2020-2021学年苏科版七年级下册数学9.4乘法公式 同步练习(含答案)

合集下载

苏科版七年级数学下册 乘法公式优生辅导测评(Word版含答案)

苏科版七年级数学下册 乘法公式优生辅导测评(Word版含答案)

苏科版七年级数学下册《9-4乘法公式》优生辅导测评(附答案)一.选择题(共8小题,满分40分)1.(2a﹣m)2=4a2+2a+,则m=()A.B.C.D.2.已知多项式4x2﹣2(m+1)x+1是完全平方式,则m的值为()A.﹣3或1B.﹣3C.1D.3或﹣13.已知a﹣b=2,a2+b2=20,则ab值是()A.﹣8B.12C.8D.94.已知(x﹣1)2=2,则代数式x2﹣2x+5的值为()A.4B.5C.6D.75.已知m﹣n=3,则m2﹣n2﹣6n的值是()A.7B.8C.9D.106.若n满足(n﹣2021)2+(2022﹣n)2=1,则(n﹣2021)(2022﹣n)的值为()A.﹣1B.0C.D.17.如图,将长方形ABCD的各边向外作正方形,若四个正方形周长之和为56,面积之和为58,则长方形ABCD的面积为()A.98B.49C.20D.108.如图,大正方形与小正方形的面积之差是40,则阴影部分的面积是()A.20B.30C.40D.60二.填空题(共8小题,满分40分)9.若a2﹣b2=6,a+b=2,则a﹣b=.10.已知(x+y)2=2,(x﹣y)2=8,则x2+y2=.11.若x2﹣(m﹣1)x+49是完全平方式,则实数m=.12.一个正方形的边长增加3,它的面积就增加39,这个正方形的边长是.13.现有甲、乙、丙三种不同的正方形或长方形纸片若干张(边长如图).要用这三种纸片无重合无缝隙拼接成一个大正方形,先取甲纸片1张,乙纸片4张,还需取丙纸片张.14.计算(x+y﹣z)(x﹣y+z)=.15.已知:x+y=0.34,x+3y=0.86,则x2+4xy+4y2=.16.(1)已知x+y=4,xy=3,则x2+y2的值为.(2)已知(x+y)2=25,x2+y2=17,则(x﹣y)2的值为.(3)已知x满足(x﹣2020)2+(2022﹣x)2=12,则(x﹣2021)2的值为.三.解答题(共5小题,满分40分)17.计算:(m﹣3)(m+3)﹣(m﹣3)2.18.(1)如图1所示,若大正方形的边长为a,小正方形的边长为b,则阴影部分的面积是;若将图1中的阴影部分裁剪下来,重新拼成如图2所示的一个长方形,则它的面积是;(2)由(1)可以得到一个公式:;(3)利用你得到的公式计算:20212﹣2022×2020.19.计算:(x﹣2y+3)(x+2y﹣3).20.数学活动课上,老师准备了图1中三种不同大小的正方形与长方形,拼成了一个如图2所示的正方形.(1)请用两种不同的方法表示图2中阴影部分的面积和.方法1:;方法2:.(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m﹣n)2的值;②已知(x﹣2021)2+(x﹣2023)2=34,求(x﹣2022)2的值.21.从边长为a的正方形中减掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(2)运用你从(1)写出的等式,完成下列各题:①已知:a﹣b=3,a2﹣b2=21,求a+b的值;②计算:.参考答案一.选择题(共8小题,满分40分)1.解:∵(2a﹣m)2=4a2﹣4ma+m2,(2a﹣m)2=4a2+2a+,∴4a2﹣4ma+m2=4a2+2a+,∴﹣4m=2,解得:m=﹣,故选:D.2.解:∵4x2﹣2(m+1)x+1是完全平方式,∴﹣2(m+1)x=±2•2x•1,解得:m=﹣3或1.故选:A.3.解:∵a﹣b=2,∴(a﹣b)2=4,∴a2﹣2ab+b2=4,∴a2+b2=20,∴20﹣2ab=4,∴ab=8,故选:C.4.解:∵(x﹣1)2=2,∴x2﹣2x+1=2,∴x2﹣2x=1,∴原式=1+5=6,故选:C.5.解:∵m﹣n=3,∴m2=(n+3)2,∴m2=n2+6n+9,∴m2﹣n2﹣6n=9,故选:C.6.解:设n﹣2021=x,2022﹣n=y,∴x+y=n﹣2021+2022﹣n=1,∵(n﹣2021)2+(2022﹣n)2=1,∴x2+y2=1,∵x+y=1,∴(x+y)2=1,∴x2+2xy+y2=1,∴xy=0,∴(n﹣2021)(2022﹣n)=0,故选:B.7.解:设AB=DC=x,AD=BC=y,由题意得:化简得:将①两边平方再减去②得:2xy=20∴xy=10故选:D.8.解:设大正方形的边长为a,小正方形的边长为b,∵大正方形与小正方形的面积之差是40,∴a2﹣b2=40,由正方形的性质得:BC⊥AB,BD⊥AB,BC=AB=a,BD=BE=b,∴AE=AB﹣BE=a﹣b,∴阴影部分的面积=S△ACE+S△AED=AE•BC+AE•BD=AE•(BC+BD)=(a﹣b)(a+b)=(a2﹣b2)=×40=20,即阴影部分的面积是20.故选:A.二.填空题(共8小题,满分40分)9.解:∵a2﹣b2=6,∴(a+b)(a﹣b)=6,∵a+b=2,∴a﹣b=3,故答案为:3.10.解:∵(x+y)2=2,(x﹣y)2=8,∴x2+2xy+y2=2①,x2﹣2xy+y2=8②,①+②得:2(x2+y2)=10,∴x2+y2=5.故答案为:5.11.解:∵x2﹣(m﹣1)x+49是完全平方式,∴﹣(m﹣1)=±14,解得:m=15或﹣13.故答案为:15或﹣13.12.解:设原正方形的边长为a,则变化后的正方形的边长为a+3,由题意得,(a+3)2﹣a2=39,解得a=5,故答案为:5.13.解:∵a2+4ab+4b2=(a+2b)2,∴还需取丙纸片4张.故答案为:4.14.解:(x+y﹣z)(x﹣y+z)=[x+(y﹣z)][x﹣(y﹣z)]=x2﹣(y﹣z)2=x2﹣y2+2yz﹣z2.故答案为:x2﹣y2+2yz﹣z2.15.解:∵x+y=0.34,x+3y=0.86,∴2x+4y=1.2,即x+2y=0.6,则x2+4xy+4y2=(x+2y)2=0.36.故答案为:0.36.16.解:(1)∵x+y=4,xy=3,∴x2+y2=(x+y)2﹣2xy=16﹣6=10.故答案为:10;(2)∵(x+y)2=25,x2+y2=17,∴x2+y2+2xy﹣(x2+y2)=8,∴xy=4,∴(x﹣y)2=x2+y2﹣2xy=17﹣8=9.故答案为:9;(3)∵(x﹣2020)2+(x﹣2022)2=12,∴[(x﹣2021)+1]2+[(x﹣2021)﹣1]2=12,∴(x﹣2021)2+2(x﹣2021)+1+(x﹣2021)2﹣2(x﹣2021)+1=12,∴(x﹣2021)2=5.故答案为:5.三.解答题(共5小题,满分40分)17.解:原式=m2﹣9﹣(m2﹣6m+9)=m2﹣9﹣m2+6m﹣9=6m﹣18.18.解:(1)图1中阴影部分的面积等于两个正方形的面积差,即a2﹣b2;拼成的图2的长方形的长为(a+b),宽为(a﹣b),因此长方形的面积为(a+b)(a﹣b).故答案为:a2﹣b2;(a+b)(a﹣b);(2)由(1)中两种方法表示阴影部分的面积可得a2﹣b2=(a+b)(a﹣b).故答案为:a2﹣b2=(a+b)(a﹣b);(3)原式=20212﹣(2021+1)×(2021﹣1)=20212﹣(20212﹣1)=20212﹣20212+1=1.19.解:原式=x2﹣(2y﹣3)2=x2﹣(4y2﹣12y+9)=x2﹣4y2+12y﹣9.20.解:(1)阴影两部分求和为a2+b2,用总面积减去空白部分面积为(a+b)2﹣2ab,故答案为:a2+b2,(a+b)2﹣2ab;(2)由题意得,a2+b2=(a+b)2﹣2ab;(3)①由(2)题结论a2+b2=(a+b)2﹣2ab可得ab=,∴m+n=5,m2+n2=20时,mn===,(m﹣n)2=m2﹣2mn+n2;=20﹣2×=20﹣5=15;②设a=x﹣2021,b=x﹣2023,可得a+b=(x﹣2021)+(x﹣2023)=x﹣2021+x﹣2023=2x﹣4044=2(x﹣2022),由(2)题结论a2+b2=(a+b)2﹣2ab可得,(a+b)2=a2+2ab+b2,又∵(a﹣b)2=[(x﹣2021)﹣(x﹣2023)]2=22=4,且由(a﹣b)2=a2﹣2ab+b2,可得2ab=(a2+b2)﹣(a﹣b)2=(x﹣2021)2+(x﹣2023)2﹣[(x﹣2021)﹣(x﹣2023)]2=34﹣4=30,∴(x﹣2022)2=()2====16.21.解:(1)图1剩余部分的面积为a2﹣b2,图2的面积为(a+b)(a﹣b),二者相等,从而能验证的等式为:a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b);(2)①∵a﹣b=3,a2﹣b2=21,a2﹣b2=(a+b)(a﹣b),∴21=(a+b)×3,∴a+b=7;②(1﹣)×(1﹣)×(1﹣)×…×(1﹣)×(1﹣)=(1﹣)(1+)(1﹣)(1+)(1﹣)(1+)×…×(1﹣)(1+)(1﹣)(1+)=××××××…××××=×=.。

9.4乘法公式(1)

9.4乘法公式(1)

例3 用完全平方公式计算
(1)( -x + 2y)2
(2) ( -2a - 5)2
想一想:
你能有那些方法可以利用完全平方行观察 和分析,可以得到不同的解决问 题的方法。
例4 用完全平方公式计算
(1)9982
(2) 1012
运用完全平方公式可以起到 简便运算的作用。
(2) 第一项平方时未加括号;(应该是(-m)2 ) 少了第一数与第二数乘积的2倍 (丢了一项); 应改为: (-m+n)2= (-m)2+2•(-m)n +n2; (3) 第一数平方未添括号, 第一数与第二数乘积的2倍 错了符号; 第二数的平方 这一项错了符号; 应改为: (a−1)2=(a)2−2•(a )•1+12;
a
例题解析
例2 用完全平方公式计算
(1) ( 5 + 3p )2 (2) ( 2x - 7y )2
利用完全平方公式计算,第一步先 选择公 式,明确是哪两数和(或差)的平方;第二步 准确代入公式;第三步化简。
解原式=
第一数 的平方, 5×3p+ (3p)2 + 2× 加上第一数与第二数乘积 2 =25+30p+9p 的2倍, 加上第二数的平方. 52
一个正方形的边长为acm。若 边长减少6cm,则这个正方形的面 积减少了多少?
计算:(a+b+c)2
小兵计算一个二项整式的平方式时,得到
正确结果是4x2+ +25y2,但中间一项
不慎被污染了,这一项应是(
A 10xy B 20xy
)
C±10xy D±20xy
已知a+b=2,ab=1,
求a2+b2、(a-b)2的值.

七年级数学苏科版下册课时练第9单元 《9.4乘法公式》(含答案解析)(2)

七年级数学苏科版下册课时练第9单元 《9.4乘法公式》(含答案解析)(2)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!课时练9.4乘法公式一、选择题1.下列运算一定正确的是()A.2a+2a=2a2B.a2•a3=a6C.(2a2)3=6a6D.(a+b)(a﹣b)=a2﹣b22.下列各式中能用平方差公式是()A.(x+y)(y+x)B.(x+y)(y﹣x)C.(x+y)(﹣y﹣x)D.(﹣x+y)(y﹣x)3.计算(x-1)(-x-1)的结果是()A.﹣x2+1B.x2﹣1C.﹣x2﹣1D.x2+14.下列运算正确的是()A.(a+b)2=a2+b2B.x3+x3=x6C.(a3)2=a5D.(2x2)(﹣3x3)=﹣6x55.计算(﹣a﹣b)2等于()A.a2+b2B.a2﹣b2C.a2+2ab+b2D.a2﹣2ab+b26.下列式子正确的是()A.(a﹣b)2=a2﹣2ab+b2B.(a﹣b)2=a2﹣b2C.(a﹣b2=a2+2ab+b2D.(a﹣b)2=a2﹣ab+b27.已知x2+kxy+64y2是一个完全平方式,则k的值是()A.8B.±8C.16D.±168.如图所示,从边长为a的大正方形中挖去一个边长是b的小正方形,小明将图a中的阴影部分拼成了一个如图b所示的长方形,这一过程可以验证()A.a2+b2﹣2ab=(a﹣b)2B.a2+b2+2ab=(a+b)2C.2a2﹣3ab+b2=(2a﹣b)(a﹣b)D.a2﹣b2=(a+b)(a﹣b)9.已知P=715m﹣1,q=m2﹣815m(m为任意实数),则P、Q的大小关系为()A.P>QB.P=QC.P<QD.不能确定10.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是()A.36B.45C.55D.66二、填空题11.计算:1232﹣124×122=.12.若a+b=2,a﹣b=﹣3,则a2﹣b2=______.13.如果25x2﹣kxy+49y2是一个完全平方式,那么k=.14.在我们所学的课本中,多项式与多项式相乘可以用几何图形的面积来表示.例如,(2a+b)(a+b)=2a2+3ab+b2就可以用图(1)来表示.请你根据此方法写出图(2)中图形的面积所表示的代数恒等式:.15.己知实数a、b满足a+b=5,ab=3,则a﹣b=.16.已知a+b=-8,ab=10,则a2-ab+b2+11=.三、解答题17.化简:(2a﹣3b)(﹣3b﹣2a)18.化简:(x-3)(x2+9)(x+3);19.化简:(x+y)2﹣(x+y)(x﹣y)20.化简:4(a+2)2-7(a+3)(a-3)+3(a-1)2.21.先化简,再求值:(m-n)(m+n)+(m+n)2-2m2,其中m、n满足m+2n=1,3m-2n=11.22.在一块边长为a cm的正方形纸板中,四个角分别剪去一个边长为b cm的小正方形,利用因式分解计算:当a=98cm,b=27cm时,剩余部分的面积是多少?23.已知x-y=2,y-z=2,x+z=4,求x2-z2的值.24.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是神秘数.(1)28和2012这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?答案1.D2.B3.A4.D5.C6.A7.D8.D9.C10.B11.答案为:1.12.答案为:﹣6.13.答案为:±7014.答案为:(a+2b)(2a+b)=2a2+5ab+2b2.15.答案为:±13.16.答案为:4517.解:原式(2a﹣3b)(﹣3b﹣2a)=﹣6ab﹣4a2+9b2+6ab=﹣4a2+9b218.解:原式=x4-81;19.解:原式=x2+2xy+y2﹣x2+y2=2xy+2y2.20.解:原式=10a+82①+②,得4m=12,解得m=3.将m=3代入①,得3+2n=1,解得n=-1.(m-n)(m+n)+(m+n)2-2m2=m2-n2+m2+2mn+n2-2m2=2mn,当m=3,n=-1时,原式=2×3×(-1)=-6.22.解:根据题意,得剩余部分的面积是:a2-4b2=(a+2b)(a-2b)=152×44=6688(cm2).23.解:由x-y=2,y-z=2,得x-z=4.又∵x+z=4,∴原式=(x+z)(x-z)=16.24.解:(1)找规律:……2012=4×503=5042-5022,所以28和2012都是神秘数.(2)(2k+2)2-(2k)2=4(2k+1),因此由这两个连续偶数2k+2和2k构造的神秘数是4的倍数.(3)由(2)知,神秘数可以表示成4(2k+1),因为2k+1是奇数,因此神秘数是4的倍数,但一定不是8的倍数.另一方面,设两个连续奇数为2n+1和2n-1,则(2n+1)2-(2n-1)2=8n,即两个连续奇数的平方差是8的倍数.因此,两个连续奇数的平方差不是神秘数.。

