浅谈韦达定理的应用(105620)
浅谈韦达定理在高中数学学习中的应用
浅谈韦达定理在高中数学学习中的应用【摘要】韦达定理是高中数学中重要的定理之一,通过证明和相关推导可以帮助学生理解其原理。
在解决高中数学题目中,韦达定理的应用不仅能够简化计算,还能够提高解题效率。
特别是在几何问题中,利用韦达定理可以更快速地找到解答。
韦达定理与其他数学定理之间也存在联系,通过举例说明可以更好地理解其实际应用。
总结来看,韦达定理在高中数学学习中扮演着重要的角色,展望未来,它仍有着广阔的应用前景,将继续为学生提供帮助和启发。
【关键词】韦达定理、高中数学、引言、正文、结论、证明、推导、应用、几何问题、联系、实际应用、作用、应用前景1. 引言1.1 介绍韦达定理的基本概念韦达定理是代数学中一个非常重要的定理,它可以用来解决关于多项式方程的根的问题。
韦达定理由法国数学家韦达于16世纪提出,至今仍然被广泛应用于数学领域。
韦达定理的核心思想是:对于一个n 次多项式方程,它的n个根之和等于多项式方程的一次项系数的相反数,而且这n个根两两之间的乘积等于多项式方程的二次项系数的相反数。
具体来说,对于一个n次多项式方程\[a_nx^n + a_{n-1}x^{n-1} + ... + a_1x + a_0 = 0\]其n个根分别为\(x_1, x_2, ..., x_n\),则有\[x_1 + x_2 + ... + x_n = - \frac{a_{n-1}}{a_n}\]\[x_1x_2 + x_1x_3 + ... + x_{n-1}x_n = \frac{a_{n-2}}{a_n}\]韦达定理在高中数学学习中的应用非常广泛,可以帮助学生更好地理解多项式方程的根与系数之间的关系,从而更加深入地理解代数学的相关知识。
通过学习韦达定理,学生可以更加灵活地解决各种数学问题,为以后的学习打下坚实的基础。
1.2 韦达定理在高中数学学习中的重要性在高中教学中,韦达定理的学习不仅有助于拓展学生的数学思维,更可以培养学生的逻辑思维能力和解决问题的能力。
浅析韦达定理在解析几何中的应用
浅析韦达定理在解析几何中的应用
韦达定理,即大家熟知的“三角形内任意一点到三角形三边的距离之和等于周长的一半”,是著名的利维古斯数学家十六世纪末提出的定理,他把它称为定理,因为他受益最大,因此被命名为韦达定理。
它是解析几何中一个重要的定理,它把有关任意三角形边缘以及它们所关联的一系列距离的性质综合起来,将它与其他的解析几何定理联系起来,从而使我们能够用来解决几何问题。
韦达定理可以被用来描述任意三角形的各种性质。
它的一个最主要的应用就是可以利用韦达定理来画出三角形的内接圆,从而用来确定一个三角形的形状。
同时,韦达定理也可以用来计算一个三角形的面积。
这是因为韦达定理得出的结论是:三角形的面积是任意一条边形成等边三角形时,最大面积的一半。
根据这个结果,我们可以用海伦公式(a,b,c 分别代表三角形的边):$S=\sqrt{p(p-a)(p-b)(p-c)}$ ,来计算三角形的面积,其中p 是三角形的周长的一半,即$p=\frac{a+b+c}{2}$ 。
另外,由韦达定理可以进一步得出另外一组定理,如项塔尔定理。
项塔尔定理是指任意三角形内三条边之外,另一点到三角形三内角顶点距离之积等于外接圆和内接圆的面积差值。
根据项塔尔定理,我们可以知道,任意三角形的任意一点到三内角顶点的距离的乘积是一个常数,叫做项塔尔定数。
总之,韦达定理是解析几何中一个重要的定理,它关乎着三角形的三个边和其距离的性质,它的应用可以用来绘制三角形的内接圆,计算三角形的面积,并且还可以进一步得出项塔尔定理。
它的应用涉及很多方面,被广泛应用于数学和几何中,对于理解几何性质有很大的帮助。
浅谈韦达定理在高中数学学习中的应用
浅谈韦达定理在高中数学学习中的应用【摘要】韦达定理是高中数学中一个重要的定理,它在解方程、证明、几何、概率以及数学竞赛中都有广泛的应用。
通过韦达定理,我们可以更加方便地解决一些复杂的数学问题,提高数学解题的效率。
在高中数学学习中,深入理解韦达定理的定义和重要性,可以帮助我们更好地掌握数学知识,提升数学解题能力。
结合实际案例,探讨韦达定理在不同领域中的具体应用,可以帮助我们更好地理解和运用这一定理。
通过对韦达定理的综合应用和进一步拓展,我们可以进一步拓宽数学思维,提升数学解题的能力。
了解和掌握韦达定理在高中数学学习中的实际意义,对我们的数学学习和思维能力具有重要的启发作用。
【关键词】关键词:韦达定理、高中数学学习、方程、证明、几何、概率、数学竞赛、实际意义、综合应用、进一步拓展。
1. 引言1.1 韦达定理的定义韦达定理,又称韦达方程或韦达公式,是解代数方程组的一种重要方法。
它由法国数学家韦达在16世纪提出,是一种利用多项式系数的关系,将代数方程组的解和系数之间的关系联系起来的方法。
韦达定理的基本形式可以表示为:如果有一个n次多项式f(x)=a_nx^n +a_{n-1}x^{n-1} + \ldots + a_1x + a_0,其中a_n \neq 0,那么f(x)的所有复根x_1, x_2, \ldots, x_n满足以下关系式:\begin{aligned}x_1 + x_2 + \ldots + x_n & = -\frac{a_{n-1}}{a_n} \\x_1x_2 + x_1x_3 + \ldots + x_{n-1}x_n & = \frac{a_{n-2}}{a_n} \\& \vdots \\x_1x_2\ldots x_{n-1} + x_1x_2\ldots x_{n-2}x_n + \ldots +x_2x_3\ldots x_n & = (-1)^n\frac{a_0}{a_n}\end{aligned}韦达定理的本质是利用多项式的系数与根之间的关系,通过对未知数的组合取值进行消元,从而求解未知数的值。
韦达定理适用范围
韦达定理适用范围1. 引言韦达定理是一种在微积分中常用的定理,它是数学家韦达在17世纪提出的。
