.如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4)D.(,)、(﹣,4)第II卷非选择题(共96分)二、填空题:(本大题共,5小题,每小题4分,共20分)6.若最简二次根式1+x与10可以合并,则x的平方根为.7.关于x的方程0122=-+kxx的一个根是-1,另一个根为.8.若m:n=5:4,则=-nnm3.9. △ABC中,AB=12cm,AC=8cm,点P是AC的中点,过P点的直线交AB于点Q,若以A、P、Q为顶点的三角形与以A、B、C为顶点的三角形相似,则线段AQ 的长度为.10.设m是不小于﹣2的实数,关于x的方程033)2(222=+-+-+mmxmx有两个不相等的实数根21,xx,令T=221111xmxxmx-+-,则T的取值范围是.三、解答题:(本人题共8个题,共60分)解答应写出文字说明,证明过程或演算步骤11.计算:(每小题8分,共16分) (注意..:在试题卷上作答无效.........)(1)22)12()23)(23(2-++-+(2)63)2(2-=-xxx.12.(本小题满分10分)如图,l1∥l2∥l3,AB=3,AD=2,DE=4,EF=7.5.求BC、BE的长.13. (本小题满分10分)已知关于x的方程01)12(22=+++-kxkx.若方程的两根恰好是一个矩形两邻边的长,且2=k,求该矩形的对角线l的长.14. (本小题满分10分)(注意..:在试题卷上作答无效.........)如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°.(1)求证:△ABD∽△DCE;(2)若BD=3,CE=2,求△ABC的边长.15. (本小题满分10分)。
2024-2025学年统编版语文九年级上册第一周周末作业(含答案)
勤建学校2024—2025学年度第一学期初三年级语文周末作业第(1)周基础专练(60分)拟题:审核:班级:姓名:得分:第一组 2024年广东中考真题(21分)1.默写古诗文。
(共10分。
答对一句得1分,满分不超过10分)(1)是故学然后知不足,。
(《礼记》)(2)日月之行,____________;____________,若出其里。
(曹操《观沧海》)(3)会挽雕弓如满月,____________,射天狼。
(苏轼《江城子·密州出猎》)(4)浩荡离愁白日斜,吟鞭东指即天涯。
,。
[龚自珍《己亥杂诗(其五)》](5)李可染在《山水画的意境》中说:“在我们的古诗里,往往有很好的意境。
”如王维的“,”(《使至塞上》)描写了大漠、长河,营造了雄浑开阔的意境;白居易的“,”(《钱塘湖春行》)勾勒了莺燕忙碌、生机盎然的早春图景;温庭筠的“,”(《商山早行》)视听结合,渲染了旅人早行清冷孤寂的氛围。
阅读下面的文字,完成2~4题。
(7分)古今中外的优秀作品,大多会充分地流露出作者的情感。
有的像chìrè耀眼的阳光,有的像奔腾______的大海,有的像旋律优美的赞歌。
当然也有与此_____的,那就是比较含蓄地表达情感。
这种方式似乎并不强劲猛烈,但蕴含着丰富的yán wài zhī yì,可以让读者更深切地感受到情感的曲折qū zhé回旋,领悟到更多的_______。
无论作者采取哪种表达情感,情感本身必须真实诚挚。
2.根据拼音写出相应的词语。
(3分)(1)chì rè() (1)yán wài zhī yì() (1)qū zhé()3.下列依次填入横线处的词语,最恰当的一项是()。
(2分)A.呼啸天壤之别意愿B.呼啸大相径庭意蕴C.呼唤天壤之别意蕴D.呼唤大相径庭意愿4.语段中画线的句子有语病,下列修改最恰当的一项是()。
九年级数学日清周练答案人教版
八年级下册数学日清周练期末测试卷(附答案)一.选择题(满分30分)1.下列图形①角,②线段,③等腰三角形,④直角三角形,⑤圆,⑥正五角星,其中轴对称图形的个数是( )A.5B.4C.3D.2 2.下列运算正确的是( )A.x2▪x4=x6B.a3+a2=ab C.(a3)3=a6D.3x8÷3x4=x2 3.如图,在△ABC中,BF平分∠ABC,CF平分∠ACB,∠BFC=125°,则∠A的度数为( )A.60°B.80°C.70°D.45°4.如图,用∠B=∠C,∠1=∠2,直接判定△ABD≌△ACD的理由是( )A.AAS B.SSS C.ASA D.SAS 5.若(x+4)(x﹣2)=x2+mx+n,则m、n的值分别是( )A.2,8B.﹣2,﹣8C.2,﹣8D.﹣2,8 6.若点P(m﹣1,﹣1)关于y轴的对称点是P2(2,n+2),则m+n的值是( )A.4B.﹣4C.﹣2D.2 7.下列因式分解正确的是( )A.﹣4=(p+4)(p﹣4)B.+2a+1=a(a+2)+1C.﹣+3x=﹣x(x+3)D.﹣2x+1=8.下列分式为最简分式的是( )A.B.C.D.9.如图,在△ABC中,∠C=90°,点O是∠CAB、∠ABC平分线的交点,且BC =8cm,AC=6cm,AB=10cm,则点O到边AB的距离为( )A.1cm B.2cm C.3cm D.4cm 10.如图,在△ABC中,BC的垂直平分线DF交△ABC的外角平分线AD于点D,DE⊥AB于点E,且AB>AC.则( )A.BC=AC+AE B.BE=AC+AE C.BC=AC+AD D.BE=AC+AD 二.填空题(满分15分)11.已知△ABC的边长a、b、c满足:(1)(a﹣2)2+|b﹣4|=0;(2)c为偶数,则c的值为 .12.因式分解8m2n﹣2n= .13.计算:a+b+= .14.如图所示的正方形网格,A、B、C、D是网格线交点,则△ABC的面积与△ABD的面积的大小关系为:S△ABCS△ABD.填“>”、“=”或“<”)15.对于非零的两个实数a、b,规定a⊗b=+,若x⊗(x+1)=2,则x的值为 .三.解答题(满分75分)16.(1)分解因式:2a3b+4a2b2+2ab3;(2)化简:(m﹣n)2+(2m+n)(2m﹣n)﹣5m2.17.如图,AD、BC交于点O,AB=CD,∠ABO=∠CDO.求证∠CBD=∠ADB.18.已知a=7,b=﹣8,求代数式(﹣﹣)ab的值.19.已知:如图,△ABC和△BDE均为等边三角形,B、D、C三点在一条直线上,AC⊥CE,判断线段DE与AC的数量关系,并加以证明.判断:证明:20.计算:(18a2b﹣6ab)÷(﹣6ab).21.在双减背景下,西安某中学为让学生们扔下繁重的作业负担,置身于丰富多彩的阅读中,计划开展以“我阅读,我快乐”为主题的阅读分享活动,学校图书室计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果学校图书室计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?答案一.选择题(满分30分)1.解:①角,②线段,③等腰三角形,④直角三角形,⑤圆,⑥正五角星,其中轴对称图形的是:①②③⑤⑥,共5个.2.解:A、x2▪x4=x6,故A符合题意;B、a3与a2不属于同类项,不能合并,故B不符合题意;C、(a3)3=a9,故C不符合题意;D、3x8÷3x4=x4,故D不符合题意;3.解:在△FBC中,∠BFC=125°.∴∠FBC+∠FCB=180°﹣∠BFC=55°.∵BF平分∠ABC,CF平分∠ACB.∴∠ABC=2∠FBC,∠ACB=2∠FCB.∴∠ABC+∠ACB=2(∠FBC+∠FCB)=110°.∴在△ABC中,∠A=180°﹣(∠ABC+∠ACB)=70°.4.解:在△ABD和△ACD中,,∴△ABD≌△ACD(AAS),5.解:∵(x+4)(x﹣2)=x2+2x﹣8,∴x2+2x﹣8=x2+mx+n,∴m=2,n=﹣8.6.解:∵P(m﹣1,﹣1)关于y轴的对称点是P2(2,n+2),∴m﹣1=﹣2,n+2=﹣1,解得m=﹣1,n=﹣3,∴m+n=﹣1﹣3=﹣4.7.