苏科版七年级数学下册 乘法公式同步强化训练(三)(Word版含答案)

苏科版七年级数学下册 乘法公式同步强化训练(三)(Word版含答案)

苏科版七年级数学下《9.4乘法公式》同步强化训练(三)(时间:90分钟满分:120分)一.选择题(共15题;共30分)1.运用完全平方公式(a+b)2=a2+2ab+b2计算(x+)2,则公式中的2ab是()A. x B.x C.2x D.4x2.不论a、b取何有理数,a2+b2-2a-4b+5的值总是 ( )A.负数 B.零 C.正数 D.非负数3.如图,能根据图形中的面积说明的乘法公式是()A.(a+b)(a﹣b)=a2﹣b2 B.(a+b)2=a2+2ab+b2C.(a﹣b)=a2﹣2ab+b2 D.(x+p)(x+q)=x2+(p+q)x+pq第3题图第4题图第5题图4.如图1,在边长为a的正方形中剪去一个边长为b的小正形(a>b),把剩下部分拼成一个梯形(如图2),利用这两幅图形面积,可以验证的公式是()A.a2+b2=(a+b)(a﹣b)B.a2﹣b2=(a+b)(a﹣b)C.(a+b)2=a2+2ab+b2D.(a﹣b)2=a2﹣2ab+b25.如图①是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四个形状和大小都一样的小长方形,然后按图②所示的方式拼成一个正方形,则中间空白部分的面积是( )A.2ab B.(a+b)2 C.(a-b)2 D.a2-b26.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式.下列三个代数式:①(a﹣b)2;②(2a﹣b)(2a+b);③a(a+b).其中是完全对称式的是() A.③B.①③ C.②③ D.①7.已知x2+2(m﹣1)x+9是一个完全平方式,则m的值为()A.4 B.4或﹣2 C.±4 D.﹣28.若a+b=6,ab=4,则a2+4ab+b2的值为()A.40 B.44 C.48 D.529.计算(2+1)(22+1)(24+1)(28+1)+1的值是()A.1024 B.28+1 C.216+1 D.21610.下列计算正确的是( )A.(x+y)2=x2+y2 B.(x-y)2=x2-2xy-y2C.(x+2y)(x-2y)=x2-2y2 D.(-x+y)2=x2-2xy+y211.若(5a+3b)2=(5a-3b)2+M,则M=( )A.60ab B.30ab C.15ab D.12ab12.若x+y=3,x2-y2=12,则x-y的值为( )A.2 B.3 C.4 D.613.与7x-y2的乘积等于y4-49x2的代数式是( )A.7x+y2 B.7x-y2 C.-7x+y2 D.-7x-y214.下列计算(-7+a+b)(-7-a-b)正确的是( )A.原式=[-(7-a-b)][-(7+a+b)]=72-a2-b2B.原式=[-(7+a)+b][-(7+a)-b]=(7+a)2-b2C.原式=(-7+a+b)[-7-(a+b)]=-72-(a+b)2D.原式=(-7+a+b)[-7-(a+b)]=72-(a+b)215.若x+y+z=-2,xy+yz+xz=1,则x2+y2+z2的值是 ( )A.2 B.3 C.4 D.5二.填空题(共15题;共30分)16.若a -b =2,a -c =1,则(2a -b -c)2+(c -a)2=_______.17.若a 、b 满足a 2+2b 2+1-2ab -2b =0,则a +2b =_______.18.已知m(m -3)-(m 2-3n)=9,那么222m n +-mn 的值为______. 19.已知三角形的三边a 、b 、c 满足a 2+b 2+c 2=ab +bc +ac,试利用乘法公式判断这个三角形是_________三角形.20.已知a 2+b 2=2022,则(a +b)2-2ab 的值为________21.(2+1)(22+1)(24+1)(28+1)(216+1)+1的计算结果的个位数字是_________22.若x 2-4x -1=(x +a)2-b,则|a -b|=________.23.如图,从边长为(a+4)(a >0)的正方形纸片中剪去一个边长为(a+1)的正方形,剩余部分沿虚线又剪拼成一个长方形ABCD (不重叠无缝隙),则长方形ABCD 的周长是 .24、计算的结果是_______ 25.若(7x-a)2=49x 2-bx+9,则|a+b|= .26、 .27.若把代数式x 2-2x-3化为(x-m )2+k 的形式,其中m,k 为常数,则m+k= -3 .28.已知x+y=7且xy=12,则当x <y 时,1x - 1y 的值等于 .29、已知,则的值是 . 30、已知,则_________.三.解答题(共8题 共60分)31.(6分)计算:(1)(2a -3b +c)2. (2)4(a -b)2-(2a +b)(-b +2a)32.(6分)利用乘法公式进行计算:(1)(2x +3y)2(2x -3y)2; (2)(2x -y -3)2.33.(8分)先化简,再求值:(1))1)(1()2(2a a a +-++,其中43-=a。

苏科版七年级数学下册第9章 专题:整式乘法 计算力提升训练(Word版含答案)

苏科版七年级数学下册第9章 专题:整式乘法 计算力提升训练(Word版含答案)

第9章 专题:整式乘法 计算力提升训练-2021-2022学年七年级数学下册 (苏科版)一、选择题1、下列运算正确的是( )A .325235a a a +=B .32233a b a b ab ÷=C .222()a b a b -=-D .333()2a a a -+=2、下列算式中,能用平方差公式计算的是( )A .(2)(2)a b b a ++B .111122x x ⎛⎫⎛⎫+--⎪⎪⎝⎭⎝⎭ C .(3)(3)x y x y --+D .()()m n m n ---+3、下列各式中,是完全平方式的是( )A .269x x -+B .221x x +-C .2525x x -+D .216x +4、(2019秋•岳麓区校级期中)如果(2x +1)(m ﹣x )的展开式只有两项,则常数m 的值为( )A .0B .1C .0或D .0或1 5、(2019春•西湖区校级月考)若多项式(x 2+mx +n )(x 2﹣3x +2)中不含x 2项和x 项,则代数式2m +4n 的值为( )A .2B .3C .4D .56、若2(2)(2)22x x n x mx +-=++,则m n -的值是( )A .6B .4C .2D .6- 7、已知a b ,满足225314a b ab +==,,则a b +的值是( )A .9B .9±C .5D .5± 8、若22(2)(2)a b a b N +=-+,则代数式N 是( )A .4abB .8abC .4ab -D .8ab - 9、如图,有A 、B 、C 三种卡片,其中A 型卡片是边长为a 的正方形,B 型卡片是长为b ,宽为a 的长方形()b a >,C 型卡片是边长为b 的正方形.如果要用它们拼成边长为(2)a b +的正方形,则需A 、B 、C 三种卡片共( )张.A .6B .7C .8D .910、248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( ) A .8 B .6 C .2 D .0二、填空题11、若多项式A 与单项式2a 2b 的积是8a 3b 2﹣6a 2b 2,则多项式A 为_____.12、(2020春•越城区校级期中)已知a ,b 是常数,若化简的(﹣x +a )(2x 2+bx ﹣3)结果不含x 的二次项,则36a ﹣18b ﹣1的值为 .13、若2(2)(5)10x x x mx +-=+-,则常数m 的值为__________.14、若2225x kxy y ++是一个完全平方式,那么k 的值应该是______________.15、(2020南京市·七年级期中)若2x ﹣y =3,xy =3,则224y x +=_____. 16、(2020·山东历下·初一期中)已知()()222019202130x x -+-=,则()22020x -=_____________.17、(2021·江门市第二中学初二月考)若214x x x++=,则2211x x ++= ________________.18、(2020·扬州市江都区国际学校七年级期中)阅读以下内容:2(1)(1)1x x x -+=-,()()23111x x x x -++=-,()3241(1)1x x x x x -+++=-, 根据这一规律:计算:23201920201+2+2+2++22-=______ 三、解答题19、(2020秋•河北区期末)计算:(1))614331(122232+-•-y x y x y x(2)(x ﹣1)(2x +1)﹣2(x ﹣5)(x +2)20、(2020秋•崇川区校级期中)计算(1)(﹣3y )•(4x 2y ﹣2xy ); (2)(a +3)2﹣(a +1)(a ﹣1)﹣2(2a +4).21、(2021秋•海安市期中)计算:(1)(﹣3x 2y 2z )•x (x 2y )2;(2)(y +2x )(2x ﹣y )+(x +y )2﹣2x (2x ﹣y );(3)(m ﹣2n +3)(m +2n ﹣3).22、(2021秋•泰兴市期末)先化简,再求值:已知2a 2+5b (a ﹣1)+3﹣2(a 2﹣ab ﹣1),其中a=71-,b =1.23、(2020秋•肇源县期末)先化简再求值:(x ﹣1)(x ﹣2)﹣3x (x +3)+2(x +2)2,其中x=21-.24、(2020春•涟水县校级期中)先化简,再求值:(1+a )(1﹣a )﹣(a ﹣2)2+(a ﹣2)(2a +1),其中23-=a .25、(2021春•张家港市月考)先化简后求值:(1)求(x ﹣1)(2x +1)﹣2(x ﹣5)(x +2)的值,其中x=51;(2)求(2x ﹣3y )2﹣(3x +y )(3x ﹣y )的值,其中x =2,y =﹣1.26、化简求值:()()()()()23232262x y x y y x x x y y ⎡⎤---+--+-⎣⎦.其中2x =-,1y =-.27、(2020春•江都区月考)先化简,再求值:(2y ﹣x )(﹣x ﹣2y )+(x +2y )2﹣x (2y ﹣x ),其中x=31-,y =2.28、(2020春•徐州期末)先化简,再求值:已知A =2x +1,B =x ﹣2,化简A 2﹣AB ﹣2B 2,并求当x =31时该代数式的值.29、(2020春•吴中区期中)已知(x +a )(x ﹣2)的结果中不含关于字母x 的一次项.先化简,再求:(a +1)2+(2﹣a )(2+a )的值.30、化简求值2(23)(2)(2)5(2)a b a b a b b b a +-+--+,其中13a =,12b =-.31、(2020春•江阴市月考)①先化简,再求值:(4x +3)(x ﹣2)﹣2(x ﹣1)(2x ﹣3),x =﹣2;②若(x 2+px +q )(x 2﹣3x +2)的结果中不含x 3和x 2项,求p 和q 的值.32、先化简,再求值:2(32)(32)5(1)(1)x x x x x +--+--,其中220120x x --=33、先化简,再求值:2()(2)(2)5()x y x y x y x x y -++---,其中2,1x y ==-34、先化简,再求值.(1)()221(2)23xy xy x y x xy y ⎛⎫⎡⎤-⋅-+- ⎪⎣⎦⎝⎭,其中 1.5x =-,2y =.(2)已知2830a a --=,求(1)(3)(5)(7)a a a a --+--的值.35、(2020春•金华期中)在(x 2+ax +b )(2x 2﹣3x ﹣1)的结果中,x 3项的系数为﹣5,x 2项的系数为﹣6,求a ,b 的值.解:原式=2x 4﹣3x 3﹣x 2+2ax 3﹣3ax 2﹣ax +2bx 2﹣3bx ﹣b ①=2x 4﹣(3+2a )x 3﹣(1﹣3a +2b )x 2﹣(a ﹣3b )x ﹣b ②由题可知⎩⎨⎧=+-=+6231523b a a ,解得⎩⎨⎧==41b a ③ (1)上述解答过程是否正确?若不正确,从第 步开始出现错误.(2)请你写出正确的解答过程.36、(2020秋•雨花区校级月考)甲乙两人共同计算一道整式乘法:(3x +a )(2x ﹣b ),甲把第二个多项式中b 前面的减号抄成了加号,得到的结果为6x 2+16x +8;乙漏抄了第二个多项式中x 的系数2,得到的结果为3x 2﹣10x ﹣8.(1)计算出a 、b 的值;(2)求出这道整式乘法的正确结果.第9章 专题:整式乘法 计算力提升训练-2021-2022学年七年级数学下册 (苏科版)(解析)一、选择题1、下列运算正确的是( )A .325235a a a +=B .32233a b a b ab ÷=C .222()a b a b -=-D .333()2a a a -+=【答案】B【分析】根据整式运算法则进行计算,逐项判断即可.【详解】A 、32a 和23a 不是同类项,不能合并,故原题计算错误,不符合题意;B 、32233a b a b ab ÷=,故原题计算正确,符合题意;C 、222()2a b a ab b -=-+,故原题计算错误,不符合题意;D 、33()0a a -+=,故原题计算错误,不符合题意;故选:B .2、下列算式中,能用平方差公式计算的是( )A .(2)(2)a b b a ++B .111122x x ⎛⎫⎛⎫+--⎪⎪⎝⎭⎝⎭ C .(3)(3)x y x y --+D .()()m n m n ---+【答案】D【分析】 可以用平方差公式计算的式子的特点是:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.相乘的结果应该是:右边是乘式中两项的平方差(相同项的平方减去相反项的平方).【详解】解:A 、(2a +b )(2b -a )=3ab -2a 2+2b 2不符合平方差公式的形式,故不符合;B 、原式=2111111222x x x ⎛⎫⎛⎫⎛⎫-++=-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭不符合平方差公式的形式,故不符合;C 、原式=-(3x -y )(3x -y )=-(3x -y )2不符合平方差公式的形式,故不符合;D 、原式=-(n +m )(n -m )=-(n 2-m 2)=-n 2+m 2符合平方差公式的形式,故符合. 故选:D .3、下列各式中,是完全平方式的是( )A .269x x -+B .221x x +-C .2525x x -+D .216x +【答案】A【分析】 根据完全平方公式:(a ±b )2=a 2±2ab +b 2分析各个式子. 【详解】解:()22693x x x -+=-,是完全平方式, 221x x +-,2525x x -+,216x +不是完全平方式,故选A .4、(2019秋•岳麓区校级期中)如果(2x +1)(m ﹣x )的展开式只有两项,则常数m 的值为( )A .0B .1C .0或D .0或1【点拨】本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.把式子展开,进而解答即可.【解析】解:(2x +1)(m ﹣x )=2mx ﹣2x 2+m ﹣x =﹣2x 2+(2m ﹣1)x +m ,因为展开式只有两项,可得:2m ﹣1=0,或m =0解得:m =0.5或m =0,故选:C .5、(2019春•西湖区校级月考)若多项式(x 2+mx +n )(x 2﹣3x +2)中不含x 2项和x 项,则代数式2m +4n 的值为( )A .2B .3C .4D .5【点拨】根据多项式乘多项式的运算法则即可求出答案.【解析】解:由题意可得:(x 2+mx +n )(x 2﹣3x +2)=x 4+(m ﹣3)x 3+(2﹣3m +n )x 2+(2m ﹣3n )x +2n ,∵不含x 2项和x 项,∴2﹣3m +n =0,2m ﹣3n =0∴m =,n =,∴2m +4n =4,故选:C .6、若2(2)(2)22x x n x mx +-=++,则m n -的值是( )A .6B .4C .2D .6-【答案】A【分析】将所给等式的左边展开,然后与等式右边比较,可得含有m 和n 的等式,变形即可得答案.【详解】∵(x +2)(2x −n )=2x 2+mx +2而(x +2)(2x −n )=2x 2-nx +4x -2n∴2x 2-nx +4x -2n =2x 2+m x+2∴-2n =2,-n +4=m ,解得m =5,n =-1∴m−n =5-(-1)=6;故选:A.7、已知a b ,满足225314a b ab +==,,则a b +的值是( )A .9B .9±C .5D .5±【答案】B【分析】根据完全平方公式可得答案.【详解】解:∵2253a b +=,14ab =,∴()22225321481a b a b ab +=++=+⨯=,∴a +b =±9,故选B .8、若22(2)(2)a b a b N +=-+,则代数式N 是( )A .4abB .8abC .4ab -D .8ab -【答案】B【分析】根据已知等式得到22(2)(2)N a b a b =+--,再利用平方差公式化简即可.【详解】解:∵22(2)(2)a b a b N +=-+,∴22(2)(2)N a b a b =+--=()()()()2222a b a b a b a b ++-+--⎡⎤⎡⎤⎣⎦⎣⎦=24a b ⋅=8ab故选B .9、如图,有A 、B 、C 三种卡片,其中A 型卡片是边长为a 的正方形,B 型卡片是长为b ,宽为a 的长方形()b a >,C 型卡片是边长为b 的正方形.如果要用它们拼成边长为(2)a b +的正方形,则需A 、B 、C 三种卡片共( )张.A .6B .7C .8D .9【答案】D【分析】根据题意列出关系式,利用完全平方公式化简即可得到结果.【详解】解:根据题意得:(2a +b )2=4a 2+4ab +b 2,则所需卡片的个数是4+4+1=9,故选:D .10、248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( ) A .8 B .6 C .2 D .0【答案】D【分析】先将2变形为()31-,再根据平方差公式求出结果,根据规律得出答案即可.【详解】解:2416(31)(31)(31)(31)(31)-+++⋯+22416(31)(31)(31)(31)=-++⋯+4416(31)(31)(31)=-+⋯+3231=-133=,239=,3327=,4381=,53243=,63729=,732187=,836561=,⋯ ∴3n 的个位是以指数1到4为一个周期,幂的个位数字重复出现,3248÷=,故323与43的个位数字相同即为1,∴3231-的个位数字为0,∴248162(31)(31)(31)(31)(31)⨯+++++的个位数字是0.故选:D .二、填空题11、若多项式A 与单项式2a 2b 的积是8a 3b 2﹣6a 2b 2,则多项式A 为_____.【答案】4ab ﹣3b【分析】直接利用多项式除以单项式运算法则计算得出答案.【详解】解:∵多项式A 与单项式2a 2b 的积是8a 3b 2﹣6a 2b 2,∴多项式A 为:(8a 3b 2﹣6a 2b 2)÷2a 2b =8a 3b 2÷2a 2b ﹣6a 2b 2÷2a 2b =4ab ﹣3b .故答案为:4ab ﹣3b .12、(2020春•越城区校级期中)已知a ,b 是常数,若化简的(﹣x +a )(2x 2+bx ﹣3)结果不含x 的二次项,则36a ﹣18b ﹣1的值为 .【点拨】直接利用多项式乘多项式计算得出答案.【解析】解:∵(﹣x +a )(2x 2+bx ﹣3)=﹣2x 3﹣bx 2+3x +2ax 2+abx ﹣3a=﹣2x 3+(﹣b +2a )x 2+(3+ab )x ﹣3a ,则﹣b +2a =0,故36a ﹣18b ﹣1=18(2a ﹣b )﹣1=18×0﹣1=﹣1.故答案为:﹣1.13、若2(2)(5)10x x x mx +-=+-,则常数m 的值为__________.【答案】-3【分析】根据多项式乘以多项式后利用恒等关系即可求解.【详解】解:(x +2)(x -5)=x 2-3x -10=x 2+mx -10,所以m =-3.故答案为:-3.14、若2225x kxy y ++是一个完全平方式,那么k 的值应该是______________.【答案】±10【分析】根据完全平方式得出kxy =±2•5x •y ,再求出k 即可.【详解】解:∵25x 2+kxy +y 2是一个完全平方式,∴kxy =±2•5x •y ,解得:k =±10, 故答案为:±10.15、(2020南京市·七年级期中)若2x ﹣y =3,xy =3,则224y x +=_____.【答案】21【分析】首先将已知条件平方,进而将已知代入求出答案.【详解】解:∵2x ﹣y =3,∴()2222494x y x xy y --+==,∵xy =3;∴224y x +=9+4xy =21;故答案为:21.16、(2020·山东历下·初一期中)已知()()222019202130x x -+-=,则()22020x -=_____________.【答案】14【分析】设2020x a -=,则20191x a -=+,20211x a -=-,于是原式可变形为关于a 2的等式,求出a 2即为所求的式子的值.【解析】解:设2020x a -=,则20191x a -=+,20211x a -=-,因为()()222019202130x x -+-=,所以()()221130a a ++-=,整理,得:22230a +=,所以214a =,即()22020x -=14.故答案为:14.17、(2021·江门市第二中学初二月考)若214x x x++=,则2211x x ++= ________________.【答案】8 【分析】先把214x x x ++=可化为13x x += ,再将2211x x ++化为211x x ⎛⎫+- ⎪⎝⎭,然后代入即可解答。