韦达定理的核心思想是将函数的导数与原函数的关系进行转换,从而简化计算过程。
在数学和物理学等领域,韦达定理被广泛应用于求解函数的极值、曲线的弧长、曲线的曲率等问题。
本文将介绍韦达定理的基本概念、公式推导以及适用范围,以帮助读者更好地理解和应用韦达定理。
2. 韦达定理的基本概念韦达定理是微积分中的一条基本定理,它建立了函数的导数与原函数的关系。
在微积分中,函数的导数表示了函数在某一点上的斜率或变化率,而原函数则表示了函数在某一区间上的积分。
韦达定理的基本概念可以用以下公式表示:∫fba′(x)dx=f(b)−f(a)其中,f′(x)表示函数f(x)的导数,∫ba 表示对x从a到b的积分,f(b)和f(a)分别表示函数f(x)在点b和点a上的取值。
3. 韦达定理的公式推导要理解韦达定理的公式推导,我们首先需要了解定积分和不定积分的概念。
定积分表示区间上函数的积分,可以用以下公式表示:∫fba(x)dx=F(b)−F(a)其中,f(x)表示函数f(x)在区间[a,b]上的取值,F(x)表示函数f(x)的原函数。
不定积分表示函数的原函数,可以用以下公式表示:∫f′(x)dx=f(x)+C其中,f′(x)表示函数f(x)的导数,C表示常数。
韦达定理的公式推导基于这两个基本概念。
我们可以将定积分的上限b看作是一个变量x,并将定积分的下限a看作是一个常数。
这样,我们可以将定积分表示为不定积分的形式:x(t)dt=F(x)−F(a)∫fa接下来,我们对上式两边求导数,根据链式法则和基本求导法则,可以得到:f(x)=F′(x)这就是韦达定理的公式推导过程。
它表明,函数的导数等于函数的原函数的导数。
4. 韦达定理的适用范围韦达定理的适用范围非常广泛,它可以用于求解函数的极值、曲线的弧长、曲线的曲率等问题。
4.1 函数的极值在求解函数的极值时,韦达定理可以帮助我们简化计算过程。
韦达定理的原理应用是什么
韦达定理的原理应用是什么1. 韦达定理简介韦达定理(Vieta’s theorem)是一个用于解二次方程的定理,它通过多项式的系数与根之间的关系,揭示了根与系数之间的重要特征。
这个定理是以法国数学家弗朗索瓦·韦达(François Viète)的名字命名的,他在16世纪首次提出了这个定理。
2. 韦达定理的表述如果我们有一个二次方程:ax2+bx+c=0其中a、b、c是实数,x是未知数。
韦达定理给出了与这个二次方程相关的根之间的关系:如果r1和r2是方程的两个实数根,那么他们满足以下关系:r1 + r2 = -b / ar1 * r2 = c / a这些关系将帮助我们解决二次方程并找到其根的值。
3. 韦达定理的应用韦达定理有广泛的应用。
下面列举几个常见的应用场景:3.1. 求二次方程的根韦达定理为我们提供了一个实用的方法来求解二次方程的根。
我们只需要根据方程的系数,计算出和与积的值,然后利用韦达定理的关系式即可得到方程的两个根。
例如,对于方程 2x^2 + 3x - 5 = 0,我们可以使用韦达定理计算出: - 和的值:-3 / 2 - 积的值:-5 / 2这样我们就得到了方程的两个根。
3.2. 寻找根与系数之间的关系韦达定理不仅仅是一个用于解二次方程的工具,它还揭示了根与系数之间的重要关系。
通过韦达定理,我们可以发现以下一些有趣的规律:•和的值与一次项系数的相反数成比例:根的和与一次项系数的相反数成正比。
即 r1 + r2 = -b / a•积的值与常数项成比例:根的积与常数项成正比。
即 r1 * r2 = c / a这些规律对于我们研究多项式方程的性质以及根的特性都非常有用。
3.3. 解决实际问题韦达定理可以应用于解决一些实际的问题。
例如,假设我们正在研究一个投掷物体的运动,我们希望知道在什么时候物体落地。
我们可以将物体的运动模型建立为二次方程,然后通过韦达定理求解出方程的根。
韦达定理的数学运用,这类学生很容易搞错
韦达定理的数学运用,这类学生很容易搞错韦达定理是一种基本的数学定理,它在解决三角形问题中有着广泛的应用。
在学习韦达定理时,学生往往会遇到一些困难,容易搞错。
本文将介绍韦达定理的数学运用,并提供一些解决问题的技巧和方法。
一、韦达定理的定义韦达定理是指在三角形ABC中,如果从顶点A向边BC引一条平分线AD,则有:\frac{AB}{AC}=\frac{BD}{DC}其中,AB、AC、BD、DC分别表示三角形ABC中的边长和平分线AD所分割的边长。
二、韦达定理的数学运用1. 求三角形的内心内心是三角形三条角平分线的交点,也是三角形内接圆的圆心。
利用韦达定理可以求出三角形的内心坐标。
假设三角形ABC的三个顶点坐标分别为A(x1,y1)、B(x2,y2)、C(x3,y3),则三角形内心的坐标为:x=\frac{ax1+bx2+cx3}{a+b+c}y=\frac{ay1+by2+cy3}{a+b+c}其中,a、b、c分别表示三角形BC、AC、AB的边长。
2. 求三角形的外心外心是三角形三条垂直平分线的交点,也是三角形外接圆的圆心。
利用韦达定理可以求出三角形的外心坐标。
假设三角形ABC的三个顶点坐标分别为A(x1,y1)、B(x2,y2)、C(x3,y3),则三角形外心的坐标为:x=\frac{a(x1^2+y1^2)+b(x2^2+y2^2)+c(x3^2+y3^2)}{2S}y=\frac{a(x1^2+y1^2)+b(x2^2+y2^2)+c(x3^2+y3^2)}{2S}其中,a、b、c分别表示三角形BC、AC、AB的边长,S表示三角形的面积。
3. 求三角形的垂心垂心是三角形三条高线的交点。
利用韦达定理可以求出三角形的垂心坐标。
假设三角形ABC的三个顶点坐标分别为A(x1,y1)、B(x2,y2)、C(x3,y3),则三角形垂心的坐标为:x=\frac{(x1+x2+x3)(a^2+b^2-c^2)}{2(a^2+b^2+c^2)-(x1^2+x2^2+x3 ^2)}y=\frac{(y1+y2+y3)(a^2+b^2-c^2)}{2(a^2+b^2+c^2)-(y1^2+y2^2+y3 ^2)}其中,a、b、c分别表示三角形BC、AC、AB的边长。
