概率统计A题库
《概率论与数理统计A》期末习题一答案
![《概率论与数理统计A》期末习题一答案](https://img.taocdn.com/s3/m/b49dcd1e03d8ce2f00662335.png)
《概率论与数理统计A 》期末习题一答案一、简答题(本题满分30分,共含6小题,每小题5分)1、设A ,B 为随机事件,A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,求()P AB 。
解:32.04.08.0)()()(=⨯==B P A P B A P 。
(5分)2、设随机变量X 的概率密度为⎩⎨⎧<<=其他 010 )(x cx x f ,求常数c 的值。
解:121)(1===⎰⎰+∞∞-c dx cx dx x f ,因此2=c 。
(5分) 3、 已知随机变量)4,1(~N X ,求}21{<<X P 。
解:()021}21221211{}21{Φ-⎪⎭⎫⎝⎛Φ=-<-<-=<<X P X P (3分) 1915.05.06915.0=-=。
(2分)4、设随机变量X 和Y 相互独立,)4,3(~N X ,)9,2(~N Y ,求变量12+-=Y X Z 的数学期望和方差。
解:()()()()51261212=+-=+-=+-=Y E X E Y X E Z E ; (2分)()()()()25916412=+=+=+-=Y D X D Y X D Z D 。
(3分) 5、 已知10个产品中有3个次品,现从中有放回地取3次,每次任取1个,求所取的3个产品中恰有2个次品的概率。
解:设X :所取得3个产品中次品的个数,则⎪⎭⎫⎝⎛103,3~B X (2分)1000189107103}2{223=⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛⋅==C X P (3分) 6、设随机变量X 、Y 相互独立,且都服从标准正态分布,则Z(同时要写出分布的参数) ?~(1)t 。
(5分)二、(本题满分10分) 编号为1,2,3的三台仪器正在工作的概率分别为0.9,0.8和0.4,从中任选一台。
(1) 求此台仪器正在工作的概率;(2) 已知选到的仪器正在工作,求它编号为2的概率。
概率论与数理统计作业A题
![概率论与数理统计作业A题](https://img.taocdn.com/s3/m/bd74b73cfd0a79563d1e723b.png)
且他们损坏的概率依次为 0.3,0.2,0.1,则电路断路的概率为
。
9.甲、乙两人独立地对同一目标各射一次,其命中率分别为 0.7 和 0.5,现已知目标
被命中,则它是由甲单独射中的概率是
。
10. 已知 p(A B) 0.8, p(AB) 0.5 , 则 p(A) p(B)
。
11. n 张彩票中有 m(m n) 张可以中奖,今有 K ( K m )个人各买一张,则至少有一个
3.设事件 A,B 及 AB 的概率分别是 p, q, r 求(1) p( AB ) ;(2) p( AB)
1
4.已知100件产品中有10件次品,无放回地抽3次,每次取一件;求(1)取出的全是次 品的概率;(2)直到第三次才取得正品的概率。
5. 用3台机床独立的制造一部机器的3种零件,各机床的不合格品率分别为0.2、0.3、 0.1,从它们的产品中各任取1件进行检验,求(1)所取的3个产品都是不合格品的概率; (2)所取的3个产品有一个不合格品的概率。
。
3.设 A, B 为任意两互不相容事件,则 P(A B)
。
4.假设 A, B 为两个事件, p(A) 0.9, p(AB) 0.36,则 p(AB)
。
5.设 A, B 为两事件, p(A) 0.5, p(A B) 0.2,则 p(AB)
。
6.设
p( A)
p(B)
p(C)
1 4
( A) P(C) P( AB)
(B) P(C) P( A B)
(C) P(C) P( A) P(B) 1
(D) P(C) P( AB)
7.设 p(AB)=0 , 则正确的是【 】。
(A) A 和 B 互不相容;
概率统计试卷A及答案
![概率统计试卷A及答案](https://img.taocdn.com/s3/m/9e881e203868011ca300a6c30c2259010202f39a.png)
概率统计试卷A及答案2010—2011—2概率统计试题及答案⼀、选择题(每题3分,共30分)1 11 .已知P(A) P(B) P(C) , P(AC) P(BC) , P(AB) 0 求事件A,B,C 4 16全不发⽣的概率1 3(A) 3(B)8(C)2 ?设A、B、C为3个事件?运算关系A B C表⽰事件___________ .(A)A、B、C⾄少有⼀个发⽣(B)A、B、C中不多于⼀个发⽣(C) A , B, C不多于两个发⽣(D) A,⽉,C中⾄少有两个发⽣3?设X的分布律为P{X k} 2 k (k 1,2,),贝U _________________________ .(A) 0的任意实数(B) 31(C) 3(D) 14. 设X为⼀个连续型随机变量,其概率密度函数为f(x),则f(x)必满⾜(A) 0 f (x) 1 ( B)单调不减(C) f (x)dx 1(D) lim f (x) 15. 对正态总体的数学期望⼙进⾏假设检验,如果在显著性⽔平=下接受H。
0,那么在显著性⽔平=下,下列结论正确的是:(A)必接受H。
( B)可能接受也可能拒绝H 0(C)必拒绝H。
( D)不接受,也不拒绝H。
6. 设随机变量X和丫服从相同的正态分布N(0,1),以下结论成⽴的是(A) 对任意正整数k,有E(X k) E(Y k)(B) X Y服从正态分布N(0,2)(C) 随机变量(X ,Y)服从⼆维正态分布(D) E(XY) E(X) E(Y) 7.若正态总体X 的⽅差D (X )1 2未知,检验期望E (X ) 0⽤的统计量是(C) x 0 (n 1) (D)x0 — 1 2n勺2 2X X kX X k1k 18.设⼆维随机变量(X,Y )服从G 上的均匀分布,G 的区域由曲线y x 2与参数落在区间(?1 , ?2 )之内的概率为1 参数落在区间(?1 , ?2)之外的概率为D )对不同的样本观测值,区间(?1 , ?2)的长度相同.、填空题(每题3分,共30 分)1 1 _ _1 n 2-(X i X)2( D)n i 1x 所围, 则(X ,Y )的联合概率密度函数为 (A) f(x,y) 6, (x,y) G0,其他(B) f(x ,y) 1/6, (x,y) G 0, 其他 (C) f(x,y) 2, (x,y) G 0,其他(D )f(x ,y) 1/2, (x,y) G 0, 其他 9 ?样本 X 1, X 2,,X n 来⾃总体N ( 2), 则总体⽅差 2的⽆偏估计为 A ) S 12 七 n (X i X)2( n 2 i 1S ;七(X i n 1 i 1X)2 S41 nf (X i X)10.设(2)是参数的置信度为1 的区间估计,则以下结论正确的是(A)x. n(n 1) (B)1n _2⼆x X kx 0 n- n 2 2 2x X kk 1C )区间( 2)包含参数的概率为11?设P(A) P(B) - , P(A B)—,则P(A|B)3 2 12?设⼀批产品共10件,其中8件正品,2件次品,从中任意抽取3件,则恰有1件是次品的概率是 __________ .13?已知随机变量X在[a, a]上服从均匀分布,且P{X 1}丄,则a _____________ . 3设随机变量X服从(0,3)上的均匀分布,则随机变量丫=X2在(0,9)的概率密度函数为____________ .4.设X ~ N(3,4),丫~N( 5,6),且X 与丫相互独⽴,则X 2Y ~ _____________ . 5?设随机变量X的数学期望为E(X) 、⽅差D(X) 2,则由切⽐雪夫不等式有P X —.4 ------------------6.设随机变量X的分布律为E(2X 1) __________ .7. 已知D(X) 25,D(Y) 36, (X,Y) 0.4,则D(X Y) _______________ .8. 设总体X服从参数为的泊松分布,X1 , X2 , , X100为来⾃总体的⼀个样本,则矩估计量为____________ .9. 设总体X服从正态分布N(m, s2),X1,X2, X3是来⾃总体X的⼀个样本,则X1,X X B的联合概率密度为___________ .10. 设总体X服从正态分布N(m, s2),其中s2未知,现从总体中抽取⼀容量为n的样本,则总体均值的置信度为1 的置信区间为 ________ .,X10是来⾃总体X的⼀个样本且X ~ N (0,0.52)求、设X1,X2,P i24 . ( 0.O5(9) 16 , 2.io(1O) 16,)i 1四、从⼀正态总体中抽取容量为10的样本,假定有2%的样本均值与总体均值之差的绝对值在4以上,求总体的标准差.(已知:(2.33) 0.99, (2.06) 0.98 , t o.8(9) 0.261 ,t o.8(1O) 0.26)五、在肝癌诊断中,有⼀种甲胎蛋⽩法,⽤这种⽅法能够检查出95%勺真实患者,但也有可能将10%勺⼈误诊。
概率统计A题库(1)
![概率统计A题库(1)](https://img.taocdn.com/s3/m/fd0192300622192e453610661ed9ad51f01d547c.png)
概率统计A 复习题一一、选择题(共8题,每小题3分)1.设A 与B 相互独立, P(A) =0.2,P(B)==0. 4,则P (|)A B =( ) A.0.2 B. 0.4 C. 0.6 D. 0. 82.下列各函数可作为随机变量分布函数的是( )A .F 1(x )=B .F 2(x )=C .F 3(x )=.D .F 4(x )=.3.设随机变量X 的概率密度为 f (x )=则P {-1<X <1}=( ) A .41 B .21 C .43D .1 4.设连续型随机变量X~N (1,4),则21-X ~( ) A .N (3,4) B .N (0,2)C .N (0,1)D .N (1,4)5.设二维随机变量(X ,Y )具有联合密度函数, 0<<1,0<y<1;(,)0, cx x f x y ⎧=⎨⎩其他.则常数C =( ) A .1 B.2C.3D.46.设二维随机变量则P{XY=2}=( )A .15B.310C.12 D.357.设随机变量X 服从参数为2的指数分布,则E (2X -1)=( ) A.0 B.1 C.3D.48.设随机变量X 与Y 不相关,则以下结论中错误..的是( ) A .E(X+Y)=E(X)+E(Y)B.D(X+Y)=D(X)+D(Y)C.E(XY)=E(X)E(Y)D.D(XY)=D(X)D(Y)二、填空题(共8题,每小题3分)9.设随机事件A 与B 相互独立,且()0.5,()0.3P A P AB ==,则()P B =______. 10.设A ,B 为随机事件,()0.5,()0.4,()0.8P A P B P A B ===,则()P B A =______.11、随机变量X 的分布函数为⎩⎨⎧>-=-其他0)1()(2x e A x F x ,常数A= 。