苏科版数学七年级下册_2021最新同步训练:乘法公式-完全平方公式

苏科版数学七年级下册_2021最新同步训练:乘法公式-完全平方公式

初中数学苏科版七年级下册9.4 乘法公式——完全平方公式同步训练一、单选题(本大题共10题,每题3分,共30分)1.等于()A. B. C. D.2.下列等式能够成立的是()A. (2x-y)2=4x2-2xy+y2B. (x+y)2=x2+y2C. (a-b)2= a2-ab+b2D. (+x)2= +x23.若代数式x2-6x+b可化为(x-a)2-1,则b-a的值是()A. 5B. -5C. 11D. -114.已知a+b=-5,ab=-4,则a2-ab+b2的值是()A. 37B. 33C. 29D. 215.已知x﹣y=3,xy=1,则x2+y2=()A. 5B. 7C. 9D. 116.若,,则的值为()A. 6B. 7C. 8D. 97.对于任何实数m、n,多项式m2+n2-6m-10n+36的值总是()A. 非负数B. 0C. 大于2D. 不小于28.已知(m 2018)2+(m 2020)234,则(m 2019)2的值为()A. 4B. 8C. 12D. 169.小淇将(2019x+2020)2展开后得到a1x2+b1x+c1;小尧将(2020x﹣2019)2展开后得到a2x2+b2x+c2,若两人计算过程无误,则c1﹣c2的值为()A. 2019B. 2020C. 4039D. 110.已知a=2019x+2018,b=2019x+2019,c=2019x+2020.则多项式a2+b2+c2﹣ab﹣bc﹣ac 的值为()A. 1B. 2C. 3D. 4二、填空题(本大题共9题,每题2分,共18分)11.若a+b=17,ab=60,则(a- b)2=________12.若a2+b2=6,a+b=3,则ab的值为________.13.已知x﹣=6,求x2+ 的值为________.14.已知xy=-3,x+y=-4,则x2-xy+y2的值为________.15.计算:20202﹣4040×2019+20192=________.16.设(a+2b) 2=(a-2b) 2+A,则A=________.17.已知,则的值是________.18.已知关于的二次三项式是完全平方式,则a=________.19.我围古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)“的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为________.三、解答题(本大题共7题,共82分)20.计算:(a+b+c)221.先化简,再计算:(2a+b)(b﹣2a)﹣(a﹣3b)2,其中a=﹣2,b= .22.已知(x+y)2=25,(x﹣y)2=81,求x2+y2和xy的值.23.已知,,求下列各式的值.(1);(2);(3).24. (1)当,时,分别求代数式和的值;(2)当,时,________ (填“ ”,“ ”,“ ”)(3)观察(1)(2)中代探索代数式和有何数量关系,并把探索的结果写出来:________ (填“ ”,“ ”,“ ”)(4)利用你发现的规律,求的值.25.如图1,A纸片是边长为a的正方形,B纸片是边长为b的正方形,C纸片是长为b,宽为a的长方形.现用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积.方法1:________;方法2:________;(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系________;(3)根据(2)题中的等量关系,解决如下问题:若a+b=5,a2+b2=13,求ab的值;26.(阅读理解)“若满足,求的值”.解:设,,则,,(解决问题)(1)若满足,则的值为________;(2)若满足,则的值为________;(3)如图,正方形的边长为,,,长方形的面积是200,四边形和都是正方形,四边形是长方形,求图中阴影部分的面积(结果必须是一个具体的数值).答案解析部分一、单选题1.【答案】B【考点】完全平方公式及运用解:(−a+b)2=a2−2ab+b2.故答案为:B.【分析】根据完全平方式的定义,将(−a+b)2展开即可求解.2.【答案】C【考点】完全平方公式及运用解:A、(2x-y)2=4x2-4xy+y2 ,故A错误;B、(x+y)2=x2+2xy+y2,故C错误;C、(a-b)2=a2-ab+b2,故C正确;D、( +x)2= +2+x2,故D错误;故答案为:C.【分析】根据(a b)2=a22ab+b2逐一判断即可.3.【答案】A【考点】完全平方公式及运用解:由x2-6x+b=x2-6x+9+(b-9)=(x-3)2+(b-9)=(x-a)2-1,所以a=3,b-9=-1,即a=3,b=8,故b-a=5.故选A.【分析】利用配方法可得x2-6x+b=(x-3)2+(b-9),从而可得(x-3)2+(b-9)=(x-a)2-1,继而得出a=3,b-9=-1,求出a、b的值并代入计算即可.4.【答案】A【考点】完全平方公式及运用解:∵a+b=-5,ab=-4,∴a2-ab+b2=(a+b)2-3ab=(-5)2-3×(-4)=37,故答案为:A.【分析】先根据完全平方公式进行变形,再代入求出即可.5.【答案】D【考点】代数式求值,完全平方公式及运用解:∵x﹣y=3,xy=1,∴(x﹣y)2=x2+y2﹣2xy,∴9=x2+y2﹣2,∴x2+y2=11,故答案为:D.【分析】由完全平方公式:(x﹣y)2=x2+y2﹣2xy,然后把x﹣y,xy的值整体代入即可求得答案.6.【答案】A【考点】完全平方公式及运用解:将a﹣b=1两边平方得:(a﹣b)2=a2+b2﹣2ab=1,把a2+b2=13代入得:13﹣2ab=1,解得:ab=6.故答案为:A.【分析】将a﹣b=1两边平方,利用完全平方公式化简,将第一个等式代入计算即可求出ab的值.7.【答案】D【考点】完全平方公式及运用解:m2+n2-6m-10n+36=(m2-6m+9)+(n2-10n+25)+2=(m-3)2+(n-5)2+2≥2故对于任何实数m、n多项式m2+n2-6m-10n+36的值都不小于2.故答案为:D.【分析】将多项式进行变形,整理成含有两个完全平方式的形式,再改写成平方的形式,根据平方的非负性进行解答.8.【答案】D【考点】完全平方公式及运用解:∵(m-2018)2+(m-2020)2=34,∴(m-2019+1)2+(m-2019-1)2=34,∴(m-2019)2+2(m-2019)+1+(m-2019)2-2(m-2019)+1=34,2(m-2019)2+2=34,2(m-2019)2=32,(m-2019)2=16.故答案为:D.【分析】先把(m -2018)2+(m-2020)2=34变形为(m-2019+1)2+(m-2019-1)2=34,把(m-2019)看作一个整体,根据完全平方公式展开,得到关于(m-2019)2的方程,解方程即可求解.9.【答案】C【考点】完全平方公式及运用解:∵(2019x+2020)2展开后得到a1x2+b1x+c1;∴c1=20202,∵(2020x﹣2019)2展开后得到a2x2+b2x+c2,∴c2=20192,∴c1﹣c2=20202﹣20192=(2020+2019)(2020﹣2019)=4039,故答案为:C.【分析】依据小淇将(2019x+2020)2展开后得到a1x2+b1x+c1;小尧将(2020x﹣2019)2展开后得到a2x2+b2x+c2,即可得到c1﹣c2=20202﹣20192,进而得出结论.10.【答案】C【考点】代数式求值,完全平方公式及运用解:∵a=2019x+2018,b=2019x+2019,c=2019x+2020.,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a2﹣2ab+b2)+(a2﹣2ac+c2)+(b2﹣2bc+c2)]=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=×[1+4+1]=3,故答案为:C.【分析】把已知的式子化成[(a-b)2+(a-c)2+(b-c)2]的形式,然后代入求解.二、填空题11.【答案】49【考点】完全平方公式及运用解:∵,,∴.故答案为:49.【分析】利用完全平分公式的变形公式进行计算即可.12.【答案】【考点】完全平方公式及运用解:由a+b=3两边平方,得a2+2ab+b2=9 ①,a2+b2=6 ②,①﹣②,得2ab=3,两边都除以2,得ab= .故答案为:.【分析】根据完全平方公式,可得a2+2ab+b2=9,再根据等式的性质,可得答案.13.【答案】38【考点】完全平方公式及运用解:将x﹣=6两边平方,可得:,解得:,故答案为:38.【分析】把x﹣=6两边平方后化简整理解答即可.14.【答案】25【考点】完全平方公式及运用解:x2-xy+y2=(x+y)2-3xy=(-4)2-3×(-3)=25.【分析】利用配方将原式变形为(x+y)2-3xy,然后整体代入计算即可.15.【答案】1【考点】完全平方公式及运用解:20202﹣4040×2019+20192=20202﹣2×2020×2019+20192=(2020﹣2019)2=12=1.故答案为:1.【分析】完全平方公式式的应用,a2-2ab+b2=(a-b)2。

苏科版数学七年级下册《9.4乘法公式》说课稿3

苏科版数学七年级下册《9.4乘法公式》说课稿3

苏科版数学七年级下册《9.4 乘法公式》说课稿3一. 教材分析乘法公式是数学中的一种基本公式,广泛应用于各个领域。

苏科版数学七年级下册《9.4 乘法公式》这一节主要介绍了平方差公式和完全平方公式。

平方差公式可以帮助我们简化计算,快速求出两个数的平方差;而完全平方公式则可以帮助我们求出一个数的平方,或者两个数的乘积的平方。

这两个公式在解决实际问题中具有重要的作用。

二. 学情分析学生在学习这一节之前,已经学习了有理数的乘法、乘方等基础知识,对于公式有一定的认识。

但乘法公式较为抽象,需要学生在理解的基础上进行记忆。

同时,学生需要掌握如何将实际问题转化为乘法公式的形式,从而解决问题。

三. 说教学目标1.知识与技能目标:学生能够掌握平方差公式和完全平方公式,并能够灵活运用这两个公式解决实际问题。

2.过程与方法目标:通过小组合作、讨论等方式,培养学生主动探究、合作学习的意识,提高学生的数学思维能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生自信心,使学生能够积极主动地参与到数学学习中。