解:A、p2﹣4=(p+2)(p﹣2),故此选项错误;B、a2+2a+1=(a+1)2,故此选项错误;C、﹣+3x=﹣x(x﹣3),故此选项错误;D、x2﹣2x+1=(x﹣1)2,故此选项正确;8.解:A、=,不符合题意;B、=﹣1,不符合题意;C、==,不符合题意;D、是最简分式,符合题意;9.解:过O点作OD⊥AB于D,OE⊥AC于E,OF⊥BC于F,连接OC,如图,∵点O是∠CAB、∠ABC平分线的交点,∴OD=OE,OD=OF,∴OD=OE=OF,∵S△AOB+S△AOC+S△BOC=S△ABC,∴•AB•OD+AC•OE+BC•OF=AC•BC,即×10×OD+×6×OD+×8×OD=×6×8,解得OD=2,即点O到边AB的距离为2cm.10.解:如图,作DG⊥AC,连接BD、CD,∵AD是外角∠BAG的平分线,DE⊥AB,∴∠DAE=∠DAG,在△ADE与△ADG中,,∴△ADE≌△ADG(AAS),∴AE=AG,∵DF是BC的中垂线,∴BD=CD,∴在Rt△BED和Rt△CGD中,,∴Rt△BED≌Rt△CGD(HL),∴BE=CG=AC+AG,AG=AE,∴BE﹣AC=AE,即BE=AC+AE.二.填空题(满分15分)11.解:∵(a﹣2)2+|b﹣4|=0,∴a=2,b=4.又∵a,b,c为△ABC的边长,∴2<c<6.∵c为偶数∴c=4.故答案为:4.12.解:原式=2n(4m2﹣1)=2n(2m+1)(2m﹣1),故答案为:2n(2m+1)(2m﹣1).13.解:原式=+==.14.解:∵S△ABC=×2×3=3,S △ABD=3×5﹣×2×3﹣×1×3﹣×2×5=5.5,∴S△ABC<S△ABD,故答案为:<.15.解:由新定义的运算可得,+=2,方程两边都乘以x(x+1)得,x+1+x=2x(x+1),解得,x=±,经检验,x=±是原方程的解,三.解答题(满分75分)16.解:(1)2a3b+4a2b2+2ab3=2ab(a2+2ab+b2)=2ab(a+b)2.(2)(m﹣n)2+(2m+n)(2m﹣n)﹣5m2.=m2+n2﹣2mn+4m2﹣n2﹣5m2=﹣2mn.17.证明:在△ABO和△CDO中,,∴△ABO≌△CDO(AAS),∴OB=OD,∴∠CBD=∠ADB.18.解:当a=7,b=﹣8时,原式=(﹣+)×(﹣56)=×(﹣56)﹣×(﹣56)+×(﹣56)=﹣8+4﹣49=﹣53.19.解:DE=AC.证明如下:∵△ABC为等边三角形,∴AC=BC,∠ACB=60°,∵AC⊥CE,∴∠ACE=90°,∴∠BCE=90°﹣60°=30°,∵△BDE为等边三角形,∴DE=BE,∠DBE=60°,∴∠BEC=180°﹣60°﹣30°=90°,在Rt△BEC中,∵∠BCE=30°,∴BE=BC,∴DE=AC.20.解:原式=18a2b÷(﹣6ab)﹣6ab÷(﹣6ab)=﹣3a+1.21.解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:﹣=24,解得:x=20,经检验得:x=20是原方程的根,且符合题意.则2.5x=50,答:甲图书每本价格是50元,乙图书每本价格为20元;(2)设购买甲图书本数为a,则购买乙图书的本数为:2a+8,故50a+20(2a+8)≤1060,解得:a≤10,故2a+8≤28,答:该图书馆最多可以购买28本乙图书.九年级数学周报人教版答案一、选择题1. (2001江苏常州2分)已知等式 ,则x的值是【 】A.1 .2 C 或3【答案】A。
2020-2021学年新人教版九年级数学上册周末练习及答案
2020-2021学年度第一学期九年级数学周测练习题12.09姓名:_______________班级:_______________得分:_______________一选择题:1.下列各组数中,成比例的是( )A.﹣7,﹣5,14,5B.﹣6,﹣8,3,4C.3,5,9,12D.2,3,6,122.如果从1、2、3这三个数字中任意选取两个数字组成一个两位数,那么这个两位数是偶数的概率等于( )(A); (B); (C);(D).3.已知2x=3y=4z,则x:y:z是 ( )A.2:3:4B.4:3:2C.7:6:5D.6:4:34.如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E.若AD=2,DB=4,则的值为( )A. B. C. D.5.如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为( )A.15°B.18°C.2020D.28°6.如图,在同一时刻,身高1.6米的小丽在阳光下的影长为2.5米,一棵大树的影长为5米,则这棵树的高度为( )A.7.8米B.3.2米C.2.3米D.1.5米7.函数y=ax﹣a与y=(a≠0)在同一直角坐标系中的图象可能是( )A. B. C. D.8.如图,正方形ABCD的两边BC、AB分别在平面直角坐标系的x轴、y轴的正半轴上,正方形A′B′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,已知AC=3,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD的相似比是( ). B. C. D.9.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE 与S△CDE的比是( )A.1:3B.1:4C.1:5D.1:2510.如图,在△ABC 中,∠C=90°,BC=3,D,E 分别在 AB、AC上,将△ADE沿DE翻折后,点A正好落在点A′处,若A′为CE的中点,则折痕DE的长为( )A. B.3 C.2 D.111.如图是一次函数y1=kx-b和反比例函数y2=的图象,观察图象写出y1>y2时,x的取值范围是( )A.x>3B.x>-2或x>3C.x<-2或0<x<3D.-2<x<0或x>312.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的内心,以O为圆心,r为半径的圆与线段AB有交点,则r的取值范围是 ( )A.r≥1D.1≤r≤4B.1≤r≤C.1≤r≤二填空题:13.若双曲线的图象经过第二、四象限,则k的取值范围是.14.如图,点P是□ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有________对.15.如图,在△ABC中,D、E分别是边AB、AC上的点,DE∥BC,AD:DB=1:2,S△ADE=1,则S四边形BCED的值为_______.16.现有两个不透明盒子,其中一个装有标号分别为1,2的两张卡片,另一个装有标号分别为1,2,3的三张卡片,卡片除标号外其他均相同.若从两个盒子中各随机抽取一张卡片,则两张卡片标号恰好相同概率是________.17.菱形OABC的顶点O是原点,顶点B在轴上,菱形的两条对角线的长分别是8和6(),反比例函数的图像经过,则的值为.18.在Rt△ABC中,∠C=90°,AC=5,BC=12,若以C点为圆心、r为半径所作的圆与斜边AB只有一个公共点,则r的范围是.19.点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c图象上,则y1,y2,y3大小关系是.2020图,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于.三作图题:21.已知△ABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A和点C的坐标;(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;(3)求点A旋转到点A′所经过的路线长(结果保留π).22.