初中数学 一元二次方程的韦达定理有什么应用
初中数学一元二次方程的韦达定理有什么应用一元二次方程的韦达定理是数学中一个重要的定理,它提供了一种快速计算一元二次方程根的和与积的方法。
韦达定理在实际生活中有着广泛的应用,下面将详细介绍一些常见的应用场景。
1. 判定方程根的性质:韦达定理可以用来判定方程的根的性质。
通过计算根的和与积,我们可以得到关于根的一些信息。
例如,当根的和与根的积都为正数时,说明方程的两个根都是正数;当根的和为负数而根的积为正数时,说明方程的两个根一个为正数一个为负数。
这种信息对于解决实际问题非常有用,可以帮助我们了解方程的解的情况。
2. 求解方程的根:韦达定理可以用于求解一元二次方程的根。
通过将方程的系数带入韦达定理的公式,我们可以计算出方程的根的和与积。
进一步求解根的具体数值,可以使用一些代数方法,如配方法、因式分解或求根公式。
韦达定理为我们提供了一个快速计算根的和与积的方法,从而更方便地解决一元二次方程。
3. 拟合数据:韦达定理可以用于数据的拟合。
通过找到满足给定数据点的一元二次方程,我们可以使用韦达定理计算方程的根的和与积。
根的和与积可以提供关于数据的整体趋势和特征的信息。
这种方法在统计学和数据分析中非常有用,可以帮助我们找到最佳拟合曲线并预测未知数据的值。
4. 解决实际问题:韦达定理在解决实际问题中起到重要的作用。
例如,在物理学中,我们可以使用韦达定理来计算自由落体运动中物体的最大高度和落地时间;在经济学中,韦达定理可以用来分析成本和收益之间的关系,帮助我们做出合理的决策;在工程学中,韦达定理可以用于计算电路中的电流和电压,从而设计合适的电路。
总结:一元二次方程的韦达定理是数学中一个重要的定理,它提供了一种快速计算方程根的和与积的方法。
韦达定理在判定方程根的性质、求解方程的根、拟合数据以及解决实际问题等方面有着广泛的应用。
了解韦达定理及其应用可以帮助我们更好地理解和解决一元二次方程相关的数学问题,同时也可以在实际生活中应用这些知识来解决各种问题。
浅谈韦达定理四种应用
浅谈韦达定理四种应用韦达定理说明了一元二次方程中根和系数之间的关系,由法国数学家弗朗索瓦·韦达于1615年在其著作《论方程的识别与订正》中提出。
韦达定理及其逆定理作为一元二次方程的重要理论在中学数学教学和中考中有着广泛的应用。
可以将其应用归纳为:(1)不解方程求方程的两根和与两根积;(2)求对称代数式的值;(3)构造一元二次方程;(4)求方程中待定系数的值;(5)在平面几何中的应用;(6)在二次函数中的应用。
韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。
韦达在16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。
韦达定理在求根的对称函数,讨论二次方程根的符号、解对称方程组以及解一些有关二次曲线的问题都凸显出独特的作用。
韦达定理与一元二次方程的根根的判别式的关系更是密不可分。
根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系。
无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理。
判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。
韦达定理最重要的贡献是对代数学的推进,它最早系统地引入代数符号,推进了方程论的发展,用字母代替未知数,指出了根与系数之间的关系。
韦达定理为数学中的一元方程的研究奠定了基础,对一元方程的应用创造和开拓了广泛的发展空间。
利用韦达定理可以快速求出两方程根的关系,韦达定理应用广泛,在初等数学、解析几何、平面几何、方程论中均有体现。
韦达定理是开拓了广泛和无限的发展空间。
韦达定理最重要的作用是对代数学的推进,它最早系统地引入代数符号,推进了方程论的发展,用字母代替未知数,指出了根与系数之间的关系。
韦达定理为数学中的一元方程的研究奠定了基础。
利用韦达定理可以快速求出两方程根的关系,韦达定理应用广泛,在初等数学、解析几何、平面几何、方程论中均有体现。
韦达定理在实际问题中的应用
韦达定理在实际问题中的应用韦达定理是一个非常有用的几何定理,它被广泛应用于各种实际问题中,包括工程学、物理学和金融学等领域。
本文将讨论韦达定理的定义、证明和一些实际应用。
一、韦达定理的定义韦达定理是一个三角形内部的一个重要定理,它阐述了三角形内任意一点到三边的距离之积等于这个点到三边的三条距离之积。
图1:韦达定理示意图设三角形ABC的三条边分别为AB、BC和AC,三角形内任意一点P到三条边的距离分别为d1、d2和d3,则根据韦达定理有:AB × PC × d1= BC × PA × d2= AC × PB × d3二、韦达定理的证明韦达定理的证明可以使用相似三角形和割线定理来完成。
首先,我们利用相似三角形证明了韦达定理在三角形底边上的一个特殊情况。
例如,在图1中,我们可以通过相似三角形证明: PB/AB = PC/AC令 d1 = h1、d2 = h2,则 h1/h2 = PB/PC因此,韦达定理的底边情况成立。
接下来,我们可以使用割线定理继续证明韦达定理。
在图1中,我们从点P引一条平行于AB的直线,它与BC和AC的交点分别为Q和R。
根据割线定理,有:PB/PC = BQ/CR又因为三角形PAB和PCQ相似,三角形PAR和PRB相似,因此有以下等式成立:PA/PC = AB/BQRA/RB = AP/PB将上述等式代入割线定理公式中得:PB/PC = AB/BQ = AP/CR = RA/RB = h3/h4因此,有以下等式成立:AB × PC × d1 = BC × PA × d2 = AC × PB × d3 = h1 × h2 × h3/h4由此可知,韦达定理成立。
三、韦达定理在许多实际问题中都有广泛的应用。
以下是一些例子。