四. 说教学重难点1.重点:平方差公式和完全平方公式的记忆与运用。

2.难点:如何将实际问题转化为乘法公式的形式,以及如何在复杂问题中灵活运用乘法公式。

五. 说教学方法与手段1.采用启发式教学,引导学生主动探究、发现规律,培养学生的数学思维能力。

2.利用多媒体课件,生动形象地展示乘法公式的推导过程,帮助学生理解记忆。

3.小组合作、讨论,鼓励学生发表自己的观点,培养学生的合作意识。

4.创设实际问题情境,引导学生运用乘法公式解决问题,提高学生的应用能力。

六. 说教学过程1.导入:通过复习有理数的乘法、乘方等基础知识,引出本节课的主题——乘法公式。

2.讲解:讲解平方差公式和完全平方公式的推导过程,让学生理解并记忆这两个公式。

3.练习:布置一些简单的练习题,让学生运用平方差公式和完全平方公式进行计算,巩固所学知识。

4.应用:创设一些实际问题情境,让学生运用乘法公式解决问题,培养学生的应用能力。

乘法公式同步练习

乘法公式同步练习

初中数学苏科版七年级下册9.4 乘法公式同步训练一、单选题(本大题共10题,每题3分,共30分)1.在计算( x+2y) ( −2y+x)时,最佳的方法是()A.运用多项式乘多项式法则B.运用平方差公式C.运用单项式乘多项式法则D.运用完全平方公式2.下列整式运算正确的是()A.(a﹣b)2=a2﹣b2B.(a+2)(a﹣2)=a2﹣2C.(a+2)(a﹣2)=a2﹣4D.(a+2b)2= a2+2ab+4b23.若a+b=100,ab=48,那么a2+b2值等于()A.5200B.1484C.5804D.99044.如果x2+x=3,那么代数式(x+1)(x−1)+x(x+2)的值是()A.2B.3C.5D.65.如果(a+b)2=16,(a﹣b)2=4,且a、b是长方形的长和宽,则这个长方形的面积是()A.3B.4C.5D.66.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a+b)2-(a-b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是()A.a2-b2=(a+b)(a-b)B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2D.(a-b)(a+2b)=a2+ab-b27.定义新运算:a*b=ab+a2﹣b2,则(x+y)*(x﹣y)=()A.x2﹣y2B.x2﹣y2﹣2xyC.x2﹣y2﹣4xyD.x2﹣y2+4xy8.计算(x+1)(x2+1)(x﹣1)的结果正确的是()A.x4+1B.(x+1)4C.x4﹣1D.(x﹣1)49.已知a−b=b−c=25,且a2+b2+c2=1,则ab+bc+ac的值()A.1325B.−225C.1925D.182510.如图,有A,B,C三种不同型号的卡片,每种各10张.A型卡片是边长为a的正方形,B型卡片是相邻两边长分别为a、b的长方形,C型卡片是边长为b的正方形.从中取出若干张卡片(每种卡片至少一张),把取出的这些卡片拼成一个正方形,所有符合要求的正方形的个数是()A.4B.5C.6D.7二、填空题(本大题共8题,每题2分,共16分)11.计算:2021×2019−20202=________12.已知x=y+4,则代数式x2−2xy+y2−25的值为________.13.若x2+2(m-3)x+16是完全平方式,则m表示的数是________.14.若(2a﹣3b)2=(2a+3b)2+N,则表示N的代数式是________.15.若x2+4x+8y+y2+20=0,则x﹣y=________.16.若规定符号|a bc d|的意义是:|a bc d|=ad﹣bc,则当m2﹣2m﹣3=0时,|m2m−31−2m m−2|的值为________.17.利用平方差计算(2+1)(22+1)(24+1)(28+1)+1=________.18.若a=2009x+2007,b=2009x+2008,c=2009x+2009,则a2+b2+c2﹣ab﹣bc﹣ca的值为________.三、解答题(本大题共10题,共84分)19.先化简,再求值:(x+y+2)(x+y﹣2)﹣(x+2y)2+3y2,其中x=﹣12,y= 13.20.先化简,再求值:(x+y)2-2x(x+3y)+(x+2y)(x-2y),其中x=-1,y=2.21.若|x﹣y+1|与(x+2y+4)2互为相反数,化简求代数[(2x+2y)2﹣(3x+y)(3x﹣y)﹣5y2]÷(2x)的值.22.小明同学在学习整式时发现,如果合理地使用乘法公式可以简化运算,于是在解此道计算题时他是这样做的(如下):(2x−3y)2−(x−2y)(x+2y)=4x2−6xy+3y2−x2−2y2第一步=3x2−6xy+y2第二步小华看到小明的做法后,对他说:“你做错了,在第一步运用公式时出现了错误,你好好检查一下.”小明认真仔细检查后,自己发现了一处错误圈画了出来,并进行了纠正(如下):小华看到小明的改错后说:“你还有错没有改出来.”(1)你认为小华说的对吗?________(填“对”或“不对”);(2)如果小华说的对,那么小明还有哪些错误没有找出来,请你帮助小明把第一步中的其它错误圈画出来并改正,然后写出此题的正确解题过程.23.在边长为a的正方形的一角减去一个边长为b的小正方形(a>b),如图①(1)由图①得阴影部分的面积为________;(2)沿图①中的虚线剪开拼成图②,则图②中阴影部分的面积为________;(3)由(1)(2)的结果得出结论:________=________;(4)利用(3)中得出的结论计算:20202−2019224.(1)已知a−b=2,ab=5,求a2+b2−3ab的值;(2)已知a2−a−1=0,求a3−2a2+3的值.(3)如图,有A型、B型、C型三种不同类型的纸板,其中A型是边长为a的正方形,B型是长为a,宽为b的长方形,C型是边长为b的正方形.若想用这些纸板拼成一个长方形,使其面积为(a+b)(a+2b).完成下列各题:①填空(a+b)(a+2b)=________;②请问需要A型纸板、B型纸板、C型纸板各多少张?试说明理由________.25.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形,根据这一操作过程回答下列问题:(1)图②中阴影部分的正方形的边长为________;(2)请用两种方法表示图②中阴影部分的面积.方法一:________;方法二:________;(3)观察图②,写出代数式(m+n)2、(m−n)2、mn之间的等量关系式:________;(4)计算:(10.5+2)2−(10.5−2)2=________.26.乘法公式的探究及应用.(1)小题1:如图1,可以求出阴影部分的面积是________(写成两数平方差的形式);(2)小题2:如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是________,长是________,面积是________(写成多项式乘法的形式).(3)小题3:比较图1,图2的阴影部分面积,可以得到乘法公式________ (用式子表达).27.从边长为a 的正方形剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2). (1)上述操作能验证的等式是(请选择正确的一个)A.a 2﹣2ab+b 2=(a﹣b)2B.a 2﹣b 2=(a+b)(a﹣b)C.a 2+ab=a(a+b)(2)若x 2﹣9y 2=12,x+3y=4,求x﹣3y 的值;(3)计算:(1−122)(1−132)(1−142)⋯(1−120192)(1−120202).28.如图1是一个长为2a、宽为2b的长方形,沿图中虚线用剪刀剪成四块完全一样的小长方形,然后按图2的形状拼成一个正方形。

2020--2021学年苏科新版七年级数学下册《9.4乘法公式》同步训练(附答案)

2020--2021学年苏科新版七年级数学下册《9.4乘法公式》同步训练(附答案)

2021年苏科新版七年级数学下册《9.4乘法公式》自主学习同步训练(附答案)1.下列各式能用平方差公式计算的是()A.(3a+b)(a﹣b)B.(3a+b)(﹣3a﹣b)C.(﹣3a﹣b)(﹣3a+b)D.(﹣3a+b)(3a﹣b)2.下列各式计算正确的是()A.(a5)2=a7B.2x﹣2=C.4a3•2a2=8a6D.a8÷a2=a63.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+b)(a﹣2b)=a2﹣ab﹣2b24.下列计算正确的是()A.3a2﹣a2=2B.a2•a3=a6C.(a2)3=a6D.(a﹣2b)2=a2﹣4b25.下列计算正确的是()A.(a+b)2=a2+b2B.(﹣a2b)3=﹣a6b3C.a6÷a2=a3D.a2+a2=a46.若x2+kx+16能写成一个多项式的平方形式,则k的值为()A.±8B.8C.±4D.47.若x2﹣4x+k是完全平方式,则k的值是()A.2B.4C.8D.168.若多项式9x2+mx+1是一个完全平方式,则m的值是()A.±3B.±6C.3D.±99.下列多项式中,是完全平方式的为()A.x2﹣x+B.x2+x+C.x2+x﹣D.x2﹣x+10.定义:若一个正整数能表示为两个连续自然数的平方差,那么就称这个正整数为“明德数”.如:1=12﹣02,3=22﹣1,5=32﹣22,因此1,3,5这三个数都是“明德数”.则介于1到200之间的所有“明德数”之和为()A.10000B.40000C.200D.250011.若a2+b2=10,ab=﹣3,则(a﹣b)2=.12.已知a﹣b=2,则a2﹣2ab+b2=.13.数学课上老师让同学们用若干个小矩形,拼成一个大矩形,如图所示,请你仔细观察图形,写出图中所表示的整式的乘法关系式为.14.如果关于x的多项式x2+bx+4是一个完全平方式,那么b=.15.若2m﹣3n=2,则代数式4m2﹣12mn+9n2=.16.已知x﹣=6,求x2+的值为.17.两个正方形的边长和为20cm,它们的面积的差为40cm2,则这两个正方形的边长差为.18.已知(x﹣1)2=2,则代数式2x2﹣4x+5=.19.计算:(2x+3)2﹣(2x﹣3)(2x+3).20.先化简,再求值:(x+3)(x﹣3)+3(x+3)(x﹣4)﹣4(x﹣2)2,其中x=2.21.计算:20202﹣2019×2022.22.如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是;(2)根据(1)中的结论,若x+y=5,x•y=,则x﹣y=;(3)拓展应用:若(2019﹣m)2+(m﹣2020)2=15,求(2019﹣m)(m﹣2020)的值.23.计算(2a﹣b+1)(2a﹣1﹣b).24.已知x+y=4,x2+y2=10.(1)求xy的值;(2)求(x﹣y)2﹣3的值.参考答案1.解:A、不能用平方差公式,故本选项不符合题意;B、不能用平方差公式,故本选项不符合题意;C、能用平方差公式,故本选项符合题意;D、不能用平方差公式,故本选项不符合题意;故选:C.2.解:A、结果是a10,故本选项错误;B、结果是,故本选项错误;C、结果是8a5,故本选项错误;D、结果是a6,故本选项正确;故选:D.3.解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.4.解:A.3a2﹣a2=2a2,故本选项不符合题意;B.a2•a3=a5,故本选项不符合题意;C.(a2)3=a6,故本选项符合题意;D.(a﹣2b)2=a2﹣4ab+4b2,故本选项不符合题意;故选:C.5.解:A、(a+b)2=a2+2ab+b2,故本选项不合题意;B、(﹣a2b)3=﹣a6b3,故本选项符合题意;C、a6÷a2=a4,故本选项不合题意;D、a2+a2=2a2,故本选项不合题意.故选:B.6.解:∵x2+kx+16=x2+kx+42,x2+kx+16能写成一个多项式的平方形式,∴kx=±2•x•4,解得k=±8.故选:A.7.解:∵x2﹣4x+k是一个完全平方式,∴k=()2=4,故选:B.8.解:∵多项式9x2+mx+1是一个完全平方式,∴9x2+mx+1=(3x+1)2或9x2+mx+1=(3x﹣1)2,即9x2+mx+1=9x2+6x+1或9x2+mx+1=9x2﹣6x+1,∴m=6或m=﹣6.故选:B.9.解:A、,故原式是完全平方式,故本选项符合题意;B、不是完全平方式,故本选项不符合题意;C、不是完全平方式,故本选项不符合题意;D、不是完全平方式,故本选项不符合题意;故选:A.10.解:介于1到200之间的所有“明德数”之和为:(12﹣02)+(22﹣1)+(32﹣22)+…+(992﹣982)+(1002﹣992)=12﹣02+22﹣1+32﹣22+42﹣32+…+992﹣982+1002﹣992=1002=10000,故选:A.11.解:∵(a﹣b)2=a2﹣2ab+b2,a2+b2=10,ab=﹣3,∴(a﹣b)2=10﹣2×(﹣3)=10+6=16.故答案为:16.12.解:原式=(a﹣b)2,当a﹣b=2时,原式=4.13.解:由拼图可得,大长方形的长为a+2b,宽为a+b,所以面积为(a+2b)(a+b),根据各个部分面积和为a2+3ab+2b2,因此有(a+2b)(a+b)=a2+3ab+2b2,故答案为:(a+2b)(a+b)=a2+3ab+2b2.14.解:∵x2+bx+4=x2+bx+22,∴b=±2×1×2=±4,故答案为:±4.15.解:∵2m﹣3n=2,∴4m2﹣12mn+9n2=(2m﹣3n)2=22=4,故答案为:4.16.解:将x﹣=6两边平方,可得:,解得:,故答案为:38.17.解:∵两个正方形的边长的和为20cm,∴假设其中一边长为x,另一边为20﹣x,且x>20﹣x,∵它们的面积的差为40cm2,∴x2﹣(20﹣x)2=40,(x+20﹣x)(x﹣20+x)=40,∴20(2x﹣20)=40,∴2x﹣20=2,∴x=11,∴另一边边长为9cm.则这两个正方形的边长的差为:11﹣9=2(cm).故答案为:2cm.18.解:2x2﹣4x+5=2(x﹣1)2+3=2×2+3=4+3=7.故答案是:7.19.解:(2x+3)2﹣(2x﹣3)(2x+3)=4x2+12x+9﹣4x2+9=12x+18.20.解:原式=x2﹣9+3(x2﹣x﹣12)﹣4(x2﹣4x+4)=x2﹣9+3x2﹣3x﹣36﹣4x2+16x﹣16=13x﹣61.当x=2时,原式=26﹣61=﹣35.21.解:原式=20202﹣(2020﹣1)×(2020+2)=20202﹣(20202+2020×2﹣2020﹣2)=﹣2018.22.解:(1)由图可知,图1的面积为4ab,图2中白色部分的面积为(a+b)2﹣(b﹣a)2=(a+b)2﹣(a﹣b)2,∵图1的面积和图2中白色部分的面积相等,∴(a+b)2﹣(a﹣b)2=4ab,故答案为:(a+b)2﹣(a﹣b)2=4ab;(2)根据(1)中的结论,可知(x+y)2﹣(x﹣y)2=4xy,∵x+y=5,x•y=,∴52﹣(x﹣y)2=4×,∴(x﹣y)2=16∴x﹣y=±4,故答案为:±4;(3))∵(2019﹣m)+(m﹣2020)=﹣1,∴[(2019﹣m)+(m﹣2020)]2=1,∴(2019﹣m)2+2(2019﹣m)(m﹣2020)+(m﹣2020)2=1,∵(2019﹣m)2+(m﹣2020)2=15,∴2(2019﹣m)(m﹣2020)=1﹣15=﹣14;∴(2019﹣m)(m﹣2020)=﹣7.23.解:原式=(2a﹣b)2﹣1=4a2﹣4ab+b 2﹣1.24.解:(1)∵x+y=4,∴(x+y)2=16,∴x2+2xy+y2=16,又∵x2+y2=10,∴10+2xy=16,∴xy=3;(2)(x﹣y)2﹣3=x2﹣2xy+y2﹣3=10﹣2×3﹣3=1.。

2020-2021学年七年级数学苏科版下册《第9章整式乘法与因式分解》易错题型专题训练(附答案)

2020-2021学年七年级数学苏科版下册《第9章整式乘法与因式分解》易错题型专题训练(附答案)