12、设X ~N (3,4),常数c 满足P {X<c }=P {X>c },则常数c= 。
《概率论与数理统计 (A)
![《概率论与数理统计 (A)](https://img.taocdn.com/s3/m/4c6b7d0077232f60ddcca151.png)
山东建筑大学试卷共3页第1页2019至2020学年第1学期考试时间:120分钟课程名称:概率论与数理统计C (A )卷考试形式:闭卷年级:2018级专业:全校开设本课程专业层次:本科一二三总分(说明:本考试不需要使用计算器)一、填空题(每题3分,共21分)1、设()( )P AB P A B =,且()0.2P A =,则()P B =.2、设袋中有2个黑球、3个白球,有放回地连续取2次球,每次取一个,则至少取到一个黑球的概率是.3、设随机变量Y X ,的期望方差为,5.0)(=X E ,5.0)(-=Y E )()(Y D X D =,75.0=,0)(=XY E 则Y X ,的相关系数=),(Y X R .4、设随机变量X 服从参数为0.5的指数分布,用切比雪夫不等式估计≤≥-)3|2(|X P .5、设随机变量),10(~2σN X ,已知,3.0)2010(=<<X P 则=<<)100(X P .6、设1X ,2X ,3X ,4X 相互独立且服从相同分布2()n χ,则1234~3X X X X ++.7、由来自正态总体)4,(~μN X 容量为400的简单随机样本,计算得样本均值为45,则未知参数μ的置信度为95%的置信区间二、选择题(每题3分,共21分)1、假设事件,A B 满足(|)1P B A =,则().(A)B 是必然事件;(B)()1P B =;(C)()0P A B -=;(D)A B ⊂.2、设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有().(A)()()() 1.P C P A P B ≤+-(B)()().P C P A B ≤ (C)()()() 1.P C P A P B ≥+-(D)()().P C P A B ≥ 3、设每次试验成功的概率为(01)p p <<,现进行独立重复试验,则直到第10次试验才取得第4次成功的概率为().(A)44610(1)C p p -;(B)3469(1)C p p -;(C)4459(1)C p p -;(D)3369(1).C p p -4、设两个独立的随机变量Y X ,分别服从正态分布)1,0(N 和)1,1(N ,则().(A)5.0}0{=≤+Y X P ;(B)5.0}1{=≤+Y X P ;(C)5.0}0{=≤-Y X P ;(D)5.0}1{=≤-Y X P .5、设随机变量Y X ,相互独立,且都服从)1,0(N ,则~12+-Y X ().(A))1,0(N ;(B))1,1(N ;(C))5,0(N ;(D))5,1(N .6、设二维随机向量),(Y X 服从二维正态分布,则随机变量Y X +=ξ与Y X -=η不相关的充要条件为().(A))()(Y E X E =;(B)2222)]([)()]([)(Y E Y E X E X E -=-;(C)2222)]([)()]([)(Y E Y E X E X E +=+;(D))()(22Y E X E =.7、设随机变量X 的分布函数为()X F x ,则35Y X =-的分布函数()Y F y 为().(A)(53)X F y -.(B)5()3X F y -.(C)3()y F +.(D)31()yF --.考场班级姓名学号座号线装订线装订线山东建筑大学试卷共3页第2页三、计算应用题(共58分)1、(8分)装有10件某产品(其中一等品5件,二等品3件,三等品2件)的箱子中丢失一件产品,但不知是几等品,今从箱中任取2件产品,结果都是一等品,求丢失的也是一等品的概率.2、(12分)设随机变量X 的概率密度为)()(||+∞<<-∞=-x Aex f x ,求:(1)系数A ;(2)X 的分布函数;(3))(X D .3、(8分)设),1,0(~N X 求||X Y =的概率密度.姓名学号线装订线装订线山东建筑大学试卷共3页第3页4、(10分)设二维随机变量),Y X (的联合概率密度为:⎩⎨⎧=0),(2Axy y x f 其他10 ,20<<<<y x 求:(1)参数A ;(2)X 和Y 的边缘概率密度并判断X 和Y 是否独立;(3))5.0,1(≤≥Y X P .5、(12分)设随机变量X 和Y 的联合分布在点(0,1),(1,0)及(1,1)为顶点的三角形区域G 上服从均匀分布,试求),(Y X Cov .6、(8分)设总体X 的概率密度为101,,(;).0,x x f x θθθ-<<⎧=⎨⎩其它(0).θ>12,,,n x x x 是X 的简单样本观测值,试求(1)参数θ的矩估计值;(2)参数θ的极大似然估计值.姓名学号线装订线装订线。
《概率论与数理统计》期末考试试卷(A)答案
![《概率论与数理统计》期末考试试卷(A)答案](https://img.taocdn.com/s3/m/5c2ec87d195f312b3169a5d8.png)
2013-2014学年《概率论与数理统计》期末考试试卷 (A)一、 填空题(每小题4分,共32分).1.设 A 、B 为随机事件, P (A ) = 0.3, P (B ) = 0.4, 若 P (A |B ) =0.5, 则 P (A ⋃B ) = _______; 若 A 与 B 相互独立, 则 P (A ⋃B ) = _________.2.设随机变量 X 在区间 [1, 6] 上服从均匀分布, 则 P { 1 < X < 3} = ______________. 3.设随机变量 X的分布函数为,2,1 21 ,6.011 ,3.01 ,0 )(⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=x x x x x F则 X 的分布律为 ___________________________ . 4.若离散型随机变量 X 的分布律为则常数 a = _________; 又 Y = 2X + 3, 则 P {Y > 5} =_________ .5.设随机变量 X 服从二项分布 b (50, 0.2), 则 E (X ) = ________, D (X ) = ___________.6.设随机变量 X ~ N (0, 1), Y ~ N (1, 3), 且X 和 Y 相互独立, 则D (3X - 2Y ) = _________.7.设随机变量 X 的数学期望 E (X ) = μ, 方差 D (X ) =σ2, 则由切比雪夫不等式有P{|X -μ| < 3σ} ≥_________________.8.从正态总体N(μ, 0.12) 随机抽取的容量为16 的简单随机样本, 测得样本均值5=x,则未知参数μ的置信度为0.95的置信区间是____________________________. (用抽样分布的上侧分位点表示).二、选择题(只有一个正确答案,每小题3分,共18分)1.设A, B, C是三个随机变量,则事件“A, B, C不多于一个发生”的逆事件为( ).(A) A, B, C都发生(B) A, B, C至少有一个发生(C)A, B, C都不发生(D)A, B, C 至少有两个发生2.设随机变量X的概率密度为f (x), 且满足f (x) = f (-x), F(x) 为X 的分布函数, 则对任意实数a, 下列式子中成立的是( ).(A)(B)(C)(D)3.设随机变量 X , Y 相互独立, 与 分别是X 与 Y 的分布函数, 则随机变量 Z = max{X ,Y } 分布函数 为 ( ).(A) max{,} (B)+ -(C)(D)或4. 设两个相互独立的随机变量 X 和 Y 分别服从正态分布 N (0, 1) 和 N (1, 1), 则 ( ).21}0{ )A (=≤+Y X P 21}1{ )B (=≤+Y X P 21}0{ )C (=≤-Y X P21}1{ )D (=≤-Y X P 5.对任意两个随机变量 X 和 Y , 若 E (XY ) = E (X )E (Y ), 则 ( ).(A) X 和 Y 独立 (B) X 和 Y 不独立(C) D (XY ) = D (X )D (Y ) (D) D (X + Y ) = D (X ) + D (Y )6.设 X 1, X 2, …, X n (n ≥ 3) 为来自总体 X 的一个简单随机样本, 则下列估计量中不是总体期望 μ 的无偏估计量的是 ( ). (A)X(B) 0.1⨯ (6X 1 + 4X 2) (C)(D) X 1 + X 2 - X 3三、解答(本题 8 分)某大型连锁超市采购的某批商品中, 甲、乙、丙三厂生产的产品分别占45%、35%、20%,各厂商的次品率分别为4%、2%、5%,现从中任取一件产品,(1) 求这件产品是次品的概率; (2) 若这件产品是次品, 求它是甲厂生产的概率?四、解答(本题8分)设连续型随机变量 X 的概率密度为,其他⎩⎨⎧<<= ,0 0,sin )(πx x A x f求: (1) 常数 A 的值; (2) 随机变量 X 的分布函数 F (x ); (3)}.23{ππ≤≤X P五、解答(本题10分)设二维随机变量 (X , Y ) 的联合概率密度为求: (1) 求 X , Y 的边缘概率密度 f X (x ), f Y (y ), 并判断 X 与 Y 是否相互独立(说明原因)? (2) 求 P { X + Y ≤ 1}.六、解答(本题8分)已知随机变量 X 分布律为X k -1 0 2 4 P k0.10.50.30.1求 E (X ), D (X ).七、(本题6分)设某供电区域中共有10000 盏电灯,夜晚每盏灯开着的概率均为 0.7,假设各灯开、关时间彼此独立,求夜晚同时开着的灯的数量在6800 至 7200 间的概率.(其中999999.0)36.4()2120(=≈ΦΦ).八、(10分) 设总体 X 的概率密度为,其他⎩⎨⎧<<+= ,010 ,)1()(x x x f θθ其中θ > -1 是未知参数, X 1,X 2, …, X n 为来自总体的一个简单随机样本,x 1, x 2, …, x n 为样本值, 求 θ 的矩估计量和极大似然估计量.参考答案: 一、填空题 1. 0.5 ;0.58 2. 2/5 3.4. 0.3 ;0.5 5. 10 ;8 6. 21 7. 8/9 8. )41.05,41.05(025.0025.0z z +-详解:4.因为0.5+0.2+a=1,所以 a=0.3 Y = 2X + 3所以P {Y > 5} =0.2+0.3=0.5二、选择题1. D2. A3. C4. B5. D6. C 详解:2. 