1.测量塔的高度韦达定理可以用于测量一座塔的高度,方法是测量一个与塔底线平行的直线段和它到塔顶的距离,以及一个与塔底线垂直的直线段和它到塔顶的距离。
浅谈韦达定理在解题中的应用
浅谈韦达定理在解题中的应用韦达定理是反映一元二次方程根与系数关系的重要定理.纵观近年各省、市的中考(竞赛)试题可以发现,关于涉及此定理的题目屡见不鲜,且条件隐蔽.在证(解)题时,学生往往因未看出题目中所隐含的韦达定理的条件而导致思路闭塞,或解法呆板,过程繁琐冗长.下面举例谈谈韦达定理在解题中的应用,供大家参考.一、直接应用韦达定理若已知条件或待证结论中含有a+b和a·b形式的式子,可考虑直接应用韦达定理.例1 在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,D是AB边上一点,且BC=DC,设AD=d.求证:(1)c+d=2bcosA;(2)c·d=b2-a2.分析:观察所要证明的结论,自然可联想到韦达定理,从而构造一元二次方程进行证明.证明:如图,在△ABC和△ADC中,由余弦定理,有a2=b2+c2-2bccosA;a2=b2+d2-2bdcosA(CD=BC=a).∴ c2-2bccosA+b2-a2=0,d2-2bdcosA+b2-a2=0.于是,c、d是方程x2-2bxcosA+b2-a2=0的两个根.由韦达定理,有c+d=2bcosA,c·d=b2-a2.例2 已知a+a2-1=0,b+b2-1=0,a≠b,求ab+a+b的值.分析:显然已知二式具有共同的形式:x2+x-1=0.于是a和b可视为该一元二次方程的两个根.再观察待求式的结构,容易想到直接应用韦达定理求解.解:由已知可构造一个一元二次方程x2+x-1=0,其二根为a、b.由韦达定理,得a+b=-1,a·b=-1.故ab+a+b=-2.二、先恒等变形,再应用韦达定理若已知条件或待证结论,经过恒等变形或换元等方法,构造出形如a+b、a·b 形式的式子,则可考虑应用韦达定理.例3若实数x、y、z满足x=6-y,z2=xy-9.求证:x=y.证明:将已知二式变形为x+y=6,xy=z2+9.由韦达定理知x、y是方程u2-6u+(z2+9)=0的两个根.∵ x、y是实数,∴△=36-4z2-36≥0.则z2≤0,又∵z为实数,∴z2=0,即△=0.于是,方程u2-6u+(z2+9)=0有等根,故x=y.由已知二式,易知x、y是t2+3t-8=0的两个根,由韦达定理三、已知一元二次方程两根的关系(或系数关系)求系数关系(或求两根的关系),可考虑用韦达定理例5 已知方程x2+px+q=0的二根之比为1∶2,方程的判别式的值为1.求p与q之值,解此方程.解:设x2+px+q=0的两根为a、2a,则由韦达定理,有a+2a=-P,①a·2a=q,②P2-4q=1.③把①、②代入③,得(-3a)2-4×2a2=1,即9a2-8a2=1,于是a=±1.∴方程为x2-3x+2=0或x2+3x+2=0.解得x1=1,x2=2,或x1=-1,x2=-2.例6 设方程x2+px+q=0的两根之差等于方程x2+qx+p=0的两根之差,求证:p=q或p+q=-4.证明:设方程x2+px+q=0的两根为α、β,x2+qx+P=0的两根为α'、β'.由题意知α-β=α'-β',故有α2-2αβ+β2=α'2-2α'β'+β'2.从而有(α+β)2-4αβ=(α'+β')2-4α'β'.①把②代入①,有p2-4q=q2-4p,即p2-q2+4p-4q=0,即(p+q)(p-q)+4(p -q)=0,即(p-q)(p+q+4)=0.故p-q=0或p+q+4=0,即p=q或p+q=-4.四、关于两个一元二次方程有公共根的题目,可考虑用韦达定理例7 m为问值时,方程x2+mx-3=0与方程x2-4x-(m-1)=0有一个公共根?并求出这个公共根.解:设公共根为α,易知,原方程x2+mx-3=0的两根为α、-m-α;x2-4x-(m-1)=0的两根为α、4-α.由韦达定理,得α(m+α)=3,①α(4-α)=-(m-1).②由②得m=1-4α+α2,③把③代入①得α3-3α2+α-3=0,即(α-3)(α2+1)=0.∵α2+1>0,∴α-3=0即α=3.把α=3代入③,得m=-2.故当m=-2时,两个已知方程有一个公共根,这个公共根为3.。
浅谈韦达定理在解题中的应用
浅谈韦达定理在解题中的应用韦达定理是反映一元二次方程根与系数关系的重要定理.纵观近年各省、市的中考(竞赛)试题可以发现,关于涉及此定理的题目屡见不鲜,且条件隐蔽.在证(解)题时,学生往往因未看出题目中所隐含的韦达定理的条件而导致思路闭塞,或解法呆板,过程繁琐冗长.下面举例谈谈韦达定理在解题中的应用,供大家参考.一、直接应用韦达定理若已知条件或待证结论中含有a+b和a·b形式的式子,可考虑直接应用韦达定理.例1 在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,D是AB边上一点,且BC=DC,设AD=d.求证:(1)c+d=2bcosA;(2)c·d=b2-a2.分析:观察所要证明的结论,自然可联想到韦达定理,从而构造一元二次方程进行证明.证明:如图,在△ABC和△ADC中,由余弦定理,有a2=b2+c2-2bccosA;a2=b2+d2-2bdcosA(CD=BC=a).∴ c2-2bccosA+b2-a2=0,d2-2bdcosA+b2-a2=0.于是,c、d是方程x2-2bxcosA+b2-a2=0的两个根.由韦达定理,有c+d=2bcosA,c·d=b2-a2.例2 已知a+a2-1=0,b+b2-1=0,a≠b,求ab+a+b的值.分析:显然已知二式具有共同的形式:x2+x-1=0.于是a和b可视为该一元二次方程的两个根.再观察待求式的结构,容易想到直接应用韦达定理求解.解:由已知可构造一个一元二次方程x2+x-1=0,其二根为a、b.由韦达定理,得a+b=-1,a·b=-1.故ab+a+b=-2.