2021年苏科版七年级数学下册《第9章整式乘法与因式分解》易错题型专题训练(附答案)1.下列计算正确的是()A.(﹣x﹣y)2=﹣x2﹣2xy﹣y2B.(m+2n)2=m2+4n2C.(﹣3x+y)2=3x2﹣6xy+y2D.2.下列式子不能用平方差公式计算的是()A.(2x﹣5)(5+2x)B.(xy+x2)(x2﹣xy)C.(﹣3a﹣2b)(3a﹣2b)D.(a﹣2b)(2b﹣a)3.若x2﹣kx+25是完全平方式,则k的值为()A.﹣10B.10C.5D.10或﹣104.下列计算正确的有()①(a+b)2=a2+b2;②(a﹣b)2=a2﹣2ab﹣b2③(a﹣b)2=a2﹣b2;④(a﹣1)(a+2)=a2﹣a﹣2A.0个B.1个C.2个D.3个5.若x2﹣2(m﹣1)x+9是完全平方式,则m的值为()A.4B.﹣2C.﹣4或2D.4或﹣26.已知:x2﹣y2=2019,且x=y+3,则x+y=()A.2019B.2016C.673D.6717.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3B.3C.0D.18.把﹣a(x﹣y)﹣b(y﹣x)+c(x﹣y)分解因式正确的结果是()A.(x﹣y)(﹣a﹣b+c)B.(y﹣x)(a﹣b﹣c)C.﹣(x﹣y)(a+b﹣c)D.﹣(y﹣x)(a+b﹣c)9.如果x+y=5,xy=6,则x2+y2=,(x﹣y)2=,x2y+xy2=.10.若(3x+2y)2=(3x﹣2y)2+A,则代数式A为.11.如图所示的正方形和长方形卡片若干张,拼成一个长为(a+3b),宽为(2a+b)的矩形,需要这三类卡片共张.12.若9x2+2(a﹣4)x+16是完全平方式,则a=.13.在(x+1)(2x2﹣ax+1)的运算结果中x2的系数是﹣6,那么a的值是.14.若m+n=1,则代数式m2﹣n2+2n的值为.15.已知=3,则=.16.计算:=.17.计算:(x+2)2﹣(x﹣2)(x+2)=.18.已知a+b=4,a2b2=4,则=.19.设一个正方形的边长为acm,若边长增加6cm,则新正方形的面积增加了.20.如图,一个大正方形由4个完全一样的长方形和一个小正方形构成,若长方形的长和宽分别为a、b,则图中图形面积间数量关系可用等式表示.21.如图,点M是AB的中点,点P在MB上.分别以AP,PB为边,作正方形APCD和正方形PBEF,连接MD和ME.设AP=a,BP=b,且a+b=10,ab=20.则图中阴影部分的面积为.22.把下列各式进行因式分解:(1)a4(a﹣b)+16(b﹣a);(2)50a﹣20a(x﹣y)+2a(x﹣y)2.23.两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.(1)用含a,b的代数式分别表示S1、S2;(2)若a+b=10,ab=20,求S1+S2的值;(3)当S1+S2=30时,求出图3中阴影部分的面积S3.24.若x+y=2,且(x+3)(y+3)=12.(1)求xy的值;(2)求x2+3xy+y2的值.25.对于二次三项式a2+6a+9,可以用公式法将它分解成(a+3)2的形式,但对于二次三项式a2+6a+8,就不能直接应用完全平方式了,我们可以在二次三项式中先加上一项9,使其成为完全平方式,再减去9这项,使整个式子的值保持不变,于是有:a2+6a+8=a2+6a+9﹣9+8=(a+3)2﹣1=[(a+3)+1][(a+3)﹣1]=(a+4)(a+2)请仿照上面的做法,将下列各式因式分解:(1)x2﹣6x﹣16;(2)x2+2ax﹣3a2.26.(1)已知(x+y)2=25,(x﹣y)2=9,求xy和x2+y2的值.(2)若a2+b2=15,(a﹣b)2=3,求ab和(a+b)2的值.27.阅读下列材料,然后解答问题:问题:分解因式:x3+4x2﹣5.解答:把x=1代入多项式x3+4x2﹣5,发现此多项式的值为0,由此确定多项式x3+4x2﹣5中有因式(x﹣1),于是可设x3+4x2﹣5=(x﹣1)(x2+mx+n),分别求出m,n的值.再代入x3+4x2﹣5=(x﹣1)(x2+mx+n),就容易分解多项式x3+4x2﹣5,这种分解因式的方法叫做“试根法”.(1)求上述式子中m,n的值;(2)请你用“试根法”分解因式:x3+x2﹣9x﹣9.28.如图,是某单位办公用房的平面结构示意图(长度单位:米),图形中的四边形均是长方形或正方形.(1)请分别求出会客室和会议厅的占地面积是多少平方米?(2)如果x+y=5,xy=6.求会议厅比会客室大多少平方米?参考答案1.解:A.(﹣x﹣y)2=x2+2xy+y2,故本选项不合题意;B.(m+2n)2=m2+4mn+4n2,故本选项不合题意;C.(﹣3x+y)2=9x2﹣6xy+y2,故本选项不合题意;D.,正确,故本选项符合题意.故选:D.2.解:A、能用平方差公式计算,故此不合题意;B、能用平方差公式计算,故此不合题意;C、能用平方差公式计算,故此选项不合题意;D、不能用平方差公式计算,故此选项符合题意.故选:D.3.解:∵x2﹣kx+25是完全平方式,∴k=±10,故选:D.4.解:①(a+b)2=a2+b2计算错误,正确的计算是(a+b)2=a2+2ab+b2;②(a﹣b)2=a2﹣2ab﹣b2计算错误,正确的计算是(a﹣b)2=a2﹣2ab+b2;③(a﹣b)2=a2﹣b2计算错误,正确的计算是(a﹣b)2=a2﹣2ab+b2;④(a﹣1)(a+2)=a2﹣a﹣2计算错误,正确的计算是(a﹣1)(a+2)=a2+a﹣2所以计算正确的有0个,故选:A.5.解:∵x2﹣2(m﹣1)x+9是完全平方式,∴2(m﹣1)=±6,解得:m=4或m=﹣2,故选:D.6.解:∵x=y+3,∴x﹣y=3,∵x2﹣y2=2019,∴(x+y)(x﹣y)=2019,∴x+y=673,故选:C.7.解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵(x+m)与(x+3)的乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故选:A.8.解:﹣a(x﹣y)﹣b(y﹣x)+c(x﹣y),=a(y﹣x)﹣b(y﹣x)﹣c(y﹣x),=(y﹣x)(a﹣b﹣c).故选:B.9.解:x2y+xy2=xy(x+y)=6×5=30;(x﹣y)2=(x+y)2﹣4xy=25﹣24=1;x2+y2=x2+y2+2xy﹣2xy=(x+y)2﹣2xy=25﹣12=13.故答案为:30;1;1310.解:∵(3x+2y)2=(3x﹣2y)2+A,∴A=(3x+2y)2﹣(3x﹣2y)2=9x2+12xy+4y2﹣9x2+12xy﹣4y2=24xy,故答案为:24xy.11.解:(a+3b)(2a+b)=2a2+ab+6ab+3b2=2a2+7ab+3b2,根据题意得:正方形卡片A类2张,B类7张,以及C类3张,∴需要A类卡片、B类卡片、C类卡片共12张.故答案为:12.12.解:∵9x2+2(a﹣4)x+16是一个完全平方式,∴a﹣4=±12,解得:a=16或a=﹣8.故答案为:16或﹣8.13.解:(x+1)(2x2﹣ax+1)=2x3﹣ax2+x+2x2﹣ax+1=2x3+(﹣a+2)x2+(1﹣a)x+1;∵运算结果中x2的系数是﹣6,∴﹣a+2=﹣6,解得a=8,故答案为:8.14.解:m2﹣n2+2n=(m+n)(m﹣n)+2n=1×(m﹣n)+2n=m﹣n+2n=m+n=1.故答案为:1.15.解:,=119,故答案为:119.16.解:=2×=2×+=2×+=2×+=2×+=2×+=2﹣+=2.故答案为:2.17.解:(x+2)2﹣(x﹣2)(x+2)=x2+4x+4﹣x2+4=4x+8.故答案为:4x+8.18.解:∵a2b2=4,∴ab=±2,∵a+b=4,∴﹣ab=(a2+b2﹣2ab)=[(a+b)2﹣4ab],∴﹣ab=[42﹣8]=4;或﹣ab=[42+8]=12.故答案为:4或12.19.解:根据题意得:(a+6)2﹣a2=a2+12a+36﹣a2=12a+36,故答案为:12a+36.20.解:∵大正方形的面积﹣小正方形的面积=4个矩形的面积,∴(a+b)2﹣(a﹣b)2=4ab,即4ab=(a+b)2﹣(a﹣b)2.故答案为:4ab=(a+b)2﹣(a﹣b)2.21.解:∵AP=a,BP=b,点M是AB的中点,∴AM=BM=,∴S阴影=S正方形APCD+S正方形BEFP﹣S△ADM﹣S△BEM=a2+b2﹣a×﹣b×=a2+b2﹣(a+b)2=(a+b)2﹣2ab﹣(a+b)2=100﹣40﹣25=35,故答案为:35.22.解:(1)原式=a4(a﹣b)﹣16(a﹣b)=(a﹣b)(a4﹣16)=(a﹣b)(a2+4)(a2﹣4)=(a﹣b)(a2+4)(a+2)(a﹣2);(2)原式=2a[(x﹣y)2﹣10(x﹣y)+25]=2a(x﹣y﹣5)2.23.解:(1)由图可得,S1=a2﹣b2,S2=a2﹣a(a﹣b)﹣b(a﹣b)﹣b(a﹣b)=2b2﹣ab;(2)S1+S2=a2﹣b2+2b2﹣ab=a2+b2﹣ab,∵a+b=10,ab=20,∴S1+S2=a2+b2﹣ab=(a+b)2﹣3ab=100﹣3×20=40;(3)由图可得,S3=a2+b2﹣b(a+b)﹣a2=(a2+b2﹣ab),∵S1+S2=a2+b2﹣ab=30,∴S3=×30=15.24.解:(1)∵(x+3)(y+3)=12,∴xy+3x+3y+9=12,则xy+3(x+y)=3,将x+y=2代入得xy+6=3,则xy=﹣3;(2)当xy=﹣3、x+y=2时,原式=(x+y)2+xy=22+(﹣3)=4﹣3=1.25.解:(1)x2﹣6x﹣16=x2﹣6x+9﹣9﹣16=(x﹣3)2﹣25=(x﹣3+5)(x﹣3﹣5)=(x+2)(x﹣8);(2)x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+a+2a)(x+a﹣2a)=(x+3a)(x﹣a).26.解:(1)∵(x+y)2=25,(x﹣y)2=9,∴x2+2xy+y2=25①,x2﹣2xy+y2=9②,∴①+②得:2(x2+y2)=34,∴x2+y2=17,∴17+2xy=25,∴xy=4;(2)∵(a﹣b)2=3,∴a2﹣2ab+b2=3,∵a2+b2=15,∴15﹣2ab=3,∴﹣2ab=﹣12,∴ab=6,∵a2+b2=15,∴a2+2ab+b2=15+12,∴(a+b)2=27.27.解:(1)把x=1代入多项式x3+4x2﹣5,多项式的值为0,∴多项式x3+4x2﹣5中有因式(x﹣1),于是可设x3+4x2﹣5=(x﹣1)(x2+mx+n)=x3+(m﹣1)x2+(n﹣m)x﹣n,∴m﹣1=4,n﹣m=0,∴m=5,n=5,(2)把x=﹣1代入x3+x2﹣9x﹣9,多项式的值为0,∴多项式x3+x2﹣9x﹣9中有因式(x+1),于是可设x3+x2﹣9x﹣9=(x+1)(x2+mx+n)=x3+(m+1)x2+(n+m)x﹣n,∴m+1=1,n+m=﹣9,∴m=0,n=﹣9,∴x3+x2﹣9x﹣9=(x+1)(x2﹣9)=(x+1)(x+3)(x﹣3).28.解:(1)会客室:(x﹣y)(2x+y﹣x﹣y)=(x﹣y)x=x2﹣xy,会议厅:(2x+y)(2x+y﹣x)=(2x+y)(x+y)=2x2+2xy+xy+y2=2x2+3xy+y2;答:会客室的占地面积是(x2﹣xy)平方米,会议厅的占地面积是(2x2+3xy+y2)平方米;(2)2x2+3xy+y2﹣(x2﹣xy)=2x2+3xy+y2﹣x2+xy=x2+4xy+y2,由x+y=5,得(x+y)2=25,∴x2+2xy+y2=25,又∵xy=6,∴x2+4xy+y2=25+2×6=37(平方米)答:会议厅比会客室大37平方米.。

七年级数学下册 9.4 乘法公式同步练习1 苏科版(2021学年)

七年级数学下册 9.4 乘法公式同步练习1 苏科版(2021学年)

七年级数学下册9.4 乘法公式同步练习1 (新版)苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学下册9.4 乘法公式同步练习1 (新版)苏科版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学下册9.4乘法公式同步练习1 (新版)苏科版的全部内容。

乘法公式(1)班级:__________ 姓名:__________一、选择题1.下列各式中,与(a-1)2相等的是( )A.a2-1 B.a2-2a+1 C.a2-2a-1 D.a2+12.如图,对于图中大正方形的面积,有下列表达式:①(a+b)(a+b);②a(a+b)+b(a+b);③a2-2ab+b2;④(a+b)2,其中正确的有( )A.1个B.2个C.3个D.4个3.运算结果为1-6x+9x 2的是()A.(-1+3x)2B.(1+3x)2 C.(-1-3x)2 D.-(1+3x)24.下列多项式中,不能用完全平方公式计算的是( )A.(x-2y)(-x+2y) B.(a+b) 2C.(b-3a)(-b+3a) D.(a+c)(a-c)5.若一个多项式的平方的结果为4a2+12a+m2,则m的值为( )A.9 B.3 C.±9 D.±36.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式.....,如a b c ++就是完全对称式.下列三个代数式:①2)(b a -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是 ( ) A.①② B.①③ C. ②③ D.①②③二、填空题7.计算:(1)(x+1) 2=________; (2)(3a-b )=_________.8.(1)m 2-4m+_________=(m-_________) 2;(2)(_________) 2 =9a 2-________+16b 2.9.若(x -3) 2=x 2 +k x+9,则k=__________.10.若x 2+y 2=12,xy=4,则x-y =__________.三、解答题11.计算:(1)(x-2) 2; (2)(a+2b) 2;(3)(-2x-y) 2; (4)(4m -3n) 2.12.计算:(1)1999 2; (2)2010 2.13.已知一个正方形木板,它的边长是(a+3)cm,从中锯去一个边长是(a -1)c m的正方形,求剩余木板的面积.14.已知a+b=2,ab=1,求:(1)a 2 +b 2的值.(2)(a-b) 2的值.15.已知2514x x -=,求()()()212111x x x ---++的值16.阅读下面的材料并解答问题:我们已经知道,完全平方公式可以用平面几何图形的面积来表示,实际上还有一些代 数恒等式也可以用这种形式表示,例如:(2a+b)(a+b )=2a 2 +3ab +b 2就可以用图①或图②等图形的面积来表示.(1)请写出图③所表示的代数恒等式:_________________.(2)试画出一个几何图形,使它的面积能表示:(a +b)(a+3b )=a 2+4ab+3b 2.(3)请仿照上述方法另写一个含有a、b 的代数恒等式,并画出与之对应的几何图形.参考答案1.B2.C3.A 4.D 5.D 6.A7.(1)x 2 +2x+1 (2)9a 2-6a6+b28.(1)4 2 (2)3a-4b 24ab9.-610.±211.(1)x 2-4x+4(2)a2+4ab+4b2(3)4x 2 +4xy+y2(4)16m 2-24mn+9n 212.(1)原式=(2 000-1)2=3996001 (2)原式=(2 000+10)2=4 040 10013.(a+3) 2-(a-1) 2=(8a+8)cm214.(1)2 (2)015.x2+316.(1)(2a+b)(a+2b)=2a 2 +5ab+2b2(2)如图所示(3)略以上就是本文的全部内容,可以编辑修改。