因为⎰∞-=xtt f x F d )()( 故⎰-∞-=-att f a F d )()( 令u =-t⎰∞+--=-a u u f a F d )()(⎰+∞=au u f d )(⎰+∞=at t f d )(⎰-=at t f 0d )(21 (21d )(0=⎰+∞t t f ) 详解:4.因为X ~)1,0(N ,Y ~)1,1(N 所以 1)(=+Y X E ,2)(=+Y X D 故)()(Y X D Y X E Y X ++-+21-+=Y X ~)1,0(N 所以21}021{=≤-+Y X P 即 21}01{=≤-+Y X P 21}01{=≤-+Y X P三、解答题解:设A 事件表示“产品为次品”,B 1事件表示“是甲厂生产的产品”,B 2事件表示“是乙厂生产的产品”,B 3事件表示“是丙厂生产的产品”(1) 这件产品是次品的概率:)()()()()()()(332211B P B A P B P B A P B P B A P A P ++= 035.02.005.035.002.045.004.0=⨯+⨯+⨯=(2) 若这件产品是次品,求它是甲厂生产的概率:3518035.045.004.0)()()()(111=⨯==A PB P B A P A B P 四、解答题 解:(1) A x x A x x f 2d sin d )(10===⎰⎰∞∞-π21=∴A (2) ⎰∞-=xt t f x F d )()(0d 0d )()(0===≤⎰⎰∞-∞-xxt t t f x F x 时,当)cos 1(21d sin 210d d )()(00x t t t t t f x F x xx-=+==<<⎰⎰⎰∞-∞-时,当π 10d d sin 210d d )()(0=++==≥⎰⎰⎰⎰∞-∞-x xt t t t t t f x F x πππ时,当 所以⎰∞-=xt t f x F d )()(=⎪⎩⎪⎨⎧≥<<-≤ππx x x x ,10),cos 1(210,0(3)414121)3()2(}23{=-=-=≤≤ππππF F X P 五、解答题 (1)⎪⎩⎪⎨⎧≤≤-=-==⎰⎰∞∞-其它,020),2(21d )2(d ),()(10x x y y x y y x f x f X ⎪⎩⎪⎨⎧≤≤=-==⎰⎰∞∞-其它,010,2d )2(d ),()(20y y x y x x y x f y f Y因为 ),()()(y x f y f x f Y X =⋅,所以X 与Y 是相互独立的.(2)247d )1)(2(21d )2(d }1{1021010=--=-=≤+⎰⎰⎰-x x x y y x x Y X P x六、解答题1.043.025.001.01)(⨯+⨯+⨯+⨯-=X E =0.9 1.043.025.001.0)1()(22222⨯+⨯+⨯+⨯-=X E =2.9 2229.09.2])([)()(-=-=X E X E X D =2.09七、解答题解:设X 为夜晚灯开着的只数,则X ~)7.0,10000(b}72006800{≤≤X P }3.07.0100007.010********.07.0100007.0100003.07.0100007.010*******{⨯⨯⨯-≤⨯⨯⨯-≤⨯⨯⨯-=X P}21203.07.0100007.010*******{≤⨯⨯⨯-≤-=X P 1)2120(2)]2120(1[)2120()2120()2120(-Φ=Φ--Φ=-Φ-Φ≈999998.01999999.02=-⨯=八、解答题 解:(1) 矩估计法21d )1()(101++=+==⎰θθθμθx x x X E 11112μμθ--=∴∑===ni iX n X A 111 所以θ的矩估计量∧θXX --=112(2) 最大似然法似然函数θθi ni x L )1(1+∏==,10<<ixθθi ni x L )1(1+∏==θθi n i n x 1)1(=∏+=∑=++=ni ix n L 1ln )1ln(ln θθ∑=++=ni ix nL 1ln 1d ln d θθ 令0d ln d =θL得θ的最大似然估计值 ∧θ1ln 1--=∑=ni ixnθ的最大似然估计量 ∧θ1ln 1--=∑=ni iXn。
概率论与数理统计(A)期末复习资料
![概率论与数理统计(A)期末复习资料](https://img.taocdn.com/s3/m/b8265a2f360cba1aa911da54.png)
《概率论与数理统计(A )》期末复习资料一、选择题:1.设A ,B 为两个任意事件,那么与事件B A B A B A ++相等的事件是().(A) AB (B) B A + (C) A (D) B2.设B A ,为两个随机事件,若0)(=AB P ,则( ).(A)A 和B 两事件互不相容(互斥); (B)AB 是不可能事件; (C)AB 未必是不可能事件; (D)0)(=A P 或0)(=B P . 3.如果0)(=AB P ,则( ).(A))()(A P B A P =-; (B)A 与B 不相容; (C)A 与B 不相容; (D))()()(B P A P B A P -=-. 4.如果1)()(=+B P A P ,则( ).(A)1)(=⋃B A P ; (B)0)(=⋂B A P ; (C))()(B A P B A P ⋂=⋂; (D))()(B A P B A P ⋃=⋂. 5.设A 和B 相互独立,则下列结论错误的是( ).(A)B ,A 独立; (B)B ,A 独立; (C))()()(B P A P B A P =; (D)φ=AB .6.设B A ⊂且相互独立,则( ).(A)0)(=A P ; (B)1)(0)(==B P A P 或; (C)1)(=A P ; (D)上述都不对. 7.设随机变量~(2,)X B p ,若()159X P ≥=,则p =( ). (A)32; (B)21; (C)31; (D)2719.8.设随机变量X 概率分布为,,2,1)1()( =+==k k k ak X P ,则a 为( ).(A)0; (B)1; (C)2; (D)3.9.设随机变量X 服从泊松分布,且(1)(2)P X P X ===,则λ=( ). (A)2; (B)1; (C)4; (D)0.5.10.若)(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成立.(A) X a P <(≤⎰∞+∞-=x x F b d )() (B) X a P <(≤⎰=bax x F b d )()(C) X a P <(≤⎰=b ax x f b d )() (D) X a P <(≤⎰∞+∞-=x x f b d )()11.设随机变量),(~2σμN X ,且022=++X x x 无实根的概率为0.5,=μ( ). (A)-1; (B)0; (C)1; (D)2.12.随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<<=其他,0,20,20,),(y x cx y x f ,则c 为( ).(A)0.25; (B)1; (C)2; (D)4.13.设随机变量Y X ,相互独立,它们的密度函数分别为⎩⎨⎧≤>=-000x ,;x ,e )x (f x X ,⎩⎨⎧≤>=-00022y ,;y ,e )y (f y Y ,则=>)Y X (P ( ).(A)31; (B)21; (C)32; (D)43.14.设X ~)4,2(N 且b aX +~)1,0(N ,则( ). (A)22-==b a ,; (B)12-=-=b a ,; (C)121==b a ,; (D)121-==b a ,.15.设)1(~P X ,)2(~P Y ,且X 与Y 相互独立,则~Y X +( ). (A) (1,2)b (B) (3)P (C) (1.5)P(D) (2,1)b16.设随机变量)6.0,20(~b X ,)6.0,10(~b Y ,且X 与Y 相互独立,则~Y X +( ). (A) (10,0.6)b (B) (20,0.6)b (C) b(30,0.6) (D) (18)P17.设),(~p n b X 且6 3.6EX DX ==,,则有()(A) 100.6n p ==, (B) 200.3n p ==,(C) 150.4n p ==, (D) 120.5n p ==, 18.设12,,n X X X 是取自正态总体X ~)1,0(N 的样本,2,S X 分别是样本均值和样本方差,则下列结论正确的是( ).(A)X ~)1,0(N ; (B)X n ~)1,0(N ; (C)S X /~)1(-n t ; (D)∑=ni i X 12~)(2n χ.19.设n X X X 21,是取自正态总体X ~),(2σμN 的样本(2>n ), 2,S X 分别是样本均值和样本方差,则下列结论正确的是( ).(A)1--n SX μ~)1(-n t ; (B)22)(S X n μ-~)1,1(-n F ; (C)22σS ~)1(2-n χ; (D)122X X -~),(2σμN .20.设12,,,n X X X 为来自正态总体2(,)N μσ的一个样本,2211(())1ni i S X X n ==--∑ X 分别为样本方差和样本均值,则下面结论中不正确的是( ). (A)2~(,)X N n σμ ;(B)22()E S σ=; (C)22()1nE S n σ=-; (D)222(1)/~(1)n S n σχ--. 21.已知随机变量X 与Y 相互独立,且2~(40)X χ,2~(80)Y χ,则~/2Y X ().(A)2(40)χ (B) (20,40)F (C) (40,80)F (D) 2(80)χ22.设n X X X ,,,21 是来自正态总体N (,)μσ2的样本,则( )是μ无偏估计.(A) 321X X X ++ (B) 321525252X X X ++ (C) 321515151X X X ++ (D) 321535151X X X ++23.对正态总体),(2σμN 的假设检验问题中,Z 检验解决的问题是( ). (A) 已知方差,检验均值 (B) 未知方差,检验均值(C) 已知均值,检验方差 (D) 未知均值,检验方差24.对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,则下列各式中( )不是统计量.(A)1X (B) μ+X(C)221σX (D)1X μ25.设n X X X ,,,21 是正态总体),(~2σμN X (2σ已知)的一个样本,按给定的显著性水平α检验0H :0μμ=(已知);1H :0μμ≠时,判断是否接受0H 与( )有关.(A) 样本值,显著水平α (B) 样本值,样本容量(C) 样本容量n ,显著水平α (D) 样本值,样本容量n ,显著水平α 26.在对单正态总体N (,)μσ2的假设检验问题中,T 检验法解决的问题是( ). (A) 已知方差,检验均值 (B) 未知方差,检验均值 (C) 已知均值,检验方差 (D) 未知均值,检验方差 27.