二、先恒等变形,再应用韦达定理若已知条件或待证结论,经过恒等变形或换元等方法,构造出形如a+b、a·b 形式的式子,则可考虑应用韦达定理.例3 若实数x、y、z满足x=6-y,z2=xy-9.求证:x=y.证明:将已知二式变形为x+y=6,xy=z2+9.由韦达定理知x、y是方程u2-6u+(z2+9)=0的两个根.∵ x、y是实数,∴△=36-4z2-36≥0.则z2≤0,又∵z为实数,∴z2=0,即△=0.于是,方程u2-6u+(z2+9)=0有等根,故x=y.由已知二式,易知x、y是t2+3t-8=0的两个根,由韦达定理三、已知一元二次方程两根的关系(或系数关系)求系数关系(或求两根的关系),可考虑用韦达定理例5 已知方程x2+px+q=0的二根之比为1∶2,方程的判别式的值为1.求p 与q之值,解此方程.解:设x2+px+q=0的两根为a、2a,则由韦达定理,有a+2a=-P,①a·2a=q,②P2-4q=1.③把①、②代入③,得(-3a)2-4×2a2=1,即9a2-8a2=1,于是a=±1.∴方程为x2-3x+2=0或x2+3x+2=0.解得x1=1,x2=2,或x1=-1,x2=-2.例6 设方程x2+px+q=0的两根之差等于方程x2+qx+p=0的两根之差,求证:p=q或p+q=-4.证明:设方程x2+px+q=0的两根为α、β,x2+qx+P=0的两根为α'、β'.由题意知α-β=α'-β',故有α2-2αβ+β2=α'2-2α'β'+β'2.从而有(α+β)2-4αβ=(α'+β')2-4α'β'.①把②代入①,有p2-4q=q2-4p,即p2-q2+4p-4q=0,即(p+q)(p-q)+4(p-q)=0,即(p-q)(p+q+4)=0.故p-q=0或p+q+4=0,即p=q或p+q=-4.四、关于两个一元二次方程有公共根的题目,可考虑用韦达定理例7 m为问值时,方程x2+mx-3=0与方程x2-4x-(m-1)=0有一个公共根?并求出这个公共根.解:设公共根为α,易知,原方程x2+mx-3=0的两根为α、-m-α;x2-4x-(m-1)=0的两根为α、4-α.由韦达定理,得α(m+α)=3,①α(4-α)=-(m-1).②由②得m=1-4α+α2,③把③代入①得α3-3α2+α-3=0,即(α-3)(α2+1)=0.∵α2+1>0,∴α-3=0即α=3.把α=3代入③,得m=-2.故当m=-2时,两个已知方程有一个公共根,这个公共根为3.。
韦达定理及其应用
韦达定理及其应用
韦达定理是一种基本的数学定理,它描述了一个三角形中两条边的长度与第三边的夹
角之间的关系。
它可以用来求解一个三角形的性质,甚至解决更复杂的几何问题。
韦达定理由法国数学家查尔斯·韦达提出,于1806年于科学期刊《乌拉法叶斯特》
上发表。
它首先被用来证明三角形的直角性质,然后被扩展用来证明更多其它的相关性质。
韦达定理可以用下面的公式表示:
a^2+b^2=c^2-2*c*a*cos(B)
其中a,b,c分别表示三角形ABC的3条边的长度,B表示边AC与BC之间的夹角。
由于韦达定理可以用来求解三角形的特性,因此它可以用来解决几何问题。
例如,如
果我们有一个三角形ABC,我们想求解它的外角A、边BC的长度和边AB的长度,则可以
用韦达定理:
假设a=3,c=4,B°=30°,根据韦达定理,
即 b^2= 16-24*cos(30°)=16-24*3^(1/2)/2
所以b=√5
另外,由余弦定理可以求出A°=60°
因此,三角形ABC的三角形性质为a=3,b=√5,c=4,A=60°,B=30°。
此外,韦达定理还有许多额外的应用。
例如,它可以用来求解由全等三角形的边来确
定的三角形的外角的性质,用来解决椭圆的几何上的直角形之间的关系等等。
它的应用非常广泛,几乎每一门数学和几何课程中都会涉及到它。
韦达定理不但可以
帮助我们在解决几何问题中取得关键性的进展,而且还多次提供了无穷多有用的解法。
浅谈韦达定理的应用
浅谈韦达定理的应用【摘要】:一元二次方程根与系数的关系(韦达定理)在解题中的运用。
【关键词】:一元二次方程 韦达定理 运用由一元二次方程)04,0(022≥-≠=++ac b a c bx ax 的求根公式可以得到aac b b x a ac b b x 24,242221---=-+-=,此时a c x x a b x x =⋅-=+2121,。
这个结论就是韦达定理。
它揭示了一元二次方程根与系数的关系,应用十分广泛,我们在学习中应该掌握定理的本质意义。
一、根据题目条件,直接运用定理若问题要求一元二次方程字母系数的值,或求与一元二次方程的根的有关的代数式的值,或求作符合条件的一元二次方程等,可直接应用韦达定理。
例1 已知方程0652=-+kx x 的一根是2,求它的另一根及k 的值。
解:设方程的另一个根为x ,由韦达定理得:⎪⎪⎩⎪⎪⎨⎧-=-=+)2.(....................562)1.......(..........22x k x 由方程(2)得:)3(. (5)3-=x , 把(3)代入方程(1)得:514-=k 。
例2 求作一个一元二次方程,使它的两根分别是方程01322=--x x 的各根的倒数。
解:设方程01322=--x x 的两根为21,x x 则有:21,232121-=⋅=+x x x x 。
设所求方程为02=++q px x ,由题意知,该方程的两根分别为211,1x x 。
由韦达定理得: p x x x x p x x -=⋅+-=+21212111,即, 3=∴p 。
q x x =⋅2111,即q x x =211 2-=∴q 。
因此所求作的方程为0232=-+x x 。
例 3 设z y x 、、为实数且)0(22222>=++=++a a z y x a z y x ,,求证:z y x 、、都不能为负值且不大于a 32。