如图,已知△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,求D C的长.23.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体实验.测得成人服药后血液中药物深度y(微克/毫升)与服药时间x小时之间的函数关系如图所示(当4≤x≤10时,y与x成反比).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式;(2)问血液中药物浓度不低于4微克/毫升的持续时间为多少小时?24.如图,已知⊙O的半径OC垂直弦AB于点H,连接BC,过点A作弦AE∥BC,过点C作CD∥BA交EA延长线于点D,延长CO交AE于点F.(1)求证:CD为⊙O的切线;(2)若BC=10,AB=16,求OF的长.25.如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且PC2=PE·PO.(1)求证:PC是⊙O的切线;(2)若OE︰EA=1︰2,PA=6,求⊙O的半径;26.如图,在矩形ABCD中,AB=12cm,BC=8cm .点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动。
2024-2025学年九年级数学上学期第一次月考卷(测试范围:第1-2章)(北师大版)(解析版)
2024-2025年九年级数学上册第一次月考卷(测试范围:第1-2章)一、单选题1.下列方程中,关于x 的一元二次方程是( )A .20ax bx c ++=B .2210x y --=C .()270x x x -+=D .223x x -=A .231416x æö+=ç÷èøB .231248x æö-=ç÷èøC .23148x æö+=ç÷èøD .2311416x æö+-=-ç÷èø故选:A .3.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,若3OA =,则BD 的长为( )A .3B .6C .D .4.若关于x 的一元二次方程2(1)230k x kx k --+-=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且1k ¹C .34k ≥D .34k ≥且1k ¹5.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂第二季度平均每月的增长率为x ,那么x 满足的方程是( )A .()251182x +=B .()()250501501182x x ++++=C .()()2501501182x x +++=D .()50501182x ++=【答案】B【分析】本题考查一元二次方程的实际应用,根据增长率的等量关系()21a x b +=,结合题意,列出方程即可.【解析】解:设该厂第二季度平均每月的增长率为x ,由题意,得:()()250501501182x x ++++=;故选B .6.三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为( )A .12B .14C .12或14D .247.如图,四边形ABCD 是菱形,对角线8cm 6cm AC DB DH AB ==^,,于点H ,则DH 的长为( )A .5cmB .10cmC .24cm 5D .48cm 5【答案】C 【分析】此题考查了菱形的性质,勾股定理,根据菱形的性质结合勾股定理求出AB ,再根据菱形的面积计算公式即可求出DH ,熟练掌握菱形的性质是解题的关键.【解析】解:∵四边形ABCD 是菱形,13,,则AC的长是()8.如图,在直角坐标系中,矩形OABC,点B的坐标是()A.3B C D.413,,∵点B的坐标是()∴22=+=OB,1310∵四边形OABC是矩形,∴10AC OB==,故选:C.9.如图,在矩形ABCD 中,点F 是CD 上一点,连结BF ,然后沿着BF 将矩形对折,使点C 恰好落在AD 边上的E 处.若41AE ED =::,则EF BE的值为( )A .4B .3C .13D10.如图,正方形ABCD 中,1AB =,点E 、F 分别在边BC CD 、上,45EAF Ð=°,连接AE EF AF 、、,下列结论:①BE DF EF +=;②AE 平分BEF Ð;③CEF △的周长为2;④CEF ABE ADF S S S =+△△△,其中正确的是( )A .①②B .①②③C .①③④D .②③④【答案】B 【分析】延长CB 到T ,使得BT DF =,连接AT ,证明ADF ABT△≌△,EAF EAT △≌△,可判定①②,利用等量代换,可判③,利用面积公式解答即可,本题考查了正方形的性质,三角形全等的判定和性质,熟练掌握正方形的性质,三角形全等的判定和性质是解题的关键.【解析】延长CB 到T ,使得BT DF =,连接AT∵四边形ABCD 是正方形,∴90D ABE ABT Ð=Ð=Ð=°,AD AB =,∵DF BT ABT ADF AB AD =ìïÐ=Ðíï=î,∴ADF ABT △≌△(SAS ),∴AF AT =,DAF BAT Ð=Ð,∴90FAT DAB Ð=Ð=°,∵45EAF Ð=°,∴45EAF EAT Ð=Ð=°,∵AF ABT TAE FAE AE AE =ìïÐ=Ðíï=î,二、填空题11.已知()211350mm x x +-+-=是关于x 的一元二次方程,则m 的值为 .【答案】1-【分析】此题主要考查了一元二次方程的定义:含有一个未知数,且未知数的最高次幂是2次的整式方程,特别注意二次项系数不为0,正确把握定义是解题关键.直接利用一元二次方程的定义知道二次项系数不为0同时x 的最高次幂为2,得出m 的值进而得出答案.【解析】解:由题意知:212m +=且10m -¹,解得1m =-,故答案为:1-.12.平行四边形ABCD 的对角线AC 、BD 相交于点O ,要使平行四边形ABCD 是矩形请添加一个条件 .【答案】AC BD =(答案不唯一)【分析】本题考查了矩形的判定定理,根据对角线相等的平行四边形是矩形,有一个角是直角的平行四边形是矩形即可得出答案,熟练掌握矩形的判定定理是解此题的关键.【解析】解:要使平行四边形ABCD 是矩形,可添加的条件是AC BD =(对角线相等的平行四边形是矩形)【答案】25320x x +-=【解析】本题考查了公式法解一元二次方程,根据求根公式确定出方程即可.【解答】解:根据题意得:532a b c ===-,,,则该一元二次方程是25320x x +-=,故答案为:25320x x +-=.14.如图,已知四边形ABCD 是矩形,6AB =,点E 在AD 上,2DE =.若EC 平分BED Ð,则BC 的长为 .【答案】10【分析】由矩形的性质可得AD BC ∥,AD BC =,由角平分线和平行线的性质可证BE BC =,由勾股定理可求解.本题考查了矩形的性质,角平分线的性质,勾股定理,掌握矩形的性质是解题的关键.【解析】解:EC Q 平分BED Ð,BEC CED \Ð=Ð,Q 四边形ABCD 是矩形,AD BC \∥,AD BC =,DEC BCE \Ð=Ð,BEC BCE \Ð=Ð,BE BC \=,222BE AB AE =+Q ,2236(2)BC BC \=+-,10BC \=,故答案为:10.15.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,2AB =,2AC =,则BD 的长为 .∵两条纸条宽度相同,∴AE AF =,∵AB CD ∥,AD BC ∥,∴四边形ABCD 是平行四边形,16.已知a 是方程22202310x x -+=的一个根,则代数式220232121a a +++的值为 .17.如图,ABCD 绕点C 顺时针旋转后得到正方形EFCG , EF 交于点H ,则AH的长是 .边长为的正方形按顺时针方向旋转后得到正方形30,DCG CFH \Ð=°Ð∴60DCF Ð=°,在 Rt CHF V 和 R t CHD V CH CH CF CD=ìí=î,18.定义:20cx bx a ++=是一元二次方程20ax bx c ++=的倒方程.则下列四个结论:①如果2x =是220x x c ++=的倒方程的解,则54c =-;②如果0ac <,那么这两个方程都有两个不相等的实数根;③如果一元二次方程220ax x c -+=无解,则它的倒方程也无解;④如果一元二次方程20ax bx c ++=有两个不相等的实数根,则它的倒方程也有两个不相等的实数根。