假设检验时,若增大样本容量,则犯两类错误的概率( ). (A) 有可能都增大 (B) 有可能都减小(C) 有可能都不变 (D) 一定一个增大,一个减小二、填空题:1.设B A ,是两个事件,且=)(B A P 1,则=-)(A B P .2.设()0.7P A =,()0.3P A B -=,则()AB P = ,()B A P = .3.设事件B A ,和B A ⋃的概率分别为0.2,0.3和0.4,则=)(A B P _______.4.设B A ,是两个随机事件,()0.4()0.3P A P B ==,,若B A ,相互独立,则()P A B ⋃= ,则()P B A = .5.三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为 .6.设甲、乙两人投篮命中率分别为0.7和0.8,每人投篮3次,则有人投中的概率为 .7.从0,1,2,,9这10个数字中任意选出3个不同的数字,则3个数字中不含0或5的概率为 .8.某工厂一个班组共有男工9人,女工5人,现在要选出3个代表,则选的3 个代表中至少有1个女工的概率为 .9.设随机变量X 服从参数为λ的泊松分布,且()2D X =,则(1)p X ==________. 10.设随机变量),(N ~X 42,则~X Y 22-=. 11.设随机变量Y 在]5,0[上服从均匀分布,则关于x 的一元二次方程02442=+++Y xY x 有实根的概率为 .12.设)(1x F 与)(2x F 分别是任意两个随机变量分布函数,令=)(x F)()(21x bF x aF +,则下列各组数中使)(x F 为某随机变量的分布函数的有 =a , =b .13.已知连续随机变量X 的分布函数为1,0()0,0x e x F x x λ--≥=<⎧⎨⎩,0λ>,则其密度函数为 ,(2)P x ≤= ;已知随机变量X 的密度函数⎩⎨⎧≤≤=其它 , 010,2)(x x x f 则:)5.15.0(<<X p = .14.设随机变量X 分布律为令,12+=X Y 则随机变量X 分布律为 ;=)(Y E _________.15.若二维随机变量(,)X Y 具有分布律:则(21)P Y X ===________. 16.设随机变量X 分布列如下表则E (X )=________,D (X )=________.17.两独立随机变量X Y 和都服从正态分布,且()()~3,4~2,9X N Y N ,,则()D X Y +=________;又两个相互独立的随机变量~(3),V ~P(2)U E ,则(22)D U V ++=________.18.设X 服从[-1,2]上的均匀分布,令⎩⎨⎧<-≥=,01,01X X Y ,,则=)(Y E ,=)(Y D .19.设相互独立的随机变量X ,Y 均服从参数为5的指数分布,则当0,0x y >>时,(,)X Y 的概率密度(,)f x y =________.20.设总体)1,0(~N X ,1210,,,X X X 是来自总体X 的样本,则~X .21.设总体2~(0,)X N σ,921,X X X 为总体的一个样本,则)(9196521X X X X X X ++++++= 分布为 .22.设),(21n X X X 是取自参数为λ泊松分布的样本,则统计量i ni X Y ∑==1服从分布.23.设12n X X X ,,,为来自总体X 的样本,且~(0,1)X N ,则统计量21~nii X=∑ .24.设12,,,n X X X 是来自总体)1,0(~N X 的简单随机样本,则21()ni i X X =-∑服从的分布为 .25.设n X X X 21,是来自正态总体X ~N (μ,2σ)的样本,即它们是独立同分布,则~X ,~)1(22σS n - .26.在单边假设检验中,原假设为0H :μ≤0μ,则其备择假设为1H :_______________.27.设总体X 服从正态分布2(,)N μσ,其中2σ未知,12,,n X X X 为其样本.若假设检验问题为0010:,:,H H μμμμ=≠则采用的检验统计量表达式应为_______________.三、计算题1.一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率.2.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求: (1)两粒都发芽的概率;(2)至少有一粒发芽的概率;(3)恰有一粒发芽的概率.3.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求: (1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率.4.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).5.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.6.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)?8.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1)保险公司亏本的概率;(2)保险公司获利分别不少于10000元、20000元的概率.9.设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为f (x )=⎪⎩⎪⎨⎧<≥.100,0,100,1002x x x求:(1)在开始150小时内没有电子管损坏的概率;(2)在这段时间内有一只电子管损坏的概率; (3)F (x ).10.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.11.由某机器生产的螺栓长度(cm )~(10.05,0.062)X N ,规定长度在10.050.12±内为合格品,求一螺栓为不合格品的概率..12.设一工厂生产的电子管寿命X (小时)服从正态分布),160(2δN ,若要求{}8.0200120≥≤<X P ,允许δ最大不超过多少?13.设X ~N (3,22),(1)求P {2<X ≤5},P {4<X ≤10},P {|X |>2},P {X >3}; (2)确定c 使P {X >c }=P {X ≤c }.14.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律.(2)求(X ,Y )的边缘分布律; (3)求W =X +Y 的分布律.16.设随机变量(X ,Y )的概率密度为()⎩⎨⎧<<<<--=.,0,42,20),6(,其他y x y x k y x f (1)确定常数k ;(2)求P {X <1,Y <3}; (3)求P {X <1.5}; (4)求P {X +Y ≤4}.17.设二维随机变量(X ,Y )的联合分布函数为()⎩⎨⎧>>--=--.,0,0,0),e 1)(e 1(,24其他y x y x F y x求(X ,Y )的联合分布密度.18.设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤≤-<≤-+=.,0,10 ,1,01 ,1其他x x x x x f求)()(X D X E ,.19.设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤≤-<≤=.,0,21,2,10,其他x x x x x f求)()(X D X E ,.20.设随机变量(X ,Y )的概率密度为()⎩⎨⎧<<<<=.,0,0,10,,其他x y x k y x f 试确定常数k ,并求)(XY E .21.设X ,Y 是相互独立的随机变量,其概率密度分别为()⎩⎨⎧≤≤=;,0,10,2其他x x x f X ()(5)e ,5,0,.y Y y f y --⎧>=⎨⎩其他 求E (XY ).22.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩估计.23.设总体X 的密度函数()2(x )2,,f x e x R μμ--=∈X 1,X 2,…,X n 为其样本,试求参数μ的矩估计. 24.设12,,,n x x x 为来自正态总体2~N(,)X μδ的一个样本的X1,X2, (X)观测值,试求总体未知参数2,μδ的极大似然估计.25.设总体X 的密度函数为⎩⎨⎧<<=-.,0,10,),(1其他x x x f θθθn X X X 21,为其样本,求θ 的极大似然估计.26.某车间生产的螺钉,其直径2~N(,)X μδ,由过去的经验知道2δ=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 求μ的置信概率为0.95的置信区间.27.来自正态总体2~N(,)X μδ的一个样本为X 1,X 2,…,X n ,并且2μδ未知,已知,求μ的置信概率为1α-的置信区间.28.在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差2s =0.1(2g ).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05).。
02级概率统计期末考试试题A及答案
![02级概率统计期末考试试题A及答案](https://img.taocdn.com/s3/m/82be827331b765ce050814bc.png)
1. 0.5 2. 1 - (a + b ) 3. N (0, 1) 4. 8 9 5. éê 4.412 , 5.588 ùú ë û
二、单项选择题(本题满分 15 分,每题 3 分)
1. C 2. A 3. D 4. C 5. B
三、 (本题满分 12 分)
(2) 因为 x 与 h 相互独立,则知 p
ij
= pi⋅ ⋅ p⋅ j …………………………………2 分
ì öæ 3 ö ï 1 æ1 ï P22 = = ç ç + a ÷ç ÷ç + b ÷ ÷ = p2⋅ ⋅ p⋅2 ï ï ç ÷ç ÷ 4 4 8 è øè ø 故有 í ………………………………4 分 ï 11 ï a +b = ï ï 24 ï î
一、填空题(本题满分 15 分,每题 3 分) 1.设 P (A) = 0.4, P (A È B ) = 0.7 , 且 A 和 B 既相容又相互独立, 则 P (B ) = 2.若 P {x > x 1 } = 1 - a , P {x £ x 2 } = 1 - b ,其中 x1 < x 2 ,则有 .
P {x1 < x £ x 2 } =
.
3.设服从正态分布的随机变量 X 的期望 E (X ) ,方差 D (X ) 均存在,且 D (X ) 不等于零, 则标准化随机变量Y =
X - E (X ) D (X )
服从
.