解:此题的证法很多,运用韦达定理也很巧妙,可把三个未知数中其中的一个当成常数如下:z a y x a z y x -=+∴=++, , 又xy z a z a xy z a y xy x a z y x 22)(222222222222222+-=-+-=++∴=++,, , 2)2(a z xy -=∴,利用韦达定理把y x ,看成关于m 的一元二次方程的两根,可作出方程,0)2()(22=-+--a z m z a m y x 、 为实数,0)32()2(4)(022≥-=---=∆≥∆∴z a z a z z a ,即 ⎩⎨⎧≤-<0320)1(z a z 可求出0032><a a 与题设矛盾。
教育论文-浅析韦达定理在高中数学中的应用
= 浅析韦达定理在高中数学中的应用摘 要韦达定理是法国数学家韦达最早发现的关于代数方程 的根与系数之间的一种关系。
中学阶段,我们学一元二次方程中根和系数关系的重要定理。
它第一次出现在人教版九年级数学上册二十一章——《2.4 一元二次方程的根与系数的关系》一节中,为选学内容。
但纵观高中阶段的考试考卷, 可以发现,关于此定理的题目屡屡出现,包括代数和平面解析几何两个方面,而且我们认识到用此定理解题的强大作用,也体会到它的巧妙之处。
关键词:韦达定理;高中数学;代数;平面解析几何;应用 定理:如果一元二次方程ax 2 + bx + c = 0(a , b , c 为常数,且a ≠ 0) 的两根为x , x 则: x + x b c- , x .x 1212a1 2a注:在实数范围内应用韦达定理,必须注意判别式∆ ≥ 0,a ≠ 0 这两个隐含条件是否成立。
一.在代数方面的应用韦达定理用得最多的就是已知一元二次方程,求根之间的关系;或者由根之间的关系,构建一元二次方程,据此解题。
在高中阶段,用的地方很多,下面从数列,三角函数, 解三角形和有关证明几个方面进行说明。
1. 已知一元二次方程,求根(或根之间的关系)例 1:等比数列{a n }中,a 1和a 12是方程2x 2 + 5x -1 = 0的两个根,求a 4 .a 9的值。
=解:由a 1和a 12是方程2x 2 + 5x -1 = 0的两个根 ,故由韦达定理可知: a .a = - 11 122所以a .a = a .a= - 14 91 122剖析:此题为必修五第二章数列的一节中练习题。
由等差数列的性质: 若( m, n, p, q ), 则a m + a n = a p + a q ,等比数列的性质:若( m, n, p,q), 则a m .a n = a p .a q 。
形式上正好和韦达定理有相似之处,故有的题会与之结合,这也体现了该定理在解答数列相关题时的巧妙之处。
韦达定理在物理计算题中的妙用
韦达定理,又称韦达定律,是物理学中一个非常重要的定理。
这个定理告诉我们,在两个电荷之间的电动势与距离成反比。
公式表示为:
V = k * q1 * q2 / r^2
其中,V是两个电荷之间的电动势,k是常数,q1和q2是两个电荷的电荷量,r是两个电荷之间的距离。
韦达定理在物理计算题中有很多妙用。
例如,我们可以用它来计算电荷之间的力的大小和方向,也可以用它来求出电场的强度和电动势分布。
在解决电动势和电力的问题时,我们通常会用到韦达定理。
例如,当我们想要确定一个电荷的电动势时,可以使用韦达定理来求出这个电荷的电动势。
同样的,当我们想要确定电场的强度时,也可以使用韦达定理来求出这个电场的强度。
韦达定理在物理计算中非常实用,并且是解决许多物理问题的基础。
因此,在学习物理时,了解并掌握韦达定理是非常重要的。
韦达定理的适用范围
韦达定理的适用场景
哎,说起韦达定理嘛,那可是数学里头的一个好东西哦。
晓
得它的人,做起题来那是得心应手;不晓得的嘛,有时候就绕来
绕去,硬是搞不抻抖。
韦达定理主要是用在二次方程上头的,晓得二次方程不?就
是那个ax平方加bx加c等于零那种。
韦达定理就是说,如果你
解出了这个方程的根,那么这两个根的和就等于负的b除以a,
两个根的积就等于c除以a。
安逸得很,一下就把两个根的关系
搞清楚了。
那韦达定理在哪些地方最安逸呢?首先嘛,解方程的时候,
有时候方程解不出来,但是你又想知道根的和或者根的积,那韦
达定理就派上用场了。
还有啊,在一些竞赛题里头,韦达定理也
是经常出现的。
它可以把一些看起来很难的问题,一下子就变得
简单明了。
当然咯,韦达定理也不是万能的。
有些时候,方程太复杂了,或者不是二次方程,那韦达定理就用不上了。
还有啊,韦达定理
只能告诉你根的和和根的积,但是具体是哪个根,还是得靠你自
己去解方程。
总的来说嘛,韦达定理在数学里头还是一个很有用的东西。
只要你好好地掌握它,做起题来那肯定是事半功倍。
不过哦,也
不要太依赖它,毕竟数学里头的东西,还是要靠自己去理解和掌握的。
所以嘛,大家还是要好好地学习,把韦达定理这些基础知识都搞扎实了,以后才能走得更远哦。
浅谈韦达定理的应用
X 1 < 0 2 > 0 , I x 1 I > l x 2 I .
D = I ' ON= x 2 .
。 . .
由 一 = 吾 , 得 去 + 去 蓑 ・
② 代 入 上 式 , 得 / ・ 解 2 ・
4
把 = 2 代 入方 程 2 + 一4 3k = = 0 , 知△ > O ,
- _
国 —一
・
. .
所 求 值 为2 .
三、 求 作一 元二 次方程
 ̄ ) 1 1 4 若 方 程 + m x + 2 = O 与 + n x + l = O ( m≠ 有 一公 共根 . 求 以它们 相
异两 根为根 的一元 二次方 程.
解析 : 令方 程 + r n x + 2 = O 的两根 为 i 、 2 , 则 』 + 2 = - m, J ・ 2 = 2 , 令 方程戈 。 + 眦+ l : 0 的两 根为 1 、 2 , 则 l + 戈 t 2 = - n  ̄ x l * 2 = 1 .
一 一 —
电I
‘
.
.
a +b =, 地> 0, a b= 3 m +O >U .
・
. .
m = 一 8 不 合题 意 , 应 舍去 .
故m的值为 1 4 .
例3 已知抛 物 线) , + 一4 3 k @为 常数 , 且 > O ) 与 轴 交 于 、 Ⅳ两
_
・
.
.