苏科版数学七年级下册 第9章 整式乘法与因式分解 单元测试卷含答案

苏科版数学七年级下册  第9章  整式乘法与因式分解  单元测试卷含答案

苏科版数学七年级下册 第9章 整式乘法与因式分解 单元测试卷含答案一、单选题1.下列计算正确的是( )A .532ab b b -=B .()224236a ba b -= C .()2211a a -=-D .2222a b b a ÷= 2.下列各式的计算正确的是( )A .()()2222x x x +-=-B .()()2323294a a a ---=- C .()222a b a b +=+D .()2222a b a ab b --=++ 3.下列分解因式正确的是( )A .x 2﹣x ﹣6=x (x ﹣1)﹣6B .m 3﹣m =m (m ﹣1)(m +1)C .2a 2+ab +a =a (2a +b )D .x 2﹣y 2=(x ﹣y )24.若(x+2y)(2x -ky -1)的结果中不含xy 项,则k 的值为( )A .4B .-4C .2D .-25.下列各式中不能用平方差公式计算的是( )A .(x -y)(-x+y)B .(-x+y)(-x -y)C .(-x -y)(x -y)D .(x+y)(-x+y)6.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( ) A .0 B .1 C .2 D .37.设2020x y z ++=,且201920202021x y z ==,则3333x y z xyz ++-=( ) A .673 B .20203 C .20213 D .6748.在矩形ABCD 中,AD =3,AB =2,现将两张边长分别为a 和b (a >b )的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S 1,图2中阴影部分的面积为S 2.则S 1﹣S 2的值为( )A .-1B .b ﹣aC .-aD .﹣b9.计算22222100-9998-972-1++⋅⋅⋅+的值为( )A .5048B .50C .4950D .505010.若124816326421111111(1)(1)(1)(1)(1)(1)(1)33333333A =-+++++++……21(1)13n ++,则A 的值是 A .0 B .1 C .2213n D .1213+n二、填空题11.因式分解:2x y 4y -=______.12.分解因式:32269m m n mn -+=______.13.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式()na b +的展开式的各项系数,此三角形称为“杨辉三角”.请看图(1),并观察下列等式(2):根据前面各式的规律,则()6a b +=______.14.求值:222221111111111234910⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-----= ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L L ______. 15.若x 2+ax+4是完全平方式,则a=_____.16.已知x 2﹣3x +1=0,则x ﹣1x=_____. 17.如图,已知正方形ABCD 与正方形CEFG 的边长分别为a 、b ,如果20a b +=,18ab =,则阴影部分的面积为__________.18.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=______.19.如果22320190x x --=.那么32220222020x x x ---=_________20.若a -b=1,则222a b b --的值为____________.三、解答题21.计算:(1)()32(2)32x x x x--- (2)2(2)(2)(2)4x y x y x y y ⎡⎤+--+÷⎣⎦22.先化简,再求值:(a+b )(a ﹣b )+(a+b )2﹣2a 2,其中a=3,b=﹣13.23.因式分解:2m (2m ﹣3)+6m ﹣1.24.先化简,再求值:(1)x xy x y y y x 2]8)4()2[(2÷-+-+其中2,2-==y x . (2)已知2x -5x 3=,求 2(X - 1)(2X -1) - 22x 11++()的值.25.分解因式(1)29a -; (2)231827x x -+.26.因式分解:26()2()()x y x y x y +-+-27.阅读下列材料:利用完全平方公式,可以将多项式2(0)ax bx c a ++≠变形为2()a x m n ++的形式,我们把这种变形方法,叫做配方法.运用配方法及平方差公式能对一些多项式进行因式分解.例如:22222111111251151151124112422242222x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++=++-+=+-=+++- ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭根据以上材料,解答下列问题:(1)用配方法将281x x +-化成2()x m n ++的形式,则281=x x +- ________; (2)用配方法和平方差公式把多项式228x x --进行因式分解;(3)对于任意实数x ,y ,多项式222416x y x y +--+的值总为______(填序号).①正数①非负数 ① 028.(阅读材料)因式分解:()()221x y x y ++++.解:将“x y +”看成整体,令x y A +=,则原式()22211A A A =++=+.再将“A ”还原,原式()21x y =++.上述解题用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法.(问题解决)(1)因式分解:()()2154x y x y +-+-;(2)因式分解:()()44a b a b ++-+;(3)证明:若n 为正整数,则代数式()()()21231n n n n ++++的值一定是某个整数的平方.29.阅读材料:若m 2﹣2mn+2n 2﹣8n+16=0,求m 、n 的值.解:①m 2﹣2mn+2n 2﹣8n+16=0,①(m 2﹣2mn+n 2)+(n 2﹣8n+16)=0①(m ﹣n )2+(n ﹣4)2=0,①(m ﹣n )2=0,(n ﹣4)2=0,①n=4,m=4.根据你的观察,探究下面的问题:(1)已知x 2﹣2xy+2y 2+6y+9=0,求xy 的值;(2)已知①ABC 的三边长a 、b 、c 都是正整数,且满足a 2+b 2﹣10a ﹣12b+61=0,求①ABC 的最大边c 的值; (3)已知a ﹣b=8,ab+c 2﹣16c+80=0,求a+b+c 的值.30.我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如图1可以得到()()2a b a b ++=2232a ab b ++.请解答下列问题:(1)写出图2中所表示的数学等式;(2)利用(1)中所得到的结论,解决下面的问题:已知12a b c ++=,47ab bc ac ++=,求222a b c ++的值; (3)小明同学打算用x 张边长为a 的正方形,y 张边长为b 的正方形,z 张相邻两边长为分别为a 、b 的长方形纸片拼出了一个面积为 ()()5874a b a b ++长方形,那么他总共需要多少张纸片?31.观察下列各式:()()2111,x x x -+=-()()23 111,x x x x -++=-()()324 111,x x x x x -+++=-()()4325 1 11,x x x x x x -++++=-······()1根据规律()()122 1 ...1n n x x x x x ---+++++=(其中n 为正整数) ;()()3029282(51)5555251-+++++L()3计算:201920182017321(2)(2)(2)(2)(2)(2)1-+-+-++-+--++L32.阅读:已知x 2y=3,求2xy(x 5y 2-3x 3y -4x)的值.分析:考虑到x ,y 的可能值较多,不能逐一代入求解,故考虑整体思想,将x 2y=3整体代入. 解:2xy(x 5y 2-3x 3y -4x)=2x 6y 3-6x 4y 2-8x 2y=2(x 2y)3-6(x 2y)2-8x 2y=2×33-6×32-8×3=-24.你能用上述方法解决以下问题吗?试一试!(1)已知ab=3,求(2a 3b 2-3a 2b+4a)·(-2b)的值;(2)已知a 2+a -1=0,求代数式a 3+2a 2+2018的值.苏科版数学七年级下册 第9章 整式乘法与因式分解 单元测试卷含答案一、填空题1.D 2.D 3.B 4.A 5.A 6.D 7.B 8.D 9.D 10.D二、填空题11.y (x+2)(x -2) 12.()23m m n - 13.654233245661520156a a b a b a b a b ab b ++++++14.112015.±4. 16. 17.173 18.()()2a b a b ++. 19.-1 20.1三、解答题21.(1)3223x x --;(2)2x y +【分析】(1)原式利用积的乘方以及单项式乘除多项式法则计算即可得到结果;(2)括号内利用完全平方公式及平方差公式进行计算,再用多项式除以单项式法则计算,即可得到结果;【详解】解:(1)()32(2)32x x x x ---= 323836x x x --+= 3223x x --(2)2(2)(2)(2)4x y x y x y y ⎡⎤+--+÷⎣⎦= 2222[44(4)]4x xy y x y y ++--÷ = 2[48]4xy y y +÷= 2x y +22.-2.【解析】试题分析:解题关键是化简,然后把给定的值代入求值.试题解析:(a+b )(a -b )+(a+b )2-2a 2,=a 2-b 2+a 2+2ab+b 2-2a 2,=2ab ,当a=3,b=-13时, 原式=2×3×(-13)=-2. 考点:整式的混合运算—化简求值.23.(2m+1)(2m ﹣1)【分析】直接利用单项式乘以多项式运算法则化简,再利用乘法公式分解因式即可.【详解】原式=4m 2﹣6m+6m ﹣1=4m 2﹣1=(2m+1)(2m ﹣1).24.(1)24x y -;12;(2)225)1(x x -+;7【分析】(1)先算平方和乘法,再合并同类项,再算除法,最后代入求值即可; (2)先将原式展开,再合并同类项得出22(x -5x)+1,然后代入2x -5x 3=即可求解.【详解】原式222(4448)2x xy y y xy xy x =++---÷ 2(48)224224(2)12x xy xx y =-÷=-=⨯-⨯-= 原式222(221)2(21)1x x x x x =--+-+++ 2222462242121012(5)12317x x x x x x x x =-+---+=-+=-+=⨯+=25.(1)(3)(3)a a +-;(2)23(3)x -.【分析】(1)根据平方差公式,因式分解即可;(2)首先提取公因式然后利用完全平方公式进行因式分解即可.【详解】解:(1)29a -=(3)(3)a a +-;(2)()()2223182736933x x x x x -+=-+=-26.4(x +y )(x +2y ).【分析】首先提公因式2(x +y ),再整理括号里面的3(x +y )﹣(x ﹣y ),再提公因式2即可.【详解】原式=2(x +y )[3(x +y )﹣(x ﹣y )]=2(x +y )(2x +4y )=4(x +y )(x +2y ).27.(1)2(4)17x +-;(2)(2)(4)x x +-;(3)①【分析】(1)根据材料所给方法解答即可;(2)材料所给方法进行解答即可;(3)局部进行因式分解,最后写成非负数的积的形式即可完成解答.【详解】解:(1)281x x +-=2816116x x ++--2(4)17x +-.(2)原式=22118x x -+--=2(1)9x --=(13)(13)x x -+--=(2)(4)x x +-.(3)222416x y x y +--+ =()()22214411x x y y -++-++=()()221211x y -+-+>11故答案为①.28.(1)()()144x y x y +-+-1.(2)()22a b +-;(3)见解析. 【分析】(1)把(x -y )看作一个整体,直接利用十字相乘法因式分解即可;(2)把a+b 看作一个整体,去括号后利用完全平方公式即可将原式因式分解;(3)将原式转化为()()223231n n n n ++++,进一步整理为(n 2+3n+1)2,根据n 为正整数得到n 2+3n+1也为正整数,从而说明原式是整数的平方.【详解】(1)()()[][]21541()14()(1)(144)x y x y x y x y x y x y +-+-=+-+-=+-+-;(2)()()2244()4()4(2)a b a b a b a b a b ++-+=+-++=+-; (3)原式()()223231n n n n =++++ ()()2223231n n n n =++++ ()2231n n =++. ①n 为正整数,①231n n ++为正整数.①代数()()()21231n n n n ++++的值一定是某个整数的平方.29.(1)9;(2)①ABC 的最大边c 的值可能是6、7、8、9、10;(3)8.【解析】试题分析:(1)直接利用配方法得出关于x ,y 的值即可求出答案;(2)直接利用配方法得出关于a ,b 的值即可求出答案;(3)利用已知将原式变形,进而配方得出答案.试题解析:(1)①x 2﹣2xy+2y 2+6y+9=0,①(x 2﹣2xy+y 2)+(y 2+6y+9)=0,①(x ﹣y )2+(y+3)2=0,①x ﹣y=0,y+3=0,①x=﹣3,y=﹣3,①xy=(﹣3)×(﹣3)=9,即xy 的值是9.(2)①a 2+b 2﹣10a ﹣12b+61=0,①(a 2﹣10a+25)+(b 2﹣12b+36)=0,①(a ﹣5)2+(b ﹣6)2=0,①a ﹣5=0,b ﹣6=0,①a=5,b=6,①6﹣5<c <6+5,c≥6,①6≤c <11,①①ABC 的最大边c 的值可能是6、7、8、9、10.(3)①a ﹣b=8,ab+c 2﹣16c+80=0,①a (a ﹣8)+16+(c ﹣8)2=0,①(a ﹣4)2+(c ﹣8)2=0,①a ﹣4=0,c ﹣8=0,①a=4,c=8,b=a ﹣8=4﹣8=﹣4,①a+b+c=4﹣4+8=8,即a+b+c 的值是8.30.(1)()2222a b c a b c ++=++222ab bc ca +++;(2)50;(3)143.【分析】(1)直接求得正方形的面积,再根据正方形的面积=各矩形的面积之和求解即可.(2)将12a b c ++=,47ab bc ac ++=代入(1)中得到的式子,然后计算即可;(3)长方形的面积()()5874a b a b ++=22xa yb zab ++,然后运算多项式乘多项式,从而求得x 、y 、z 的值,代入即可求解.【详解】解:(1)()2222a b c a b c ++=++222ab bc ca +++(2)由(1)可知:()2222a b c a b c ++=++()2ab bc ca -++ ()21224750=-⨯=(3)根据题意得,()()5874a b a b ++=22xa yb zab ++ 22357632a ab b ++22xa yb zab =++所以35x =,76y =,32z =所以143x y z ++=答:小明总共需要143张纸。

9.4乘法公式(2)同步练习(苏科版七年级下)

9.4乘法公式(2)同步练习(苏科版七年级下)

9 . 4 乘法公式(2)(3) (4m-3) 2+ (4m+3)(4m-3) (5) (2x 3+3y 2)(2x 3-3y 2) (6) J .J V 1 22、(:x y)(匚 x y)H x y ) 3 3 9(7) (x-2y+4)(x+2y-4) (8)(3x-4y) 2-(3x+4y) 2-xy 姓名 〔基础训练〕(认真做一做,相信你会行!)1. 填空: (1)(x-4y)2 , (3) a +b 2. 选择:(1) 班级 学号2 + =(x+4y) i 2+ = (a-b) 2⑵(m+n) 2 (4)x 2-x+( =(m-n))=() ⑵ 女口果 m-n 」,m 2+n 2=® , 那么(mn )2005的值为 () 5 25A.1B.-1C.OD. 无法确定 ⑶ 如果a -2,那么a 2 的值是 ()a aA.2B.4C.OD.-4⑷若4x 2-Mxy+9y 2是两数和的平方,则M 的值是 ()A.36B. ±C.12D. ± 122+4)-(3m 3-n)(3m 3+n)⑵(x+2) (x-2) (x 下列各式中,计算结果为 A. (x+2y) (x-8y) 3.计算:(1) (-ab+2) (ab+2) x 2-16y 2 的是B. (x+y) (x-16y)D. (-x-4y) (x+4y)〔课外延伸〕(仔细想一想,相信你是最棒的!)4. 解答题:⑴比较下列两数的大小:1995 X 1997与1993X 1999.(2)先化简,再求值:2①(x-5y)(-x-5y)-(-x+5y) ,其中x=0.5,y=-1;11 1②(x y 1)(x y 1) (x y 1)2,其中x=1.5, y=3.9 .2 2 2⑶已知(a+b) 2=7,(a-b) 2=3,求:(1)a 2+b2; (2)ab 的值.5. 说理:试说明不论x,y取什么有理数,多项式x2+y2-2x+2y+3的值总是正数.6、多项式的乘法运算总可以运用多项式乘以多项式的法则来进行,例如(x-3y)(x+7y)=x 2+7xy-3xy-21y 2=x2+4xy-21y2,但由于有些特殊的多项式乘法,我们可以发现它们有一定的规律,掌握规律能使计算简便.例如:(x+1)(x+2)= ________ ; (x+1)(x-2)=(x-1)(x+2)= _______ ; (x-1)(x-2)= _________ .一般有:(x+a)(x+b)=a 2+(a+b)x+ab.这个公式的特征是: ________________________________________________ 运用上述公式口算:(1)(ab-3)(ab+1)= _______ ⑵(x 2+3)(x 2-6)= _______________⑶(x+2y)(x-8y)= _______ ⑷(ab-m)(ab+m)= ___________。