九年级数学上册 周测练习题及答案
2016-2017 学年度第一学期九年级数学一选择题:周测练习题12.2姓名:_班级:_得分:_1.下列说法正确的有几个( )①经过三个点一定可以作圆;②任意一个圆一定有内接三角形,并且只有一个内接三角形;③任意一个三角形一定有一个外接圆并且只有一个外接圆;④垂直于弦的直径必平分弦;⑤经过不在同一直线上的四个点一定可以作圆.A.3B.2C.1D.0 2.如图,在平面直角坐标系xOy 中,△ABC 顶点的横、纵坐标都是整数.若将△ABC 以某点为旋转中心,顺时针旋转 90°得到△DEF,则旋转中心的坐标是()A.(0,0)B.(1,0)C.(1,﹣1)D.(2.5,0.5)第2 题图第3 题图第4 题图 3.如图,正三角形ABC 内接于圆O,动点P 在圆周的劣弧AB 上,且不与A,B 重合,则∠BPC 等于( )A.30°B.60°C.90°D.45°4.如图,△ABC 内接于⊙O,∠OBC=40°,则∠A 的度数为()A.80°B.100°C.110°D.130°5.如图,在⊙O 的内接四边形ABCD 中,AB 是直径,∠BCD=120°,过D 点的切线PD 与直线AB 交于点P,则∠ADP 的度数为( )A.40°B.35°C.30°D.45°第5 题图第6 题图6.如图,正方形ABCD 的边长为6,点E,F 分别在AB,AD 上,若CE=3,且∠ECF=45°,则CF 长为( )A.2B.3C.D.7.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上的一点,AE⊥EF,下列结论:①∠BAE=30°;②CE2=AB•CF;③CF=FD;④△ABE∽△AEF.其中正确的有( )A.1 个B.2 个C.3 个D.4 个8.如图所示,半径为1 的圆和边长为1 的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S 与t 的大致图象为( )A. B. C. D.9.如图,正六边形的边长为π,半径是1 的⊙O 从与AB 相切于点D 的位置出发,在正六边形外部按顺时针方向沿正六边形滚动,又回到与AB 相切于点D 的位置,则⊙O 自转了( )A.4 周B.5 周C.6 周D.7 周第9 题图第10 题图第11 题图10.如图,一个半径为r 的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A. B. C. D.11.如图,AB 是⊙O 的直径,M 是⊙O 上一点,MN⊥AB,垂足为N,P、Q 分别是弧AM、弧BM 上一点(不与端点重合).若∠MNP=∠MNQ.下面结论:①∠PNA=∠QNB;②∠P+∠Q=180°;③∠Q=∠PMN;④PM=QM;⑤MN2=PN•QN.正确的结论有()A.2 个B.3 个C.4 个D.5 个12.如图所示,已知△ABC 中,BC=8,BC 上的高h=4,D 为BC 上一点,EF∥BC,交AB 于点E,交AC 于点F(EF不过A、B),设E 到BC 的距离为x.则△DEF 的面积y 关于x 的函数的图象大致为( )A. B. C. D.二填空题:13.两个相似多边形相似比为 1:2,且它们的周长和为 90,则这两个相似多边形的周长分别是,.14.如图,点P 是▱ABCD 边AB 上的一点,射线CP 交DA 的延长线于点E,则图中相似的三角形有对.第14 题图第15 题图第16 题图15.如图,点E 在正方形ABCD 的边CD 上,把△ADE 绕点A 顺时针旋转90°至△ABF 位置,如果AB=,∠EAD=30°,那么点E 与点F 之间的距离等于.16.小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏图中△ABC 外接圆的圆心坐标是.17.在Rt△ABC 中,∠C=90°,AC=5,BC=12,若以C 点为圆心、r 为半径所作的圆与斜边AB 只有一个公共点,则r 的范围是.第17 题图第18 题图第19 题图18.如图,正方形ABCD 中,E 为AB 的中点,AF⊥DE 于点O,则=.19.如图,在Rt△ABC 中,∠ABC=90°,AB=BC=,将△ABC 绕点C 逆时针旋转60°,得到△MNC,连接BM,则BM 的长是.20.如图,一块直角三角板ABC 的斜边AB 与量角器的直径恰好重合,点D 对应的刻度是58°,则∠ACD 的度数为.21.如图,正三角形ABC 的边长为4,D、E、F 分别为BC、CA、AB 的中点,以A、B、C 三点为圆心,2 为半径作圆,则图中的阴影面积为.第21 题图第22 题图22.如图,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,以1、2 为半径作⊙A、⊙B,M、N 分别是⊙A、⊙B 上的动点,P 为x 轴上的动点,则PM+PN 的最小值等于.三简答题:23.如图,正方形网格中,△为格点三角形(即三角形的顶点都在格点上).(1)把△沿方向平移后,点移到点,在网格中画出平移后的△;(2)把△绕点按逆时针旋转,在网格中画出旋转后的△;(3)如果网格中小正方形的边长为,求点经过(1)、(2)变换的路径总长.24.如图是一个转盘,(转盘被等分成四个扇形),上面标有红黄蓝三种颜色,小明和小强做游戏,规定:转到红色,小明赢,转到黄色,小强赢(若转到分界线,再重转一次).(1)小颖认为转盘上共有三种不同的颜色,所以,指针停在红色、黄色或蓝色区域的概率都是,他们的游戏对小明和小强都是公平的,你认为呢?请说明理由.(2)若你认为游戏不公平,请你设计一种方案,使他们的游戏公平.25.如图,在△ABC 中,D 为AC 边上一点,∠DBC=∠A.(1)求证:△ACD∽△ABC;(2)如果 BC=,AC=3,求CD 的长来.26.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,AB,CD 的延长线交于点E,已知AB=2DE.(1)若∠E=20°,求∠AOC 的度数;(2)若∠E=α,求∠AOC 的度数.27.如图,点B、C、D 都在⊙O 上,过C 点作CA∥BD 交OD 的延长线于点A,连接BC,∠B=∠A=30°,BD=2.(1)求证:AC 是⊙O 的切线;(2)求由线段AC、AD 与弧CD 所围成的阴影部分的面积.(结果保留π)28.如图,AB 是⊙O 的直径,C 是弧BD 的中点,CE⊥AB 于 E,BD 交CE 于点F.(1)求证:CF=BF;(2)若CD=6,AC=8,则⊙O 的半径为,CE 的长是.29.如图,在△ABC 中,∠ABC=90°,边AC 的垂直平分线交BC 于点D,交AC 于点E,连接BE,BE 是△DEC 外接圆的切线.(1)求∠C;(2)若CD=2,求BE.30.如图,已知是的直径,点在上,过点的直线与的延长线交于点,,.(1)求证:是的切线;(2)求证:;(3)点是弧AB 的中点,交于点,若,求MN ·MC 的值.