4.已知正常男性成人的血液中,每毫升白细胞数平均是 7300 ,标准差为 700 ,利用切比 雪 夫 不 等 式 估 计 每 毫 升 男 性 成 人 血 液 中 含 白 细 胞 数 在 5200 至 9400 之 间 的 概 率
(A)概率统计参考答案与评分标准
![(A)概率统计参考答案与评分标准](https://img.taocdn.com/s3/m/98816387e53a580216fcfea6.png)
2010—2011学年第二学期闽江学院考试试卷(A )一、单项选择题(20%=2%*10) 得分1、 事件A 与B 互相对立的充要条件是( C ).(本题考核:事件之间的关系) (A )()()()P AB P A P B =; (B )()0()1P AB P A B == 且; (C )AB A B =∅=Ω 且; (D )AB =∅.2、 事件A 与B 和的对立事件A B +=( B ). (本题考核:事件之间的运算)(A )A B +;(B )AB ;(C )AB ; (D )AB AB +.3、 下列说法错误的是( D ). (本题考核:概率论的基本概念)(A )随机变量可以取负值;(B )随机变量的分布函数不可以取负值; (C )随机变量的密度函数不可以取负值; (D )随机变量的数学期望不可以取负值.4、 设离散型随机变量(,)X Y 的联合分布律为XY 12311/61/91/1821/3αβ且,X Y 相互独立,则( A ). (本题考核:二维离散型边缘分布与独立性) (A )2/9,1/9αβ==; (B )1/9,2/9αβ== ; (C )1/6,1/6αβ== ; (D )8/15,1/18αβ==. 5、 设随机变量2~(,)X N μσ,那么当 σ 增大时,{}P X μσ-<=( C ).(A )增大;(B )减少; (C )不变; (D )增减不定.(本题考核:正态分布的标准化,容易误解,有一定难度)6、 设12()()F x F x 与分别为随机变量1X 与2X 的分布函数.为了使得12()()()F x aF x bF x =-还是某一随机变量的分布函数,在下列给定的各组数值中应取( A ). (本题考核:分布函数的性质) (A )32,55a b ==-; (B )22,33a b ==;(C )13,22a b == ;(D )13,22a b ==-.7、 设随机变量~(3,)X B p ,且{1}{2}P X P X ===, 则()E X =( C ) .(A)1/2; (B)1; (C)3/2; (D)3/4.(本题考核:常用分布及其数字特征)8、 关于随机变量,X Y 的数学期望与方差,下列等式总成立的是( A ). (A)(234)2()3()4E X Y E X E Y -+=-+;(B)(234)2()3()E X Y E X E Y -+=-; (C)(234)2()3()4D X Y D X D Y -+=-+; (D)(234)4()9()D X Y D X D Y -+=+. (本题考核:数学期望与方差的性质)9、 设12(,,,)n X X X 为总体2(1,2)N 的一个样本,X 为样本均值,则下列结论中正确的是( D ). (本题考核:常用统计量的概念)(A )1~()2/X t n n-; (B )1~(0,1)2X N -; (C )1~(0,1)2/X N n-;(D ) 2211(1)~()4ni i X n χ=-∑.10、 设2~(,)X N μσ,其中μ已知,2σ未知, 12,,,n X X X …为其样本. 则下列( A )不是统计量. (本题考核:统计量的概念)(A)X μσ- (B)X Sμ-(C)211()ni i X X n =-∑(D)211()ni i X n μ=-∑二、填空题 (21%=3%*7) 得分11、 甲,乙,丙三人各射一次靶,记A =“甲中靶”,B =“乙中靶”,C =“丙中靶”.则用这三个事件的运算表示事件:“三人中至少两人中靶”=AB AC BC ++.(本题考核:事件的运算)12、 一批产品由45件正品、5件次品组成,现从中任取3件产品,其中恰有1件次品的概率为2145535099(0.2526)392C C C ≈或.(本题考核:古典概型)本题考核:概率统计中的基本概念,基本公式与基本性质.本题考核:概率统计中的基本概念,基本公式与基本性质.13、 已知()0.5P A =,()0.6P B =,()0.8P B A =,()P AB =0.3. (本题考核:概率的计算公式)14、 设离散型随机变量X 分布律为{}5(1/2)(1,2,)kP X k A k === ,则A =1/5.(本题考核:分布律的性质)15、 已知随机变量X 的密度为()f x =,010,ax b x +<<⎧⎨⎩其它, 且{0.5}5/8P X >=,则a =1,b =1/2 . (本题考核:密度函数的性质与应用) 16、 设2~(2,)X N σ,且{24}0.3P X <<=,则{0}P X <=0.2. (本题考核:正态分布的图象特点与应用)17、 设随机变量(,)X Y 的联合分布律为:(,)(1,0)(1,1)(2,0)(2,1)0.40.2X Y P a b若()0.8E XY =,则cov(,)X Y =0.1.(本题考核:二维离散型随机变量函数的分布与协方差计算。
概率论与数理统计a综合练习答案
![概率论与数理统计a综合练习答案](https://img.taocdn.com/s3/m/200013fcc5da50e2534d7f3d.png)
综合练习一一、单项选择题1.设A 与B 为两个随机事件,则表示A 与B 不都发生是【 】.(A )A B (B )AB (C )AB (D )AB2.设A 、B 、C 为三个随机事件,则表示A 与B 都不发生,但C 发生的是【】. (A )A BC (B )()A B C + (C )ABC (D )A B C +3.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为【】. (A )甲种产品滞销,乙种产品畅销 (B )甲、乙两种产品均畅销 (C )甲种产品滞销 (D )甲种产品滞销或乙种产品畅销4.对于任意两个事件A 与B ,均有=-)(B A P 【】. (A) )()(B P A P - (B) )()()(AB P B P A P +- (C) )()(AB P A P - (D) )()()(AB P B P A P -+5.已知事件A 与B 互斥,8.0)(=+B A P ,5.0)(=B P ,则=)(A P 【】. (A) 0.3 (B) 0.7 (C) 0.5 (D) 0.6 6.若21)(=A P ,31)(=B P ,61)(=AB P ,则A 与B 的关系为【】. (A) 互斥事件 (B) 对立事件 (C) 独立事件 (D) A B ⊃7.已知事件A 与B 相互独立,8.0)(=+B A P ,5.0)(=B P ,则()P A =【】. (A) 0.3 (B) 0.2 (C) 0.5 (D) 0.6 8.若事件A 与B 相互独立,0)(>A P ,0)(>B P ,则错误的是【 】. (A) A 与B 独立 (B) A 与B 独立 (C) )()()(B P A P B A P = (D) A 与B 一定互斥 9. 设事件A 与事件B 互不相容,则【 】.(A )()0P AB = (B )()()()P AB P A P B = (C )()1()P A P B =- (D )()1P AB =10. 设A 、B 为任意两个事件,且,()0A B P B ⊂>, 则下列选项必然成立的是【】. C A D C B C D D D B(A )()()P A P A B < (B ) ()()P A P A B ≤ (C )()()P A P A B > (D )()()P A P A B ≥二、填空题11.设C B A ,,为三个事件,试用C B A ,,表示下列事件:(1)C B A ,,中至少有一个发生 ; (2)C B A ,,中恰好有一个发生 ;(3)C B A ,,三个事件都发生 ; (4)C B A ,,三个事件都不发生 ;(5)B A ,都发生而C 不发生 ; (6)A 发生而C B ,都不发生 ;12. 某人向目标射击三次,事件=i A {第i 次击中},3,2,1=i ,用事件的运算关系表示下列各事件,(1)只击中第一枪 ; (2)只击中一枪 ___________; (3)三枪都未击中 ; (4)至少击中一枪 ; (5)目标被击中 ; (6)三次都击中 ;(7)至少有两次击中 _______________________________; (8)三次恰有两次击中 _____________. 13. 已知事件A 与B 相互对立,则AB = ,A B += ,()P AB = ,()P A B += .14. 已知3.0) (=B A P ,则=+)(B A P .15. 已知事件B A ⊂,9.0)(=+B A P ,3.0)(=AB P ,则=-)(A B P. 16. 设A 与B 为两个事件,且7.0)(=A P ,3.0)(=-B A P ,则=)(AB P .17. 已知事件A 与B 相互独立,4.0)(=A P ,3.0)(=B P ,则=+)(B A P. 18. 设,,A B C 是三个相互独立事件,且5.0)(=A P ,6.0)(=B P ,7.0)(=C P ,则()P A B C ++=. 19. 一张考卷上有5道选择题,每道题列出4个可能答案,其中有1个答案是正确的.某学生靠猜测能答对4道题的概率是 . 20. 已知在3次独立重复试验中,事件A 至少发生一次的概率为2726,则事件A 在一次试验中A B C ++ABC ABC ABC ++ABC ABC ABC ABC 123A A A 123123123A A A A A A A A A ++123A A A 123A A A ++123A A A ++123A A A 123123123123A A A A A A A A A A A A +++123123123A A A A A A A A A ++∅U 01.07.06.06.058.094()()44151344C21. 设A 与B 相互独立,()0.5,()0.8P A P A B =+=,则()P B =,()P AB = . 22. 若112(),(),(),233P A P B P B A === 则()P A B = .23.投掷两个均匀骰子,出现点数之和为6*24. 设两个相互独立的事件A 和B 都不发生的概率为1/9,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则)(A P三、计算题24. 设4.0)(=A P ,3.0)(=B P ,6.0)(=+B A P ,求(1))(AB P ;(2)) (B A P ;(3)) (B A P ;(4))(B A P +.25. 已知7.0)(=A P ,()0.9P B =,()0.7P A B =,求()P A B +.四、解答题26. 某城市中发行2种报纸A 与B , 经调查, 在全市人中, 订阅A 报的有45%,订阅B 报的有35%, 同时订阅2种报纸A , B 的有10%. 求只订一种报纸的概率..06.021解:()由()()()()1P A B P A P B P AB +=+-得()()()()P AB P A P B P A B =+-+....;04030601=+-=()()()2P AB P A B =-()()P A P AB =-...;040103=-=()()()31P AB P A B =-+..;10604=-=()()()4P A B P AB +=()1P AB =-...10109=-=解:()()(|)P AB P B P A B =...,0907063=⨯=()()()()P A B P A P B P AB +=+-...0709063=+-..097=解:由题意得().,().,().,04503501P A P B P AB ===()()()P AB AB P AB P AB ∴+=+()()P A B P B A =-+-()()()()P A P AB P B P AB =-+-....0450103501=-+-..06=答:只订一种报纸的概率为..0627. 袋中有10个球,其中7个白球,3个红球,从中任取三个,求(1)全是白球的概率; (2)恰有两个白球的概率;(3)至少一个白球的概率.28. 一副扑克牌52张,每次抽一张,共抽取2次,分两种方式抽取, 求两张都是A 的概率. (1)取后不放回; (2)取后放回.*29.(配对问题)三个学生证混放在一起,现将其随意发给三名学生,试求事件A ={学生都没有拿到自己的学生证}的概率.解:()(全是白球)373101C P C =;724=()(恰有个白球)217331022C C P C =;2140=()(至少有个白球)(全是红球)311P P =-333101C C =-11120=-.119120=解:()(张都是)43125251P A =⨯;1221=()(张都是)44225252P A =⨯.1169=解:()2111323P A =⨯⨯=综合练习二一、单项选择题1. 