所 求作 的一 元二 次方程 的两 根 为 、 : .
由关 系式 l + 戈 2 = - / 7 / , , l ・ 2 = 2 , l 慨' 2 = - n , l 2 = 1 ,
一元二次方程韦达定理的应用
一元二次方程韦达定理的应用1. 引言一元二次方程,听上去挺复杂的,其实就是形如 (ax^2 + bx + c = 0) 的方程。
今天我们要聊聊韦达定理,这个数学小工具其实蛮厉害的,不仅能帮助我们解决问题,还能让我们觉得数学原来这么有趣!2. 韦达定理是什么?2.1 定义韦达定理是由法国数学家韦达提出的。
简单来说,这个定理告诉我们,给定一元二次方程 (ax^2 + bx + c = 0),它的两个解 (x_1) 和 (x_2) 有两个非常特别的关系。
首先,它们的和等于 (frac{b}{a});其次,它们的积等于 (frac{c}{a})。
听起来是不是很神奇?这其实是个非常有用的规律!2.2 为什么重要?韦达定理的伟大之处在于,它能帮助我们在不知道具体解的情况下,推导出一些有用的信息。
如果我们知道了方程的系数 (a)、(b) 和 (c),就能通过这些定理轻松搞清楚根的关系。
3. 应用示例3.1 找根比如,我们有一个方程 (2x^2 5x + 3 = 0)。
要是我们直接用韦达定理,我们可以先找出两个根的和和积。
根的和就是 (frac{5}{2} = frac{5}{2}),而根的积是 (frac{3}{2})。
这些信息有时候能帮助我们在心里大概知道解的范围,不用费劲去计算具体的根。
3.2 解方程假设你遇到一道题,给了你一个方程 (x^2 4x + 4 = 0),然后问你它的两个根是什么。
我们知道,根的和是 (frac{4}{1} = 4),根的积是 (frac{4}{1} = 4)。
那两个根可能就是(2) 和 (2),因为它们的和和积都符合韦达定理。
这种情况下,我们可以很快找出方程的解,省去不少功夫。
4. 小结总之,韦达定理虽然简单,却是解决一元二次方程的超级好帮手。
它不仅让我们轻松掌握了方程的根与系数之间的关系,还能帮助我们在复杂的数学题目中找到简便的解决方法。
希望你们在今后的数学学习中,多多利用这个小工具,让你的数学之旅更加顺畅!参考资料韦达定理基本概念实际应用案例与示例这样,我们就用一种轻松的方式,深入探讨了韦达定理的奇妙世界。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈韦达定理的应用齐贤学校 匡双霞 【趣题引路】韦达,1540年出生于法国的波亚图,早年学习法律,但他对数学有浓厚的兴趣,常利用业余时间钻研数学。
韦达是第一个有意识地、系统地使用字母的人,他把符号系统引入代数学对数学的发展发挥了巨大的作用,使人类的认识产生了飞跃。
人们为了纪念他在代数学上的功绩,称他为“代数学之父”。
历史上流传着一个有关韦达的趣事:有一次,荷兰派到法国的一位使者告诉法国国王,比利时的数学家罗门提出了一个45次的方程向各国数学家挑战。
国王于是把这个问题交给韦达,韦达当即得出一正数解,回去后很快又得出了另外的22个正数解(他舍弃了另外的22个负数解)。
消息传开,数学界为之震惊。
同时,韦达也回敬了罗门一个问题,罗门一时不得其解,冥思苦想了好多天才把它解出来。
韦达研究了方程根与系数的关系,在一元二次方程中就有一个根与系数之间关系的韦达定理。
你了解韦达定理吗?的应用:1. 已知一元二次方程的一根,求另一根。
2. 已知一元二次方程的两根,求作新的一元二次方程。
3. 不解方程,求关于两根的代数式的值。
4. 一元二次方程的验根。
5. 解一类特殊的二元二次方程组和通过换元等方法求解二次根式方程。
6. 与判别式的综合应用。
【中考真题欣赏】例1 (2001年河南省)已知关于x 的方程4x 2+4bx+7b=0有两个相等的实数根,•y 1,y 2是关于y 的方程y 2+(2-b)y+4=0的两个根,二次方程.解析 ∵关于x 的方程4x 2+4bx+7b=0有两个相等的实数根, ∴ △ = (4b)2 -4×4×7b=0, 即b 2-7b=0. ∴b 1=0, b 2=7.当b=0时,,关于y 的方程化为y 2+2y+4=0, 因△=4-16=-12<0,方程无解.当b=7时,关于y 的方程可化为y 2-5y+4=0,解得y 1=4,y 2=1.y 2-3y+2=0.点评本题既考查了判别式,韦达定理的逆定理,又考查了分类讨论的思想,b=0时得到的方程无解易忽视,应重视.例 2 (2001年四川省)已知x 1,x 2是关于x 的一元二次方程4x 2+4(m-1)x+m2=0•的两个非零实数根,问x 1与x 2能否同号?若能同号,求出相应的m 的取值范围;•若不能同号,请说明理由.解析 ∵关于x 的一元二次方程4x 2+4(m-1)x+m 2=0有两个非零实数根,∴△ = [4(m-1)]2 -4×4m 2=-32m+16≥0,∴m ≤ 12.又x 1,x 2是方程4x 2+4(m-1)x+m 2=0的两个实数根.∴x 1+x 2=-(m-1),x 1·x 2=14m 2假设x 1,x 2同号,则有两种可能: ①若x 1>0,x 2>0,则⎩⎨⎧+0x x 0x x 2121 即2(1)0,10.4m m -->⎧⎪⎨>⎪⎩∴m<1且m≠0,此时,m≤12且m≠0; ②若x 1<0,x 2<0则有⎩⎨⎧+0x x 0x x 2121 即2(1)0,10.4m m --<⎧⎪⎨>⎪⎩而m≤12时方程才有实数根, ∴ 此种情况不可能. 综上所述,当m 的取值范围为m≤12且m≠0时,方程的两实根同号. 点评:存在性问题的探索一般是先假设存在,然后据已知和相关知识进行推理,若推理的结论与题设或概念、定理、事实等相矛盾,则假设不成立,从而不存在,•反之则存在.【难题妙解】例1:已知:①a 2+2a-1=0,②b 4-2b 2-1=0且1-ab 2≠0,求(221ab b a++)2004的值。