参考答案1、B.2、C3、B4、D5、C6、A7、B8、D.9、B. 10、C. 11、B. 12、D13、30,60.14、3 15、16、(5,2).17、5<r≤12 或.18、19、+120、61°21、4﹣2π.22、﹣323、(1)作图略;(2)作图略;(3),弧所以总长=.24、【解答】解:(1)游戏不公平.理由如下:共有 4 种等可能的结果数,其中指针停在红色的结果数为,指针停在黄色的结果数为1,指针停蓝色区域的结果数为2,所以小明赢的概率== ,小强赢的概率= ,所以小明赢的概率大,游戏不公平;(2)可设计为:转到蓝色,小明赢,转到黄色,小强赢(若转到分界线,再重转一次).25、(1)证明:∵∠DBC=∠A∠DCB=∠BAC ∴△ACD∽△ABC .(2)解:∵△ACD∽△ABC∴BC:AC=CD:BC∵BC= ,AC=3∴CD=2.26、解:(1)∵AB=2DE,又 OA=OB=OC=OD,∴OD=OC=DE.∴∠DOE=∠E=20°.∴∠CDO=∠DOE+∠E=40°=∠C.∴∠AOC=∠C+∠E=60°.(2)由(1)可知:∠DOE=∠E=α,∠C=∠ODC=2∠E,∴∠AOC=∠C+∠E=3α.27【解答】(1)证明:连接OC,交BD 于E,∵∠B=30°,∠B= ∠COD,∴∠COD=60°,∵∠A=30°,∴∠OCA=90°,即OC⊥AC,∴AC 是⊙O 的切线;(2)解:∵AC∥BD,∠OCA=90°,∴∠OED=∠OCA=90°,∴DE= BD= ,∵sin∠COD= ,∴OD=2,=×2×2 ﹣=2 ﹣.在Rt△ACO 中,tan∠COA=,∴AC=2 ,∴S阴影28、解:(1) 证明:∵AB 是⊙O 的直径,∴∠ACB﹦90°又∵CE⊥AB,∴∠CEB﹦90°∴∠2=90°-∠A=∠1又∵C 是弧BD 的中点,∴∠1=∠A ∴∠1=∠2,∴ CF=BF(2)⊙O 的半径为5 , CE 的长是﹒﹒29、【解答】解:(1)连接OE,∵BE 是△DEC 外接圆的切线,∴∠BEO=90°,∵∠ABC=90°,E 是AC 的中点,∴BE=AE=EC=AC,∴∠EBC=∠ECB,∵OE=OC,∴∠OEC=∠OCE,∴∠BOE=2∠OCE,即∠BOE=2∠EBC,∴∠EBC=30°,∴∠C=30°;(2)∵CD=2,∴OE=OD=OC=1,∵∠EBC=30°,∠BEO=90°,∴BO=2OE=2,∴BD=1,BC=3,由切割线定理得,BE2=BD•BC=3,∴BE= .30、解:(1)∵,又∵.又∵是的直径,,,即,而是的半径,是的切线.(2)∵,,又∵,.(3)连接,∵点是弧AB 的中点,,而,,,∴MN·MC=BM2,又∵是的直径,AM=BM,.∵,∴MN·MC=BM2=8。
2021-2022学年浙教版版九年级数学上册同步练习附答案1
1.4 二次函数的应用第1课时利用二次函数解决面积最值问题一、选择题(共4小题;共20分)1. 用一根长为30cm的绳子围成一个矩形,其面积的最大值为( )A. 25cm2B. 112.5cm2C. 56⋅25cm2D. 100cm22. 如果二次函数y=x2−2x+m的最小值为负数,则m的取值范围是( )A. m<1B. m>1C. m≤1D. m≥13. 某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=−x2+4x(单位:m)的一部分,则水喷出的最大高度是( )A. 4mB. 3mC. 2mD. 1m4. 向上发射一枚炮弹,经x(s)后的高度为y(m),且时间与高度的关系为y=ax2+bx,若此炮弹在第7秒与第14秒时的高度相等,则下列时间中,高度最高的是( )A. 第8秒B. 第10秒C. 第12秒D. 第15秒二、填空题(共8小题;共40分)5. 运用二次函数求实际问题中的最大值或最小值,首先应当求出函数和自变量的,然后通过,或利用求它的,取得最大值或最小值对应的自变量的值必须在内.x2+x−1,当x=时,y有最值,这个值是.6. 二次函数y=127. 设矩形窗户的周长为6m,则窗户面积S(m2)与窗户宽x(cm)之间的函数表达式是,自变量x的取值范围是.8. 正方形的边长为2,若边长增加x,那么面积增加y,则y关于x的函数表达式为.9. 若两数的和为16,则这两个数的积最大可达到.10. 函数y=x2−4x+3(−3≤x≤3)的最小值是,最大值是.11. 如图,用12m长的木条(厚度忽略不计),做一个有一条横档的矩形窗子框架,为使透进的光线最多,应选择窗子的长、宽各为m.12. 某工厂的大门的形状可近似看作是一条抛物线的一部分,大门的地面宽度为8m,两侧距地面3m高处各有一壁灯,两壁灯之间的水平距离为6m,则厂门的高为(水泥建筑物厚度省略不计,精确到0.1m)m.三、解答题(共6小题;共90分)13. 用长为12m的篱笆,一边利用足够长的墙围出一块苗圃.如图所示,围出的苗圃是五边形ABCDE,AE⊥AB,BC⊥AB,∠C=∠D=∠E=120∘.设CD=DE=x(m),环形ABCDE的面积为S(m2).问:当x取什么值时,S最大?并求出S的最大值.14. 如图,在矩形ABCD的一角截去△BEF,已知BE=BF=10m,AD=130m,CD=100m.试在EF上找一点P,在矩形ABCD内截一矩形PQDG.设PQ=x(m),矩形PQDG面积为y(m2).(1)写出y关于x的函数表达式;(2)x为何值时,y有最大值?最大面积是多少?15. 如图,在Rt△ABC中,点P在斜边AB上移动,PM⊥BC,PN⊥AC,垂足分别为点M,N.已知∠B=30∘,AC=1,AB=2,求:何时矩形PMCN的面积最大?最大面积是多少?16. 在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=x(m).(1)若花园的面积为192m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.17. 如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x−6)2+ℎ.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.(1)当ℎ=2.6m时,求y与x的函数表达式(不要求写出自变量x的取值范围);(2)当ℎ=2.6m时,球能否越过球网?球会不会出界?请说明理由(参考数据:√39≈6.2).18. 如图,有长为24m的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a=10m).(1)如果所围成的花圃的面积为45m2,试求宽AB的长;(2)按题目的设计要求,能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.答案第一部分1. C2. A3. A4. B第二部分5. 表达式,取值范围,配方变形,公式,最大值或最小值,自变量的取值范围6. −1,小,−327. S=x(3−x),0<x<38. y=(x+2)2−22=x2+4x9. 6410. −1,2411. 3,212. 6.9第三部分13. 连接EC,过D作DF⊥EC,∵DE=DC,∴∠DEC=∠DCE,又∵∠DEA=∠DCB=∠D=120∘,∴∠DEC=∠DCE=30∘,∴∠AEC=∠BCE=90∘,∴设CD=DE=x(m),∴在Rt△DEF中,DF=x2(m),EF=√32x(m),∴在△DEC中,由三线合一得F为EC中点,∴EC=2EF=√3x(m),∵AE=12(12−2x)=(6−x)m,∴S=S△DEC+S矩形ABCE=12⋅EC⋅DF+AE⋅EC=12⋅√3x⋅x2+(6−x)⋅√3x=−3√34(x−4)2+12√3.∴当x=4时,S最大=12√3(m2),∴当x取4时,S最大,S的最大值为12√3.14. (1)延长GP到M,则PM⊥BE.