已知离散型随机变量X 的概率分布表为:则下列计算结果中正确是【 】. (A) {3}0P X == (B) {0}0P X== (C) {1}1P X >-= (D) {4}1P X <= 2. 设随机变量X 的分布列如下,则c =【 】.(A) 0.1 (B) 0.2 (C) 1 (D) 2*3. 设随机变量X 的分布函数()F x ,在下列概率中可表示为}{)(a X P a F <-的是【 】.(A )}{a X P ≤ (B )}{a X P > (C )}{a X P ≥ (D )}{a X P =4. 设随机变量X 的概率密度为:(),020,cx x f x ≤≤⎧=⎨⎩其它 ,则c =【 】.(A) 1 (B) 2 (C)12 (D) 145. 设随机变量X 的概率密度为:()1,080,x x cf x ⎧≤≤⎪=⎨⎪⎩其它 ,则c =【 】.(A) 1 (B) 2 (C) 3 (D) 46. 设随机变量~(3,4)X N -,则随机变量=Y 【】~(0,1)N . (A)43-X (B) 43+X (C) 23-X (D) 23+X 7.设随机变量2~(10,)X N σ,且3.0}2010{=<<X P ,则=<<}100{X P 【】. (A) 0.3 (B) 0.2 (C) 0.1 (D) 0.58. 设随机变量X 服从泊松分布,且已知{}{}02P X P X ===,则参数λ=【 】.(A)12 (B) 2A A C D D A D D9. 设随机变量X 的概率分布律为⎪⎪⎭⎫⎝⎛1.03.06.0210,则E X =()【 】. (A) 1 (B)13(C) 0 (D) 05. 10. 有一批钢球,重量为10克、15克、20克的钢球分别占55%、20%、25%,现从中任取一个钢球,重量X 的期望为【 】. (A )12.1克 (B )13.5克 (C )14.8克 (D )17.6克11. 设随机变量~(,)X B n p ,则下列等式中【】恒成立. (A )12(-X E np 2)=(B )14)12(-=-np X E (C )1)1(4)12(--=-p np X D(D ))1(4)12(p np X D -=-12. 设随机变量X 的密度函数为⎩⎨⎧≤≤+=其它,010,)(x b ax x f ,且0E X =(),则【 】. (A) 6,4a b =-= (B) 1,1a b =-= (C) 6,1a b == (D) 1,5a b ==13. 设随机变量~(2,16)X N ,则下列等式中不成立的是【 】.(A )()2E X =(B )()4D X =(C ){16}0P X == (D ) {2}0.5P X ≤=14. 设随机变量X ,且10)10(=X D ,则=)(X D 【 】.(A )101(B ) 1 (C ) 10 (D )100 二、填空题15. 某射手射击目标的命中率为8.0=p ,他向目标射击3枪,用X 表示命中的枪数,则随机变量2=X 的概率为___________.16. 设随机变量~(2,)X B p ,若9{1}25P X ≥=,则p ={2}P X = 17. 设随机变量X 服从泊松分布,且{1}{2}P X P X ===,则参数λ= ,{0}P X == ;{2}P X == ;{4}P X == . 18. 设X 服从()0,5上的均匀分布,则==}5{X P ____,=≤≤}42{X P ______,=≤≤}64{X P. D B D A B A .038422e -223e -0.02.0422e -19. 设每次试验失败的概率为(01)p p <<, 则在3次重复独立试验中成功2次的概率为________________.20. 设随机变量X ,4)13(=+-X E ,则=)(X E .21. 设随机变量)21,100(~B X ,则=)(X E _________; =+)32(X E _________. 22. 已知随机变量X ,且9)3(=X E ,4)2(=X D ,则=)(2X E . 23. 设X 和Y 相互独立,4)(=X D ,2)(=Y D ,则(32)D X Y -= .24. 设X 服从参数为λ的泊松分布,4)(=X D ,则=)(X E ,=λ .25. 设),(~b a U X ,3)(=X E ,3)(=X D ,则=a ,=b .26. 设X 服从指数分布,4)4(=X D ,则=)(X E .27. 设)4,2(~N X ,则=)(X E ,()D X = ,=)(2X E .三、计算题28. 6个零件中有4个正品2个次品,从中任取 3个零件,用X 表示所取出的 3 个零件中正品的个数, 求随机变量X 的概率分布.29.设随机变量X 在[2,5]上服从均匀分布,现对X 进行三次独立观测。
概率论与数理统计试题-a_(含答案)
![概率论与数理统计试题-a_(含答案)](https://img.taocdn.com/s3/m/ae3ff4e8551810a6f5248631.png)
第一部分 基本题一、选择题(共6小题,每小题5分,满分30分。
在每小题给出的四个选项中,只有一 1. 事件表达式A B 的意思是 ( )(A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生 2. 假设事件A 与事件B 互为对立,则事件A B ( )(A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1 (D) 是必然事件3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布 (D) 自由度为2的F 分布4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( ) (A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计6. 随机变量X 服从在区间(2,5)上的均匀分布,则X 的数学期望E (X )的值为( )(A) 2 (B) 3 (C) 3.5 (D) 4二、填空题(共6小题,每小题5分,满分30分。
把答案填在题中横线上) 1. 已知P (A )=0.6, P (B |A )=0.3, 则P (A B )= __________2. 三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为__________3. 一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为_____4. 已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=_______5. 假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (X +Y )=__________6. 一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=________三、有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。
2)《概率统计》试题A卷答案
![2)《概率统计》试题A卷答案](https://img.taocdn.com/s3/m/534f55fde109581b6bd97f19227916888486b971.png)
广州大学2008-2009学年第二学期考试卷概率论与数理统计(A 卷)参考解答与评分标准一、选择题(在各小题四个备选答案中选出一个正确答案,填在题末的括号中,本大题共5个小题,每小题3分,总计15分)1.对于任意两个事件A 与B,若A ⊆B,则P(A −B)= ( B )。
A. P(A)−P(B) B. 0 C. 1 D. P(A)2.设B A ,是两个概率不为0且互不相容的事件,则下列成立的是( D )。
A. A 与B 互不相容 B. A 与B 独立C.)(B A P = )()(B P A PD. )(B A P = )(A P3.设)(x f 为某连续型随机变量的概率密度函数, 则必有( B )。
A .1)(0≤≤x f B. 1)(=⎰+∞∞-dx x fC. 在定义域内单调不减D.1)(lim =+∞→x f x4.设一个连续型随机变量的分布函数为⎪⎩⎪⎨⎧≥<≤+<=a x a x k x x x F 1000)(则( C )。
A. 21,0==a kB. 21,21==a kC. 1,0==a kD. 1,21==a k学院专业班 级 姓 名学号5.设二维随机变量()的联合分布概率为若X 与Y 独立,则}3{=+Y X P =( A )。
A. 1/3 B. 5/6 C. 1/6 D. 2/3二、填空题(本大题共5小题,每小题3分,总计15分)(1) 三阶方阵⎪⎪⎪⎭⎫ ⎝⎛=c b a A 000000中的c b a ,,取3,2,1,0的概率都相同,则该阵为可逆阵的概率为_27/64____。
(2) 某人射击某一个目标的命中率为0.6,现不停的射击,直到命中为止,则第3次才命中目标的概率为_0.096__。
(3)设)6,1(~U X ,则方程012=++Xx x 有实数根的概率为__5/6 。
(4)设X 和Y 是相互独立的两个随机变量,且)3,2(~-U X ,)4,1(~N Y ,则=+)(Y X E __1.5__。
《概率统计》期末考试题(有答案)
![《概率统计》期末考试题(有答案)](https://img.taocdn.com/s3/m/a5d2f7e259eef8c75ebfb3b5.png)
《概率论》期末 A 卷考试题一 填空题(每小题 2分,共20 分)1.甲、乙两人同时向一目标射击,已知甲命中的概率为0.7,乙命中的概率为0。
8,则目标被击中的概率为( ).2.设()0.3,()0.6P A P AB ==,则()P AB =( ).3.设随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤<=2,120,sin 0,0)(ππx x x a x x F ,则=a ( ),()6P X π>=( ).4.设随机变量X 服从参数为2=λ的泊松分布,则=-)1(2X E ( )。
5.若随机变量X的概率密度为236()x X p x -=,则(2)D X -=( )6.设Y X 与相互独立同服从区间 (1,6)上的均匀分布,=≥)3),(max(Y X P ( )。
7.设二维随机变量(X ,Y )的联合分布律为X Y 1 2 •i p0 a 121 61 131b 则 ( ), ( ).a b ==8.设二维随机变量(X ,Y )的联合密度函数为⎩⎨⎧>>=--其它00,0),(2y x ae y x f yx ,则=a ( )9.若随机变量X 与Y 满足关系23X Y =-,则X 与Y 的相关系数XY ρ=( )。
10。
设二维随机变量)0,4,3,2,1(~),(N Y X ,则=-)52(Y X D ( ).二.选择题(每小题 2分,共10 分)1.设当事件C B 和同时发生时事件A 也发生,则有( )。
)()()(1)()()()(1)()()()()()()(C B P A P d C P B P A P c C P B P A P b BC P A P a =-+≤-+≥=2.假设事件B A 和满足1)|(=B A P ,则( ). (a ) B 是必然事件 (b )0)(=-A B P (c) B A ⊂ (d ) 0)|(=B A P 3.下列函数不是随机变量密度函数的是( ).(a )sin 0()20 x x p x π⎧<<⎪=⎨⎪⎩,,其它 (b ) ⎩⎨⎧<<=其它0102)(x x x p(c) sin 0()0 x x p x π<<⎧=⎨⎩,,其它 (d) ⎩⎨⎧<<=其它103)(2x x x p4.设随机变量X 服从参数为2=λ的泊松分布,则概率==)(EX X P ( ).112211()()2 () ()222a eb ec ede ---- 5.若二维随机变量(X ,Y )在区域{(,)/01,01}D x y x y =<<<<内服从均匀分布,则1()2P X Y X ≥>=( )。
(完整版)大学概率论与数理统计试题库及答案a
![(完整版)大学概率论与数理统计试题库及答案a](https://img.taocdn.com/s3/m/544f650b8762caaedc33d450.png)
<概率论>试题一、填空题1.设 A 、B 、C 是三个随机事件。
试用 A 、B 、C 分别表示事件1)A 、B 、C 至少有一个发生2)A 、B 、C 中恰有一个发生3)A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。