2020-2021学年苏科版数学七年级下册第9章《整式乘法与因式分解》提优训练

2020-2021学年苏科版数学七年级下册第9章《整式乘法与因式分解》提优训练

七下第9章《整式乘法与因式分解》突破训练考试时间:100分钟;满分:100分一.选择题(共10小题,满分30分,每小题3分)1.下列各式从左到右的变形中,是因式分解的为()A.(x+y)2=x2+2xy+y2B.﹣5(xy)2=﹣5•x2y2C.x2+2x+1=x(x+2)D.x2﹣4y2=(x+2y)(x﹣2y)2.若□×xy=3x2y+2xy,则□内应填的式子是()A.3x+2B.x+2C.3xy+2D.xy+23.多项式:①16x2﹣8x;②(x﹣1)2﹣4(x﹣1)+4;③(x+1)4﹣4x(x+1)2+4x2;④﹣4x2﹣1+4x分解因式后,结果中含有相同因式的是()A.①和②B.③和④C.①和④D.②和③4.已知(x﹣2)(x2+mx+n)的乘积项中不含x2和x项,则m,n的值分别为()A.m=2,n=4B.m=3,n=6C.m=﹣2,n=﹣4D.m=﹣3,n=﹣6 5.某市“旧城改造”中,计划在市内一块长方形空地上种植草皮,以美化环境.已知长方形空地的面积为(3ab+b)平方米,宽为b米,则这块空地的长为()A.3a米B.(3a+1)米C.(3a+2b)米D.(3ab2+b2)米6.若x+y=6,x2+y2=20,求x﹣y的值是()A.4B.﹣4C.2D.±27.如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如(8=32﹣12,16=52﹣32,则8,16均为“和谐数”),在不超过217的正整数中,所有的“和谐数”之和为()A.3014B.3024C.3034D.30448.已知m2=3n+a,n2=3m+a,m≠n,则m2+2mn+n2的值为()A.9B.6C.4D.无法确定9.如图,阴影部分是边长是a的大正方形剪去一个边长是b的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形,给出下列4幅图割拼方法:其中能够验证平方差公式有()A.①②③④B.①③C.①④D.①③④10.我国古代许多关于数学的发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,第四行的四个数1,3,3,1恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数.请你猜想(a+b)5的展开式中含a3b2项的系数是()A.10B.12C.9D.8二.填空题(共6小题,满分18分,每小题3分)11.小明在进行两个多项式的乘法运算时,不小心把乘以错抄成乘以,结果得到(x2﹣xy),则正确的计算结果是.12.若x2+2kx是一个完全平方式,则k=.13.计算2021×2019﹣20202的值为.14.若多项式x2﹣px+q(p、q是常数)分解因式后,有一个因式是x+3,则3p+q的值为.15.已知x2+x﹣2=0,则代数式x3+2020x2+2017x+2=.16.有若干个形状大小完全相同的小长方形,现将其中3个如图1摆放,构造一个正方形;其中5个如图2摆放,构造一个新的长方形(各小长方形之间不重叠且不留空隙).若图1和图2中阴影部分的面积分别为39和106,则每个小长方形的面积为.三.解答题(共8小题,满分52分)17.(6分)计算:(1)(3a﹣1)(3a+1)﹣(a﹣4)2.(2)(15x2y﹣10xy2)÷(﹣5xy).18.(6分)因式分解:(1)2a2b﹣12ab+18b;(2)x2﹣y2﹣2x+1.19.(6分)先化简,再求值:求(x﹣2y)2+(3y﹣2x)(﹣2x﹣3y)﹣5(x﹣y)(x+2y)的值,其中x、y满足(x﹣2)2+|y|=0.20.(6分)已知(a+b)2=19,(a﹣b)2=13,求a2+b2与ab的值.21.(6分)用简便方法计算(结果用科学记数法表示):(1)0.259×220×259×643;(2)20012﹣4002+1.22.(6分)甲、乙两个长方形的边长如图所示(m为正整数),其面积分别为S1,S2.(1)请比较S1和S2的大小;(2)若一个正方形的周长等于甲、乙两个长方形的周长之和,求该正方形的面积(用含m的代数式表示).23.(8分)阅读下列材料:我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式x2+2x﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1);再例如求代数式2x2+4x﹣6的最小值.2x2+4x﹣6=2(x2+2x﹣3)=2(x+1)2﹣8.可知当x=﹣1时,2x2+4x﹣6有最小值,最小值是﹣8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2﹣4m﹣5=.(2)当a,b为何值时,多项式a2+b2﹣4a+6b+18有最小值,并求出这个最小值.(3)已知a,b,c为△ABC的三边,且满足a2+2b2+c2﹣2b(a+c)=0,试判断此三角形的形状.24.(8分)把几个图形拼成一个新的图形,再通过两种不同的方式计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)由图2,可得等式;(2)利用(1)所得等式,解决问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.(3)如图3,将两个边长为a、b的正方形拼在一起,B,C,G三点在同一直线上,连接BD 和BF,若这两个正方形的边长a、b如图标注,且满足a+b=10,ab=20.请求出阴影部分的面积.(4)图4中给出了边长分别为a、b的小正方形纸片和两边长分别为a、b的长方形纸片,现有足量的这三种纸片.①请在下面的方框中用所给的纸片拼出一个面积为2a2+5ab+2b2的长方形,并仿照图1、图2画出拼法并标注a、b.②研究①拼图发现,可以分解因式2a2+5ab+2b2=.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【解答】解:A、是整式的乘法,原变形错误,故此选项不符合题意;B、不是把一个多项式化为几个整式的积的形式,原变形不是因式分解,故此选项不符合题意;C、没把一个多项式化为几个整式的积的形式,原变形错误,故此选项不符合题意;D、把一个多项式化为几个整式的积的形式,原变形正确,故此选项符合题意;故选:D.【点睛】本题主要考查了因式分解的定义,因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.2.【分析】利用乘除法的关系可得□内应填的式子是:(3x2y+2xy)与xy的商,计算即可.【解答】解:(3x2y+2xy)÷xy,=3x+2,故选:A.【点睛】此题主要考查了单项式除以多项式,关键是掌握乘除法之间的关系.3.【分析】首先把各个多项式分解因式,即可得出答案.【解答】解:①16x2﹣8x=8x(2x﹣1);②(x﹣1)2﹣4(x﹣1)+4=(x﹣1﹣2)2=(x﹣3)2;③(x+1)4﹣4x(x+1)2+4x2=[(x+1)2﹣2x]2=(x2+1)2;④﹣4x2﹣1+4x=﹣(2x﹣1)2;∴结果中含有相同因式的是①和④;故选:C.【点睛】本题考查了因式分解的方法以及公因式;熟练掌握因式分解的方法是解题的关键.4.【分析】多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加;不含某一项就是说这一项的系数为0;依此即可求解.【解答】解:∵原式=x3+(m﹣2)x2+(n﹣2m)x﹣2n,又∵乘积项中不含x2和x项,∴m﹣2=0,n﹣2m=0,解得m=2,n=4.故选:A.【点睛】本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.5.【分析】直接利用整式的除法运算法则计算得出答案.【解答】解:∵长方形空地的面积为(3ab+b)平方米,宽为b米,∴这块空地的长为:(3ab+b)÷b=(3a+1)米.故选:B.【点睛】此题主要考查了整式的除法运算,正确掌握相关运算法则是解题关键.6.【分析】先根据完全平方公式求出xy的值,再根据完全平方公式求出(x﹣y)2,再开方即可.【解答】解:∵x+y=6,x2+y2=(x+y)2﹣2xy=20,∴2xy=62﹣20=16,∴xy=8,∴(x﹣y)2=x2+y2﹣2xy=20﹣2×8=4,∴x﹣y=±2,故选:D.【点睛】本题考查了完全平方公式,能正确根据完全平方公式进行变形是解此题的关键.7.【分析】确定小于217的“和谐数”,再求和,根据计算结果的规律性,可得出答案.【解答】解:∵552﹣532=(55+53)(55﹣53)=216<217,∴在不超过217的正整数中,所有的“和谐数”之和为:(﹣12+32)+(﹣32+52)+(﹣52+72)+……+(﹣512+532))+(﹣532+552)=﹣12+32﹣32+52﹣52+72+……﹣512+532﹣532+552=552﹣12=(55+1)(55﹣1)=56×54=3024,故选:B.【点睛】本题考查平方差公式,理解“和谐数”的意义是解决问题的前提,得出计算结果的规律性是解决问题的关键.8.【分析】将已知的两个方程相减,求得m+n的值,再将所求代数式分解成完全平方式,再代值计算.【解答】解:∵m2=3n+a,n2=3m+a,∴m2﹣n2=3n﹣3m,∴(m+n)(m﹣n)+3(m﹣n)=0,∴(m﹣n)[(m+n)+3]=0,∵m≠n,∴(m+n)+3=0,∴m+n=﹣3,∴m2+2mn+n2=(m+n)2=(﹣3)2=9.故选:A.【点睛】本题主要考查了求代数式的值,因式分解的应用,关键是由已知求得m+n的值.9.【分析】分别对各个图形中的阴影面积用不同方法表示出来,即可得到等式,则可对各个选项是否可以验证平方差公式作出判断.【解答】解:图①,左边图形的阴影部分的面积=a2﹣b2,右边图形阴影部分的面积=(a+b)(a﹣b),∴a2﹣b2=(a+b)(a﹣b),故①可以验证平方差公式;图②,阴影部分面积相等,左边的阴影部分的面积=a2﹣b2,右边图形阴影部分的面积=(a+b)(a﹣b),∴a2﹣b2=(a+b)(a﹣b),故②可以验证平方差公式;图③,阴影部分面积相等,左边的阴影部分的面积=a2﹣b2,右边图形阴影部分的面积(2a+2b)(a﹣b)=(a+b)(a﹣b),∴a2﹣b2=(a+b)(a﹣b),故③可以验证平方差公式;图④,阴影部分面积相等,左边的阴影部分的面积=a2﹣b2,右边图形阴影部分的面积=(a+b)(a﹣b),∴a2﹣b2=(a+b)(a﹣b),故④可以验证平方差公式.∴正确的有①②③④.故选:A.【点睛】本题考查了平方差公式的几何背景,数形结合并熟练掌握相关几何图形的面积计算方法是解题的关键.10.【分析】由(a+b)=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各项展开式的系数除首尾两项都是1外,其余各项系数都等于(a+b)n﹣1的相邻两个系数的和,由此可得(a+b)4的各项系数依次为1、4、6、4、1;因此(a+b)5的各项系数依次为1、5、10、10、5、1,从而可得答案.【解答】解:(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5,∴含a3b2项的系数是10,故选:A.【点睛】本题考查了完全平方公式,学生的观察分析逻辑推理能力,读懂题意并根据所给的式子寻找规律,是快速解题的关键.二.填空题(共6小题,满分18分,每小题3分)11.【分析】错乘,得到(x2﹣xy)可求出没错乘之前的结果,再乘以即可,【解答】解:由题意得,(x2﹣xy)x(x﹣y)(x﹣y)(x+y)=x2﹣y2,故答案为:x2﹣y2.【点睛】本题考查多项式乘以多项式的计算方法,根据逆运算得出正确的计算算式是解决问题的关键.12.【分析】利用完全平方公式的结构特征判断即可求出k的值.【解答】解:∵x2+2kx是一个完全平方式,∴k=±,故答案为:±.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.【分析】根据平方差公式化简2021×2019即可得出结果.【解答】解:2021×2019﹣20202=(2020+1)×(2020﹣1)﹣20202=20202﹣1﹣20202=﹣1.故答案为:﹣1.【点睛】本题主要考查了平方差公式,熟记公式是解答本题的关键.平方差公式:(a+b)(a ﹣b)=a2﹣b2.14.【分析】设另一个因式为x+a,因为整式乘法是因式分解的逆运算,所以将两个因式相乘后结果得x2﹣px+q,根据各项系数相等列式,计算可得3p+q的值.【解答】解:设另一个因式为x+a,则x2﹣px+q=(x+3)(x+a)=x2+ax+3x+3a=x2+(a+3)x+3a,由此可得,由①得:a=﹣p﹣3③,把③代入②得:﹣3p﹣9=q,3p+q=﹣9,故答案为:﹣9.【点睛】本题考查了因式分解的意义.解题的关键是掌握因式分解的意义,因式分解与整式乘法是相反方向的变形,二者是一个式子的不同表现形式;因此具体作法是:按多项式法则将分解的两个因式相乘,列等式或方程组即可求解.15.【分析】将x2+x﹣2=0变形为x2=2﹣x和x2+x=2,然后将代数式x3+2020x2+2017x+2分别利用提取公因式法变形,从而将x2=2﹣x和x2+x=2代入计算即可.【解答】解:∵x2+x﹣2=0,∴x2=2﹣x,x2+x=2,∴x3+2020x2+2017x+2=x•x2+2020x2+2020x﹣3x+2=x(2﹣x)+2020(x2+x)﹣3x+2=2x﹣x2+2020×2﹣3x+2=﹣(x2+x)+4040+2=﹣2+4040+2=4040.故答案为:4040.【点睛】本题考查了因式分解在代数式求值中的应用,熟练掌握因式分解的方法并对已知条件变形是解题的关键.16.【分析】直接利用整式的混合运算法则结合已知阴影部分面积进而得出答案.【解答】解:设小长方形的宽为a,长为b,根据题意可得:(a+b)2﹣3ab=39,故a2+b2﹣ab=39,(2b+a)(2a+b)﹣5ab=106,故4ab+2b2+2a2+ab﹣5ab=106,则2a2+2b2=106,即a2+b2=53,则53﹣ab=39,解得:ab=14,故每个小长方形的面积为:14.故答案为:14.【点睛】此题主要考查了整式的混合运算,正确掌握整式的混合运算法则是解题关键.三.解答题(共8小题,满分52分)17.【分析】(1)直接利用乘法公式进而化简,再合并同类项得出答案;(2)直接利用整式的除法运算法则化简得出答案.【解答】解:(1)原式=9a2﹣1﹣(a2﹣8a+16)=9a2﹣1﹣a2+8a﹣16=8a2+8a﹣17;(2)原式=﹣(15x2y÷5xy)+10xy2÷5xy=﹣3x+2y.【点睛】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.18.【分析】(1)直接提取公因式2b,再利用完全平方公式分解因式得出答案;(2)直接将原式分组,再利用公式法分解因式即可.【解答】解:(1)2a2b﹣12ab+18b=2b(a2﹣6a+9)=2b(a﹣3)2;(2)x2﹣y2﹣2x+1=(x2﹣2x+1)﹣y2=(x﹣1)2﹣y2=(x﹣1+y)(x﹣1﹣y).【点睛】此题主要考查了分组分解法、公式法分解因式,正确运用公式是解题关键.19.【分析】先算乘法,再合并同类项,求出x、y的值后代入,即可求出答案.【解答】解:(x﹣2y)2+(3y﹣2x)(﹣2x﹣3y)﹣5(x﹣y)(x+2y)=x2﹣4xy+4y2+4x2﹣9y2﹣5x2﹣10xy+5xy+10y2=﹣9xy+5y2,∵x、y满足(x﹣2)2+|y|=0,∴x﹣2=0,y0,解得:x=2,y,当x=2,y时,原式=﹣9.【点睛】本题考查了绝对值、偶次方的非负性和整式的混合运算和求值等知识点,能正确根据整式的运算法则进行化简是解此题的关键.20.【分析】由已知可得a2+b2+2ab=19,a2+b2﹣2ab=13,两式相加可得a2+b2=16,两式相减可得ab.【解答】解:∵(a+b)2=19,∴a2+b2+2ab=19,∵(a﹣b)2=13,∴a2+b2﹣2ab=13,∴2a2+2b2=32,4ab=6,∴a2+b2=16,ab.【点睛】本题考查完全平方公式的;掌握完全平方公式,并能灵活运用公式是解题的关键.21.【分析】(1)根据积的乘方和幂的乘方得出即可;(2)根据完全平方公式计算即可.【解答】解:(1)原式=0.259×220×518×49=(0.25×4)9×(2×5)18×22=1×1018×4=4×1018;(2)原式=20012﹣2×2001×1+1=(2001﹣1)2=20002=4000000=4×106.【点睛】本题考查了幂的乘方和积的乘方,完全平方公式,科学记数法等知识点,能灵活运用积的乘方和幂的乘方进行计算是解此题的关键.22.【分析】(1)先用代数式表示S1,S2,再作差比较即可求解;(2)根据正方形的周长与面积的公式计算即可求解.【解答】解:(1)S1=(m+1)(m+7)=m2+8m+7,S2=(m+2)(m+4)=m2+6m+8,∴S1﹣S2=m2+8m+7﹣(m2+6m+8)=m2+8m+7﹣m2﹣6m﹣8=2m﹣1,∵m为正整数,∴2m﹣1>0,即S1>S2;(2)正方形的周长为:2[(m+1)+(m+7)]+2[(m+2)+(m+4)]=2(2m+8)+2(2m+6)=4m+16+4m+12=8m+28,∴该正方形的面积为:.【点睛】本题主要考查列代数式,整式的加减及乘除运算,列代数式是解题的关键.23.【分析】(1)根据阅读材料,先将m2﹣4m﹣5变形为m2﹣4m+4﹣9,再根据完全平方公式写成(m﹣2)2﹣9,然后利用平方差公式分解即可;(2)利用配方法将多项式a2+b2﹣4a+6b+18转化为(a﹣2)2+(b+3)2+5,然后利用非负数的性质进行解答;(3)把所给的等式能进行因式分解的要因式分解,整理为非负数相加得0的形式,求出三角形三边的关系,进而判断三角形的形状.【解答】解:(1)m2﹣4m﹣5=m2﹣4m+4﹣9=(m﹣2)2﹣9=(m﹣2+3)(m﹣2﹣3)=(m+1)(m﹣5).故答案为(m+1)(m﹣5);(2)∵a2+b2﹣4a+6b+18=(a﹣2)2+(b+3)2+5,∴当a=2,b=﹣3时,多项式a2+b2﹣4a+6b+18有最小值5;(3)∵a2+2b2+c2﹣2b(a+c)=0,∴(a﹣b)2+(b﹣c)2=0,∴a=b,b=c,∴a=b=c,∴△ABC是等边三角形.【点睛】本题考查了因式分解的应用,非负数的性质,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.24【分析】(1)此题根据面积的不同求解方法,可得到不同的表示方法.一种可以是3个正方形的面积和6个矩形的面积,另一种是直接利用正方形的面积公式计算,可得等式(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)利用(1)中的等式直接代入求得答案即可;(3)利用S阴影=正方形ABCD的面积+正方形ECGF的面积﹣三角形BGF的面积﹣三角形ABD的面积求解.(4)①依照前面的拼图方法,画出图形便可;②由图形写出因式分解结果便可.【解答】解:(1)由题意得,(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故答案为,(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)∵a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=(a+b+c)2﹣2(ab+ac+bc)=121﹣76=45;(3)∵a+b=10,ab=20,∴S阴影=a2+b2(a+b)•b a2a2b2ab(a+b)2ab10220=50﹣30=20;(4)①根据题意,作出图形如下:②由上面图形可知,2a2+5ab+2b2=(a+2b)(2a+b).故答案为(a+2b)(2a+b).【点睛】本题考查了完全平方公式几何意义,解题的关键是注意图形的分割与拼合,会用不同的方法表示同一图形的面积.。