在Rt△PME中,∠MPE=∠MEP=45∘,∴ME=PM=x−EC=(x−120)m,∴PG=GM−PM=AB−PM=100−(x−120)=(220−x)m,∴y=PG⋅PQ=(220−x)x=−x2+220x(120≤x≤130).(2)y=−x2+220x=−(x−110)2+12100(120≤x≤130),∴当x=110时,y有最大值.检验:∵x=110<120,∴x=110不符题意,舍去.∴在x>110时,y随x的增加而减小,∴当x=120时,y有最大值,最大面积为y=−x2+220x=12000m2.15. 设面积为y,PM=x,则以点C为坐标原点,AC所在直线为x轴,BC所在直线为y轴建立直角坐标系,则C(0,0),A(1,0),B(0,√3),N(x,0),∴直线AB的表达式为y=√3−√3x,则点P的坐标为(x,√3−√3x).∴PN=√3−√3x .∴矩形PMCN的面积y=−√3x2+√3x(0<x<1),当x=12时,y最大值=√34.16. (1)∵AB=x(m),则BC=(28−x)m,∴x(28−x)=192.解得x1=12,x2=16,答:x的值为12m或16m.(2)∵AB=x(m),∴BC=(28−x)m,∴S=x(28−x)=−x2+28x=−(x−14)2+196,∵在P处有一棵树与墙CD,AD的距离分别是15m和6m,28−15=13,∴6≤x≤13,∴当x=13时,S取得最大值为:S=−(13−14)2+196=195.答:花园面积S的最大值为195m2.17. (1)∵ℎ=2.6,球从O点正上方2m的A处发出,∴y=a(x−6)2+ℎ过点(0,2),∴2=a(0−6)2+2.6,解得:a=−160,故y与x的表达式为y=−160(x−6)2+2.6.(2)当x=9时,y=−160(x−6)2+2.6=2.45>2.43,∴球能过球网;当y=0时,−160(x−6)2+2.6=0,解得:x1=6+2√39≈18.5>18,x2=6−2√39(舍去),故会出界.18. (1)设花圃的宽AB=x米,知BC应为(24−3x)米,故面积y与x的关系式为y=x(24−3x)=−3x2+24x.当y=45时,−3x2+24x=45,解出x1=3,x2=5.当x1=3时,BC=24−3×3>10,不合题意,舍去;当x2=5时,BC=24−3×5=9,符合题意.故AB长为5米.(2)能围成面积比45m2更大的矩形花圃.由(1)知,y=−3x2+24x=−3(x−4)2+48.∵墙体的最大可用长度a=10m,∴0<24−3x≤10,∴143≤x<8.由抛物线y=−3(x−4)2+48知,在对称轴x<4的左侧,y随x的增大而增大,当x>4时,y随x的增大而减小.∴当x=143时,y=−3(x−4)2+48有最大值,且最大值为48−3(143−4)2=4623(m2),此时,AB=143m,BC=10m,即围成长为10米,宽为143米的矩形ABCD花圃时,其最大面积为1403m2.。
九年级数学(全一册)周周练
1第一周测评试题【上册第1.1—1.2节,重点考查内容:有关三角形的性质、判定及其证明,满分100分】 班级_______姓名_________学号________ 一、选择题(每题3分,共24分)1、等腰直角三角形的一个底角的度数是( ) A .30°B .45°C .60°D .90°2、以下列各组数据为边的三角形中,是直角三角形的是( )A . 2、3、7B .5、4、8C .5、2、1D .2、3、53、已知等腰三角形的一个内角为70°,则另两个内角的度数是( )A .55°,55°B .70°,40°C .55°,55°或70°,40°D .以上都不对 4、如图, 在△ABC 中,AB=AC ,AD ⊥BC 于点D ,则下列结论不一定...成立的是( ) A .AD = BD B .BD = CD C .∠1 =∠2 D .∠B =∠C5、等边三角形的两条中线所成锐角的度数是( ) A 、30° B 、50° C 、60° D 、45°6、下列说法中,正确的是( ) A 、每个命题都有逆命题; B 、每个定理都有逆定理 C 、真命题的逆命题不是真命题; D 、真命题的逆命题也是真命题;7、如图,坐标平面内一点A (2,-1),O 为原点,P 是x 轴上的一个动点,如果以 点P 、O 、A 为顶点的三角形是等腰三角形,那么符合条件的动点P 的个数为( ) A .2 B .3 C .4 D .58、在等腰ABC △中,AB AC =,一边上的中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( ) A .7B .11C .7或11D .7或10二、填空题(每题3分,共24分)9、”全等三角形的三边对应相等”的逆命题是:__________________________________ 10、直角三角形中,30°所对的直角边为1cm ,则三角形的周长为________cm.11、△ABC 中,若∠A =80o , ∠B =50o ,AC =5,则AB =12、如图,BD 是ABC △的角平分线,3672ABD C ∠=∠=°,°,则图中的等腰三角形有_______个. 13、如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形的周长是________cm 14、如图,P 是等边△ABC 内的 一点,若将△P AB 绕点A 逆时针 旋转到△P ′AC ,则∠P AP ′的度数 为________.15、如图,∠C=∠BED=90º, 且CD=DE ,AD=BD , 则∠B=_________度16、如图,小明从A 地沿北偏东30方向走到B 地,再从B 地向正南方向走200m 到C 地,此时小明离A 地 m .ADCB2三、解答题(共28分) 17、(6分)如图所示,在Rt 9030ABC C A ∠=︒∠=︒△中,,,BD 是ABC ∠的平分线,5CD =cm ,求AB 的长.18、(6分).等腰△ABC 中,8AB AC ==, AD 是∠BAC 的平分线,交BC 于D ,若∠BAC =120°,求BD 的长度。
九年级下学期语文周周练1
周练三下(一)学生姓名:班级:【年·味】今年寒假,小语随父母一起回老家过年,他写了一篇随笔,请帮他完成一下任务。
(14分)龙年春节,整个县城都笼罩在暖融融的氛.()围中。
烫金的春联,像两行飞向天空的黄鹂;成串的灯笼,像一列驶向春天的列车;,……春节的元素点缀着每一个角落。
广场上,游客和市民纷至tà()来,驻足观望。
舞龙队翩.()然起舞,龙身翻滚,龙头高昂,象征着好运和祝福。
年夜饭桌上,丰盛的菜肴让人忍不住大快朵yí(),我们畅谈过去与未来,笑声与祝福起此彼伏。
A冰天雪地的夜晚,天地间一片寂静,只有雪花轻轻飘落。
突然,一声声巨响打破了宁静,绚丽的烟花在夜空中绽放,五光十色,令人B目眩神迷,忘了自己身在何处。
贴春联、放鞭炮……这些传统习俗C周而复始地循环在每个春节。
春节一过,那些热闹的人,那些繁华的物,逐渐D销声匿迹,但总有一朵烟花在记忆中绽放,带着温暖的气息,鼓舞着我在新的一年里不断向前。
1.请给文中加点字注音,并根据拼音写出汉字。
(4分)氛()围纷至tà()来翩.()然大快朵yí()2.文段中的画线词语使用不恰当...的一项是()(3分)A. 冰天雪地B. 目眩神迷C. 周而复始D. 销声匿迹3.仿照画线部分,在横线上补写一个句子,使之构成语义连贯的排比句。
(4分)烫金的春联,像两行飞向天空的黄鹂;成串的灯笼,像一列驶向春天的列烫金的春联,像一列驶向春天的列车;,……春节的元素点缀着每一个角落。
4.把下列句子组成语意连贯的一句话,排序最恰当的一项是()(3分)春节是我们民族最为醒目的文化符号,如今年尾趋淡,大有消失之势。
传承文化,我们可以做很多。
;;。