则P(B)A = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,则α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===⋅⋅⋅则A=______________7. 已知随机变量X 的密度为()f x =⎩⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为_________10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥=,4{0}{0}7P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<=13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<=14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。
(完整版)概率论与数理统计试题及答案.doc
![(完整版)概率论与数理统计试题及答案.doc](https://img.taocdn.com/s3/m/4447d1d3a45177232e60a222.png)
2008- 2009 学年第1学期概率论与数理统计(46 学时 ) A一、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分)。
1、 A、 B 为两个随机事件,若P( AB)0 ,则( A) A、 B 一定是互不相容的;(B)AB一定是不可能事件;(C) AB 不一定是不可能事件;(D)P( A)0或 P(B)0 .Y 0 1 22、二维离散型随机变量( X ,Y)的分布律为X1 1/6 1/3 02 1/4 1/6 1/12F ( x, y) 为 ( X ,Y) 的联合分布函数,则F (1.5,1.5)等于(A)1/6 ;(B)1/2 ;(C)1/3 ;( D)1/4.3、 X、 Y 是两个随机变量,下列结果正确的是(A)若E( XY)EXEY ,则X、Y独立;(B)若 X、Y 不独立 , 则 X、Y 一定相关;(C)若 X、Y 相关, 则 X、Y 一定不独立;(D)若D(X Y) DX DY ,则X、Y独立.4、总体 X ~ N ( , 2 ), , 2均未知, X 1, X 2 ,L , X n 为来自 X 的一个简单样本,X 为样本 均值, S 2 为样本方差。
若 的置信度为 0.98的置信区间为 (X c S n , X c S n ) ,则常数 c 为( A )t 0.01 (n 1) ;( ) 0.01 (n) ;B t( C )t0.02(n 1) ;( )(n) .D t 0.025、随机变量 X 1, X 2 ,L , X n 独立且都服从 N (2,4)__1 n分布,则 XX i 服从n i1(A ) N (0,1) ;(B ) N (2,4 n) ;(C ) N (2 n, 4n) ;(D ) N(2, 4) .n二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)。
6、已知 A 、 B 为两个随机事件 ,若 P( A) 0.6, P( AB) 0.1,则 P( A | AB) =1.7、已知随机变量 X 服从区间 (0, 2) 上的均匀分布,则 E(2X) =( ).8、已知连续型随机变量 X 的概率密度函数为 f (x)2 x,0 x 1,则概率 P(| X | 1 2) =0,其它( ) .9、随机变量 X : b(3, 1 ), Y : b(3, 2 ) ,且 X ,Y 独立,则 D(X Y) =() .3310 、 已 知 随 机 变 量 X i , i 1,2,3 相互独立,且都服从 N(0,9)分布,若随机变量Y a( X 12X 22 X 32) :2(3) ,则常数 a =( ).三、解答题(本大题共 6 小题,每小题 10 分,共 60 分)。
2004-2007应用概率统计试卷(A)
![2004-2007应用概率统计试卷(A)](https://img.taocdn.com/s3/m/d389704b852458fb770b5666.png)
042应用数学一、填空题 (每小题3分,共21分)1.已知()0.4,()0.3,()0.6,P A P B P A B === 则() .P AB =2.设(),,X B n p 且()12 , ()8 ,E X D X ==则 , .n p ==3.已知随机变量X 在[0,5]内服从均匀分布,则()()()14 ,2 , .P X P X E X ≤≤==== 4.设袋中有5个黑球、3个白球,现从中随机地摸出4个,则其中恰有3个白球的概率为 .5.设1219,X X X 是来自正态总体()2,N μσ的一个样本,则()219211 i i Y X μσ==-∑6.有交互作用的正交试验中,设A 与B 皆为三水平因子,且有交互作用,则A B ⨯的自由度为 .7.在MINITAB 菜单下操作,选择Stat Basic Statistics 2Sample T >>-可用来讨论的问题,输出结果尾概率为0.0071P =,给定0.01α=,可做出 的判断.二、单项选择题(每小题3分,共15分)1.设,A B 为两随机事件,()60.6,()0.7,(|),7P A P B P A B ===则结论正确的是( ) (A ),A B 独立 (B ),A B 互斥 (C )B A ⊃ (D )()()()P A B P A P B +=+2. 设()1F x 与()2F x 分别为随机变量1X 与2X 的分布函数.为使()()()12F x aF x bF x =-是某一随机变量的分布函数,在下列给定的各组数值中应取( )(A )32,;55a b ==-(B )22,;33a b ==(C )13,;22a b =-=-(D )13,.22a b ==- 3.设128,,X X X 和1210,,Y Y Y 分别来自两个正态总体()1,9N -与()2,8N 的样本,且相互独立,21S 与22S 分别是两个样本的方差,则服从()7,9F 的统计量为( ) (A )212235S S (B )212289S S (C )212298S S (D )212253S S4. 设Y 关于X 的线性回归方程为01,Y X ββ∧∧∧=+则0β∧、1β∧的值分别为( )(10,780,88,3,24xx yy xy L L L x y =====)(A )8.8,-2.4 (B )-2.4,8.8 (C )-1.2,4.4(D )4.4,1.25.若()10T t 分布,则2T 服从( )分布.(A )()10,1F (B )()9t (C )(1,10)F (D )(100)t四、计算题(共56分)1.据以往资料表明,某一3口之家,患某种传染病的概率有以下规律:P{孩子得病}=0.6 ,P{母亲得病 | 孩子得病}=0.5 ,P{父亲得病 | 母亲及孩子得病}=0.4 ,求母亲及孩子得病但父亲未得病的概率.(8分)2.一学生接连参加同一课程的两次考试.第一次及格的概率为0.6,若第一次及格则第二次及格的概率也为0.6;若第一次不及格则第二次及格的概率为0.3.(1)若至少有一次及格则能取得某种资格,求他取得该资格的概率?(2)若已知他第二次已经及格,求他第一次及格的概率?(12分)3.假定连续型随机变量X 的概率密度为()2, 010, bx x f x ⎧<<=⎨⎩其它,求 (1)常数b ,数学期望EX ,方差DX ;(2)31Y X =-的概率密度函数()g y .(12分)4. 某工厂采用新法处理废水,对处理后的水测量所含某种有毒物质的浓度,得到10个数据(单位:mg/L ):22 , 14 , 17 , 13 , 21 , 16 , 15 , 16 , 19 , 18而以往用老办法处理废水后,该种有毒物质的平均浓度为19.问新法是否比老法效果好?假设检验水平0.05α=,有毒物质浓度()2,X N μσ .(12分)(()()()20.0250.050.0250.0250.058.544, 1.96, 1.64,10 2.228,9 2.262,9 1.833S u u t t t ======)5. 在某橡胶配方中,考虑三种不同的促进剂(A ),四种不同份量的氧化锌(B ),每种配(0.010.010.0198.67,25.17,69.34,(3,4)16.69,(2,6)10.92,(3,6)9.78,T A B SS SS SS F F F ======0.010.010.050.050.05(3,12) 5.95,(4,12) 5.41,(2,6) 5.14,(3,6) 4.76,(3,4) 6.59F F F F F =====)四. 综合实验报告(8分)052应用数学一、 填空题(每小题2分,共2⨯6=12分)1、设一维连续型随机变量X 服从指数分布且具有方差4,那么X 的概率密度函数为: 。
大学概率论与数理统计试题库及答案a
![大学概率论与数理统计试题库及答案a](https://img.taocdn.com/s3/m/d7bcb5301eb91a37f0115c5f.png)
< 概率论> 试题、填空题1. 设A、B C是三个随机事件。
试用A、B C分别表示事件1) A、B、C至少有一个发生2) A、B、C中恰有一个发生3) A、B、C不多于一个发生2•设A、B 为随机事件,P (A)=0.5 , P(B)=0.6 , P(B A)=0.8。
则P(B U A)=3.若事件A和事件B相互独立「 P(A)= , P(B)=0.3 , P(A U B)=0.7,则4•将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词中,则它是甲射中的概率为设X 〜N(2, 2),且P{2 x 4} 0.3 ,则P{x 0} SCIENCE勺概率5.甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6 和0.5 ,现已知目标被命6.设离散型随机变量X 分布律为P{X k} 5A(1/2)k(k 1,2,)则A=7. 已知随机变量X的密度为f(x)ax b,0 :0,其它1,且P{x1/2} 5/8 ,则8.9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80,则该射手的命81中率为10.若随机变量在(1, 6)上服从均匀分布,则方程x+仁0有实根的概率是311.设P{X 0,Y 0} , P{X 0} P{Y 0} 则P{max{ X,Y} 0}12.用(X,Y )的联合分布函数F (x,y )表示P{a b,Y c}13.用(X,Y )的联合分布函数F (x,y )表示P{X a,Y b}14. 设平面区域D由y = x , y = 0 和x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y )关于X的边缘概率密度在x = 1 处的值为____________________ 。
15. ___________________________________________________ 已知X ~ N( 2,0.42),贝yE(X 3)2 = ________________________________________16. 设X ~ N(10,0.6),Y ~N(1,2),且X 与Y 相互独立,则D(3X Y) ______________17.设X的概率密度为f(x) -^e x V2,则D(X)=18.设随机变量X1, X2, X3相互独立,其中X在[0 , 6]上服从均匀分布,X2服从正态分布N(0, 22) , X3服从参数为=3的泊松分布,记Y=X —2X2+3X3,则D( Y) = ________________19.设D(X) 25,D Y 36, xy0.4,则D(X Y) ____________________________ 20.设X1,X2, ,X n,是独立同分布的随机变量序列,且均值为,方差为2,那么当n充分大时,近似有X〜_________ 或—--------- 〜 ___________ 。
《概率统计》试卷(A)
![《概率统计》试卷(A)](https://img.taocdn.com/s3/m/559f2820b14e852459fb5744.png)
《概率统计》试卷(A)学习形式____________班级__________姓名_________学号_________-------------------密---------封----------线------------------一、 填空题 (1—7题,每空1分,共20分;8—10题,每空2分,共10分;总共30分)1、在自然界与社会生活的一切活动中,存在着两种现象,一种是_______________,另一种是____________________,概率统计就是研究_____________________统计规律的学科。
2、随机试验的三个特点:________________ 、________________、________________。