3解析 由①知1+21a -21a =0, 即(1a )2-2·1a-1 =0,③ 由②知(b 2)2-2b 2-1=0,④∴1a,b 2为一元二次方程x 2-2x-1=0的两根.由韦达定理,得 1a +b 2=2, 1a·b 2=-1.∴221ab b a ++=[(1a+b 2)+ 2b a ]2004=(2-1)2004=1.点评:本题的关键是构造一元二次方程x 2-2x-1=0,利用韦达定理求解,•难点是将①变形成③,易错点是忽视条件1-ab 2≠0,而把a,-b 2看作方程x 2+2x-1=0的两根来求解. 例2: 已知关于x 的方程x 2+2mx+m+2=0,求:(1)m 为何值时,•方程的两个根一个大于0,另一个小于0;(2)m 为何值时,方程的两个根都是正数;(3)m 为何值时,•方程的两个根一个大于1,另一个小于1. 解析 (1)据题意知,m 应当满足条件⎩⎨⎧+=+=∆02m x x 02m 4-4m 212)( 即 (1)(1)0,2.m m m -+>⎧⎨<-⎩由①,得m>2或m<-1, ∴ m <-2.(2)m 应当满足的条件是⎪⎩⎪⎨⎧+==+≥+=∆,,)(02m x x 0.-2m x x 02m 4-4m 21212即21,0,2.m m m m ≥≤-⎧⎪<⎨⎪>-⎩或∴-1.m 2-≤(3)m 应当满足的条件是21244(2)0,(1)(1)0.m m x x ⎧∆=-+>⎨--<⎩即21,2(2)10.m m m m ><-⎧⎨+--+<⎩或∴21,1.m m m ><-⎧⎨<-⎩或∴m <-1. 点评:若已知含字母系数的一元二次方程的根的范围,求字母系数的范围,应根据已知和韦达定理,灵活地将字母系数应满足的条件一一列出来,然后再求解.【好题妙解】例 已知△ABC 的边长分别为a, b, c,且a>b>c,2b= a + c, b 为正整数,若a 2+b 2+c 2=84,求b 的值. 解析 依题设,有 a +c=2b, ① a 2+b 2+c 2=84. ②②可变为(a+c)2-2ac=84-b 2, ③①代入③,得 ac=25842b -, ④∴a、c 是关于x 的一元二次方程x 2-2bx+25842b -=0的两个不相等的正实数根.222584440,25840.2b b b ⎧-∆=-⨯>⎪⎪⎨-⎪>⎪⎩ 即16<b 2<28.又b 为正整数,故b=5. 点评:韦达定理的逆定理是:如果x 1,x 2满足x 1+x 2=-b a ,x 1·x 2=c a,那么x 1·x 2•是一元二次方程ax 2+bx+c=0的两个根,此解的独特之处在于利用a+c=2b,将a 2+b 2+c 2=84•转变为ac=25842b -,从而构造韦达定理逆定理所需的条件.再看看你能解下面的题吗?1、已知方程5x 2+kx -6=0的一个根是2,求另一根及k 值。
2、已知x 1、x 2是方程3x 2+px+q=0的两个根,分别根据下列条件求出p 、q 的值。
(1)x 1=1,x 2=2;(2)x 1=3,x 2=-6;(3)x 1=7,x 2=-7;(4)x 1=-2+3,x 2=-2-3。
53、设x 1、x 2是方程2x 2+4x -3=0的两个根,求(x 1+1)(x 2+1)的值。
4、设x 1、x 2是方程2x 2-6x+3=0的两个根,,利用根与系数的关系,求下列各式的值。
(1)x 12x 2+x 1x 22;(2)(x 1+21x )(x 2+11x );(3)21x x -;(4)11x +21x ;(5)1221x x x x + 而在高中数学中,更是把韦达定理的应用扩充到复数的领域,其中在高二第二学期课本13.6 实系数一元二次方程中有这样一道题:例、已知方程210()x px p R -+=∈的两根为1x 、2x ,若121x x -=,求实数p 的值.分析:要求实数p 的值,即要利用已知条件121x x -=,从而应考虑1x 、2x 为实根还是虚根,因此,应对0∆≥和0∆<讨论. 解:方法一(书上解法): (1)当时,或,即-2p 2p 04-p 2≤≥≥=∆,,24-p p x 24-p -p x 2221+== 4-p 24-p p -24-p -p x -x 22221=+=,由。
或,得5-p 5p 14-p 2=== (2)当时,,即2p 2-04-p 2 =∆,,2ip -4p x 2i p -4-p x 2221+== 。
222221p -4i p -42ip -4p -2i p -4-p x -x ==+= 由 3.-p 3p 1p -42===或,得 综上所述,3p 5p ±=±=或。
现在我们采用韦达定理来解答这道题看看:因为2222121212121()()44x x x x x x x x p =-=-=+-=-,所以p =或p =这样简单方便,并且可以避免对0∆≥与0∆<的讨论.同时把1可以拓展到正实数m 。
练习一下:1、若βαβα1103x 2x 2+=++的两个根,求是一元二次方程,;2、已知关于x 的方程)(R ∈=++m 0m 4x x 2的两个根为βα、,且2-=βα,求m 的值。
当然韦达定理在解析几何以及高次方程中有着重大作用,比如求弦长问题,函数图像问题等等,这里就不再具体谈了。
总而言之,韦达定理常用的几个公式: x 12+x 22=-(x 1+x 2)2-2x 1x 2,(x 1-x 2)2=(x 1+x 2)2-4x 1x 2, x 13+x 23=-(x 1+x 2)3-3x 1x 2(x 1+x 2),()()21221221214x x x x x x x x -+=-=-,21212111x x x x x x +=+,()222121221222122212221211xx x x x x x x x x x x -+=+=+,()2121221212x x x x x x x x ++=+=+,(x 1+k )(x 2+k )=x 1x 2+(x 1+x 2)+k 2,()212122121222112212x x x x x x x x x x x x x x ++=+=+ 在方程论中有着广泛的应用,并且 ()()21221221214x x x x x x x x -+=-=-在求弦长经常用到。
所以我们常常讲到要了解,懂得,掌握,然后能灵活运用所学知识, 这样才能真正的学好数学。
2009年5月。