①当然,节日的仪式会随着时间的变化而变化,但是,其核心仪式不能够没有,我国的春节,最讲究的仪式,各地不尽相同,且名目繁多,但其中有这几种大概是不可缺少的②从腊月二十三到年卅,各家都忙忙乎乎,准备着各种美食,就等着在年夜饭上隆重登场。
江苏省泰兴市济川中学2022-2023学年九年级下学期数学周周练(2)
济川中学初三数学周周练(2)一、选择题(本大题共6小题,每小题3分,共18分.)1.比﹣1大的无理数是()A.3.14 B.C. D.2.下列各式计算正确的是()A.a6÷a3=a2B.(a3)2=a5 C. =±2 D. =﹣23.某课外兴趣小组为了解所在地区的老年人的健康状况,分别作了四种不同的抽样调查,你认为抽样较合理的是()A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C.调查了100名小区内老年邻居的健康状况D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况4.用一张半径为20的扇形纸片制成一个圆锥(接缝忽略不计),如果圆锥底面的半径为10,那么扇形的圆心角为()A.60° B.90°C.135°D.180°5.某种衬衫的价格经过连续两次的降价后,由每件150元降到96元,则平均每次降价的百分率是()A.10% B.15% C.20% D.30%5.6.若a、b、c为△ABC的三边长,且满足足|a-4|+(b-2)2=0 ,则c的值可以()A .5 B.6 C.7 D.8二、填空题(本大题共10小题,每小题3分,共30分)7.16的平方根是.8.2019年3月,鼓楼区的二手房均价约为35000元/平方米,若以均价购买一套100平方米的二手房,该套房屋的总价用科学记数法表示为元.9.因式分解:3a3﹣12a= .10.为了估计鱼塘青鱼的数量(鱼塘只有青鱼),将200条鲤鱼放进鱼塘,随机捕捞出一条鱼,记下品种后放回,稍后再随机捕捞出一条鱼记下品种,多次重复后发现鲤鱼出现的频率为0.2,那么可以估计鱼塘里青鱼的数量为条.11.关于x的一元二次方程3(x﹣1)(x﹣m)=0的两个根是1和2,则m的值是.12.计算不等式组的解集是☆13.已知y是x的二次函数,函数y与自变量x的部分对应值如下表:x …﹣2 ﹣1 0 1 2 …y …0 4 6 4 k …观察表中数据,则k的值为.14.已知方程组与有相同的解,则2m﹣n=.15.已知方程组的解满足方程x+y=k,则k=.☆16.如图,在△ABC和△ABD中,∠ACB=∠ADB=90°,E、F、G分别为AB、AC、BC的中点,若DE=1,则FG=.三、解答题(本大题共10小题,共72分.)17.(3×4=12分)计算或解方程(1)2cos45°+(2﹣π)0﹣()﹣2;(2);(3)x2﹣4x﹣12=0;(4).18.(4+2)先化简,再求值:(+)÷,其中x=+1.19.( 4+4分)如图,下列装在相同的透明密封盒内的古钱币,其密封盒上分别标有古钱币的尺寸及质量,例如:钱币“文星高照”密封盒上所标“45.4*2.8mm,24.4g”是指该枚古钱币的直径为45.4mm,厚度为2.8mm,质量为24.4g.已知这些古钱币的材质相同.根据图中信息,解决下列问题.(1)这5枚古钱币,所标直径的平均数是mm,所标厚度的众数是mm,所标质量的中位数是g;(2)由于古钱币无法从密封盒内取出,为判断密封盒上所标古钱币的质量是否有错,桐桐用电子秤测得每枚古钱币与其密封盒的总质量如下:名称文星高照状元及第鹿鹤同春顺风大吉连中三元总质量/g58.758.155.254.355.8盒标质量24.424.013.020.021.7盒子质量34.334.142.234.334.1请你应用所学的统计知识,判断哪枚古钱币所标的质量与实际质量差异较大,并计算该枚古钱币的实际质量约为多少克.20.(2+6分)某社区组织A,B,C,D四个小区的居民进行核酸检测,有很多志愿者参与此项检测工作,志愿者王明和李丽分别被随机安排到这四个小区中的一个小区组织居民排队等候.(1)王明被安排到A小区进行服务的概率是.(2)请用列表法或画树状图法求出王明和李丽被安排到同一个小区工作的概率.☆21.(2+4+4分) 金师傅近期准备换车,看中了价格相同的两款国产车.燃油车油箱容积:40升油价:9元/升续航里程:a千米每千米行驶费用:元新能源车电池电量:60千瓦时电价:0.6元/千瓦时续航里程:a千米每千米行驶费用:_____元(1)用含a的代数式表示新能源车的每千米行驶费用.(2)若燃油车的每千米行驶费用比新能源车多0.54元.①分别求出这两款车的每千米行驶费用.②若燃油车和新能源车每年的其它费用分别为4800元和7500元.问:每年行驶里程为多少千米时,买新能源车的年费用更低?(年费用=年行驶费用+年其它费用)☆22.(4+4分)知识小提示:要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足53°≤α≤72°.(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin66°≈0.91,cos66°≈0.41,tan66°≈2.25)如图,现有一架长4m的梯子AB斜靠在一竖直的墙AO上.(1)当人安全使用这架梯子时,求梯子顶端A与地面距离的最大值;(2)当梯子底端B距离墙面1.64m时,计算∠ABO等于多少度?并判断此时人是否能安全使用这架梯子?☆23.(4+4)如图,在⊙O中,AB为⊙O的直径,点E在⊙O上,D为的中点,连接AE,BD并延长交于点C.连接OD,在OD的延长线上取一点F,连接BF,使∠CBF=∠BAC.(1)求证:BF为⊙O的切线;(2)若AE=4,OF=,求⊙O的半径.☆24.(4+4分)万州区某民营企业生产的甲、乙两种产品,已知2件甲商品的出厂总价与3件乙商品的出厂总价相同,3件甲商品的出厂总价比2件乙商品的出厂总价多150元.(1)求甲、乙商品的出厂单价分别是多少元?(2)为促进万州经济持续健康发展,为商家搭建展示平台,为行业创造交流机会,2019年万州区举办了多场商品展销会.外地一经销商计划购进甲商品200件,购进乙商品的数量是甲的4倍,恰逢展销会期间该企业正在对甲商品进行降价促销活动,甲商品的出厂单价降低了a%,该经销商购进甲的数量比原计划增加了2a%,乙的出厂单价没有改变,该经销商购进乙的数量比原计划减少了,结果该经销商付出的总货款与原计划的总货款恰好相同,求a的值(a>0).。
期人教版九年级数学上册名校课堂练习周周练(22.1.1~22.1.3)
周周练(22.1.1~22.1.3)(时间:45分钟 满分:100分)一、选择题(每小题4分,共32分)1.二次函数y =ax 2的图象过点P(-2,4),则该图象必经过点( )A .(2,4)B .(-2,-4)C .(-4,2)D .(4,-2)2.二次函数y =a(x -1)2+b(a≠0)的图象经过点(0,2),则a +b 的值是( )A .-3B .-1C .2D .33.(兰州中考)在下列二次函数中,其图象的对称轴为x =-2的是( )A .y =(x +2)2B .y =2x 2-2C .y =-2x 2-2D .y =2(x -2)24.如图,抛物线的顶点P 的坐标是(1,-3),则此抛物线对应的二次函数有( )A .最大值1B .最小值-3C .最大值-3D .最小值15.在一次足球比赛中,守门员用脚踢出去的球的高度h 随时间t 的变化而变化,可以近似地表示这一过程的图象是( )6.形状、开口方向与抛物线y =12x 2相同,但是顶点为(-2,0)的抛物线解析式为( ) A .y =12(x -2)2 B .y =12(x +2)2 C .y =-12(x -2)2 D .y =-12(x +2)27.已知某二次函数的图象如图所示,则这个二次函数的解析式为( )A .y =-3(x -1)2+3B.y=3(x-1)2+3C.y=-3(x+1)2+3D.y=3(x+1)2+38.