3、A ,B ,C 是三个事件,则A 发生而B 与C 都不发生表示为____________;A 与B 都发生而C 不发生表示为_____________;所有事件发生表示为________;三个事件恰好发生一个表示为______________________; 三个事件至少发生一个表示为______________________.4、若X 服从正态分布),(2σμN ,则EX=___________,DX=____________.5、估计量的评价标准有________________、___________________、__________________.6、统计推断包括_______________________、________________________.7、假设检验的两类错误,第一类为____________________,第二类为__________________。
8、5对夫妇参加宴会,围同一圆桌而坐,有___________种坐法;若要求每对夫妇必须相邻有_______________种坐法,同时又要求女士必须坐在男士右边有_______________种坐法。
概率论与数理统计考试a(含答案)
![概率论与数理统计考试a(含答案)](https://img.taocdn.com/s3/m/4c02f953f46527d3250ce010.png)
深圳大学期末考试试卷参考解答及评分标准开/闭卷 闭卷A/B 卷A 课程编号 2219002801-2219002811课程名称概率论与数理统计学分3命题人(签字) 审题人(签字) 年 月 日 基本题6小题,每小题5分,满分30分。
在每小题给出的四个选项中,只有一(每道选择题选对满分,选0分)事件表达式A B 的意思是 ( ) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生 D ,根据A B 的定义可知。
假设事件A 与事件B 互为对立,则事件A B ( ) 是不可能事件 (B) 是可能事件 发生的概率为1 (D) 是必然事件 A ,这是因为对立事件的积事件是不可能事件。
已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 自由度为1的F 分布 (D) 自由度为2的F 分布选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的2分布。
已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( ) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3) 选C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )=2-2=0, (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。
样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率统计A 复习题一一、选择题(共8题,每小题3分)1.设A 与B 相互独立, P(A) =0.2,P(B)==0. 4,则P (|)A B =( ) A.0.2 B. 0.4 C. 0.6 D. 0. 82.下列各函数可作为随机变量分布函数的是( )A .F 1(x )=B .F 2(x )=C .F 3(x )=.D .F 4(x )=.3.设随机变量X 的概率密度为 f (x )=则P {-1<X <1}=( ) A .41 B .21 C .43D .1 4.设连续型随机变量X~N (1,4),则21-X ~( ) A .N (3,4) B .N (0,2)C .N (0,1)D .N (1,4)5.设二维随机变量(X ,Y )具有联合密度函数, 0<<1,0<y<1;(,)0, cx x f x y ⎧=⎨⎩其他.则常数C =( ) A .1 B.2C.3D.46.设二维随机变量则P{XY=2}=( )A .15B.310C.12 D.357.设随机变量X 服从参数为2的指数分布,则E (2X -1)=( ) A.0 B.1 C.3 D.4 8.设随机变量X 与Y 不相关,则以下结论中错误..的是( ) A .E(X+Y)=E(X)+E(Y)B.D(X+Y)=D(X)+D(Y)C.E(XY)=E(X)E(Y)D.D(XY)=D(X)D(Y)二、填空题(共8题,每小题3分)9.设随机事件A 与B 相互独立,且()0.5,()0.3P A P AB ==,则()P B =______. 10.设A ,B 为随机事件,()0.5,()0.4,()0.8P A P B P A B ===,则()P B A =______.11、随机变量X 的分布函数为⎩⎨⎧>-=-其他0)1()(2x e A x F x ,常数A= 。
12、设X ~N (3,4),常数c 满足P {X<c }=P {X>c },则常数c= 。
13.设二维随机变量(X ,Y )~N (0,0,1,4,0),则X 的概率密度f X (x )=___________. 14.设随机变量X ~U (-1,3),则D(2X -3)=_________. 则E (X 2+Y 2)=__________.15.设随机变量X 的分布律为 ,a,b 为常数,且E (X )=0,则a b -=______.16设随机变量X 服从参数为3的指数分布,则()E 3X -=______三、计算题(共5题,第17题12分,其他各题每小题10分)17. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少? 18.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ). 19.已知随机变量X 的密度函数为f (x )=A e -|x |, -∞<x <+∞,求:(1)A 值;(2)P {0<X <1}; (3) F (x ). 20.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<-.,0,0,其他e y x y求边缘概率密度.21.设随机变量X 的分布律为求E (X概率统计A 复习题二一、选择题(共8题,每小题3分)1.设A,B 为B 为随机事件,且A B ⊂,则AB 等于( ) A .AB B.B C.AD.A2.若某产品的合格率为0.6,某人检查5只产品,则恰有两只次品的概率是( ) A .0.62·0.43B.0.63·0.42C.25C ·0.62·0.43D. 25C ·0.63·0.423.设随机变量X 在区间[2,4]上服从均匀分布,则P{2<X<3}=( ) A .P{3.5<X<4.5} B .P{1.5<X<2.5} C .P{2.5<X<3.5}D .P{4.5<X<5.5}4.设随机变量X~N(1,4),5.0)0(,8413.0)1(=Φ=Φ,则事件{13X ≤≤}的概率为( ) A.0.1385 B.0.2413C.0.2934D.0.34135.下列各函数中,可作为某随机变量概率密度的是( ) A .⎩⎨⎧<<=其他,0;10,2)(x x x fB .⎪⎩⎪⎨⎧<<=其他,0;10,21)(x x fC .⎩⎨⎧-<<=其他,1;10,3)(2x x x fD .⎩⎨⎧<<-=其他,0;11,4)(3x x x f6.设随机变量X 与Y 相互独立,它们的概率密度分别为(),()X Y f x f y ,则(X ,Y )的概率密度为( ) A .[]1()()2X Y f x f y + B.()()X Y f x f y + C.1()()2X Y f x f y D.()()X Y f x f y7.设二维随机变量(X,Y )~N 221212(,;,;)μμσσρ,且X 与Y 相互独立,则ρ=( )A .-1 B.0 C.1D.28.设随机变量~(,)X B n p ,且() 2.4,() 1.44E X D X ==,则参数n,p 的值分别为( ) A .4和0.6 B.6和0.4 C.8和0.3 D.3和0.8二、填空题(共8题,每小题3分)9. 设A ,B ,C 为三个事件,试用A ,B ,C 的运算关系式表示A ,B ,C 至少有一个发生:__________。
10.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=0.3,P (B )=0.4,则()P AB =____________. 11.已知某种型号洗衣机寿命服从指数分布,洗衣机工作时间在1000小时以上的概率为1/2,那么十年后洗衣机还能工作1000小时以上的概率为 。
12.设随机变量X ~N (1,32),则P{-2≤ X ≤4}=______.(附:)1(Φ=0.8413)13.已知二维随机变量(X ,Y )服从区域G:0≤x ≤2,0≤y ≤2上的均匀分布,则P {X ≤1,Y >1}=____________.14.设随机变量X ~b (18,13),则D (X )=____________.15.设随机变量X 与Y 线性不相关,则C OV (X -2,Y +1)=____________.16..设随机变量X ~N (1,4),则D (X )=_______________.三、计算题(共5题,第17题12分,其他各题每小题10分)17. 甲、乙、丙三人同时向一架飞机射击,他们击中目标的概率分别为0.4,0.5,0.7.假设飞机被一人击中而被击落的概率为0.2,被两人击中而被击落的概率为0.6,若被三人击中,则飞机定被击落.求(1)飞机被击落的概率;(2)已知飞机被一人击中并击落,问是甲击落的概率.、18.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0, P(AC )=1/12,求A ,B ,C 至少有一事件发生的概率.19.设X ~N (3,22),求P {2<X ≤5},P {|X |>2};20.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立?21.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤-<≤.,0,21,2,10,其他x x x x求E (X ),D (X ).概率统计A 复习题三一、选择题(共8题,每小题3分)1. 设P(A)=0.4, P(A ∪B) =0.7, 若A 与B 互不相容, 则P(B)= ( ) A. 0.3B. 0.5C. 0.6D. 0.72. 设A 表示“甲种商品畅销, 乙种商品滞销”, 则其A 的对立事件为( ) A. 甲种商品滞销, 乙种商品畅销 B. 甲种商品畅销, 乙种商品畅销 C. 甲种商品滞销, 乙种商品滞销D. 甲种商品滞销或乙种商品畅销3.设随机变量X 的概率密度为⎪⎩⎪⎨⎧<≥=,x ,;x ,ce f(x)x -0005则常数c 等于( )A .-51 B .51C .1D .54.已知随机变量X 服从参数为λ的泊松分布,且P {}0=X =e -1,则λ=( ) A.0 B.1 C. 2 D.35.已知随机变量X~b (n,21),且P{X=5}=321,则n=( ).A.5B.4C. 3D.2 6.设二维随机变量(X,Y)的概率密度为02,02(,)0cx y f x y ≤≤≤≤⎧=⎨⎩其它则常数c=( )A.1/4B.1/2C.2D.47.设任意二维随机变量(X ,Y )的两个边缘概率密度函数分别为f X (x )和f Y (y ),则以下结论正确的是( ) A.⎰+∞∞-=1)(dx x f X B.⎰+∞∞-=21)(dx y f Y C.⎰+∞∞-=0)(dx x f XD.⎰+∞∞-=0)(dx y f Y8.设X 为随机变量,E (X )=2,D (X )=5,则E (X +2)2=( ) A.4 B.9 C.13 D.21 二、填空题(共8题,每小题3分)9.设甲、乙两人独立地向同一目标射击,甲、乙击中目标的概率分别为0.8,0.5,则甲、乙两人同时击中目标的概率为_____________. 10.设A ,B 为两事件,且P (A )=P (B )=13,P (A |B )= 16,则P (A |B )=_____________. 11. 设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤>,1,0;1,2x x x c 则常数c= .12. 设随机变量X 的分布律为 且Y =X 2,记随机变量Y 的分布函数为F Y (y ),则F Y (3)= .13.设二维随机变量(X ,Y )的分布函数为--(1e )(1-e ),0,0,()0x y x y F x y ⎧->=⎨⎩>,, 其他,则{}P X Y =≤1,≤1______.14.设随机变量X 服从参数为3的泊松分布,则()E 3X -=______.15. 设X 为随机变量,E (X+3)=5,D (2X )=4,则E (X 2)=______.16.设随机变量X 与Y 相互独立,X 在区间[0,3]上服从均匀分布,Y 服从参数为4的指数分布,则D (X+Y )=______.三、计算题(共5题,第17题12分,其他各题每小题10分) 17. 设有来自三个地区的各10份、15份和25份考生的报名表,其中女生的报名表分别为3份、7份和5份,随机选一个地区,从该地区中先后抽出两份报名表。