数学:9.4《乘法公式(1)》同步练习(苏科版七年级下)

数学:9.4《乘法公式(1)》同步练习(苏科版七年级下)

数学:9.4乘法公式(1)同步练习(苏科版七年级下)【基础演练】一、填空题1. 计算:_______________)5(2=+y x .2. 计算:________________)2(2=-y x .3. x 2-4x +( )=()2,( )+2ay +1=( )2. 4.计算: =⎪⎭⎫ ⎝⎛23229 . 5. 让我们轻松一下,做一个数字游戏:第一步:取一个自然数n 1=5,计算n 12+1得a 1;第二步:算出a 1的各位数字之和得n 2,计算n 22+1得a 2;第三步:算出a 2的各位数字之和得n 3,计算n 32+1得a 3;…………依此类推,则a 2008=___ __.二、选择题6. 下列式子中是完全平方式的是A .22b ab a ++B .222++a aC .222b b a +-D .122++a a7.下列等式中不成立的是( )A.()222396x y x xy y -=-+.B.()()22a b c c a b +-=--.C.2221124m n m mn n ⎛⎫-=-+ ⎪⎝⎭. D. 44222)(y x y x -=-. 8. 下列各式中计算正确的是( )A.222)(b a b a -=-B.22242)2(b ab a b a ++=+C.12)1(422++=+a a aD.222()2m n m mn n --=++ 9. 设(5a+3b)2=(5a-3b)2+M,则M 的值是( )A. 30abB. 60abC. 15abD. 12ab甲 乙a ab ba ab b10. 利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a +b )2=a 2+2ab +b 2.你根据图乙能得到的数学公式是( )A. a 2- b 2= (a-b)2B. (a+b)2= a 2+2ab+b2 C. (a-b)2= a 2-2ab+b 2 D. a 2- b 2=(a+b)(a-b)三、解答题11.计算:⑴()22y x --; ⑵2223⎪⎭⎫ ⎝⎛+b a ;⑶()21-+b a ; ⑷22341⎪⎭⎫ ⎝⎛--a⑸()()2211--+ab ab ; ⑹()()()y x y x y x 2422+---.12. 已知:()112=+b a ,()72=-b a . 求:(1)22b a +; (2)ab .13.已知12,3-==+ab b a ,求下列各式的值:(1)22b ab a +- ; (2) 2)(b a -.【能力提升】 14.若219x x ⎛⎫+= ⎪⎝⎭,则21x x ⎛⎫- ⎪⎝⎭的值为 . 15.若()()22y x M y x -=-+,则M 为 . 16.当x = ___________________时,多项式221x x ++取得最小值.17.如果281x ax ++是完全平方式,那么a 的值是 .18.一个正方形的边长增加3cm ,它的面积就增加39cm ,求原正方形的边长.参考答案1. 222510y xy x ++;2. 2244y xy x +-;3. 4,2)2(-x ,224y a ,2)1(+ay ;4. 9170;5. 26. 6. D ;7. D ;8. D ; 9. B ;10. C.11.⑴2244y xy x ++; ⑵4412922b ab a ++;⑶122222+--++b a ab b a ; ⑷42923161a a ++;⑸ab 4; ⑹298y xy +-. 12.(1)9; (2)1.13.(1)45 ; (2)57.14.5.15.xy 4.16.-1.17.±18.18.5cm.。

七年级数学下册 9.4 乘法公式(第1课时)同步练习 苏科版(2021年整理)

七年级数学下册 9.4 乘法公式(第1课时)同步练习 苏科版(2021年整理)

七年级数学下册9.4 乘法公式(第1课时)同步练习(新版)苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学下册9.4 乘法公式(第1课时)同步练习(新版)苏科版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学下册9.4 乘法公式(第1课时)同步练习(新版)苏科版的全部内容。

9。

4 乘法公式第1课时完全平方公式1.下列运算正确的是 ( ) A.(a+b)2=a2+b2 B.a3·a2=a5 C.a6÷a3=a2 D.2a+3b=5a b2.下列等式能成立的是 ( ) A.(a-b) 2=a2-a b+b2 B.(a+3b) 2=a2+9b2C.(a+b) 2=a2+2a b+b2 D.(x+9)(x-9)=x2-93.下列等式能成立的是 ( )A.221122x x⎛⎫⎛⎫-=--⎪ ⎪⎝⎭⎝⎭B.221122x x⎛⎫⎛⎫-=-⎪ ⎪⎝⎭⎝⎭C.221124x x⎛⎫-=-⎪⎝⎭D.221124x x⎛⎫+=+⎪⎝⎭4.在下列的计算中,正确的是() A.2x+3y=5xy B.(a+2)(a-2)=a2 +4C.a2·a b=a3b D.(x-3) 2 =x 2 +6x+95.(-a2-b) 2等于() A.-a2-2a b+b2 B.-a4-2a2b+b 2C.a4+2a2 b+b2 D.a4-2a b-b 46.(a+bc)2 = ( ) A.a2 +b 2 c 2 B.a2 +2a b+b2 C.a2 +2a bc+bc2 D.a2 +2a bc+b2c 2 7.501 2 = ( ) A.250501 B.251001 C.250001 D.以上结果都不对8.化简:(a+1) 2-(a-1) 2 = ( )A.2 B.4 C.4a D.2a2 +29.2112n n a b ab +⎛⎫-- ⎪⎝⎭的运算结果是 ( )A .222222114n n n n a b a b a b +++-+B .222222114n n n n a b a b a b +++++C .222222114n n n n a b a b a b +++--+D .22222114n n n n a a b a b +++-+-10.(2m+n) 2=____________. 11.(-3x -1) 2=____________.12.(3x -_________) 2=__________x 2-__________+16y 2. 13.(x+1)(x -1)(x 2-1)=___________. 14.(99.9) 2=___________.15.若a 2+b 2=5,a b=2,则(a +b) 2=____________.16.化简:(1)(3a +b) 2(2)(-x+3y ) 2(3)(-m -n) 217.计算:(a -b -c) 218.先化简,再求值:(a -b ) 2+b(a -b),其中a =2,12b =-.19.先化简,再求值:y (x+y)+(x -y ) 2-x 2-2y 2,其中13x =-,y=3.20.计算:(x -y ) 2-(y+2x)(y -2x).21.我们考查个位数是5的两位数的平方,例如计算得到35 2=1225,发现积的末两位上的数25=5 2,前面的数12=3x(3+1),换一个数75试一试.你能得到什么规律?一般地,形如10a +5(a =l ,2,…,9)的两位数,这一规律都适应吗?为什么?22.已知长方形两边之差为4,面积为12,求以长方形的长和宽之和为边长的正方形的面积.23.大家一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)1 (a+b) 1=a+b1 1 (a+b) 2=a2+2a b+b21 2 1 (a+b) 3=a2+3a2b+3a b 2+b 31 3 3 1 (a+b) 4=a4+4a3b+6a2b 2+4a b 3+b 41 4 6 4 1……ⅠⅡ根据前面各式规律,则(a+b) 5=__________________.24.已知(a+b) 2=7,(a-b) 2=4,求a2+b 2和ab的值.参考答案1.B 2.C 3.B 4.C 5.C 6.D 7.B 8.C 9.B10.4m 2+4mn+n 2 11.9x 2+6x+1 12.4y.9.24xy 13.x 4-2x 2+114.9980.01 15.916.解:(1)9a2+6a b+b2 (2) 9y 2-6xy+x 2(3)方法1:(-m-n) 2=[-(m+n)]2=(m+n)2=m 2+2mn+n 2:方法2:(-m-n) 2=(-m) 2-2·(-m)·(-n)+n 2=m 2+2mn+n 217.a2-2a b+b2-2a c+2bc+c 218.解:原式=a2-2a b+b2+a b-b2=a2-a b当a=2,b=-12时,原式=519.解:原式=xy+y2+x 2-2xy+y 2-x 2-2y 2=-xy当13x=-,y=3时,原式=1313⎛⎫--⨯=⎪⎝⎭20.5x 2-2xy.21.解:因为(10a+5) 2=100a2+100a(a+1)+25,所以,形如10a+5(a=l,2,...,9)的平方,末两位数是25,前面的数是十位数字a乘以a+1.22.答:所求的正方形的面积为64.23.a5+5a b+10a3b 2+10a2b 3+5a b 4+b 524.解:由(a+b) 2=7,得a2+2a b+b2=7 ①由(a-b) 2=4,得a2-2a b+b2=4 ②①+②得2(a2+b 2)=11,∴2211 2a b+=;①-②得4a b=3,∴34 ab=。

2020—2021年苏教版七年级数学下册第九章第4节乘法公式(3)同步练习及答案.docx

2020—2021年苏教版七年级数学下册第九章第4节乘法公式(3)同步练习及答案.docx

苏教版2017-2018学年七年级下册乘法公式(3)一、选择题1.下列运算正确的是【】A.3a+2a=5a2 B.(2a)3=6a3 C.(x+1)2=x2+1 D.x2﹣4=(x+2)(x﹣2)2.若(3x+2y)2=(3x-2y)2+A,则代数式A为【】A.-12xy B.12xyC.24xy D.-24xy3.已知x2+16x+k是完全平方式,则常数k等于【】A.64 B.48 C.32 D.164.如果1212+x是两个数的和的平方的形式,那么a的值是-ax【】A.22 B.11 C.±22 D.±115.三个连续奇数,中间一个为n,则这三个连续奇数之积为【】A .n n -24B .n n 43-C .n n 882-D .n n 283- 二、填空题6.若1022=+y x ,3=xy ,则()=-2y x . 7.()()()=-++2422x x x .8.如果()()b x x a x -=+-25,那么______=a ,______=b .9.观察下列各式:()()1112-=-+x x x ,()()11132-=++-x x x x ,()()111423-=+++-x x x x x ,根据规律可得()()=++⋅⋅⋅++--111x x x x n n .10.多项式4x 2+1加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是__________________________.(请尽可能多的填写正确答案) 三、解答题11.先化简,再求值:)1)(1()2(2a a a +-++,其中43-=a12.化简求值:()()()()x y x y x y y x 232355-+-+-,其中1=x ,2=y .13.已知72=-y x ,5-=xy ,求4422-+y x 的值.14.已知31=+x x ,求(1)221x x +,(2)2)1(xx -.15.已知5,2-=++=++xz yz xy z y x ,求222z y x ++的值.四、拓展题16.观察下列各式: 2+1=3=22-1. 22+2+1=7=23-1. 23+22+2+1=15=24-1.(1)填空:26+25+24+23+22+2+1=________=________.(2)试求1+2+22+23+…+262+263的值.5.B11.解:原式=5414422+=-+++a a a a , 当43-=a 时,原式=2。

2020-2021学年七年级数学苏科版下册-9.4 乘法公式(55)

2020-2021学年七年级数学苏科版下册-9.4 乘法公式(55)
(a b)2 a2 ab ab b2
a2 2ab b2
完全平方公式
完全平方公式
a b2 a2 2ab b2
a b2 a2 2中央.
完全平方公式
a b2 a2 2ab b2
a b2 a2 2ab b2
特征: ➢积为二次三项式;
例题2 运用完全平方公式计算:
(1)(4m+n)2 解: (4m+n)2= (4m)2+2•(4m) •n +n2
(a +b)2= a2 + 2 a b + b2 =16m2 +8mn +n2
例题2
(2)(x-2y)2 解: (x-2y)2= x2 -2•x •2y +(2y)2
(a - b)2= a2 - 2 ab + b2 =x2-4xy +4y2
例题2
(3)2m 3n2 (4)2m 3n2 (5) 2m 3n2 (6) 2m 3n2
例题3
运用完全平方公式计算:
(1) 1022
(2) 982
例题4 填空
多项式9x2+1加上一个单项式,使它能成为
一个整式的完全平方,那么加上的单项式
可以是
.
思考
计算:a 2b 3c2
计算: (x+1)(x+1) (x+y)(x+y) (mn+a)(mn+a)
你能运用符号表示上述多项式乘多项式的 共同特征吗?
你能借助图形表示上述多项式乘多项式的 共同特征吗?
b ab b²
(a+b)²
a a² ab
ab
(a b)2 a2+2ab+b2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9.4乘法公式 同步练习
一、单选题
1.下列多项式乘法中可以用平方差公式计算的是( )
A .()()22x y y x +-
B .()()22x x ++
C .()()a b a b -+-
D .()()21x x -+ 2.若3a b +=-,10ab =-,则-a b 的值是( )
A .0或7
B .0或13-
C .7-或7
D .13-或13 3.2244(54)(______)2516a b a b -+=-括号内应填( )
A .2254a b +
B .2254a b -
C .2254a b -+
D .2254a b -- 4.一个正方形的边长增加了3cm ,面积相应增加了45cm 2,则这个正方形的边长为( ) A .6cm B .7cm C .8cm D .9cm 5.若22(1)16x m x -++是完全平方式,则m 的值是( )
A .3
B .5-
C .3或5-
D .4± 6.若n 为正整数,则()()222121n n +--( )
A .一定能被6整除
B .一定能被8整除
C .一定能被10整除
D .一定能被12整除
7.如图,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形,根据图形的变化过程写出的正确的等式是( )
A .()()22a b a b a b -=+-
B .()2
a a
b a a b -=- C .()222a b a b -=-
D .()2
222a ab b a b -+=- 8.下列运算中,正确的运算有( ) ①(x +2y )2=x 2+4y 2;①( a -2b )2=a 2-4ab +4b 2;①(x +y )2=x 2-2xy +y 2;①
( x -14)2=x 2-12x +116
. A .1个 B .2个
C .3个
D .4个 9.设()()222323a b a b A +=-+,则A =( )
A .6ab
B .12ab
C .218b
D .24ab 10.算式(2+1)×(22+1)×(24+1)×…×(232+1)+1计算结果的个位数字是( ) A .8
B .6
C .4
D .2
二、填空题
11.计算:()()ab c ab c ---=__________.
12.如果22936x kxy y -+是完全平方式,则k 的值是___________________. 13.计算:4985024⨯+=______________.
14.已知2215m n +=,2()1m n -=,则2()m n +=__________. 15.已知实数m ,n 满足3n km =+,()()
22254816m m n n -+-+=,则k =_______.
三、解答题
16.化简:()()()2222x y y x x y -+--.
17.数学中有很多等式可以用图形的面积来表示.
(1)观察图,直接写出代数式22(),()a b a b +-,ab 之间的等量关系________;
(2)根据(1)题中的等量关系,解决如下问题:
①已知7,
10a b ab -==-.求+a b 的值; ①已知13x x +=,求1x x
-的值. 18.如图①是一个长为2a ,宽为2b 的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图①的形状拼成一个正方形.
(1)图①中阴影部分的正方形的边长是__________;
(2)用两种不同的方法表示①中阴影部分的面积:
方法1:____________________;方法2:____________________
(3)观察图①,请你写出式子()2a b +、()2a b -、ab 之间的等量关系:__________;
(4)根据(3)中的等量关系解决如下问题:若7m n -=-,5mn =,则()2m n +的值为多少?
参考答案
1.A 2.C 3.D 4.A 5.C
6.B 7.A 8.B 9.D 10.B
11.222c a b -
12.36±
13.250000
14.29.
15.-1
16.284y xy .
17.(1)(a+b )2=4ab+(a -b )2;(2)①±3;①18.(1)-a b ;(2)()2a b -;()24a b ab +-;(3)22()()4a b a b ab -=+-;(4)69。

相关文档
最新文档