图中有相同对称轴的两条抛物线,下列关系不正确的是()A.h=mB.k=nC.k>nD.h>0,k>0二、填空题(每小题4分,共24分)9.若抛物线y=(m-1) xm2-m开口向下,则m=________.10.(甘孜中考)若二次函数y=2x2的图象向左平移2个单位长度后,得到函数y=2(x+h)2的图象,则h=________.11.把二次函数y=x2+6x+4配方成y=a(x-h)2+k的形式,得__________,它的顶点坐标是________.12.若点A(0,y1),B(-3,y2),C(1,y3)为二次函数y=(x+2)2-9的图象上的三点,则y1,y2,y3的大小关系是______________.13.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百分率是x,降价后的价格为y元,原价为a元,则y与x之间的函数关系式为______________.14.二次函数y=ax2+h的开口方向与开口大小与y=0.6(x-65)2的相同,且其最小值为2 535,则此二次函数解析式为______________________.三、解答题(共44分)15.(10分)已知函数y=(m2-m)x2+(m-1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?16.(10分)已知二次函数y=12(x+1)2+4.(1)写出抛物线的开口方向、顶点坐标和对称轴;(2)画出此函数的图象,并说出此函数图象与y=12x2的图象的关系.17.(12分)如图,已知ABCD的周长为8 cm,∠B=30°,若边长AB为x cm.(1)写出ABCD的面积y(cm2)与x(cm)的函数关系式,并求自变量x的取值范围;(2)当x取什么值时,y的值最大?并求出最大值.18.(12分)已知:如图,二次函数的图象与x轴交于A(-2,0),B(4,0)两点,且函数的最大值为9.(1)求二次函数的解析式;(2)设此二次函数图象的顶点为C ,与y 轴交点为D ,求四边形ABCD 的面积.参考答案1.A2.C3.A4.B5.C6.B7.A8.B9.-1 10.2 11.y =(x +3)2-5 (-3,-5)12.y 2<y 1<y 3 13.y =a(1-x)2 14.y =0.6x 2+2 53515.(1)由题意得m 2-m =0且m -1≠0,则m =0.即当m =0时,这个函数是一次函数.(2)由题意得m 2-m≠0,∴当m≠0且m≠1时,这个函数是二次函数.16.(1)抛物线的开口方向向上,顶点坐标为(-1,4),对称轴为x =-1.(2)图象略,将二次函数y =12(x +1)2+4的图象向右平移1个单位,再向下平移4个单位可得到y =12x 2的图象. 17.(1)过A 作AE ⊥BC 于E ,∵∠B =30°,AB =x ,∴AE =12x.又∵平行四边形ABCD 的周长为8 cm ,∴BC =4-x.∴y =AE·BC =12x(4-x),即y =-12x 2+2x(0<x <4). (2)y =-12x 2+2x =-12(x -2)2+2,∵a =-12,∴当x =2时,y 有最大值,其最大值为2.18.(1)由抛物线的对称性知,它的对称轴是x =-2+42=1.又∵函数的最大值为9,∴抛物线的顶点为C(1,9).设抛物线的解析式为y =a(x -1)2+9,代入B(4,0),求得a =-1.∴二次函数的解析式是y =-(x -1)2+9,即y =-x 2+2x +8.(2)当x =0时,y =8,即抛物线与y 轴的交点坐标为D(0,8).过C 作CE ⊥x 轴于E 点.∴S 四边形ABCD =S △AOD +S 四边形DOEC +S △BCE =12×2×8+12×(8+9)×1+12×3×9=30.。
人教版九年级数学下册作业课件 第二十六章 反比例函数 周周练(一) 检测内容:
三、解答题(共 56 分) 12.(10 分)已知 y=y1+y2,y1 与 x2 成正比例,y2 与 x-2 成反比例,且当 x= -1 时,y=1;当 x=0 时,y=2.求 y 关于 x 的函数解析式.
解:设
y1=k1x2,y2=x-k2 2
,∴y=k1x2+x-k2 2
k1+-k23=1, ,由题意得
(1)求此反比例函数的解析式; (2)求△BCE 的面积.
解:(1)当 y=0 时,即 x-1=0,∴x=1,即直线 y=x-1 与 x 轴交于点 A(1,0),
∴OA=1=AD,又 CD=3,∴点 C 的坐标为(2,3),∴k=2×3=6,∴反比例函数的
解析式为 y=6x
y=x-1,
x=3,
(2)联立方程组,得y=6x,
A.36 B.18 C.12 D.9
ቤተ መጻሕፍቲ ባይዱ
二、填空题(每小题 4 分,共 20 分)
7.已知 y=(a-2)xa2-5 是反比例函数,则 a=__-__2.
1-3m 8.已知反比例函数 y= x 的图象上两点 A(-3,y1),B(1,y2).若 y1<y2,则
m 的取值范围是__m__<_13___.
(1)求直线 AB 与双曲线的解析式; (2)求△ABC 的面积.
解:(1)设双曲线的解析式为 y=kx ,∵点 A(1,6)在该双曲线上,∴6=k1 ,解得 k
=6,∴y=6x ,∵B(m,-2)在双曲线 y=6x 上,∴-2=m6 ,解得 m=-3,∴B(-3,
a+b=6,
a=2,
-2),设直线 AB 的函数解析式为 y=ax+b,则有-3a+b=-2, 解得b=4, ∴
解得y=2 (负值舍去),∴点 B 的坐标为(3,2),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九 年 级 数 学 周 周 练(1)
一、 选择题
1. 如图,⊙O 是△ABC 的外接圆,若o 100AOB ∠=,则∠ACB 的度数是( )
A .40°
B .50°
C .60°
D .80°
2. ABC ∆中,=90C ∠︒,AB =5,BC =4,以A 为圆心,以3为半径画圆, 点B 与圆A 的位置关系是( )
A. 在圆A 外
B. 在圆A 上
C. 在圆A 内
D. 不能确定
3. 如图,BC 是⊙O 的直径,A ,D 是⊙O 上两点,若∠D = 35°,
则∠OAC 的度数是 ( )
A .35°
B .55°
C .65°
D .70°
4. 有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧. 其中正确的是( )
A .4个
B .3个
C .2个
D .1个
二、填空题
5. 圆的对称轴有 条.
6.如图,圆O的直径8AB cm =,C 为O 上一点, 30BAC ∠=︒,则BC =________cm.
7.如图,A B C 、、是⊙O 上的点,若100AOB ∠=
,
则ACB ∠=___________度.
三、解答题
8. 如图,已知ABC ∆是顶角为50︒的等腰三角形,AB=AC ,以AB 为直径作圆交BC 于D ,交AC 于E ,求弧BD ,弧DE ,弧AE 的度数.
9. 已知:如图,∆ABC 内接于⊙O ,AD 为⊙O 的弦,
∠1=∠2,DE ⊥AB 于E ,DF ⊥AC 于F .求证:BE=CF .
10. 如图,AD 是ABC ∆外接圆的直径,AD BC ⊥,垂足为
点F ,ABC ∠的平分线交AD 于点E ,连接BD ,CD .
(1) 求证:BD =CD ;
(2) 请判断B 、E 、C 三点是否在以D 为圆心,以DB 为半径的
圆上?并说明理由.
11. 如图,AB 是半圆的直径,图1中,点C 在半圆外,图2中,点C 在半圆内,请(仅用
无刻度...
的直尺画线)按要求画图. (1)在图1中,画出△ABC 的三条高的交点;
(2)在图2中,画出△ABC 中AB 边上的高.
家长签名:_____________。